JP4417115B2 - Hard metal alloy member and manufacturing method thereof - Google Patents
Hard metal alloy member and manufacturing method thereof Download PDFInfo
- Publication number
- JP4417115B2 JP4417115B2 JP2003573189A JP2003573189A JP4417115B2 JP 4417115 B2 JP4417115 B2 JP 4417115B2 JP 2003573189 A JP2003573189 A JP 2003573189A JP 2003573189 A JP2003573189 A JP 2003573189A JP 4417115 B2 JP4417115 B2 JP 4417115B2
- Authority
- JP
- Japan
- Prior art keywords
- ppm
- alloy
- metal alloy
- hard metal
- alloy member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001092 metal group alloy Inorganic materials 0.000 title claims description 77
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 105
- 230000032683 aging Effects 0.000 claims description 59
- 239000000463 material Substances 0.000 claims description 57
- 229910052726 zirconium Inorganic materials 0.000 claims description 40
- 239000012535 impurity Substances 0.000 claims description 32
- 229910052782 aluminium Inorganic materials 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 22
- 238000005266 casting Methods 0.000 claims description 19
- 229910052748 manganese Inorganic materials 0.000 claims description 17
- 239000000956 alloy Substances 0.000 description 90
- 229910045601 alloy Inorganic materials 0.000 description 84
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 55
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 50
- 239000010949 copper Substances 0.000 description 47
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 42
- 239000000654 additive Substances 0.000 description 38
- 239000011777 magnesium Substances 0.000 description 35
- 229910052718 tin Inorganic materials 0.000 description 35
- 229910052738 indium Inorganic materials 0.000 description 33
- 230000000996 additive effect Effects 0.000 description 30
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 30
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 29
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 28
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 28
- 239000011572 manganese Substances 0.000 description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 24
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 24
- 229910052802 copper Inorganic materials 0.000 description 24
- 239000010931 gold Substances 0.000 description 24
- 238000000034 method Methods 0.000 description 20
- 229910000510 noble metal Inorganic materials 0.000 description 20
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 19
- 229910052742 iron Inorganic materials 0.000 description 19
- 230000008569 process Effects 0.000 description 19
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 18
- 229910052749 magnesium Inorganic materials 0.000 description 18
- 239000010703 silicon Substances 0.000 description 18
- 239000011701 zinc Substances 0.000 description 17
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 15
- 229910052796 boron Inorganic materials 0.000 description 15
- 229910052761 rare earth metal Inorganic materials 0.000 description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 14
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 14
- 229910052737 gold Inorganic materials 0.000 description 14
- 229910052759 nickel Inorganic materials 0.000 description 14
- 229910052709 silver Inorganic materials 0.000 description 14
- 239000004332 silver Substances 0.000 description 14
- 229910000838 Al alloy Inorganic materials 0.000 description 13
- 229910000640 Fe alloy Inorganic materials 0.000 description 13
- 229910001020 Au alloy Inorganic materials 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 229910052725 zinc Inorganic materials 0.000 description 12
- 229910001316 Ag alloy Inorganic materials 0.000 description 11
- 229910000881 Cu alloy Inorganic materials 0.000 description 11
- 229910000861 Mg alloy Inorganic materials 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 238000005260 corrosion Methods 0.000 description 11
- 230000007797 corrosion Effects 0.000 description 11
- 229910052697 platinum Inorganic materials 0.000 description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000003353 gold alloy Substances 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 229910001260 Pt alloy Inorganic materials 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 229910052712 strontium Inorganic materials 0.000 description 7
- 239000011575 calcium Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052763 palladium Inorganic materials 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- 229910005557 Gd—Si Inorganic materials 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 238000005486 sulfidation Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910018967 Pt—Rh Inorganic materials 0.000 description 1
- 229910003522 Sr-Sn Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000010929 jewellery material Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- UPIXZLGONUBZLK-UHFFFAOYSA-N platinum Chemical compound [Pt].[Pt] UPIXZLGONUBZLK-UHFFFAOYSA-N 0.000 description 1
- 229910000923 precious metal alloy Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/02—Alloys based on gold
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
- C22C5/08—Alloys based on silver with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Adornments (AREA)
- Heat Treatment Of Articles (AREA)
Description
【0001】
【技術分野】
本発明は、電子部材、自動車/航空部材、理化学部材、医療部材、宝飾部材、楽器部材、食器部材、構造部材等に好適な硬質金属合金部材及び製造方法に関する。
【0002】
【背景技術】
従来、金属材料として鉄(Fe)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、チタン(Ti)、亜鉛(Zn)、錫(Sn)、ベリリウム(Be)、ジルコニウム(Zr)、金(Au)、プラチナ(Pt)、銀(Ag)、パラジウム(Pd)等が知られており、各分野で使用されている。
【0003】
上記金属材料は、各分野の用途に用いる場合に硬度やヤング率等の機械的性質、物理的特性、化学的特性、耐食性、変色等が必ずしも充分と言えない。また作業性が悪いという問題もある。
【0004】
【発明が解決しようとする課題】
本発明の目的は、上記金属材料の持つ特徴を維持して、これらの不具合な特性を改善、改良し、向上させるものであり、特に、硬度やヤング率等の機械的特性に優れた硬質金属合金部材及びその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明の一つの観点によれば、Gdを50ppm以上5000ppm未満の範囲で含有し、残部がCuおよび不可避不純物からなり、溶体化処理および時効処理が施されていることを特徴とする硬質金属合金部材が提供される。
【0006】
本発明の他の観点によれば、GdとZrを合計で50ppm以上5000ppm未満の範囲で含有し、残部がCuおよび不可避不純物からなり、溶体化処理および時効処理が施されていることを特徴とする硬質金属合金部材が提供される。
【0007】
本発明のさらに他の観点によれば、Gdを50ppm以上5000ppm未満の範囲で含有し、残部がFeおよび不可避不純物からなり、溶体化処理および時効処理が施されていることを特徴とする硬質金属合金部材が提供される。
【0008】
本発明のさらに他の観点によれば、GdとSiを合計で50ppm以上5000ppm未満の範囲で含有し、残部がFeおよび不可避不純物からなり、溶体化処理および時効処理が施されていることを特徴とする硬質金属合金部材が提供される。
【0009】
本発明のさらに他の観点によれば、Gdを50ppm以上5000ppm未満の範囲で含有し、残部がAlおよび不可避不純物からなり、溶体化処理および時効処理が施されていることを特徴とする硬質金属合金部材が提供される。
【0010】
本発明のさらに他の観点によれば、GdとMnを合計で50ppm以上5000ppm未満の範囲で含有し、残部がAlおよび不可避不純物からなり、溶体化処理および時効処理が施されていることを特徴とする硬質金属合金部材が提供される。
【0011】
本発明のさらに他の観点によれば、Gdを50ppm以上5000ppm未満の範囲で含有し、残部がMgおよび不可避不純物からなり、溶体化処理および時効処理が施されていることを特徴とする硬質金属合金部材が提供される。
【0012】
本発明のさらに他の観点によれば、GdとMnを合計で50ppm以上5000ppm未満の範囲で含有し、残部がMgおよび不可避不純物からなり、溶体化処理および時効処理が施されていることを特徴とする硬質金属合金部材が提供される。
【0013】
本発明のさらに他の観点によれば、Gdを50ppm以上5000ppm未満の範囲で含有し、残部がCuおよび不可避不純物からなる硬質金属合金で構成された素材を鋳造する工程と、その素材に対して溶体化処理を施す工程と、
その後、その素材に対して時効処理を施す工程とを有することを特徴とする硬質金属合金部材の製造方法が提供される。
【0014】
本発明のさらに他の観点によれば、GdとZrを合計で50ppm以上5000ppm未満の範囲で含有し、残部がCuおよび不可避不純物からなる硬質金属合金で構成された素材を鋳造する工程と、その素材に対して溶体化処理を施す工程と、その後、その素材に対して時効処理を施す工程とを有することを特徴とする硬質金属合金部材の製造方法が提供される。
【0015】
本発明のさらに他の観点によれば、Gdを50ppm以上5000ppm未満の範囲で含有し、残部がFeおよび不可避不純物からなる硬質金属合金で構成された素材を鋳造する工程と、その素材に対して溶体化処理を施す工程と、その後、その素材に対して時効処理を施す工程とを有することを特徴とする硬質金属合金部材の製造方法が提供される。
【0016】
本発明のさらに他の観点によれば、GdとSiを合計で50ppm以上5000ppm未満の範囲で含有し、残部がFeおよび不可避不純物からなる硬質金属合金で構成された素材を鋳造する工程と、その素材に対して溶体化処理を施す工程と、その後、その素材に対して時効処理を施す工程とを有することを特徴とする硬質金属合金部材の製造方法が提供される。
【0017】
本発明のさらに他の観点によれば、Gdを50ppm以上5000ppm未満の範囲で含有し、残部がAlおよび不可避不純物からなる硬質金属合金で構成された素材を鋳造する工程と、その素材に対して溶体化処理を施す工程と、その後、その素材に対して時効処理を施す工程とを有することを特徴とする硬質金属合金部材の製造方法が提供される。
【0018】
本発明のさらに他の観点によれば、GdとMnを合計で50ppm以上5000ppm未満の範囲で含有し、残部がAlおよび不可避不純物からなる硬質金属合金で構成された素材を鋳造する工程と、その素材に対して溶体化処理を施す工程と、その後、その素材に対して時効処理を施す工程とを有することを特徴とする硬質金属合金部材の製造方法が提供される。
【0019】
本発明のさらに他の観点によれば、Gdを50ppm以上5000ppm未満の範囲で含有し、残部がMgおよび不可避不純物からなる硬質金属合金で構成された素材を鋳造する工程と、その素材に対して溶体化処理を施す工程と、その後、その素材に対して時効処理を施す工程とを有することを特徴とする硬質金属合金部材の製造方法が提供される。
【0020】
本発明のさらに他の観点によれば、GdとMnを合計で50ppm以上5000ppm未満の範囲で含有し、残部がMgおよび不可避不純物からなる硬質金属合金で構成された素材を鋳造する工程と、その素材に対して溶体化処理を施す工程と、その後、その素材に対して時効処理を施す工程とを有することを特徴とする硬質金属合金部材の製造方法が提供される。
【0021】
本発明の硬質金属合金部材は、硬度、引張強度、ヤング率、耐熱性が向上し、バネ性があり、加工し易く、作業性がよいことを特徴とする。加工し易いので、焼鈍なしで90%以上の加工ができる。圧延方向を変えても割れが発生しない等の特徴を示す。伸びもある。
【0022】
本発明の銅(Cu)合金部材は、硬度、引張強度、ヤング率、耐熱性があり、加工し易く、作業性がよい。高純度品は電気伝導性がよく電子材料として好適である。0.2mm以下板厚にしてもバネ性を示す。最新仕様のリードフレーム、コネクター、リレー、スイッチ等の部材仕様を満たす。
【0023】
本発明の鉄(Fe)合金部材は、高純度で硬度、引張強度、ヤング率、耐熱性を上げられ、加工し易く、作業性がよく、バネ性のある。高純度で酸化し難くなる高純度鉄Feを生かすことが可能である。鉄合金は、超強力、超耐熱、超耐食、超耐低温、超耐磨耗などの極限部材が得られれば、未来像としての期待は大きい。本発明の鉄Fe合金組成と製造方法が有益になる可能性を示している。
【0024】
耐食性のある材料の高純度鉄は、高純度で硬度・引張強度があり、ヤング率が高く、バネ性があり、伸びのある特性を得ることによって、将来の部材への期待が大きい。
【0025】
アルミニウム(Al)合金は軽量合金であり、本発明では、機械的特性、電気特性の優れているアルミニウム(Al)合金部材部材として適用される。本発明アルミニウムAl合金は、高純度で硬度、引張強度、ヤング率、耐熱性があり、加工し易く、作業性がよく、バネ性、電気伝導性もよい。本発明Al合金の用途は自動車、航空機、船舶、農機具、冷蔵庫、洗濯機、接点、ボンデングワイヤー等非常に多い。
【0026】
マグネシウム(Mg)合金は軽量合金であり、本発明では、硬度、引張強度、ヤング率、伸び等の機械的特性の優れたマグネシウム(Mg)合金部材として適用される。本発明のMg合金部材は、ホイール、シートフレーム、パソコンボディ、携帯電話、ビデオカメラ筐体等の小物部品からヘリコプターの大物部品まで用途は広い。
【0027】
銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)等の合金は、硬度が高く、高温での耐熱性があり、引張強度も強く、機械特性のよいものが、工業材料、宝飾材料として求められている。銅(Cu)、アルミニウム(Al)等では、電子部材として電気抵抗の低い、機械強度のある高純度部材が求められている。
【0028】
薄膜においても耐酸性と耐硫化性のある、耐食性を示す材料が求められている。食器、宝飾品でも酸化/酸化し難い材料が求められている。用途は限りなく多大である。
【0029】
【発明を実施するための最良の形態】
本発明の第1の実施形態に係る貴金属合金部材は、Au含有量37.50〜98.45質量%、であり、ガドリニウムGdを単独、あるいはガドリウムGと、ジルコニウムZr、スズSn、インジウムInの群から選択される少なくとも1種の元素とで構成さられる硬質化添加剤を合計で50ppm以上15000ppm未満の範囲で含有させた金合金で構成される。
【0030】
このように金Au含有量を37.50〜98.45質量%、あるいは98.45質量%以上とし、ガドリニウムGdと他の元素と複合化してなる硬質化添加剤を適量添加することにより、加工を加えない鋳造合金であっても110Hv以上という高い硬度を示し、6000kgf/mm2という今までにない高いヤング率が得られる。ヤング率の高い金合金は9000kgf/mm2以上を示す。
【0031】
Gdは、体積含有率を考慮すると最も有効な硬質化元素であり、耐熱性の高い向上効果を示す。さらに、特に高いヤング率と強い引張強度が確保可能なことを見出した。このように、Gdは、硬度、ヤング率、引張強度の向上が大きいためか、添加量は少量でよく、基合金の特徴を変化させずに、良好な特性をもつその合金部材を得ることができる。
【0032】
対象とする金合金としては、金品位で9K(カラット)以上の合金であれば特に制限されず通常のものであれば適用可能である。基本的に銅等の耐食性の劣る元素を含まれていない場合には、良好な耐食性を示す。貴金属はもちろん、貴金属以外の合金元素を含む金合金であってもよい。上記硬質化添加剤は、既存のどのような金合金に対しても有効である。
【0033】
次に、上記特性の合金部材の製造方法について説明する。
先ず、鋳造合金の場合には、上記組成の合金素材を鋳造し、その素材に対して所定温度に加熱後急冷する溶体化処理を施し、必要ならばその後所定温度で時効処理を施す。
【0034】
次に、加工合金の場合には、上記組成の合金素材を鋳造し、その素材に対して所定温度に加熱後急冷する溶体化処理を施し、その素材を所定形状に加工し、その加工の前または後で前記素材に対して時効処理を施す。
【0035】
この際の金合金素材を鋳造し、溶体化処理温度は500℃〜2700℃、時効処理温度は100℃〜600℃とすることが可能である。
【0036】
本発明によれば、金純度よらず高硬度、強引張強度および高ヤング率を兼備した合金部材を得ることができる。従来の24Kの金合金はヤング率が4000kgf/mm2程度であり、18Kでは5800kgf/mm2程度であったが、本実施形態では、18K合金では、ヤング率6000kgf/mm2以上を示し、高いものは7000kgf/mm2以上を示す。組成および条件を最適化することにより、ヤング率は9000kgf/mm2以上を示す。硬度についても、通常18K(5/5)イエローの硬度は高くても250Hv程度であるが、本発明18K合金の硬度は370Hv以上を示す。
【0037】
金Au純度37.8〜99.45質量%の場合、99.45%以上の場合、いずれも、高硬度、高ヤング率、強引張強度を得るために特に好ましい製造条件は、溶体化処理温度600〜1000℃、時効処理温度は150〜550℃である。
【0038】
図1は99.95質量%の電解金を用いて、実施例1と実施例2の金合金を溶製した。先ず、鋳造機で8mmφワイヤーに鋳造し、その後、鋳造素材を800℃×1時間の条件で溶体化処理し、溝ロールとダイスで所定のサイズませ加工した。時効処理は加工前または後に250℃×3時間の条件で行った。比較例1はガドリニウムGd、単独添加合金であり、比較例2は4N金Auの高純度金である。
【0039】
このように溶体化処理および時効処理を行うことにより、主にGdの作用および他の添加元素との相乗作用によって著しく硬化し、加工を加えない鋳造合金の場合でも130Hv以上、組成および条件を適切に選択すれば150Hv以上と従来よりも極めて大きな値とすることが可能である。加工合金の場合には加工率50%以上で150Hv以上、加工率90%以上で180Hv以上、高いものでは200Hv以上の値を得ることが可能である。この際の加工率は任意の値とすることが可能であるが、99.0%まで、更には99.6%までの範囲が好ましい。
【0040】
本発明の高純度金合金の硬度は170Hv以上のビッカス硬度を示し、耐熱性が有り、引張強度も80kgf/mm2以上ある。更に、伸びも4%以上で、ヤング率も8600以上、更に、9000kgf/mm2以上を示した。本発明処理によって、所定の伸びを確保しながら、硬度、引張強度およびヤング率を向上させることが出来ることを確認した。バネ性があり、加工し易く、作業性もよい。
【0041】
適用される合金は特に限定されるものではないが、金Au合金に、ガドリニウムGdとGd以外の元素を50〜15000ppm添加する添加合金として実施例3でAu−Gd−Zr、実施例4でAu−Gd−Sn例示され、その他にAu−Gd−Sr、Au−Gd−Zn、Au―Gd−In、Au―Gd−Sr−Zrの合金について試作評価したが、実施例1と実施例2と同様に、硬度、引張強度、ヤング率、耐熱性が向上した。バネ性があり、加工し易く、作業性もよい
【0042】
本発明の第2の実施形態に係る硬質貴金属合金部材は、プラチニウムPt含有量が85.0質量%以上であり、ガドリニウムGdとジルコニウムZr、スズSn、インジウムInからなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させたプラチナ合金で構成される。
【0043】
実施形態のプラチニウム合金からなる貴金属合金部材は、ガドリニウムGdと、他の元素と複合してなる硬質化添加剤を適量添加し、上述のような処理を施すことにより、加工を加えない鋳造合金で120Hv以上の今までにない高い値を示した。また、加工の場合には、加工率50%程度で150Hv以上、加工率90%以上では、200Hv以上の値を得ることが可能である。
【0044】
プラチニウム合金は、ヤング率は高いが、硬度が低いという欠点があり、本発明が意図する用途に適用することが困難であるか、Cu等の元素を添加することにより、適用することができても、その硬度が必ずしも充分と言えないばかり、Cu等により耐食性や色調に問題が生じる。これに対して本発明は、上述のように高硬度・強引張強度にすることができる。8000kgf/mm2以上の高いヤング率を維持することができる。組成や製造条件を調整すると、高硬度と強引張強度を維持しつつヤング率を10,000kg/mm2以上、さらに15000kgf/mm2、20000kgf/mm2以上の極めて高い値とすることが可能である。
【0045】
プラチウムPt合金は、溶体化処理温度は600〜2800℃、時効処理温度は150〜700℃が可能である。特に好ましい条件は溶体化処理温度が500〜1600℃、時効処理温度は150〜600℃である。加工の際の加工効率は任意であるが、好ましい範囲は、第1の実施形態と同様である。
【0046】
図3は、20mm角の合金を鋳造し、1000℃で1時間溶体化処理を行ない、550℃で3時間時効処理を行った。加工を加えない鋳造合金で100Hv以上と150Hvを得ることが可能である。加工率すると208Hv以上と250Hv以上である。比較例3として4NPt地金、比較例4としてPt−Rh合金を示した。800℃×30分熱処理でも実施例3が236Hv、実施例4が197Hvを保持している。1400℃でも117Hvと97Hvを保持している。引張強度は88.3kgf/mm2、破断伸びは20%で大きい。
【0047】
実施例3と実施例4は、硬度が200Hv以上、引張強度が85kgf/mm2以上である。耐熱性があり、ヤング率も1700kgf/mm2以上を示し、バネ性がある。硬度、引張強度、ヤング率、耐熱性が向上するが確認できた。加工し易く、作業性もよい。
【0048】
適用される合金は特に限定されるものではないが、プラチニウムPtに、ガドリニウムGdとGd以外の元素を50〜15000ppm添加する添加合金として実施例3でPt−Gd−Sr−Zr、実施例4でPt−Gd−Zrが例示され、その他にPt−Gd−酸化ジルコニウム、Pt−Gd−Rh、Pt−Gd−Zr、Pt−Gd−Sn、Pt−Gd−Zn、Pt−Gd−Inの合金について試作評価したが、実施例1と実施例2と同様に、硬度、引張強度、ヤング率、耐熱性が向上した。バネ性があり、加工し易く、作業性もよい。
プラチニウムPtとパラジウムPd、銅Cu、マンガンMn、スズSn、インジウムInからなる群から選択される少なくも1種以上の元素から構成されるPt合金に上記元素を添加して添加合金を試作評価したが、上記Ptの添加合金と同様に硬度、引張強度。ヤング率、耐熱性が向上し、バネ性を示した。加工し易く、作業性もよい。
【0049】
本発明の第3実施形態に係る硬質貴金属合金部材は、銀Ag含有量が85.0質量%以上であり、ガドリニウムGdとジルコニウムZr、スズSn、インジウムInからなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させた銀合金で構成される。
【0050】
銀Ag合金は、溶体化処理温度は450〜2200℃、時効処理温度は100〜600℃が可能である。特に好ましい条件は溶体化処理温度が500〜1550℃、時効処理温度は150〜500℃である。加工の際の加工効率は任意であるが、好ましい範囲は、第1の実施形態と同様である。
【0051】
実施例5、6、7はガドリニウムGdとストロチウムSrを適量添加し、更にスズSn、ジルコニウムZr、インジウムInをそれぞれに添加して、上述の処理を施すことによって、図3に示す硬度Hvを得た。板加工後250℃×2時間処理後の硬度は169Hv〜176Hvを示し。800℃×30分処理後の硬度は115Hv〜124Hvを示した。引張強度は52kg/mm2〜60kg/mm2であった。ヤング率は9000kg/mm2以上であり、約12%向上した。硬度、引張強度、ヤング率、耐熱性が向上した。バネ性があり、加工し易く、作業性もよい。
【0052】
適用される合金は特に限定されるものではないが、銀Agに、ガドリニウムGdとGd以外の元素を50〜15000ppm添加する添加合金として実施例5でAg−Gd−Sr−Sn、実施例6でAg−Gd−Sr−Zr、実施例7でAg−Gd−Sr−Inが例示され、その他にAg−Gd−Zr、Ag−Gd−Sn、Ag−Gd−Zn、Ag−Gd−Inの合金について試作評価したが、実施例1と実施例2と同様に、硬度、引張強度、ヤング率、耐熱性が向上した。バネ性があり、加工し易く、作業性もよい。
【0053】
比較例5は4N銀Ag、比較例6は92.5%Ag合金である。
本発明高純度銀合金は、Ag925銀合金相当以上の硬度と引張強度を示し、耐熱性もあることが分かった。本発明銀合金は、ヤング率は8500kgf/mm2以上を示し、その値は調整が可能である。
【0054】
図5は、本発明銀合金の塩化ナトリウム連続噴霧テストと湿度90%以上噴霧テスト結果である。概観変化無く、変色と腐食がされにくくなっていることが分かる。顕著な効果を示す。0.10質量%以上のパラジウムPdを添加する耐硫化性が顕著に向上することが分かった。本発明銀Ag合金ではPd添加効果が顕著であることが分かった。パラジウムPd0.01%、0.10%、1.00%、10.00%添加で評価した。
【0055】
本発明の第4実施形態に係る硬質貴金属合金部材は、金Au、銀Ag、プラチニウムPt、パラジウムPd、ロジウムRh、ルテニウムRuおよびオスミウムOsからなる貴金属元素群から選択された2種以上の元素で構成された貴金属合金に、ガドリニウムGdと、ジルコニウムZr、スズSn、インジウムInからなる群から選択される少なくも1種の元素で構成された硬質化添加剤を合計で50ppm以上15000ppm未満の範囲で含有させてなる。
【0056】
本発明の第5実施形態に係る硬質貴金属合金部材は、金Au、銀Ag、プラチニウムPt、パラジウムPd、ロジウムRh、ルテニウムRuおよびオスミウムOsからなる貴金属元素群から選択された1種以上の元素で構成された貴金属合金に、ガドリニウムGdと、ジルコニウムZr、スズSn、インジウムInからなる群から選択される少なくも1種の元素で構成された硬質化添加剤を合計で50ppm以上15000ppm未満の範囲で含有させてなる。
【0057】
本発明の第6実施形態に係る硬質貴金属合金部材は、金Au含有量が99.45質量%以上であり、ガドリニウムGdとジルコニウムZr、スズSn、インジウムInからなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させた金合金で構成される。
【0058】
実施形態に適用される合金は特に限定されるものでない。上記硬質化添加剤以外の成分も通常の貴金属合金に用いられるものであればどのようなものでもよく特に限定されない。つまり、上記硬質化添加剤は、既存のどのような貴金属合金に対しても有効である。これら実施形態に係る合金部材を製造する際にも第1の実地形態と同様である。鋳造の場合には、上記組成の合金素材を鋳造し、その素材に対して所定温度に加熱後急冷する溶体化処理を施す。その後必要に応じて所定温度で時効処理を施す。また、加工合金の場合には、上記組成の合金素材を鋳造し、その素材に対して所定温度加熱後急冷する溶体化処理を施し、その素材を所定形状に加工し、この加工前または加工後に前期素材に対して時効処理を施す。この際の溶体化処理温度は600〜2700℃、時効処理温度は150〜700℃が可能である。特に好ましい条件は溶体化処理温度が500〜1600℃、時効処理温度は150〜600℃である。加工の際の加工効率は任意であるが、好ましい範囲は、第1の実施形態と同様である。
【0059】
本発明の第7の実施形態に係る硬質貴金属合金部材は、プラチナPt含有量が99.45質量%以上であり、ガドリニウムGdとジルコニウムZr、スズSn、インジウムInからなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させたプラチナ合金で構成される。
【0060】
本発明の第8の実施形態に係る硬質貴金属合金部材は、銀Ag含有量が99.45質量%以上であり、ガドリニウムGdとジルコニウムZr、スズSn、インジウムInからなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させた銀合金で構成される。
【0061】
本発明の第9実施形態に係る硬質金属合金部材は、銅Cu含有量が40.00質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させた銅合金で構成される。
【0062】
銅Cu合金は、溶体化処理温度は600〜2500℃、時効処理温度は150〜780℃が可能である。特に好ましい条件は溶体化処理温度が600〜1600℃、時効処理温度は150〜680℃である。加工の際の加工効率は任意であるが、好ましい範囲は、第1の実施形態と同様である。
【0063】
実施例8と実施例9は、銅Cuからなる金属合金部材で、ガドリニウムGd単独、ガドリニウムGdとジルコニウムZrをそれぞれ適量添加し、上述の処理を施すことによって、図4の硬度Hvと引張強度を得た。加工して315℃×2時間処理後の硬度は、219Hvと230Hvであった。810℃×30処理後は160Hvと131Hvになった。引張強度は53.2kgf/mm2であり、本発明高純度銅Cu合金は、硬度、引張強度、ヤング率が向上し、バネ性を示した。加工し易く、作業性もよい。ヤング率は13500kgf/mm2以上を示し、この値は調整が可能である。
【0064】
実施形態のCu合金からなる金属合金部材は、ガドリニウムGdを単独、または他の元素と複合してなる硬質化添加剤を適量添加し、上述のような処理を施すことにより、加工を加えない鋳造合金で120Hv以上の今までにない高い値を示す。また、加工の場合には、加工率50%程度で150Hv以上、加工率90%以上では、200Hv以上の値を示す。
【0065】
比較例7は4N銅Cu、比較例8はCr/Zr銅である。
ジルコニウムZr元素を添加することによって、上述貴金属合金及び金属合金の特性が更に向上することが分かった。酸化ジルコニウムを添加しても顕著な特性向上が見られた。銅Cuに、Cu以外の元素を50〜15000ppm添加する添加合金としては、Cu−Gd、Cu−Gd−Zrが例示され、その他にCu−Gd−Sr、Cu−Gd−Ca、Cu−Gd−Zr、Cu―Gd−Sn、Cu―Gd−Zn、Cu―Gd−Inについて試作評価したが、実施例8と実施例9と同様に硬度、引張強度、ヤング率、耐熱性の特性が向上し、バネ性を示した。加工し易く、作業性もよい。
【0066】
銅Cuと亜鉛Zn、スズSn、アルミニウムAl、ニッケルNi、ベリリウムBe、鉛Pb、マンガンMn、インジウムInからなる群から選択される少なくも1種以上の元素から構成されるCu合金に上記元素を添加した添加合金を試作評価したが、上記Cuの添加合金と同様に硬度、引張強度、ヤング率、耐熱性が向上し、バネ性を示した。加工しやすく、作業性もよい。
【0067】
本発明の第10実施形態に係る硬質金属合金部材は、鉄Fe含有量が40.00質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させた鉄合金で構成される。溶体化処理は820℃×1時間行ない、時効処理は480℃×3時間行った。
【0068】
鉄Fe合金は、溶体化処理温度は600〜2800℃、時効処理温度は150〜700℃が可能である。特に好ましい条件は溶体化処理温度が600〜2000℃、時効処理温度は150〜700℃である。加工の際の加工効率は任意であるが、好ましい範囲は、第1の実施形態と同様である。
【0069】
実施例10、実施例11の鉄Fe合金の硬度は120Hvと156Hvであり。引張強度は87と120kg/mm2である。本発明鉄Fe合金の添加効果は、顕著である。4N鉄Feに添加しても耐食性、電気抵抗等の低下はほとんど見られなかった。硬度、引張強度、ヤング率、耐熱性が向上し、バネ性を示した。ヤング率は22000kgf/mm2以上を示し、この値は調整が可能である。
比較例7は、99.94質量%高純度鉄である。
【0070】
鉄Feに、Fe以外の元素を50〜15000ppm添加する添加合金としては、Fe−Gd、Fe−Gd−Siが例示され、その他にFe−Gd−Sr、Fe−Gd−Ca、Fe−Gd−Zr、Fe−Gd−Sn、Fe−Gd−Zn、Fe−Gd−In、Fe−Gd−Mnについて試作評価したが、実施例8と実施例9と同様に硬度、引張強度、ヤング率、耐熱性が向上し、バネ性を示した。加工し易く、作業性がよい。
【0071】
鉄Feと銅Cu、シリコンSi、マンガンMn、ニッケルNi、クロムCr、モリブデンMo、コバルトCoからなる群から選択された少なくも1種以上の元素から構成されるFe合金に上記元素を添加した添加合金を試作評価したが、上記Feの添加合金と同様に硬度、引張強度、ヤング率、耐熱性が向上し、バネ性を示した。加工し易く、作業性もよい。
【0072】
本発明の第11実施形態に係る硬質金属合金部材は、アルミニウムAl含有量が40.00質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させたアルミニウム合金で構成される。
【0073】
アルミニウムAl合金は、溶体化処理温度は300〜2000℃、時効処理温度は50〜450℃が可能である。特に好ましい条件は溶体化処理温度が500〜1600℃、時効処理温度は50〜400℃である。加工の際の加工効率は任意であるが、好ましい範囲は、第1の実施形態と同様である。
【0074】
実施例12と実施例13のアルミニウムAl合金の硬度は76Hvと115Hvであり、引張強度は55kgf/mm2と81kgf/mm2である。本発明アルミニウムAl合金は、硬度、引張強度、ヤング率、耐熱性が向上し、バネ性を示した。加工し易く、作業性がよい。ヤング率は、7400kgf/mm2以上を示し、この値は調整が可能である。比較例10は99.90質量%の高純度アルミニウムである。
【0075】
アルミニウムAlに、Al以外の元素を50〜15000ppm添加する添加合金としては、Al−Gd、Al−Gd−Mnが例示され、その他にAI−Gd−Sr、Al−Gd−Ca、Al−Gd−Zr、Al−Gd−Sn、Al−Gd−Zn、Al−Gd−In、Al−Gd−Siについて試作評価したが、実施例10と実施例11と同様に硬度、引張強度ヤング率、耐熱性が向上し、バネ性を示した。加工し易く、作業性がよい。
【0076】
アルミニウムAlと、銅Cu、鉄Fe、マンガンMn、シリコンSi、マグネシウムMg、亜鉛Zn、スズSn、インジウムInからなる群から選択された少なくも1種以上の元素から構成されるAl合金に上記元素を添加した添加合金を試作評価したが、上記Alの添加合金と同様に、硬度、引張強度、ヤング率、耐熱性が向上し、バネ性を示し、加工しやすく、作業性もよい。
【0077】
本発明の第12実施形態に係る硬質金属合金部材は、マグネシウムMg含有量が40.00質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させたマグネシウム合金で構成される。
【0078】
マグネシウムMg合金は、溶体化処理温度は250〜1050℃、時効処理温度は1100〜500℃が可能である。特に好ましい条件は溶体化処理温度が500〜1000℃、時効処理温度は100〜450℃である。加工の際の加工効率は任意であるが、好ましい範囲は、第1の実施形態と同様である。
実施例14、15のマグネシウムMgの硬度は81Hvと121Hvであり、引張強度は52kgf/mm2と80である。溶体化処理は390℃×10時間、時効処理は260℃×5時間行った。本発明マグネシウムMg合金は、硬度、引張強度、ヤング率、耐熱性が向上し、バネ性を示した。加工し易く、作業性もよい。ヤング率は4400kgf/mm2以上であり、約15%向上した。比較例11と比較例12は、純度99.8と99.99質量%の高純度マグネシウムである。
【0079】
マグネシウムMgに、Mg以外の元素を50〜15000ppm添加する添加合金としては、Mg−Gd、Mg−Gd−Mnが例示され、その他にMg−Gd−Sr、Mg−Gd−Ca、Mg−Gd−Zr、Mg−Gd−Sn、Mg−Gd−Zn、Mg−Gd−In、Mg−Gd−Siについて試作評価したが、実施例14と実施例15と同様に硬度、引張強度、ヤング率、耐熱性が向上し、バネ性を示した。加工し易く、作業性もよい。
【0080】
マグネシウムMgとアルミニウムAl、鉄Fe、亜鉛Zn、マンガンMn、ジルコニウムZr、銅Cu、リチウムLi、シリコンSiからなる群から選択された少なくも1種以上の元素から構成されるMg合金に上記元素を添加した添加合金を試作評価したが、上記Mgの添加合金と同様に硬度、引張強度、ヤング率、耐熱性が向上し、バネ性を示した。
熱処理方法は、バッチ処理方式と連続処理方式がある。
【0081】
本発明の第13実施形態に係る硬質金属合金部材は、銅Cu含有量が70.00質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させた銅合金で構成される。
【0082】
本発明の第14実施形態に係る硬質金属合金部材は、鉄Fe含有量が70.00質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させた鉄合金で構成される。
【0083】
本発明の第15実施形態に係る硬質金属合金部材は、アルミニウムAl含有量が70.00質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させたアルミニウム合金で構成される。
【0084】
本発明の第16実施形態に係る硬質金属合金部材は、マグネシウムMg含有量が70.00質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上15000ppm未満の範囲で含有させたマグネシウム合金で構成される。
【0085】
本発明の第17実施形態に係る硬質金属合金部材は、銅Cu含有量が99.45質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上5000ppm未満の範囲で含有させた銅合金で構成される。
【0086】
本発明の第18実施形態に係る硬質金属合金部材は、鉄Fe含有量が99.45質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上5000ppm未満の範囲で含有させた鉄合金で構成される。
【0087】
本発明の第19実施形態に係る硬質金属合金部材は、アルミニウムAl含有量が99.45質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上5000ppm未満の範囲で含有させたアルミニウム合金で構成される。
【0088】
本発明の第20実施形態に係る硬質金属合金部材は、マグネシウムMg含有量が99.45質量%以上であり、ガドリニウムGd単独、ガドリニウムGdとGd以外の希土類元素、アルカリ土類元素、シリコンSi、ボロンB、ジルコニウムZr、スズSn、インジウムInか鉛Pb、ニッケルNiらなる群から選択される少なくも1種の元素で構成された硬質化添加剤合計で50ppm以上5000ppm未満の範囲で含有させたマグネシウム合金で構成される。
【0089】
鋳造の場合には、上記組成の合金素材を鋳造し、その素材に対して所定温度に加熱後急冷する溶体化処理を施す。その後必要に応じて所定温度で時効処理を施す。また、加工合金の場合には、上記組成の合金素材を鋳造し、その素材に対して所定温度加熱後急冷する溶体化処理を施し、その素材を所定形状に加工し、この加工前または加工後に前期素材に対して時効処理を施す。
【0090】
貴金属合金のガドリニウムGd複合添加剤として、新にジルコニウムZr、スズSn、インジウムIn、マンガンMn使用し、試作評価したところ、硬度、引張強度、ヤング率等が向上し、バネ性があり、加工し易く、作業性もよかった。その効果が顕著であることが分かった。
【0091】
銅Cu合金、鉄Fe合金、アルミニウムAl合金およびマグネシウムMg合金について、Gdと希土類元素、Gdとアルカリ土類元素について、それぞれ複合添加して、試作評価したが、硬度、引張硬度、ヤング率等が向上した。バネ性があり、加工し易く、作業性もよかった。更に、GdとカルシウムCa、ストロンチウムSr、シリコンSi、ベリリウムBe、ボロンB、ジルコニウムZr、スズSn、インジウムIn、マンガンMnの複合添加でも同様な結果が得られ、顕著な上記と同じ効果が見られることが分かった。
【0092】
本発明の実施形態に係る硬質金属合金部材は、金Au、プラチナPt、銀Ag、銅Cu、鉄Fe、アルミニウムAl、マグネシウムMg等の含有量が37.50〜99.995質量%であり、ガドリニウムGd単独の、あるいはガドリニウムGd以外の希土類元素、アルカリ土類元素、シリコンSi、アルミニウムAl、マンガンMn、ジルコニウムZr、スズSn、亜鉛Zn、インジウムIn、ボロンBからなる群から選択される少なくとも1種の元素とで構成される硬質化添加剤を合計で50ppm以上15000ppm未満の範囲で含有させた金属合金で構成される。
【0093】
更に、本発明の実施形態に係る硬質金属合金部材は、金Au、プラチナPt合金、銀Ag合金、銅Cu合金、鉄Fe合金、アルミニウムAl合金、マグネシウムMg合金からなる金属合金群から選択された少なくも1種以上の金属合金に、ガドリニウムGd単独の、あるいはガドリニウムGd以外の希土類元素、アルカリ土類元素、シリコンSi、アルミニウムAl、マンガンMn、ジルコニウムZr、スズSn、亜鉛Zn、インジウムIn、ボロンBからなる群から選択される少なくとも1種の元素とで構成される硬質化添加剤を合計で50ppm以上15000ppm未満の範囲で含有させた金属合金で構成される。
【0094】
このように金属の含有率を37.5%〜99.995質量%とし、ガドリニウムGdを単独、または他の元素と複合化してなる硬質化添加剤を適量添加することにより、加工を加えない鋳造合金であっても従来にない高い硬度が得られるとともに、今までにない高い硬度、ヤング率、引張強度、耐熱性、作業性を得ることができる。
【0095】
ガドリニウムGdは、体積占有率を考慮すると最も有効な硬質化元素であり、耐熱性の向上も顕著である。特に、Gdを添加することにより極めて高いヤング率が得られることを見出した。このようにGdは硬度、ヤング率、引張強度の向上効果が大きいため、添加量は少量でよく,基合金の色調を変化させないで良好な色調を得ることができる。更に添加量が少量で占有体積が小さいので、基合金特有の特性を生かすことができる。
【0096】
硬質化添加剤としての効果はGd単体で発揮されるが、Gd以外の上記元素からなる群から選択される少なくとも1種の元素と複合添加することによる相乗効果によって優れた特性を得ることができる。
【0097】
本発明の硬質金属部材は、硬度が高くかつ耐食性が良好であるため、耐久性に優れている。また、ヤング率が高くバネ性があり、引張強度も強く脆さがない。そして、このような優れた機械的特性を有するため、軽量化及び薄形化が可能である。更に、良好な色調を有しており、更に加工性が良好で作業性がよい。
【0098】
本発明の金属合金部材は、硬度、引張強度、ヤング率が向上し、バネ性があり、伸び等もあり、加工し易く、作業性がよい。従来の合金部材とは異なる。更に、これらの特性をユーザーの好みに応じて調整できることが大きな特徴である。
【0099】
従って、上記元素の超高性能の貴金属合金/金属合金とユーザーの好みに応じて調整した個性的な貴金属合金/金属合金が得られるのが最大の特徴である。
【図面の簡単な説明】
【図1】 硬質合金部材としての金Au合金部材、プラチナPt合金部材、銀Ag合金部材、及び銅Cu合金部材の組成を示す図。
【図2】 金Au合金部材の硬度、引張強度、伸び、及び軟化特性を示す図。
【図3】 プラチナPt合金部材の硬度、引張強度、伸び、及び軟化特性を示す図。
【図4】 銀Ag合金部材の硬度、引張強度、及び軟化特性を示す図。
【図5】 硬質金属合金部材としての銅Cu合金部材の硬度、引張強度、及び軟化特性を示す図。
【図6】 硬質金属合金部材としての銀Ag合金の変色性と耐食性の改善効果を示す図。
【図7】 硬質金属合金部材としての鉄Fe合金部材、アルミニウムAl合金部材、マグネシウムMg合金部材の組成を示す図。
【図8】 硬質金属合金部材としての鉄Fe合金、アルミニウムAl合金、マグネシウムMg合金の硬度と引張強度特性を示す図。[0001]
【Technical field】
The present invention is suitable for electronic members, automobile / aviation members, physics and chemistry members, medical members, jewelry members, musical instrument members, tableware members, structural members, etc.HardThe present invention relates to a metal alloy member and a manufacturing method.
[0002]
[Background]
Conventionally, iron (Fe), copper (Cu), aluminum (Al), magnesium (Mg), titanium (Ti), zinc (Zn), tin (Sn), beryllium (Be), zirconium (Zr), as metal materials Gold (Au), platinum (Pt), silver (Ag), palladium (Pd), etc. are known and used in various fields.
[0003]
When the metal material is used in applications in various fields, it cannot be said that mechanical properties such as hardness and Young's modulus, physical properties, chemical properties, corrosion resistance, and discoloration are sufficient. There is also a problem that workability is poor.
[0004]
[Problems to be solved by the invention]
The purpose of the present invention is to maintain the characteristics of the metal material and improve, improve, and improve these defective characteristics.In particular, it is to provide a hard metal alloy member having excellent mechanical properties such as hardness and Young's modulus, and a method for producing the same.
[0005]
[Means for Solving the Problems]
According to one aspect of the present invention,There is provided a hard metal alloy member characterized in that it contains Gd in a range of 50 ppm or more and less than 5000 ppm, the remainder is made of Cu and inevitable impurities, and is subjected to solution treatment and aging treatment.
[0006]
According to another aspect of the present invention, Gd and Zr are contained in a total range of 50 ppm or more and less than 5000 ppm, the balance is made of Cu and inevitable impurities, and solution treatment and aging treatment are performed. A hard metal alloy member is provided.
[0007]
According to still another aspect of the present invention, a hard metal containing Gd in a range of 50 ppm to less than 5000 ppm, the balance being Fe and inevitable impurities, and subjected to solution treatment and aging treatment An alloy member is provided.
[0008]
According to still another aspect of the present invention, Gd and Si are contained in a total range of 50 ppm or more and less than 5000 ppm, the balance is made of Fe and inevitable impurities, and solution treatment and aging treatment are performed. A hard metal alloy member is provided.
[0009]
According to still another aspect of the present invention, a hard metal containing Gd in a range of 50 ppm to less than 5000 ppm, the balance being made of Al and inevitable impurities, and subjected to solution treatment and aging treatment An alloy member is provided.
[0010]
According to still another aspect of the present invention, Gd and Mn are contained in a total range of 50 ppm or more and less than 5000 ppm, the balance is made of Al and inevitable impurities, and solution treatment and aging treatment are performed. A hard metal alloy member is provided.
[0011]
According to still another aspect of the present invention, a hard metal containing Gd in a range of 50 ppm or more and less than 5000 ppm, the balance being Mg and inevitable impurities, and subjected to solution treatment and aging treatment An alloy member is provided.
[0012]
According to still another aspect of the present invention, Gd and Mn are contained in a total range of 50 ppm or more and less than 5000 ppm, the balance is made of Mg and inevitable impurities, and solution treatment and aging treatment are performed. A hard metal alloy member is provided.
[0013]
According to still another aspect of the present invention, a step of casting a material composed of a hard metal alloy containing Gd in a range of 50 ppm or more and less than 5000 ppm, the balance being Cu and inevitable impurities, and the material Applying a solution treatment;
Then, the manufacturing method of the hard metal alloy member characterized by having the process of performing an aging treatment with respect to the raw material is provided.
[0014]
According to still another aspect of the present invention, a step of casting a material composed of a hard metal alloy containing Gd and Zr in a total range of 50 ppm or more and less than 5000 ppm, with the balance being Cu and inevitable impurities, and There is provided a method for producing a hard metal alloy member comprising a step of subjecting a raw material to a solution treatment and a step of subjecting the raw material to an aging treatment thereafter.
[0015]
According to still another aspect of the present invention, a step of casting a material composed of a hard metal alloy containing Gd in the range of 50 ppm or more and less than 5000 ppm, the balance being Fe and inevitable impurities, and the material There is provided a method for producing a hard metal alloy member comprising a step of performing a solution treatment and a step of performing an aging treatment on the material.
[0016]
According to still another aspect of the present invention, a step of casting a material composed of a hard metal alloy containing Gd and Si in a total range of 50 ppm or more and less than 5000 ppm, the balance being Fe and inevitable impurities, and There is provided a method for producing a hard metal alloy member comprising a step of subjecting a raw material to a solution treatment and a step of subjecting the raw material to an aging treatment thereafter.
[0017]
According to still another aspect of the present invention, a step of casting a material composed of a hard metal alloy containing Gd in the range of 50 ppm or more and less than 5000 ppm, the balance being Al and inevitable impurities, and the material There is provided a method for producing a hard metal alloy member comprising a step of performing a solution treatment and a step of performing an aging treatment on the material.
[0018]
According to still another aspect of the present invention, a step of casting a material composed of a hard metal alloy containing Gd and Mn in a total range of 50 ppm or more and less than 5000 ppm, with the balance being Al and inevitable impurities, There is provided a method for producing a hard metal alloy member comprising a step of subjecting a raw material to a solution treatment and a step of subjecting the raw material to an aging treatment thereafter.
[0019]
According to still another aspect of the present invention, a step of casting a material composed of a hard metal alloy containing Gd in a range of 50 ppm or more and less than 5000 ppm, the balance being Mg and inevitable impurities, and the material There is provided a method for producing a hard metal alloy member comprising a step of performing a solution treatment and a step of performing an aging treatment on the material.
[0020]
According to still another aspect of the present invention, a step of casting a material composed of a hard metal alloy containing Gd and Mn in a total range of 50 ppm or more and less than 5000 ppm, with the balance being Mg and inevitable impurities, There is provided a method for producing a hard metal alloy member comprising a step of subjecting a raw material to a solution treatment and a step of subjecting the raw material to an aging treatment thereafter.
[0021]
The hard metal alloy member of the present invention is characterized by improved hardness, tensile strength, Young's modulus, heat resistance, springiness, easy processing, and good workability. Since it is easy to process, 90% or more of processing can be performed without annealing. Features such as no cracking even if the rolling direction is changed. There is also growth.
[0022]
Of the present inventionCopper (Cu) alloy memberHas hardness, tensile strength, Young's modulus, and heat resistance, is easy to process, and has good workability. High-purity products have good electrical conductivity and are suitable as electronic materials. Even if the plate thickness is 0.2 mm or less, the spring property is exhibited. Meets the latest specifications for lead frames, connectors, relays, switches, and other components.
[0023]
Of the present inventionIron (Fe) alloy memberHas high purity, increased hardness, tensile strength, Young's modulus, and heat resistance, is easy to work, has good workability, and has a spring property. It is possible to make use of high-purity iron Fe that is highly pure and difficult to oxidize. An iron alloy has great expectations for its future image if extreme members such as super strength, super heat resistance, super corrosion resistance, super low temperature resistance, and super wear resistance can be obtained. The iron-Fe alloy composition and manufacturing method of the present invention show the potential for benefit.
[0024]
High-purity iron, which is a corrosion-resistant material, has high purity, hardness and tensile strength, high Young's modulus, springiness, and high elongation, so there are high expectations for future members.
[0025]
Aluminum (Al) alloy is a lightweight alloy, and in the present invention,Excellent mechanical and electrical propertiesApplied as aluminum (Al) alloy member. The aluminum Al alloy of the present invention has high purity, hardness, tensile strength, Young's modulus, and heat resistance, is easy to process, has good workability, and has good springiness and electrical conductivity. The use of the Al alloy of the present invention is very many such as automobiles, airplanes, ships, agricultural equipment, refrigerators, washing machines, contacts, and bonding wires.
[0026]
Magnesium (Mg) alloy is a lightweight alloy, and in the present invention,Excellent mechanical properties such as hardness, tensile strength, Young's modulus and elongationIt is applied as a magnesium (Mg) alloy member. Mg alloy member of the present inventionHas a wide range of applications from small parts such as wheels, seat frames, personal computer bodies, mobile phones, and video camera casings to large parts of helicopters.
[0027]
Copper (Cu), Aluminum (Al), Magnesium (Mg)Alloys such as those having high hardness, heat resistance at high temperatures, strong tensile strength, and good mechanical properties are required as industrial materials and jewelry materials.Copper (Cu), Aluminum (Al)Etc., a high-purity member having low mechanical resistance and mechanical strength is required as an electronic member.
[0028]
There is a demand for a material exhibiting corrosion resistance and acid resistance and sulfidation resistance even in a thin film. There is a demand for materials that are difficult to oxidize / oxidize even in tableware and jewelry. Applications are enormous.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
The noble metal alloy member according to the first embodiment of the present invention has an Au content of 37.50 to 98.45.mass50% or more and less than 15000 ppm in total, consisting of gadolinium Gd alone or gadolinium G and at least one element selected from the group consisting of zirconium Zr, tin Sn, and indium In It is comprised with the gold alloy contained in the range.
[0030]
Thus, the gold Au content is 37.50 to 98.45.mass%, Or 98.45mass% Or more, and by adding an appropriate amount of a hardening additive compounded with gadolinium Gd and other elements, even a cast alloy without any processing shows a high hardness of 110 Hv or more, 6000 kgf / mm2A high Young's modulus that has never been achieved. Gold alloy with high Young's modulus is 9000kgf / mm2The above is shown.
[0031]
Gd is the most effective hardening element in view of the volume content, and exhibits an improvement effect with high heat resistance. Furthermore, it has been found that a particularly high Young's modulus and strong tensile strength can be secured. As described above, Gd has a large improvement in hardness, Young's modulus, and tensile strength, so the addition amount may be small, and an alloy member having good characteristics can be obtained without changing the characteristics of the base alloy. it can.
[0032]
The target gold alloy is not particularly limited as long as it is an alloy having a gold quality of 9K (carat) or more, and any normal alloy can be applied. Basically, when an element with poor corrosion resistance such as copper is not included, good corrosion resistance is exhibited. A gold alloy containing an alloy element other than a noble metal may be used as well as a noble metal. The hardening additive is effective for any existing gold alloy.
[0033]
Next, a method for producing an alloy member having the above characteristics will be described.
First, in the case of a cast alloy, an alloy material having the above composition is cast, and the material is subjected to a solution treatment that is heated to a predetermined temperature and then rapidly cooled, and if necessary, an aging treatment is then performed at a predetermined temperature.
[0034]
Next, in the case of a processed alloy, an alloy material having the above composition is cast, subjected to a solution treatment for heating to a predetermined temperature and then rapidly cooling, processing the material into a predetermined shape, and before the processing Alternatively, an aging treatment is applied to the material later.
[0035]
The gold alloy material at this time is cast, and the solution treatment temperature can be 500 ° C. to 2700 ° C., and the aging treatment temperature can be 100 ° C. to 600 ° C.
[0036]
According to the present invention, an alloy member having high hardness, high tensile strength, and high Young's modulus can be obtained regardless of gold purity. Conventional 24K gold alloy has a Young's modulus of 4000 kgf / mm2It is about 5800kgf / mm at 18K2In this embodiment, the Young's modulus is 6000 kgf / mm for the 18K alloy.2The above shows high, 7000kgf / mm2The above is shown. By optimizing the composition and conditions, the Young's modulus is 9000 kgf / mm.2The above is shown. Regarding the hardness, the hardness of 18K (5/5) yellow is usually about 250 Hv at the highest, but the hardness of the 18K alloy of the present invention is 370 Hv or more.
[0037]
Gold Au purity 37.8-99.45mass%, In the case of 99.45% or more, in any case, particularly preferable production conditions for obtaining high hardness, high Young's modulus, and strong tensile strength are solution treatment temperature of 600 to 1000 ° C. and aging treatment temperature of 150 to 550 ° C.
[0038]
FIG. 1 shows 99.95.massThe gold alloy of Example 1 and Example 2 was melted using% electrolytic gold. First, an 8 mmφ wire was cast with a casting machine, and then the cast material was subjected to a solution treatment under conditions of 800 ° C. × 1 hour, and processed into a predetermined size with a grooved roll and a die. The aging treatment was performed under conditions of 250 ° C. × 3 hours before or after processing. Comparative Example 1 is gadolinium Gd, a single additive alloy, and Comparative Example 2 is high purity gold of 4N gold Au.
[0039]
By performing solution treatment and aging treatment in this manner, the composition and conditions are appropriately set to 130 Hv or higher even in the case of a cast alloy that is hardened mainly by the action of Gd and the synergistic action with other additive elements, and that is not subjected to processing. If it is selected, it is possible to set the value to 150 Hv or higher, which is much larger than the conventional value. In the case of a work alloy, it is possible to obtain a value of 150 Hv or more at a work rate of 50% or more, 180 Hv or more at a work rate of 90% or more, and 200 Hv or more at a high work rate. The processing rate at this time can be set to an arbitrary value, but is preferably in the range of up to 99.0%, more preferably up to 99.6%.
[0040]
The high-purity gold alloy of the present invention has a hardness of 170 Hv or more, heat resistance, and a tensile strength of 80 kgf / mm.2That is all. Furthermore, the elongation is 4% or more, the Young's modulus is 8600 or more, and 9000 kgf / mm.2The above is shown. It was confirmed that the hardness, tensile strength, and Young's modulus can be improved while securing a predetermined elongation by the treatment of the present invention. It has springiness, is easy to process, and has good workability.
[0041]
The alloy to be applied is not particularly limited, but Au—Gd—Zr in Example 3 and Au in Example 4 are added alloys in which elements other than gadolinium Gd and Gd are added to gold Au alloy in an amount of 50 to 15000 ppm. -Gd-Sn was exemplified, and in addition, Au-Gd-Sr, Au-Gd-Zn, Au-Gd-In, and Au-Gd-Sr-Zr alloys were experimentally evaluated. Similarly, hardness, tensile strength, Young's modulus, and heat resistance were improved. Spring property, easy to process, good workability
[0042]
The hard noble metal alloy member according to the second embodiment of the present invention has a platinum platinum Pt content of 85.0% by mass or more, and is at least selected from the group consisting of gadolinium Gd, zirconium Zr, tin Sn, and indium In. It is comprised with the platinum alloy contained in the range of 50 ppm or more and less than 15000 ppm in total with the hardening additive comprised by 1 type of element.
[0043]
The noble metal alloy member made of the platinum alloy of the embodiment is a cast alloy that does not add any processing by adding an appropriate amount of gadolinium Gd and a hardening additive combined with other elements and performing the above-described treatment. It showed an unprecedented high value of 120 Hv or higher. In the case of machining, it is possible to obtain a value of 150 Hv or more at a machining rate of about 50%, and a value of 200 Hv or more at a machining rate of 90% or more.
[0044]
Platinium alloy has a high Young's modulus, but has a drawback of low hardness, and it is difficult to apply to the intended use of the present invention, or it can be applied by adding an element such as Cu. However, the hardness is not always sufficient, and Cu and the like cause problems in corrosion resistance and color tone. In contrast, the present invention can achieve high hardness and high tensile strength as described above. 8000kgf / mm2The above high Young's modulus can be maintained. By adjusting the composition and manufacturing conditions, the Young's modulus is 10,000 kg / mm while maintaining high hardness and high tensile strength.2Above, further 15000kgf / mm2, 20000kgf / mm2These extremely high values can be obtained.
[0045]
The platinum Pt alloy can have a solution treatment temperature of 600 to 2800 ° C and an aging treatment temperature of 150 to 700 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1600 ° C and an aging treatment temperature of 150 to 600 ° C. The processing efficiency at the time of processing is arbitrary, but the preferable range is the same as that of the first embodiment.
[0046]
In FIG. 3, a 20 mm square alloy was cast, subjected to solution treatment at 1000 ° C. for 1 hour, and subjected to aging treatment at 550 ° C. for 3 hours. It is possible to obtain 100 Hv or more and 150 Hv with a cast alloy without any processing. The processing rate is 208 Hv or more and 250 Hv or more. As Comparative Example 3, a 4NPt metal was shown, and as Comparative Example 4, a Pt—Rh alloy was shown. Even in heat treatment at 800 ° C. for 30 minutes, Example 3 maintains 236 Hv and Example 4 maintains 197 Hv. 117Hv and 97Hv are maintained even at 1400 ° C. Tensile strength is 88.3 kgf / mm2The elongation at break is large at 20%.
[0047]
In Examples 3 and 4, the hardness is 200 Hv or more and the tensile strength is 85 kgf / mm.2That's it. Heat resistance and Young's modulus is 1700kgf / mm2As shown above, there is springiness. It was confirmed that the hardness, tensile strength, Young's modulus, and heat resistance were improved. Easy to process and good workability.
[0048]
The alloy to be applied is not particularly limited, but Pt—Gd—Sr—Zr in Example 3 as an additive alloy in which elements other than gadolinium Gd and Gd are added to platinum Pt in Example 3 and Example 4 Pt-Gd-Zr is exemplified, and other alloys such as Pt-Gd-zirconium oxide, Pt-Gd-Rh, Pt-Gd-Zr, Pt-Gd-Sn, Pt-Gd-Zn, and Pt-Gd-In Although the prototype evaluation was made, the hardness, tensile strength, Young's modulus, and heat resistance were improved as in Example 1 and Example 2. It has springiness, is easy to process, and has good workability.
Trial evaluation of the added alloy was performed by adding the above elements to a Pt alloy composed of at least one element selected from the group consisting of platinum Pt and palladium Pd, copper Cu, manganese Mn, tin Sn, and indium In. However, the hardness and tensile strength are the same as those of the Pt-added alloy. The Young's modulus and heat resistance were improved and spring properties were exhibited. Easy to process and good workability.
[0049]
The hard noble metal alloy member according to the third embodiment of the present invention has a silver Ag content of 85.0.mass%, And a total amount of hardening additives composed of at least one element selected from the group consisting of gadolinium Gd, zirconium Zr, tin Sn, and indium In is contained in the range of 50 ppm or more and less than 15000 ppm. Composed of alloy.
[0050]
The silver Ag alloy can have a solution treatment temperature of 450 to 2200 ° C and an aging treatment temperature of 100 to 600 ° C. Particularly preferable conditions are a solution treatment temperature of 500 to 1550 ° C. and an aging treatment temperature of 150 to 500 ° C. The processing efficiency at the time of processing is arbitrary, but the preferable range is the same as that of the first embodiment.
[0051]
In Examples 5, 6, and 7, gadolinium Gd and strontium Sr are added in appropriate amounts, and tin Sn, zirconium Zr, and indium In are added to each of them, and the above-described treatment is performed to obtain the hardness Hv shown in FIG. It was. The hardness after plate processing at 250 ° C. × 2 hours is 169 Hv to 176 Hv. The hardness after treatment at 800 ° C. for 30 minutes was 115 Hv to 124 Hv. Tensile strength is 52kg / mm2~ 60kg / mm2Met. Young's modulus is 9000 kg / mm2This is an improvement of about 12%. Hardness, tensile strength, Young's modulus, and heat resistance were improved. It has springiness, is easy to process, and has good workability.
[0052]
The alloy to be applied is not particularly limited, but Ag-Gd-Sr-Sn in Example 5 is used as an additive alloy in which elements other than gadolinium Gd and Gd are added to silver Ag in Example 5, and in Example 6. Ag-Gd-Sr-Zr, Ag-Gd-Sr-In is exemplified in Example 7, and other alloys of Ag-Gd-Zr, Ag-Gd-Sn, Ag-Gd-Zn, Ag-Gd-In As in Example 1 and Example 2, the hardness, tensile strength, Young's modulus, and heat resistance were improved. It has springiness, is easy to process, and has good workability.
[0053]
Comparative Example 5 is 4N silver Ag, and Comparative Example 6 is a 92.5% Ag alloy.
It was found that the high-purity silver alloy of the present invention exhibited hardness and tensile strength equivalent to or higher than that of the Ag925 silver alloy and also had heat resistance. The silver alloy of the present invention has a Young's modulus of 8500 kgf / mm2As shown above, the value can be adjusted.
[0054]
FIG. 5 shows the results of a sodium chloride continuous spray test and a spray test of a humidity of 90% or more for the silver alloy of the present invention. It can be seen that discoloration and corrosion are less likely to occur without changing the appearance. Shows remarkable effect. 0.10massIt has been found that the resistance to sulfidation with the addition of at least% palladium Pd is significantly improved. It was found that the Pd addition effect is remarkable in the silver Ag alloy of the present invention. Palladium Pd was evaluated at 0.01%, 0.10%, 1.00%, and 10.00% addition.
[0055]
The hard noble metal alloy member according to the fourth embodiment of the present invention is composed of two or more elements selected from a noble metal element group consisting of gold Au, silver Ag, platinum Pt, palladium Pd, rhodium Rh, ruthenium Ru, and osmium Os. In the range of 50 ppm or more and less than 15000 ppm in total, the noble metal alloy composed of gadolinium Gd and at least one element selected from the group consisting of zirconium Zr, tin Sn, and indium In It is made to contain.
[0056]
The hard noble metal alloy member according to the fifth embodiment of the present invention is one or more elements selected from a noble metal element group consisting of gold Au, silver Ag, platinum Pt, palladium Pd, rhodium Rh, ruthenium Ru, and osmium Os. In the range of 50 ppm or more and less than 15000 ppm in total, the noble metal alloy composed of gadolinium Gd and at least one element selected from the group consisting of zirconium Zr, tin Sn, and indium In It is made to contain.
[0057]
The hard noble metal alloy member according to the sixth embodiment of the present invention has a gold Au content of 99.45.mass%, And the total amount of the hardening additive composed of at least one element selected from the group consisting of gadolinium Gd, zirconium Zr, tin Sn, and indium In is 50 ppm or more and less than 15000 ppm. Composed of alloy.
[0058]
The alloy applied to the embodiment is not particularly limited. Components other than the above-mentioned hardening additive may be any as long as they can be used for ordinary noble metal alloys, and are not particularly limited. That is, the hardening additive is effective for any existing noble metal alloy. When manufacturing the alloy member according to these embodiments, it is the same as the first actual form. In the case of casting, an alloy material having the above composition is cast, and the material is subjected to a solution treatment in which the material is heated to a predetermined temperature and then rapidly cooled. Thereafter, an aging treatment is performed at a predetermined temperature as necessary. In the case of a processed alloy, an alloy material having the above composition is cast, and the material is subjected to a solution treatment for rapid cooling after heating at a predetermined temperature, and the material is processed into a predetermined shape before or after the processing. Aging treatment is applied to the previous term material. The solution treatment temperature at this time can be 600-2700 ° C., and the aging treatment temperature can be 150-700 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1600 ° C and an aging treatment temperature of 150 to 600 ° C. The processing efficiency at the time of processing is arbitrary, but the preferable range is the same as that of the first embodiment.
[0059]
The hard noble metal alloy member according to the seventh embodiment of the present invention has a platinum Pt content of 99.45.mass% And more than 50 ppm and less than 15000 ppm of a total of hardening additives composed of at least one element selected from the group consisting of gadolinium Gd, zirconium Zr, tin Sn, and indium In Composed of alloy.
[0060]
The hard noble metal alloy member according to the eighth embodiment of the present invention has a silver Ag content of 99.45.mass%, And a total amount of hardening additives composed of at least one element selected from the group consisting of gadolinium Gd, zirconium Zr, tin Sn, and indium In is contained in the range of 50 ppm or more and less than 15000 ppm. Composed of alloy.
[0061]
The hard metal alloy member according to the ninth embodiment of the present invention has a copper Cu content of 40.00.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni It is comprised with the copper alloy contained in the range of 50 ppm or more and less than 15000 ppm by the total of the hardening additive comprised by the at least 1 sort (s) of element.
[0062]
The copper Cu alloy can have a solution treatment temperature of 600 to 2500 ° C and an aging treatment temperature of 150 to 780 ° C. Particularly preferred conditions are a solution treatment temperature of 600 to 1600 ° C and an aging treatment temperature of 150 to 680 ° C. The processing efficiency at the time of processing is arbitrary, but the preferable range is the same as that of the first embodiment.
[0063]
Examples 8 and 9 are metal alloy members made of copper Cu. Gadolinium Gd alone, gadolinium Gd and zirconium Zr are added in appropriate amounts, and the above-described treatment is performed, so that the hardness Hv and tensile strength in FIG. Obtained. The hardness after processing and processing at 315 ° C. × 2 hours was 219 Hv and 230 Hv. After the treatment at 810 ° C. × 30, it became 160 Hv and 131 Hv. Tensile strength is 53.2kgf / mm2The high-purity copper Cu alloy of the present invention has improved hardness, tensile strength, Young's modulus, and exhibited springiness. Easy to process and good workability. Young's modulus is 13500kgf / mm2As shown above, this value can be adjusted.
[0064]
The metal alloy member made of the Cu alloy according to the embodiment is cast without adding any processing by adding an appropriate amount of a hardening additive formed of gadolinium Gd alone or in combination with other elements and performing the above-described treatment. The alloy shows an unprecedented high value of 120 Hv or more. In the case of processing, a value of 150 Hv or more is shown at a processing rate of about 50%, and a value of 200 Hv or more is shown at a processing rate of 90% or more.
[0065]
Comparative Example 7 is 4N copper Cu, and Comparative Example 8 is Cr / Zr copper.
It has been found that the addition of zirconium Zr element further improves the characteristics of the above-mentioned noble metal alloys and metal alloys. Even when zirconium oxide was added, significant improvement in properties was observed. Examples of the additive alloy in which elements other than Cu are added to copper Cu include Cu-Gd and Cu-Gd-Zr, and Cu-Gd-Sr, Cu-Gd-Ca, and Cu-Gd- Although Zr, Cu—Gd—Sn, Cu—Gd—Zn, and Cu—Gd—In were evaluated as prototypes, the characteristics of hardness, tensile strength, Young's modulus, and heat resistance were improved as in Examples 8 and 9. Showed springiness. Easy to process and good workability.
[0066]
The above element is added to a Cu alloy composed of at least one element selected from the group consisting of copper Cu and zinc Zn, tin Sn, aluminum Al, nickel Ni, beryllium Be, lead Pb, manganese Mn, and indium In. The added alloy was evaluated by trial production, and the hardness, tensile strength, Young's modulus, and heat resistance were improved and the spring property was exhibited in the same manner as the Cu-added alloy. Easy to work with and good workability.
[0067]
The hard metal alloy member according to the tenth embodiment of the present invention has an iron Fe content of 40.00.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni It is comprised with the iron alloy contained in the range of 50 ppm or more and less than 15000 ppm in total with the hardening additive comprised by at least 1 sort (s) of element. The solution treatment was performed at 820 ° C. for 1 hour, and the aging treatment was performed at 480 ° C. for 3 hours.
[0068]
The iron Fe alloy can have a solution treatment temperature of 600 to 2800 ° C. and an aging treatment temperature of 150 to 700 ° C. Particularly preferred conditions are a solution treatment temperature of 600 to 2000 ° C. and an aging treatment temperature of 150 to 700 ° C. The processing efficiency at the time of processing is arbitrary, but the preferable range is the same as that of the first embodiment.
[0069]
The hardness of the iron Fe alloy of Example 10 and Example 11 is 120 Hv and 156 Hv. Tensile strength is 87 and 120kg / mm2It is. The effect of adding the iron-Fe alloy of the present invention is remarkable. Even when added to 4N iron Fe, the corrosion resistance, electrical resistance and the like were hardly reduced. Hardness, tensile strength, Young's modulus and heat resistance were improved and spring properties were exhibited. Young's modulus is 22000kgf / mm2As shown above, this value can be adjusted.
Comparative Example 7 is 99.94.mass% High purity iron.
[0070]
Examples of the additive alloy in which 50 to 15000 ppm of elements other than Fe are added to iron Fe include Fe-Gd and Fe-Gd-Si, and Fe-Gd-Sr, Fe-Gd-Ca, and Fe-Gd- Although Zr, Fe-Gd-Sn, Fe-Gd-Zn, Fe-Gd-In, and Fe-Gd-Mn were evaluated as prototypes, the hardness, tensile strength, Young's modulus, heat resistance were the same as in Examples 8 and 9. Improved and showed springiness. Easy to process and good workability.
[0071]
Addition of the above elements to an Fe alloy composed of at least one element selected from the group consisting of iron Fe and copper Cu, silicon Si, manganese Mn, nickel Ni, chromium Cr, molybdenum Mo, and cobalt Co The alloy was experimentally evaluated, and as with the Fe-added alloy, the hardness, tensile strength, Young's modulus, and heat resistance were improved, and spring properties were exhibited. Easy to process and good workability.
[0072]
The hard metal alloy member according to the eleventh embodiment of the present invention has an aluminum Al content of 40.00.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni It is comprised with the aluminum alloy contained in the range of 50 ppm or more and less than 15000 ppm in total with the hardening additive comprised by the at least 1 sort (s) of element.
[0073]
The aluminum Al alloy can have a solution treatment temperature of 300 to 2000 ° C. and an aging treatment temperature of 50 to 450 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1600 ° C and an aging treatment temperature of 50 to 400 ° C. The processing efficiency at the time of processing is arbitrary, but the preferable range is the same as that of the first embodiment.
[0074]
The hardness of the aluminum Al alloy of Example 12 and Example 13 is 76 Hv and 115 Hv, and the tensile strength is 55 kgf / mm.2And 81kgf / mm2It is. The aluminum Al alloy of the present invention has improved hardness, tensile strength, Young's modulus, and heat resistance, and exhibited a spring property. Easy to process and good workability. Young's modulus is 7400kgf / mm2As shown above, this value can be adjusted. Comparative Example 10 is 99.90.mass% High purity aluminum.
[0075]
Examples of the additive alloy in which 50 to 15000 ppm of elements other than Al are added to aluminum Al include Al-Gd and Al-Gd-Mn. In addition, AI-Gd-Sr, Al-Gd-Ca, and Al-Gd- Although Zr, Al—Gd—Sn, Al—Gd—Zn, Al—Gd—In, and Al—Gd—Si were evaluated as prototypes, the hardness, tensile strength Young's modulus, and heat resistance were the same as in Example 10 and Example 11. Improved and showed springiness. Easy to process and good workability.
[0076]
The above elements in an Al alloy composed of aluminum Al and at least one element selected from the group consisting of copper Cu, iron Fe, manganese Mn, silicon Si, magnesium Mg, zinc Zn, tin Sn, and indium In Although the additive alloy added with is evaluated as a trial, the hardness, tensile strength, Young's modulus, and heat resistance are improved as in the case of the additive alloy of Al, exhibiting spring properties, easy to work, and good workability.
[0077]
The hard metal alloy member according to the twelfth embodiment of the present invention has a magnesium Mg content of 40.00.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni It is comprised with the magnesium alloy contained in the range of 50 ppm or more and less than 15000 ppm by the total of the hardening additive comprised by the at least 1 sort (s) of element.
[0078]
The magnesium Mg alloy can have a solution treatment temperature of 250 to 1050 ° C and an aging treatment temperature of 1100 to 500 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1000 ° C. and an aging treatment temperature of 100 to 450 ° C. The processing efficiency at the time of processing is arbitrary, but the preferable range is the same as that of the first embodiment.
The hardness of magnesium Mg of Examples 14 and 15 is 81 Hv and 121 Hv, and the tensile strength is 52 kgf / mm.2And 80. The solution treatment was performed at 390 ° C. for 10 hours, and the aging treatment was performed at 260 ° C. for 5 hours. The magnesium-Mg alloy of the present invention has improved hardness, tensile strength, Young's modulus, and heat resistance, and exhibits springiness. Easy to process and good workability. Young's modulus is 4400kgf / mm2This is about 15% improvement. Comparative Examples 11 and 12 have a purity of 99.8 and 99.99.mass% High purity magnesium.
[0079]
Examples of the additive alloy in which an element other than Mg is added to magnesium Mg at 50 to 15000 ppm include Mg-Gd and Mg-Gd-Mn. In addition, Mg-Gd-Sr, Mg-Gd-Ca, and Mg-Gd- Zr, Mg—Gd—Sn, Mg—Gd—Zn, Mg—Gd—In, and Mg—Gd—Si were evaluated by trial production. As in Examples 14 and 15, hardness, tensile strength, Young's modulus, heat resistance Improved and showed springiness. Easy to process and good workability.
[0080]
Magnesium Mg and aluminum Al, iron Fe, zinc Zn, manganese Mn, zirconium Zr, copper Cu, lithium Li, silicon Si and the above elements to Mg alloy composed of at least one element selected from the group consisting of The added alloy was experimentally evaluated, and the hardness, tensile strength, Young's modulus, and heat resistance were improved as in the case of the Mg-added alloy, and the spring property was exhibited.
The heat treatment method includes a batch processing method and a continuous processing method.
[0081]
The hard metal alloy member according to the thirteenth embodiment of the present invention has a copper Cu content of 70.00.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni It is comprised with the copper alloy contained in the range of 50 ppm or more and less than 15000 ppm by the total of the hardening additive comprised by the at least 1 sort (s) of element.
[0082]
The hard metal alloy member according to the fourteenth embodiment of the present invention has an iron Fe content of 70.00.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni It is comprised with the iron alloy contained in the range of 50 ppm or more and less than 15000 ppm in total with the hardening additive comprised by at least 1 sort (s) of element.
[0083]
The hard metal alloy member according to the fifteenth embodiment of the present invention has an aluminum Al content of 70.00.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni It is comprised with the aluminum alloy contained in the range of 50 ppm or more and less than 15000 ppm by the total of the hardening additive comprised by the at least 1 sort (s) of element.
[0084]
The hard metal alloy member according to the sixteenth embodiment of the present invention has a magnesium Mg content of 70.00.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni It is comprised with the magnesium alloy contained in the range of 50 ppm or more and less than 15000 ppm by the total of the hardening additive comprised by the at least 1 sort (s) of element.
[0085]
The hard metal alloy member according to the seventeenth embodiment of the present invention has a copper Cu content of 99.45.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni 50ppm or more in total of hardening additives composed of at least one element5000It is comprised with the copper alloy contained in the range of less than ppm.
[0086]
The hard metal alloy member according to the eighteenth embodiment of the present invention has an iron Fe content of 99.45.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni 50ppm or more in total of hardening additives composed of at least one element5000It is composed of an iron alloy contained in a range of less than ppm.
[0087]
The hard metal alloy member according to the nineteenth embodiment of the present invention has an aluminum Al content of 99.45.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni 50ppm or more in total of hardening additives composed of at least one element5000It is composed of an aluminum alloy contained in a range of less than ppm.
[0088]
The hard metal alloy member according to the twentieth embodiment of the present invention has a magnesium Mg content of 99.45.mass% And selected from the group consisting of gadolinium Gd alone, rare earth elements other than gadolinium Gd and Gd, alkaline earth elements, silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, nickel Ni 50ppm or more in total of hardening additives composed of at least one element5000It is composed of a magnesium alloy contained in a range of less than ppm.
[0089]
In the case of casting, an alloy material having the above composition is cast, and the material is subjected to a solution treatment in which the material is heated to a predetermined temperature and then rapidly cooled. Thereafter, an aging treatment is performed at a predetermined temperature as necessary. In the case of a processed alloy, an alloy material having the above composition is cast, and the material is subjected to a solution treatment for rapid cooling after heating at a predetermined temperature, and the material is processed into a predetermined shape before or after the processing. Aging treatment is applied to the previous term material.
[0090]
Zirconium Zr, tin Sn, indium In, and manganese Mn were newly used as gadolinium Gd composite additives for precious metal alloys, and as a result of trial production evaluation, hardness, tensile strength, Young's modulus, etc. were improved, springiness was achieved It was easy and workability was good. It turned out that the effect is remarkable.
[0091]
For copper Cu alloy, iron Fe alloy, aluminum Al alloy and magnesium Mg alloy, Gd and rare earth elements, Gd and alkaline earth elements were added in combination and evaluated, but the hardness, tensile hardness, Young's modulus, etc. Improved. It was springy, easy to work with, and good workability. Furthermore, similar results can be obtained with the combined addition of Gd and calcium Ca, strontium Sr, silicon Si, beryllium Be, boron B, zirconium Zr, tin Sn, indium In, and manganese Mn, and the same effect as above can be seen. I understood that.
[0092]
The hard metal alloy member according to the embodiment of the present invention has a content of 37.50-99.995 such as gold Au, platinum Pt, silver Ag, copper Cu, iron Fe, aluminum Al, and magnesium Mg.mass%, Selected from the group consisting of gadolinium Gd alone or rare earth elements other than gadolinium Gd, alkaline earth elements, silicon Si, aluminum Al, manganese Mn, zirconium Zr, tin Sn, zinc Zn, indium In, boron B It is comprised with the metal alloy which contained the hardening additive comprised by the at least 1 sort (s) of element in the range of 50 ppm or more and less than 15000 ppm in total.
[0093]
Furthermore, the hard metal alloy member according to the embodiment of the present invention was selected from a metal alloy group consisting of gold Au, platinum Pt alloy, silver Ag alloy, copper Cu alloy, iron Fe alloy, aluminum Al alloy, magnesium Mg alloy. At least one metal alloy containing gadolinium Gd alone or rare earth elements other than gadolinium Gd, alkaline earth elements, silicon Si, aluminum Al, manganese Mn, zirconium Zr, tin Sn, zinc Zn, indium In, boron It is comprised with the metal alloy which contained the hardening additive comprised by the at least 1 sort (s) of element selected from the group which consists of B in the range of 50 ppm or more and less than 15000 ppm in total.
[0094]
Thus, the metal content is 37.5% to 99.995.mass%, And by adding an appropriate amount of a hardening additive composed of gadolinium Gd alone or in combination with other elements, even a cast alloy without any processing can obtain a high hardness that has not been obtained so far. High hardness, Young's modulus, tensile strength, heat resistance, and workability can be obtained.
[0095]
Gadolinium Gd is the most effective hardening element in view of the volume occupancy, and the improvement in heat resistance is also remarkable. In particular, it has been found that an extremely high Young's modulus can be obtained by adding Gd. Thus, since Gd has a large effect of improving hardness, Young's modulus, and tensile strength, the addition amount may be small, and a good color tone can be obtained without changing the color tone of the base alloy. Furthermore, since the addition amount is small and the occupied volume is small, the characteristics peculiar to the base alloy can be utilized.
[0096]
The effect as a hardening additive is exhibited by Gd alone, but excellent characteristics can be obtained by a synergistic effect by adding in combination with at least one element selected from the group consisting of the above elements other than Gd. .
[0097]
Since the hard metal member of the present invention has high hardness and good corrosion resistance, it has excellent durability. In addition, it has a high Young's modulus, springiness, strong tensile strength, and no brittleness. And since it has such an excellent mechanical characteristic, weight reduction and thickness reduction are possible. Furthermore, it has a good color tone, and further has good workability and good workability.
[0098]
The metal alloy member of the present invention has improved hardness, tensile strength and Young's modulus, has springiness, has elongation, etc., is easy to work and has good workability. Different from conventional alloy members. Further, it is a great feature that these characteristics can be adjusted according to the user's preference.
[0099]
Therefore, the most important feature is that an ultra-high performance noble metal alloy / metal alloy of the above elements and a unique noble metal alloy / metal alloy adjusted according to user's preference can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the composition of a gold Au alloy member, a platinum Pt alloy member, a silver Ag alloy member, and a copper Cu alloy member as hard alloy members.
FIG. 2 is a diagram showing hardness, tensile strength, elongation, and softening characteristics of a gold-Au alloy member.
FIG. 3 is a diagram showing hardness, tensile strength, elongation, and softening characteristics of a platinum Pt alloy member.
FIG. 4 is a diagram showing hardness, tensile strength, and softening characteristics of a silver Ag alloy member.
FIG. 5 is a diagram showing hardness, tensile strength, and softening characteristics of a copper Cu alloy member as a hard metal alloy member.
FIG. 6 is a view showing an improvement effect of discoloration and corrosion resistance of a silver Ag alloy as a hard metal alloy member.
FIG. 7 is a view showing the composition of an iron Fe alloy member, an aluminum Al alloy member, and a magnesium Mg alloy member as hard metal alloy members.
FIG. 8 is a diagram showing hardness and tensile strength characteristics of iron Fe alloy, aluminum Al alloy, and magnesium Mg alloy as hard metal alloy members.
Claims (16)
その素材に対して溶体化処理を施す工程と、 A step of subjecting the material to a solution treatment;
その後、その素材に対して時効処理を施す工程と Then, aging treatment for the material
を有することを特徴とする硬質金属合金部材の製造方法。The manufacturing method of the hard metal alloy member characterized by having.
その素材に対して溶体化処理を施す工程と、 A step of subjecting the material to a solution treatment;
その後、その素材に対して時効処理を施す工程と Then, aging treatment for the material
を有することを特徴とする硬質金属合金部材の製造方法。The manufacturing method of the hard metal alloy member characterized by having.
その素材に対して溶体化処理を施す工程と、 A step of subjecting the material to a solution treatment;
その後、その素材に対して時効処理を施す工程と Then, aging treatment for the material
を有することを特徴とする硬質金属合金部材の製造方法。The manufacturing method of the hard metal alloy member characterized by having.
その素材に対して溶体化処理を施す工程と、 A step of subjecting the material to a solution treatment;
その後、その素材に対して時効処理を施す工程と Then, aging treatment for the material
を有することを特徴とする硬質金属合金部材の製造方法。The manufacturing method of the hard metal alloy member characterized by having.
その素材に対して溶体化処理を施す工程と、 A step of subjecting the material to a solution treatment;
その後、その素材に対して時効処理を施す工程と Then, aging treatment for the material
を有することを特徴とする硬質金属合金部材の製造方法。The manufacturing method of the hard metal alloy member characterized by having.
その素材に対して溶体化処理を施す工程と、 A step of subjecting the material to a solution treatment;
その後、その素材に対して時効処理を施す工程と Then, aging treatment for the material
を有することを特徴とする硬質金属合金部材の製造方法。The manufacturing method of the hard metal alloy member characterized by having.
その素材に対して溶体化処理を施す工程と、 A step of subjecting the material to a solution treatment;
その後、その素材に対して時効処理を施す工程と Then, aging treatment for the material
を有することを特徴とする硬質金属合金部材の製造方法。The manufacturing method of the hard metal alloy member characterized by having.
その素材に対して溶体化処理を施す工程と、 A step of subjecting the material to a solution treatment;
その後、その素材に対して時効処理を施す工程と Then, aging treatment for the material
を有することを特徴とする硬質金属合金部材の製造方法。The manufacturing method of the hard metal alloy member characterized by having.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002104529 | 2002-03-01 | ||
JP2002104529 | 2002-03-01 | ||
PCT/JP2003/001993 WO2003074745A1 (en) | 2002-03-01 | 2003-02-25 | Hard metal alloy member and method for manufacture thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2003074745A1 JPWO2003074745A1 (en) | 2005-06-30 |
JP4417115B2 true JP4417115B2 (en) | 2010-02-17 |
Family
ID=27785565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003573189A Expired - Fee Related JP4417115B2 (en) | 2002-03-01 | 2003-02-25 | Hard metal alloy member and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4417115B2 (en) |
AU (1) | AU2003211455A1 (en) |
WO (1) | WO2003074745A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2719780A1 (en) * | 2011-06-06 | 2014-04-16 | Three-o Co., Ltd | Fine crystallite high-performance metal alloy member and method for manufacturing same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008072485A1 (en) * | 2006-11-24 | 2008-06-19 | Kazuo Ogasa | High-performance elastic metal alloy member and process for production thereof |
JP6089353B2 (en) * | 2010-03-23 | 2017-03-08 | 国立大学法人 熊本大学 | Magnesium alloy and method for producing the same |
CN114164365A (en) * | 2021-12-06 | 2022-03-11 | 重庆大学 | High-plasticity rapidly-degradable magnesium alloy and preparation method thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58174535A (en) * | 1982-04-07 | 1983-10-13 | Hashimoto Kasei Kogyo Kk | Manufacture of aluminum-zirconium mother alloy |
JPS6338553A (en) * | 1986-08-01 | 1988-02-19 | Kobe Steel Ltd | Aluminum alloy having superior thermal neutron absorbing power |
JPH03188233A (en) * | 1989-12-14 | 1991-08-16 | Seiko Instr Inc | Surface hardened color silver alloy |
JPH07122114B2 (en) * | 1992-07-01 | 1995-12-25 | 三井金属鉱業株式会社 | High strength magnesium alloy containing gadolinium |
US5518691A (en) * | 1993-07-29 | 1996-05-21 | Tanaka Kikinzoku Kogyo K.K. | Precious metal material |
JP2780611B2 (en) * | 1993-09-06 | 1998-07-30 | 三菱マテリアル株式会社 | Gold decorative materials hardened by alloying small amounts of components |
JPH0790517A (en) * | 1993-09-17 | 1995-04-04 | Chichibu Onoda Cement Corp | Aluminum-base alloy |
JPH07207384A (en) * | 1994-01-14 | 1995-08-08 | Tanaka Kikinzoku Kogyo Kk | Ag or agcu alloy for ornament to be brazed |
BR9604819A (en) * | 1995-04-07 | 1998-06-09 | Kazuo Ogasa | Rigid gold alloy and method for its production |
US5820818A (en) * | 1996-08-08 | 1998-10-13 | Sumitomo Metal Industries, Ltd. | Stainless steel having excellent thermal neutron absorption ability |
JP3664333B2 (en) * | 1996-03-29 | 2005-06-22 | 三井金属鉱業株式会社 | Hot forged product made of high strength magnesium alloy and its manufacturing method |
JPH1180861A (en) * | 1997-09-05 | 1999-03-26 | Fujikura Ltd | High strength and high conductivity copper alloy wire rod and its production |
JP3766202B2 (en) * | 1998-02-13 | 2006-04-12 | 株式会社クボタ | Graphite crystallized high-speed cast iron material with excellent resistance to rough skin |
-
2003
- 2003-02-25 AU AU2003211455A patent/AU2003211455A1/en not_active Abandoned
- 2003-02-25 WO PCT/JP2003/001993 patent/WO2003074745A1/en active Application Filing
- 2003-02-25 JP JP2003573189A patent/JP4417115B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2719780A1 (en) * | 2011-06-06 | 2014-04-16 | Three-o Co., Ltd | Fine crystallite high-performance metal alloy member and method for manufacturing same |
EP2719780A4 (en) * | 2011-06-06 | 2014-12-31 | Three O Co Ltd | Fine crystallite high-performance metal alloy member and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2003074745A1 (en) | 2005-06-30 |
AU2003211455A1 (en) | 2003-09-16 |
WO2003074745A1 (en) | 2003-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4660735B2 (en) | Method for producing copper-based alloy sheet | |
JP4230218B2 (en) | Hard noble metal alloy member and manufacturing method thereof | |
JP4729680B2 (en) | Copper-based alloy with excellent press punchability | |
JP4118832B2 (en) | Copper alloy and manufacturing method thereof | |
JP4950584B2 (en) | Copper alloy with high strength and heat resistance | |
JP2001348635A (en) | Titanium alloy excellent in cold workability and work hardening | |
JPWO2008072485A1 (en) | High performance elastic metal alloy member and manufacturing method thereof | |
JP2005532477A5 (en) | ||
JP2011157630A (en) | Copper alloy containing cobalt, nickel, and silicon | |
WO2012169285A1 (en) | Fine crystallite high-performance metal alloy member and method for manufacturing same | |
JP2001518980A (en) | High strength silver-palladium alloy | |
JP5297855B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP2006124835A (en) | Precipitation hardening type copper based alloy | |
JP5261691B2 (en) | Copper-base alloy with excellent press punchability and method for producing the same | |
JP7374904B2 (en) | copper-zinc alloy | |
JP4417115B2 (en) | Hard metal alloy member and manufacturing method thereof | |
JPH03188247A (en) | Production of high strength and high conductivity copper alloy excellent in bendability | |
JP2008024995A (en) | Copper alloy plate for electrical/electronic component having excellent heat resistance | |
JP2009030146A (en) | High performance elastic metal alloy member, and method for producing the same | |
JPH0718355A (en) | Copper alloy for electronic appliance and its production | |
JP2001240923A (en) | Easily workable high-tensile alloy and its production method | |
JP3059484B2 (en) | Beryllium copper alloy excellent in strength, workability and heat resistance and method for producing the same | |
JP3317434B2 (en) | Gold alloy and method for producing the same | |
JP3779830B2 (en) | Copper alloy for semiconductor lead frames | |
JP2744207B2 (en) | Copper (Cu) -chrome (Cr) -cerium (Ce) -lanthanum (La) alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091125 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4417115 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131204 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |