JP6089353B2 - Magnesium alloy and method for producing the same - Google Patents
Magnesium alloy and method for producing the same Download PDFInfo
- Publication number
- JP6089353B2 JP6089353B2 JP2010066478A JP2010066478A JP6089353B2 JP 6089353 B2 JP6089353 B2 JP 6089353B2 JP 2010066478 A JP2010066478 A JP 2010066478A JP 2010066478 A JP2010066478 A JP 2010066478A JP 6089353 B2 JP6089353 B2 JP 6089353B2
- Authority
- JP
- Japan
- Prior art keywords
- magnesium alloy
- long
- phase
- content
- period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000000463 material Substances 0.000 claims description 21
- 239000011777 magnesium Substances 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 11
- 229910052749 magnesium Inorganic materials 0.000 claims description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 8
- 238000001125 extrusion Methods 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 claims description 6
- 238000005242 forging Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 5
- 230000003252 repetitive effect Effects 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims 1
- 230000032683 aging Effects 0.000 description 24
- 230000007547 defect Effects 0.000 description 24
- 229910052723 transition metal Inorganic materials 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 230000005484 gravity Effects 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- 229910000748 Gd alloy Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000002524 electron diffraction data Methods 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910000713 I alloy Inorganic materials 0.000 description 1
- 229910000691 Re alloy Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Forging (AREA)
Description
本発明は、マグネシウム合金およびその製造方法に関する。特には、長周期積層構造または最密原子面積層欠陥を含む相を有するマグネシウム合金およびその製造方法に関する。 The present invention relates to a magnesium alloy and a method for producing the same. In particular, the present invention relates to a magnesium alloy having a phase including a long-period stacked structure or a close-packed atomic area layer defect and a method for producing the same.
長周期積層構造相を有する従来のマグネシウム合金は、マグネシウムに、Zn、Ni、Co、Cuといった遷移金属元素(TM)とY、Gd、Tb、Dy、Ho、Er、Tmといった希土類元素(RE)を組み合わせて添加することで得られる(例えば特許文献1、2、3および4参照)。 A conventional magnesium alloy having a long-period laminated structure phase consists of magnesium, transition metal elements (TM) such as Zn, Ni, Co, and Cu and rare earth elements (RE) such as Y, Gd, Tb, Dy, Ho, Er, and Tm. Are added in combination (see, for example, Patent Documents 1, 2, 3, and 4).
これらの合金は、長周期積層構造相の形成の仕方が異なる。特許文献1、2および3には、鋳造状態で長周期積層構造相が形成されるType-I合金群が開示されている。特許文献4には、鋳造状態では長周期積層構造相は存在せず、熱処理により長周期積層構造相を形成するType-II合金群が開示されている。 These alloys differ in the way of forming the long-period laminated structure phase. Patent Documents 1, 2, and 3 disclose Type-I alloy groups in which a long-period laminated structure phase is formed in a cast state. Patent Document 4 discloses a Type-II alloy group in which a long-period laminated structure phase does not exist in a cast state and a long-period laminated structure phase is formed by heat treatment.
上述した合金群は、Zn、Ni、Co、Cuの遷移金属元素と希土類元素の組み合わせであるが故に、比重が大きくなることが問題点として挙げられる。 The above-mentioned alloy group is a combination of Zn, Ni, Co, and Cu transition metal elements and rare earth elements, so that the specific gravity increases.
本発明の一態様は、遷移金属元素と希土類元素を添加した従来のマグネシウム合金に比べて比重が小さいマグネシウム合金およびその製造方法を提供することを課題とする。 An object of one embodiment of the present invention is to provide a magnesium alloy having a specific gravity smaller than that of a conventional magnesium alloy to which a transition metal element and a rare earth element are added, and a method for manufacturing the magnesium alloy.
本発明の一態様は、AlとGdを含有し、残部がMgからなり、Al含有量とGd含有量が下記式(1)および(2)を満たすマグネシウム合金を作製し、
前記マグネシウム合金に熱処理を行うことにより、前記マグネシウム合金に長周期積層構造または最密原子面積層欠陥を含む相を形成することを特徴とするマグネシウム合金の製造方法である。
(1)0.01≦[Al含有量(原子%)]≦2.0
(2)0.2≦[Gd含有量(原子%)]b≦5.0
なお、最密原子面積層欠陥は、最密原子面に沿って溶質原子であるZnと希土類元素が積層方向に連続した二原子層の濃化した溶質原子濃化二原子層を含み、前記溶質原子濃化二原子層が積層方向に周期性を有さないものである。
One embodiment of the present invention is a magnesium alloy containing Al and Gd, the balance being Mg, and an Al content and a Gd content satisfying the following formulas (1) and (2):
A method for producing a magnesium alloy, comprising: heat treating the magnesium alloy to form a phase including a long-period stacked structure or a close-packed atomic area layer defect in the magnesium alloy.
(1) 0.01 ≦ [Al content (atomic%)] ≦ 2.0
(2) 0.2 ≦ [Gd content (atomic%)] b ≦ 5.0
The close-packed atomic area layer defect includes a solute atom-enriched diatomic layer enriched in a diatomic layer in which Zn and a rare earth element, which are solute atoms, continue in the stacking direction along the close-packed atomic plane, The atomic enriched diatomic layer has no periodicity in the stacking direction.
上記マグネシウム合金の製造方法によれば、遷移金属ではないAlをZn,Ni,Co,Cuといった元素の代わりに含有し、熱処理を行うことにより長周期積層構造または最密原子面積層欠陥を含む相を形成するため、従来のマグネシウム合金に比べて比重が小さいマグネシウム合金を得ることができる。 According to the method for producing a magnesium alloy, a phase containing Al, which is not a transition metal, instead of an element such as Zn, Ni, Co, or Cu and including a long-period stacked structure or a close-packed atomic area layer defect by performing heat treatment. Therefore, a magnesium alloy having a specific gravity smaller than that of a conventional magnesium alloy can be obtained.
また、本発明の一態様において、
前記熱処理は、400〜700Kの温度範囲で2〜100時間の条件で行われることが好ましい。
この態様によれば、400〜673K(ケルビン)といった低温で時効することで、長周期積層構造または最密原子面積層欠陥を含む相を形成することができる。
In one embodiment of the present invention,
The heat treatment is preferably performed in a temperature range of 400 to 700K for 2 to 100 hours.
According to this aspect, a phase including a long-period stacked structure or a close-packed atomic area layer defect can be formed by aging at a low temperature of 400 to 673 K (Kelvin).
また、本発明の一態様において、
前記熱処理を行う前に、前記マグネシウム合金を溶体化する溶体化処理を行うことが好ましい。
In one embodiment of the present invention,
It is preferable to perform a solution treatment for forming the magnesium alloy before the heat treatment.
また、本発明の一態様において、
前記長周期積層構造または最密原子面積層欠陥を含む相を形成したマグネシウム合金に塑性加工を行うことにより、前記長周期積層構造または最密原子面積層欠陥を含む相の少なくとも一部を湾曲または屈曲させることも可能である。
In one embodiment of the present invention,
By performing plastic working on the magnesium alloy in which the long-period stacked structure or the phase including the close-packed atomic area layer defect is formed, at least part of the phase including the long-cycle stacked structure or the close-packed atomic area layer defect is curved or It can also be bent.
また、本発明の一態様において、
前記長周期積層構造または最密原子面積層欠陥を含む相を形成したマグネシウム合金を切削することによってチップ形状の切削物を作製し、
前記切削物に塑性加工による固化を行うことも可能である。
In one embodiment of the present invention,
A chip-shaped cut article is produced by cutting a magnesium alloy that has formed a phase containing the long-period stacked structure or the closest packed atomic area layer defect,
It is also possible to solidify the cut object by plastic working.
また、本発明の一態様において、
前記塑性加工は、圧延、押出し、ECAE、引抜加工及び鍛造、これらの繰り返し加工、FSW加工のうちの少なくとも一つを行うものであっても良い。
In one embodiment of the present invention,
The plastic working may be performed by at least one of rolling, extrusion, ECAE, drawing and forging, repetitive processing, and FSW processing.
本発明の一態様は、AlとGdを含有し、残部がMgからなり、Al含有量とGd含有量が下記式(1)および(2)を満たすマグネシウム合金であって、
長周期積層構造または最密原子面積層欠陥を含む相およびhcp構造マグネシウム相を有する結晶組織を具備することを特徴とするマグネシウム合金である。
(1)0.01≦[Al含有量(原子%)]≦2.0
(2)0.2≦[Gd含有量(原子%)]b≦5.0
One aspect of the present invention is a magnesium alloy containing Al and Gd, the balance being Mg, and an Al content and a Gd content satisfying the following formulas (1) and (2):
A magnesium alloy comprising a crystal structure having a long-period stacked structure or a phase containing a close-packed atomic area layer defect and an hcp-structure magnesium phase.
(1) 0.01 ≦ [Al content (atomic%)] ≦ 2.0
(2) 0.2 ≦ [Gd content (atomic%)] b ≦ 5.0
また、本発明の一態様において、
前記長周期積層構造または最密原子面積層欠陥を含む相の少なくとも一部が湾曲又は屈曲していることも可能である。
In one embodiment of the present invention,
It is also possible that at least a part of the phase including the long-period stacked structure or the close-packed atomic area layer defect is curved or bent.
なお、本発明の一態様に係るマグネシウム合金は、高温雰囲気で使用される部品、例えば、自動車用部品、特に内燃機関用ピストン、バルブ、リフター、タペット、スプロケット灯等に使用されることが好ましい。 Note that the magnesium alloy according to one embodiment of the present invention is preferably used for parts used in a high-temperature atmosphere, for example, automotive parts, in particular, pistons for internal combustion engines, valves, lifters, tappets, sprocket lights, and the like.
本発明の一態様を適用することで、遷移金属元素と希土類元素を添加した従来のマグネシウム合金に比べて比重が小さいマグネシウム合金およびその製造方法を提供することができる。 By applying one embodiment of the present invention, a magnesium alloy having a specific gravity smaller than that of a conventional magnesium alloy to which a transition metal element and a rare earth element are added, and a method for manufacturing the magnesium alloy can be provided.
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
(実施の形態1)
本実施の形態によるマグネシウム合金は、AlとGdを含有し、残部がMgからなり、Al含有量とGd含有量が下記式(1)および(2)を満たす合金であって、長周期積層構造または最密原子面積層欠陥を含む相およびhcp構造マグネシウム相を有する結晶組織を具備するものである。
(1)0.01≦[Al含有量(原子%)]≦2.0
(2)0.2≦[Gd含有量(原子%)]b≦5.0
なお、最密原子面積層欠陥は、最密原子面に沿って溶質原子であるZnと希土類元素が積層方向に連続した二原子層の濃化した溶質原子濃化二原子層を含み、前記溶質原子濃化二原子層が積層方向に周期性を有さないものである。
(Embodiment 1)
The magnesium alloy according to the present embodiment contains Al and Gd, the balance is Mg, and the Al content and the Gd content satisfy the following formulas (1) and (2), and have a long-period laminated structure Alternatively, it has a crystal structure having a phase containing a close-packed atomic area layer defect and an hcp structure magnesium phase.
(1) 0.01 ≦ [Al content (atomic%)] ≦ 2.0
(2) 0.2 ≦ [Gd content (atomic%)] b ≦ 5.0
The close-packed atomic area layer defect includes a solute atom-enriched diatomic layer enriched in a diatomic layer in which Zn and a rare earth element, which are solute atoms, continue in the stacking direction along the close-packed atomic plane, The atomic enriched diatomic layer has no periodicity in the stacking direction.
AlとGdを上記の含有量の範囲とした理由は次のとおりである。
Al含有量が2.0原子%超であると、長周期積層構造相または最密原子面積層欠陥を含むhcp構造マグネシウム相以外のAlを含む相が優先的に形成されるため好ましくないからである。
Al含有量が0.01原子%未満であると、長周期積層構造相が形成されないからである。
Gd含有量が5.0原子%超であると、長周期積層構造相または最密原子面積層欠陥を含むhcp構造マグネシウム相以外のGdを含む化合物相が形成されるからである。
Gd含有量が0.2原子%未満であると、長周期積層構造相が形成されず、AlとMgからなる化合物が優先的に形成されるからである。
The reason why Al and Gd are included in the above ranges of contents is as follows.
If the Al content is more than 2.0 atomic%, it is not preferable because a phase containing Al other than the long-period laminated structure phase or the hcp-structure magnesium phase containing the close-packed atomic area layer defects is preferentially formed. is there.
This is because when the Al content is less than 0.01 atomic%, a long-period laminated structure phase is not formed.
This is because when the Gd content is more than 5.0 atomic%, a compound phase containing Gd other than the long-period stacked structure phase or the hcp-structure magnesium phase containing the close-packed atomic area layer defect is formed.
This is because when the Gd content is less than 0.2 atomic%, a long-period laminated structure phase is not formed and a compound composed of Al and Mg is preferentially formed.
本実施の形態のマグネシウム合金では、前述した範囲の含有量を有するAlとGd以外の成分がマグネシウムとなるが、合金特性に影響を与えない程度の不純物や他の元素を含有しても良い。 In the magnesium alloy of the present embodiment, the components other than Al and Gd having contents in the above-described range are magnesium, but may contain impurities and other elements that do not affect the alloy characteristics.
(実施の形態2)
本実施の形態によるマグネシウム合金の製造方法について説明する。
まず、AlとGdを含有し、残部がMgからなり、Al含有量とGd含有量が下記式(1)および(2)を満たすマグネシウム合金を作製する。このマグネシウム合金は、溶解鋳造によって作製しても良いし、急速凝固によって作製しても良い。
(1)0.01≦[Al含有量(原子%)]≦2.0
(2)0.2≦[Gd含有量(原子%)]b≦5.0
(Embodiment 2)
A method for manufacturing a magnesium alloy according to the present embodiment will be described.
First, a magnesium alloy containing Al and Gd, the balance being Mg, and the Al content and the Gd content satisfying the following formulas (1) and (2) is produced. This magnesium alloy may be produced by melt casting or may be produced by rapid solidification.
(1) 0.01 ≦ [Al content (atomic%)] ≦ 2.0
(2) 0.2 ≦ [Gd content (atomic%)] b ≦ 5.0
次に、このマグネシウム合金に溶体化する溶体化処理を行った後に、400〜700K(好ましくは400〜673K)の温度範囲で2〜100時間(好ましくは30〜100時間)の時効を行う熱処理を施す。これにより、マグネシウム合金に長周期積層構造または最密原子面積層欠陥を含む相を形成することができる。つまり、マグネシウム合金に遷移金属ではなく典型元素であるAlを添加することでも長周期積層構造または最密原子面積層欠陥を含む相を析出させることができる。これは、遷移金属を添加した従来のマグネシウム合金に比べてより軽量な長周期積層構造相型Mg合金を実現したものである。また、従来技術では高温時効処理が必要であったが、本実施形態では、400〜700Kの温度範囲の低温時効でも長周期積層構造相等を析出できるため、プロセスコストを低減することが可能となる。 Next, after performing a solution treatment for forming a solution in the magnesium alloy, heat treatment is performed for aging for 2 to 100 hours (preferably 30 to 100 hours) in a temperature range of 400 to 700 K (preferably 400 to 673 K). Apply. Thereby, a phase including a long-period stacked structure or a close-packed atomic area layer defect can be formed in the magnesium alloy. That is, a phase including a long-period stacked structure or a close-packed atomic area layer defect can also be precipitated by adding Al which is a typical element instead of a transition metal to a magnesium alloy. This realizes a lighter long-period multilayered phase-type Mg alloy that is lighter than conventional magnesium alloys to which transition metals are added. Further, in the prior art, high-temperature aging treatment was necessary. However, in this embodiment, a long-period laminated structure phase and the like can be precipitated even at low-temperature aging in a temperature range of 400 to 700 K, and thus it is possible to reduce process costs. .
なお、ここで言う溶体化処理とは、鋳造時に不可避的に形成される第二相を母相になるべく固溶(溶体化)させる処理を言う。 In addition, the solution treatment as used herein refers to a treatment in which the second phase inevitably formed at the time of casting is solid-solved (solution formed) as a mother phase.
次に、長周期積層構造または最密原子面積層欠陥を含む相を析出させたマグネシウム合金に塑性加工を行う。この塑性加工の方法としては、例えば押出し、ECAE(equal−channel−angular−extrusion)加工法、圧延、引抜及び鍛造、これらの繰り返し加工、FSW加工などを用いる。 Next, plastic working is performed on the magnesium alloy in which a phase including a long-period stacked structure or a close-packed atomic area layer defect is precipitated. Examples of the plastic working method include extrusion, ECAE (equal-channel-angular-extrusion) processing, rolling, drawing and forging, repetitive processing, and FSW processing.
押出しによる塑性加工を行う場合は、押出し温度を250℃以上500℃以下とし、押出しによる断面減少率を5%以上とすることが好ましい。 When performing plastic working by extrusion, it is preferable that the extrusion temperature is 250 ° C. or more and 500 ° C. or less, and the cross-sectional reduction rate by extrusion is 5% or more.
ECAE加工法は、試料に均一なひずみを導入するためにパス毎に試料長手方向を90°ずつ回転させる方法である。具体的には、断面形状がL字状の成形孔を形成した成形用ダイの前記成形孔に、成形用材料であるマグネシウム合金鋳造物を強制的に進入させて、特にL状成形孔の90°に曲げられた部分で前記マグネシウム合金鋳造物に応力を加えて強度及び靭性が優れた成形体を得る方法である。ECAEのパス回数としては1〜8パスが好ましい。より好ましくは3〜5パスである。ECAEの加工時の温度は250℃以上500℃以下が好ましい。 The ECAE processing method is a method of rotating the sample longitudinal direction by 90 ° for each pass in order to introduce a uniform strain to the sample. Specifically, a magnesium alloy cast material as a molding material is forcibly entered into the molding hole of the molding die in which a L-shaped molding hole is formed. This is a method of applying a stress to the magnesium alloy casting at a portion bent at a degree to obtain a molded body having excellent strength and toughness. The number of ECAE passes is preferably 1 to 8 passes. More preferably, it is 3 to 5 passes. The temperature during processing of ECAE is preferably 250 ° C. or more and 500 ° C. or less.
圧延による塑性加工を行う場合は、圧延温度を250℃以上500℃以下とし、圧下率を5%以上とすることが好ましい。 When performing plastic working by rolling, it is preferable that the rolling temperature is 250 ° C. or higher and 500 ° C. or lower and the rolling reduction is 5% or higher.
引抜加工による塑性加工を行う場合は、引抜加工を行う際の温度が250℃以上500℃以下、前記引抜加工の断面減少率が5%以上であることが好ましい。 When performing plastic working by drawing, it is preferable that the temperature at the time of drawing is 250 ° C. or more and 500 ° C. or less, and the cross-sectional reduction rate of the drawing is 5% or more.
鍛造による塑性加工を行う場合は、鍛造加工を行う際の温度が250℃以上500℃以下、前記鍛造加工の加工率が5%以上であることが好ましい。 When performing plastic working by forging, it is preferable that the temperature at the time of forging is 250 ° C. or more and 500 ° C. or less, and the processing rate of the forging is 5% or more.
上記のようにマグネシウム合金に塑性加工を行った塑性加工物は、常温において長周期積層構造または最密原子面積層欠陥を含む相を備えた結晶組織を有し、この長周期積層構造または最密原子面積層欠陥を含む相の少なくとも一部は湾曲又は屈曲している。この湾曲又または屈曲は、長周期積層構造または最密原子面積層欠陥を含む相がキンキングしていることであっても良い。キンキングとは、強加工された長周期積層構造または最密原子面積層欠陥を含む相が特に方位関係を持たず、相内で折れ曲がり(bent)を生じ、長周期積層構造または最密原子面積層欠陥を含む相が微細化されることである。 A plastic workpiece obtained by plastic processing of a magnesium alloy as described above has a crystal structure with a long-period stack structure or a phase containing a close-packed atomic area layer defect at room temperature, and this long-cycle stack structure or close-packed structure. At least a part of the phase including the atomic area layer defect is curved or bent. This bending or bending may be a long-period stacked structure or a phase containing a close-packed atomic area layer defect being kinked. Kinking means that a strongly processed long-period stacked structure or a phase including a close-packed atomic area layer defect has no particular orientation relationship and causes a bent in the phase, resulting in a long-period stacked structure or a close-packed atomic area layer That is, a phase including defects is refined.
また、前記塑性加工物はhcp構造マグネシウム相を有する。
前記塑性加工物については、塑性加工を行う前のマグネシウム合金材に比べてビッカース硬度及び降伏強度がともに上昇する。
The plastic workpiece has an hcp-structure magnesium phase.
As for the plastic workpiece, both the Vickers hardness and the yield strength are increased as compared with the magnesium alloy material before plastic processing.
上記実施の形態1および2によれば、マグネシウム合金に長周期積層構造または最密原子面積層欠陥を含む相を有する結晶組織を形成するため、強度及び靭性ともに実用に供するレベルにある高強度高靭性なマグネシウム合金を得ることができる。 According to the first and second embodiments, since a crystal structure having a phase including a long-period stacked structure or a close-packed atomic area layer defect is formed in a magnesium alloy, both strength and toughness are at a level for practical use. A tough magnesium alloy can be obtained.
(実施の形態3)
本実施の形態によるマグネシウム合金は、実施の形態2と同様の方法により長周期積層構造または最密原子面積層欠陥を含む相を形成したマグネシウム合金材を用意し、このマグネシウム合金材を切削することによって作られた複数の数mm角以下のチップ形状の切削物を作製し、この切削物に塑性加工による固化を行ったものである。
(Embodiment 3)
A magnesium alloy according to the present embodiment is prepared by preparing a magnesium alloy material in which a phase including a long-period stacked structure or a close-packed atomic area layer defect is formed by the same method as in the second embodiment, and cutting the magnesium alloy material A plurality of chip-shaped cuttings having a size of several mm square or less made by the above method are manufactured, and the cuttings are solidified by plastic working.
本実施の形態においても実施の形態2と同様の効果を得ることができる。 Also in the present embodiment, the same effect as in the second embodiment can be obtained.
なお、上記の実施の形態1〜3に係るマグネシウム合金は、高温雰囲気で使用される部品、例えば、自動車用部品、特に内燃機関用ピストン、バルブ、リフター、タペット、スプロケット灯等に使用することができる。 The magnesium alloy according to the first to third embodiments can be used for parts used in a high temperature atmosphere, such as automobile parts, in particular, pistons, valves, lifters, tappets, sprocket lights for internal combustion engines. it can.
Arガス雰囲気中で高周波溶解によってMg97.5Al0.5Gd2 (at%)のインゴットを作製し、このインゴットからφ10×60mmの形状に切り出すことにより鋳造材のサンプル1を作製した。 An ingot of Mg97.5Al0.5Gd2 (at%) was produced by high-frequency melting in an Ar gas atmosphere, and a cast material sample 1 was produced by cutting the ingot into a shape of φ10 × 60 mm.
また、この切り出した鋳造材に溶体化処理を行った溶体化処理材のサンプル2を作製した。溶体化処理条件は、793Kの温度で2時間の処理時間とした。 Further, a sample 2 of a solution treatment material obtained by subjecting the cut cast material to a solution treatment was produced. The solution treatment conditions were a treatment time of 2 hours at a temperature of 793K.
また、上記の溶体化処理後に、時効処理を行った時効処理材のサンプルを作製した。詳細には、473Kの温度で40時間の時効処理を行ったサンプル3を作製し、523Kの温度で40時間の時効処理を行ったサンプル4を作製し、673Kの温度で10時間の時効処理を行ったサンプル5を作製し、773Kの温度で10時間の時効処理を行ったサンプル6を作製した。 Moreover, the sample of the aging treatment material which performed the aging treatment after said solution treatment was produced. Specifically, Sample 3 was prepared by aging treatment at a temperature of 473 K for 40 hours, Sample 4 was prepared by aging treatment at a temperature of 523 K for 40 hours, and aging treatment was performed at a temperature of 673 K for 10 hours. A sample 5 was prepared, and a sample 6 subjected to an aging treatment at a temperature of 773 K for 10 hours was prepared.
図1は、473Kの時効処理材のサンプル3における長周期積層構造相の高分解能透過電子顕微鏡像を示す図である。図1に示す長周期積層構造相は、18周期の積層を有しており、18R構造であることがわかる。 FIG. 1 is a diagram showing a high-resolution transmission electron microscope image of a long-period laminated structure phase in Sample 3 of an aging treatment material of 473K. The long-period stacked structure phase shown in FIG. 1 has 18-cycle stacking, and it can be seen that it has an 18R structure.
図2は、473Kの時効処理材のサンプル3における長周期積層構造相の電子線回折図形を示す図である。図2に示す電子線回折図形は18R構造であることを示している。 FIG. 2 is a diagram showing an electron diffraction pattern of a long-period laminated structure phase in Sample 3 of an aging treatment material of 473K. The electron diffraction pattern shown in FIG. 2 indicates an 18R structure.
図6は、473Kの時効処理材のサンプル3の長周期積層構造相のTEM-EDS分析結果を示す図である。このサンプル3における長周期積層構造相(LPSO相)のNano−EDS分析を行った結果、LPSO相がMgとAlとGdの三元素からなることがわかり、LPSO相の組成はMg-7at%Al-12at%Gdであることが確認された。 FIG. 6 is a diagram showing a TEM-EDS analysis result of the long-period laminated structure phase of Sample 3 of the 473K aging treatment material. As a result of Nano-EDS analysis of the long-period laminated structure phase (LPSO phase) in Sample 3, it is found that the LPSO phase is composed of three elements of Mg, Al, and Gd. The composition of the LPSO phase is Mg-7 at% Al. It was confirmed to be -12 at% Gd.
図1および図2に示す結果によれば、473Kという低温時効によって18R構造のLPSO相(長周期積層構造相)が析出することが確認された。 According to the results shown in FIGS. 1 and 2, it was confirmed that an 18R structure LPSO phase (long-period laminated structure phase) is precipitated by low temperature aging of 473K.
図3は、サンプル1、2、4〜6それぞれのX線回折図形を示す図である。
鋳造材のサンプル1には、αMg相に加え、「N」で示すLPSO相とは異なる化合物が存在することが確認された。
溶体化処理材のサンプル2には、鋳造材のサンプル1に存在する「N」で示す化合物が消失しており、溶体化が十分に行われていることが確認された。
523Kの時効処理材のサンプル4には、「N」で示す化合物はほとんど析出せず、LPSO相が析出していることが確認された。
673Kの時効処理材のサンプル5には、「N」で示す化合物は析出せず、LPSO相が析出していることが確認された。
773Kの時効処理材のサンプル6には、「N」で示す化合物が再び析出しており、LPSO相は析出していないことが確認された。
FIG. 3 is a diagram showing X-ray diffraction patterns of Samples 1, 2, 4-6.
It was confirmed that the sample 1 of the cast material contains a compound different from the LPSO phase indicated by “N” in addition to the αMg phase.
In the sample 2 of the solution treatment material, the compound represented by “N” present in the sample 1 of the cast material disappeared, and it was confirmed that the solution treatment was sufficiently performed.
In sample 4 of the aging treatment material of 523K, it was confirmed that the compound represented by “N” hardly precipitated and the LPSO phase was precipitated.
In Sample 5 of the 673K aging treatment material, it was confirmed that the compound represented by “N” did not precipitate, and the LPSO phase was precipitated.
It was confirmed that in the sample 6 of the aging treatment material of 773K, the compound represented by “N” was precipitated again, and the LPSO phase was not precipitated.
溶体化処理材のサンプル2には、長周期積層構造相に由来する回折線はみられないが、523Kの時効処理材のサンプル4および673Kの時効処理材のサンプル5には、長周期積層構造相に由来する回折線がみられる。時効温度を高くした773Kの時効処理材のサンプル6には、長周期積層構造相に由来する回折線がみられない。 The solution treatment material sample 2 does not show diffraction lines derived from the long-period laminate structure phase, but the 523K aging treatment sample 4 and the 673K aging treatment sample 5 have a long-period laminate structure. A diffraction line derived from the phase is observed. In sample 6 of the 773K aging treatment material having a high aging temperature, diffraction lines derived from the long-period laminated structure phase are not observed.
図3は、従来技術ではMgに遷移金属元素(TM)と希土類元素(RE)を組み合わせて添加したMg-TM-RE合金中にのみ形成が確認されていた長周期積層構造相が、遷移金属元素ではなく、典型元素であるAlとREとの組み合わせにおいても形成されることを示している。これらの結果から、LPSO相の析出温度は、423K〜700Kと考えられる。 Fig. 3 shows that the long-period laminated structure phase, which was confirmed only in the Mg-TM-RE alloy in which Mg was added in combination with transition metal element (TM) and rare earth element (RE) in the prior art, is transition metal. It shows that it is formed not in the element but also in the combination of the typical elements Al and RE. From these results, the precipitation temperature of the LPSO phase is considered to be 423K to 700K.
図4は、従来技術のMg−Zn−Gd合金においてLPSO相が析出する温度と時間の関係を示す図(T.T.T線図)である。
FIG. 4 is a diagram (TTT diagram) showing the relationship between the temperature and time at which the LPSO phase precipitates in a prior art Mg—Zn—Gd alloy .
図4によれば、実施例のMg97.5Al0.5Gd2 (at%)合金は、従来技術のMg−Zn−Gd合金に比べ、LPSO相の析出温度域が423K〜673Kと低温側に広がっていることがわかる。
According to FIG. 4, the Mg97.5Al0.5Gd 2 (at%) alloy of the example has a LPSO phase precipitation temperature range extending from 423 K to 673 K on the low temperature side as compared with the Mg—Zn—Gd alloy of the prior art. I understand that.
Claims (7)
前記マグネシウム合金を溶体化する溶体化処理を行い、
前記マグネシウム合金に熱処理を行うことにより、前記マグネシウム合金に18周期の積層を有する長周期積層構造相を形成することを特徴とするマグネシウム合金の製造方法。
(1)0.01≦[Al含有量(原子%)]≦2.0
(2)0.2≦[Gd含有量(原子%)]≦5.0 A magnesium alloy containing Al and Gd, the balance being made of Mg, and an Al content and a Gd content satisfying the following formulas (1) and (2) is produced,
Performing a solution treatment to solution the magnesium alloy,
A method for producing a magnesium alloy, wherein a heat treatment is performed on the magnesium alloy to form a long-period laminated structure phase having 18-layer laminations on the magnesium alloy.
(1) 0.01 ≦ [Al content (atomic%)] ≦ 2.0
(2) 0.2 ≦ [Gd content (atomic%)] ≦ 5.0
前記熱処理は、473〜700Kの温度範囲で2〜100時間の条件で行われることを特徴とするマグネシウム合金の製造方法。 In claim 1,
The said heat processing is performed on the conditions for 2 to 100 hours in the temperature range of 473-700K, The manufacturing method of the magnesium alloy characterized by the above-mentioned.
前記長周期積層構造相を形成したマグネシウム合金に塑性加工を行うことにより、前記長周期積層構造相の少なくとも一部を湾曲又は屈曲させることを特徴とするマグネシウム合金の製造方法。 In claim 1 or 2,
A method for producing a magnesium alloy, characterized in that at least a part of the long-period laminated structure phase is bent or bent by performing plastic working on the magnesium alloy in which the long-period laminated structure phase is formed.
前記長周期積層構造相を形成したマグネシウム合金を切削することによってチップ形状の切削物を作製し、
前記切削物に塑性加工による固化を行うことを特徴とするマグネシウム合金の製造方法。 In claim 1 or 2,
A chip-shaped cut product is produced by cutting the magnesium alloy in which the long-period laminated structure phase is formed,
A method for producing a magnesium alloy, comprising solidifying the cut material by plastic working.
前記塑性加工は、圧延、押出し、ECAE、引抜加工及び鍛造、これらの繰り返し加工、FSW加工のうちの少なくとも一つを行うものであるマグネシウム合金の製造方法。 In claim 3 or 4,
The said plastic working is a manufacturing method of the magnesium alloy which performs at least one of rolling, extrusion, ECAE, drawing and forging, these repetitive processing, and FSW processing.
18周期の積層を有する長周期積層構造相およびhcp構造マグネシウム相を有する結晶組織を具備することを特徴とするマグネシウム合金。
(1)0.01≦[Al含有量(原子%)]≦2.0
(2)0.2≦[Gd含有量(原子%)]b≦5.0 A magnesium alloy that contains Al and Gd, the balance is Mg, and the Al content and the Gd content satisfy the following formulas (1) and (2),
A magnesium alloy comprising a crystal structure having a long-period laminate structure phase having an 18-cycle laminate and an hcp-structure magnesium phase.
(1) 0.01 ≦ [Al content (atomic%)] ≦ 2.0
(2) 0.2 ≦ [Gd content (atomic%)] b ≦ 5.0
前記長周期積層構造相の少なくとも一部が湾曲又は屈曲していることを特徴とするマグネシウム合金。 In claim 6,
A magnesium alloy characterized in that at least a part of the long-period laminated structure phase is curved or bent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010066478A JP6089353B2 (en) | 2010-03-23 | 2010-03-23 | Magnesium alloy and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010066478A JP6089353B2 (en) | 2010-03-23 | 2010-03-23 | Magnesium alloy and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011195930A JP2011195930A (en) | 2011-10-06 |
JP6089353B2 true JP6089353B2 (en) | 2017-03-08 |
Family
ID=44874512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010066478A Active JP6089353B2 (en) | 2010-03-23 | 2010-03-23 | Magnesium alloy and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6089353B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101839703B1 (en) | 2016-10-04 | 2018-04-27 | 포항공과대학교 산학협력단 | Designing method for magnesium alloys with high formability and magnesium alloys with high formability |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3693583B2 (en) * | 2001-03-05 | 2005-09-07 | 独立行政法人科学技術振興機構 | High strength and high ductility Mg-based alloy |
AU2003211455A1 (en) * | 2002-03-01 | 2003-09-16 | Kazuo Ogasa | Hard metal alloy member and method for manufacture thereof |
JP2008075183A (en) * | 2004-09-30 | 2008-04-03 | Yoshihito Kawamura | High-strength and high-toughness metal and process for producing the same |
JP5089945B2 (en) * | 2006-09-14 | 2012-12-05 | 国立大学法人 熊本大学 | High strength magnesium alloy with high corrosion resistance |
WO2008072485A1 (en) * | 2006-11-24 | 2008-06-19 | Kazuo Ogasa | High-performance elastic metal alloy member and process for production thereof |
-
2010
- 2010-03-23 JP JP2010066478A patent/JP6089353B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011195930A (en) | 2011-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3940154B2 (en) | High strength and high toughness magnesium alloy and method for producing the same | |
JP4139841B2 (en) | Casting and production method of magnesium alloy | |
JP5024705B2 (en) | Magnesium alloy material and method for producing the same | |
JP4958267B2 (en) | Magnesium alloy material and method for producing the same | |
JP5175470B2 (en) | Magnesium alloy material and method for producing the same | |
US10023943B2 (en) | Casting aluminum alloy and casting produced using the same | |
KR101815032B1 (en) | Magnesium alloy and method for producing same | |
JP6491452B2 (en) | Aluminum alloy continuous cast material and method for producing the same | |
JP2009280846A (en) | Magnesium alloy forged member, and producing method therefor | |
JP2012214853A (en) | Magnesium alloy and method for producing the same | |
JP2008075183A (en) | High-strength and high-toughness metal and process for producing the same | |
EP3257957A1 (en) | Aluminum alloy forging and method of producing the same | |
EP3215647A2 (en) | Grain refiner for magnesium alloys | |
JP4433916B2 (en) | Magnesium alloy and magnesium alloy member for plastic working | |
JP6089352B2 (en) | Magnesium alloy and method for producing the same | |
JP6385683B2 (en) | Al alloy casting and manufacturing method thereof | |
JP2010106336A (en) | Forging method of magnesium alloy | |
WO2009038215A9 (en) | Magnesium alloy material and method for manufacturing the same | |
JP5866639B2 (en) | Magnesium alloy and method for producing the same | |
JP6089353B2 (en) | Magnesium alloy and method for producing the same | |
JP5458289B2 (en) | Magnesium alloy | |
JP2013079436A (en) | Magnesium alloy and method for producing the same | |
US10913992B2 (en) | Method of manufacturing a crystalline aluminum-iron-silicon alloy | |
JP2012214852A (en) | Method for producing magnesium alloy | |
JP2006161103A (en) | Aluminum alloy member and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140501 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150324 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150401 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20150605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6089353 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |