WO2003074745A1 - Hard metal alloy member and method for manufacture thereof - Google Patents

Hard metal alloy member and method for manufacture thereof Download PDF

Info

Publication number
WO2003074745A1
WO2003074745A1 PCT/JP2003/001993 JP0301993W WO03074745A1 WO 2003074745 A1 WO2003074745 A1 WO 2003074745A1 JP 0301993 W JP0301993 W JP 0301993W WO 03074745 A1 WO03074745 A1 WO 03074745A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
metal alloy
gadolinium
less
tin
Prior art date
Application number
PCT/JP2003/001993
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Ogasa
Original Assignee
Kazuo Ogasa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuo Ogasa filed Critical Kazuo Ogasa
Priority to AU2003211455A priority Critical patent/AU2003211455A1/en
Priority to JP2003573189A priority patent/JP4417115B2/en
Publication of WO2003074745A1 publication Critical patent/WO2003074745A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • C22C5/08Alloys based on silver with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the present invention relates to a metal alloy member suitable for electronic members, automotive / aviation members, physicochemical members, medical members, jewelry members, musical instrument members, tableware members, structural members, and the like, and a manufacturing method.
  • iron (Fe), copper (Cu), aluminum (A1), magnesium (Mg), titanium (Ti), zinc (Zn), bell (Sn), beryllium (B e), zirconium (Zr), gold (Au), platinum (Pt), silver (Ag), palladium (Pd) and the like are known and used in various fields.
  • the above-mentioned metallic materials are not necessarily sufficient in mechanical properties such as hardness and Young's modulus, physical properties, chemical properties, corrosion resistance, discoloration, etc. when used in applications in various fields. There is also the problem of poor workability.
  • An object of the present invention is to obtain the required new member by improving, improving, and improving the characteristics of these defects while maintaining the characteristics of the metal material.
  • the metal alloy member of the present invention is characterized in that hardness, tensile strength, Young's modulus, heat resistance are improved, it has panel properties, it is easy to process, and the workability is good. Since it is easy to process, more than 90% can be processed without annealing. It shows features such as no cracking even if the rolling direction is changed. There is also growth.
  • the gold Au alloy of the present invention has high hardness, Young's modulus, tensile strength, elongation, and spring properties. Processing Easy and good workability. Because of the high purity and small volume occupancy of the added elements, electronic materials with high electrical and thermal conductivity can be obtained. Since the Young's modulus is high, a member with good sound can be obtained. Because of the spring property, flexible and stiff wire and plate can be obtained. Because of its heat resistance, a material with high mechanical strength and high physical and electrical properties can be obtained. An ultra-high performance member of a gold alloy can be obtained.
  • Platinum Pt alloy has improved hardness, tensile strength, Young's modulus, and heat resistance, has panel properties, is easy to add, and has good workability. Furthermore, a reinforced member and a heat-resistant member having high properties with elongation and creep strength can be obtained. Widely used for rutupo, plug, dental material, physicochemical equipment, jewelry, etc.
  • Silver Ag alloys are attracting attention for electronic components, tableware components, and decorative components.
  • the corrosion resistance oxidation / sulfide resistance
  • discoloration occurs.
  • it is currently commercialized using rhodium rheology.
  • oxidation and sulfidation occur and discoloration occurs. ing.
  • workability is poor.
  • the silver Ag alloy of the present invention has hardness, tensile strength, Young's modulus, heat resistance, panel properties, easy processing, and good workability.
  • high-purity alloys have low electrical resistance and can provide electronic materials with good high-temperature characteristics.
  • the silver Ag alloy of the present invention has a wide range of uses such as tableware, liquid crystal reflective films, optical disk reflective films, reflective LCD electrodes, semiconductor electrodes, dental materials, and jewelry.
  • the copper Cu alloy of the present invention has hardness, tensile strength, Young's modulus, heat resistance, is easy to process, and has good workability. High-purity products have good electric conductivity and are suitable as electronic materials. Even when the plate thickness is 0.2 mm or less, paneling is exhibited. Meets the latest specifications for lead frames, connectors, relays, switches, and other components.
  • the Fe Fe alloy of the present invention has high purity, high hardness, tensile strength, Young's modulus and heat resistance, is easy to process, has good work life, and has good paneling properties. ⁇ It is possible to make use of high-purity iron Fe that is difficult to oxidize due to its purity. Iron alloys are expected to be a future vision if ultra-strong, super-heat-resistant, super-corrosion-resistant, ultra-low-temperature, and super-wear-resistant materials can be obtained. This shows that the iron Fe alloy composition and manufacturing method of the present invention may be useful. '
  • High-purity iron which is a material with corrosion resistance, has high purity, hardness and tensile strength, high Young's modulus, negligible properties, and elongation properties, so high expectations for future parts are obtained. .
  • Lightweight aluminum A1 alloy is required to be a member with excellent mechanical and electrical properties.
  • the aluminum A1 alloy of the present invention has high purity, hardness, tensile strength, Young's modulus and heat resistance, is easy to process, has good workability, and has good paneling and electrical conductivity.
  • the use of the alloy A1 of the present invention is very numerous in automobiles, aircraft, ships, agricultural equipment, refrigerators, washing machines, contact bonding wires and the like.
  • Lightweight magnesium Mg alloys are required to have excellent mechanical properties such as hardness, tensile strength, Young's modulus and elongation.
  • the Mg alloy of the present invention has a wide range of uses, from small parts such as wheels, seat frames, basson bodies, mobile phones and video camera housings to large parts for helicopters.
  • Alloys such as gold Au, platinum Pt, silver Ag, copper Cu, anoremium A1, and magnesium Mg have high hardness, heat resistance at high temperatures, high tensile strength, and good mechanical properties. However, they are required as industrial materials and jewelry materials. For gold Au, silver Ag, copper Cu, aluminum A1, etc., high purity materials with low electric resistance and high mechanical strength are required as electronic members.
  • the present invention has arisen from the above-mentioned market demands, and its object is to provide a high-performance hard metal alloy member having excellent mechanical / physical / chemical properties, easy to process, and good workability, and the like. It is to provide a manufacturing method.
  • a high-performance hard metal alloy member excellent in corrosion resistance and discoloration a method for producing the same, and the above-mentioned room temperature It is an object of the present invention to provide a hard metal alloy member having excellent mechanical properties and electrical properties at a high temperature as well as excellent properties at high temperatures, and a method for producing the same.
  • PCT / JP96 / 050510, PCT / JP97 / 02014 and PCT / JP00 / 04411 have been proposed to solve the disadvantages of precious metal alloys.
  • the invention extends further.
  • FIG. 1 shows the composition of the present embodiment of the gold Au alloy, the platinum Pt alloy, the silver Ag alloy, and the copper Cu alloy of the present invention and the composition of the comparative example.
  • FIG. 2 shows the hardness, tensile strength, elongation, and softening properties of the high purity gold Au alloy of the noble metal alloy of the present invention.
  • FIG. 3 shows the hardness, tensile strength, elongation, and softening characteristics of the high-purity platinum Pt alloy of the noble metal alloy of the present invention.
  • FIG. 4 shows the hardness, tensile strength and softening characteristics of the high purity silver Ag alloy of the noble metal alloy of the present invention.
  • FIG. 5 shows the hardness, tensile strength, and softening characteristics of the high purity copper Cu alloy of the metal alloy of the present invention.
  • FIG. 6 shows the effect of improving the discoloration and corrosion resistance of the high-purity silver Ag alloy of the present invention.
  • FIG. 7 shows the composition of this embodiment of the iron Fe alloy, the aluminum A1 alloy, and the magnesium Mg alloy of the present invention, and the composition of a comparative example thereof.
  • Fig. 8 shows the hardness and tensile strength characteristics of the iron Fe alloy, aluminum A1 alloy, and magnesium Mg alloy of the present invention.
  • Gd is the most effective hardening element in consideration of the volume content, and shows a high heat resistance improving effect. Furthermore, they have found that particularly high Young's modulus and strong tensile strength can be secured. This As described above, because Gd has a large improvement in hardness, Young's modulus and tensile strength, the addition amount may be small, and an alloy member having good characteristics can be obtained without changing the characteristics of the base alloy.
  • the target gold alloy is not particularly limited as long as it is an alloy having a gold grade of 9 K (carat) or more, and can be applied to ordinary gold alloys. Basically, it shows good corrosion resistance when it does not contain elements with poor corrosion resistance such as copper. A gold alloy containing an alloy element other than the noble metal may of course be used. The hardening additive is effective for any existing gold alloy.
  • an alloy material having the above composition is forged, and the material is subjected to a solution treatment in which the material is heated to a predetermined temperature and then rapidly cooled, and then, if necessary, is subjected to an aging treatment at a predetermined temperature.
  • a solution treatment in which the material is heated to a predetermined temperature and then rapidly cooled, and then, if necessary, is subjected to an aging treatment at a predetermined temperature.
  • an alloy material having the above composition is formed, the material is subjected to a solution treatment of heating to a predetermined temperature and then rapidly cooling, and the material is processed into a predetermined shape. Or, aging treatment is performed on the material later.
  • the gold material is manufactured, and the solution heat treatment temperature can be 500 ° C to 2700 ° C, and the aging temperature can be -100 ° C to 600 ° C.
  • the present invention it is possible to obtain an alloy member having high hardness, high tensile strength and high Young's modulus irrespective of gold purity.
  • Gold alloy of the conventional 24 K is the Young's modulus of about 4000 kgf / mm 2, 18 K but was filed at about 5800 kgf mm 2 at, in the present embodiment, 18 in the K alloy, Young's modulus 6000 kgf / mm 2 or higher, and higher ones indicate 7000 kgf Zmm 2 or higher.
  • the Young's modulus indicates a 9000 kgf / mm 2 or more.
  • the hardness of 18K (5/5) yellow is usually about 25 OHv at most, but the hardness of the 18K alloy of the present invention is 37 OHv or more.
  • Example 1 the gold alloys of Example 1 and Example 2 were melted using 99.95% by weight of electrolytic gold.
  • Comparative Example 1 is gadolinium Gd, a single additive alloy, and Comparative Example 2 is high purity gold of 4N Au.
  • the hardening is remarkably hardened mainly by the action of Gd and the synergistic action with other additive elements.
  • the processing rate at this time can be set to any value, but up to 99.0%, and even 99. A range of up to 6% is preferred.
  • the high-purity gold alloy of the present invention has a hardness of 170 HV or more, a heat resistance, and a tensile strength of 80 kgf / mm 2 or more. Furthermore, the elongation was 4% or more, the Young's modulus was 8600 or more, and 9000 kgf Zmm 2 or more. It was confirmed that the treatment of the present invention can improve hardness, tensile strength and Young's modulus while securing a predetermined elongation. It is easy to process and has good workability.
  • the alloy to be applied is not particularly limited, but as an additive alloy in which gadolinium Gd and an element other than Gd are added to the gold Au alloy at 50 to 15000 ppm, Au_Gd-Zr in Example 3
  • Au—Gd—Sn is exemplified, and Au—Gd—Sr, Au—Gd—Zn, Au_Gd—In, and Au—Gd—Sr—Zr
  • the hardness, tensile strength, Young's modulus, and heat resistance were improved as in Examples 1 and 2. Easy to process and easy to work
  • Hard precious metal alloy member according to the second embodiment of the present invention is Burachuumu P t content 85.0 weight 0/0 above, gadolinium G d and zirconium Z r, tin Sn, the group consisting of indium I n It is composed of a platinum alloy containing at least 50 ppm and less than 15000 ppm in total of a hardening additive composed of at least one element selected from the group consisting of:
  • the noble metal alloy member made of the brassium alloy according to the embodiment is manufactured by adding an appropriate amount of gadolinium Gd and a hardening additive that is combined with another element, and performing the above-described processing, so that a processed alloy is not added. Showed an unprecedented high value of over 12 OHv. In the case of processing, a value of 150 HV or more can be obtained at a processing rate of about 50%, and a value of 200 Hv or more can be obtained at a processing rate of 90% or more.
  • Bratium alloys have the disadvantage of high Young's modulus but low hardness, and are difficult to apply to the intended use of the present invention, or can be applied by adding elements such as Cu.
  • the hardness is not always sufficient, and problems such as corrosion resistance and color tone arise due to Cu and the like.
  • the hardness and the tensile strength can be reduced as described above.
  • High Young's modulus of 8000 kgf / mm 2 or more can be maintained.
  • the Young's modulus 10,000 kg / mm 2 or more while maintaining high hardness and strength tensile strength further 15000 kgf / mm 2, 20000 kgf / mm 2 or more can be a very high value It is.
  • Platinum Pt alloy has a solution treatment temperature of 600-2800.
  • C, aging temperature can be 150-700 ° C.
  • Particularly preferred conditions are a solution treatment temperature of 500 to 1600 ° C and an aging temperature of 150 to 600 ° C.
  • the processing efficiency at the time of processing is arbitrary, but a preferable range is the same as that of the first embodiment.
  • a 2 Omm square alloy was prepared, subjected to a solution treatment at 1000 ° C. for 1 hour, and subjected to an aging treatment at 550 ° C. for 3 hours. It is possible to obtain more than 1 O OHv and 150Hv with a non-processed forged alloy. The processing rate is above 208Hv and above 25 OHv.
  • Example 3 maintains 236Hv and Example 4 maintains 197Hv even at 800 ° C for 30 minutes. Even at 1400, it holds 117 Hv and 97 Hv.
  • the tensile strength is 88.3 kgf Zmm 2 and the elongation at break is large at 20%.
  • Example 3 and Example 4 have a hardness of 200 HV or more and a tensile strength of 85 kgf / mm 2 or more. It is heat resistant, has a Young's modulus of 1700 kgf / mm 2 or more, and has spring properties. Hardness, tensile strength, Young's modulus, and heat resistance improved, but it was confirmed. Easy to process and good workability.
  • the alloy to be applied is not particularly limited.
  • Pt—Gd—Sr was used as an additive alloy in which gadolinium Gd and an element other than Gd were added to the platinum at 50 to 15000 ppm.
  • Zr, Pt—Gd—Zr in Example 4 Pt—Gd—Zirconium oxide, Pt—Gd_Rh, Pt—Gd—Zr, Pt—Gd—Sn , Pt-Gd-Zn and Pt-Gd-In alloys were tested and evaluated.
  • the hardness, tensile strength, Young's modulus, and heat resistance were improved. did. It has panel properties, is easy to process, and has good workability.
  • the hard noble metal alloy member according to the third embodiment of the present invention has a silver Ag content of 85.0% by weight or more and is selected from the group consisting of gadolinium Gd, zirconium Zr, tin Sn, and indium In. It is composed of a silver alloy containing at least 50 ppm and less than 15 000 ppm in total of a hardening additive composed of at least one element.
  • the solution treatment temperature of silver Ag alloy can be 450 ⁇ 2200 ° C, and the temperature of B-tempering can be 100 ⁇ 600 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1550 ° C and an aging treatment temperature of 150 to 500 ° C.
  • the processing efficiency at the time of processing is arbitrary, but the preferred range is the same as in the first embodiment.
  • the alloy to be applied is not particularly limited.
  • Ag—Gd—Sr-Sn was used as an additive alloy in which gadolinium Gd and an element other than Gd were added at 50 to 15000 ppm to silver Ag.
  • Example of Ag-Gd-Sr-Zr in Example 6 Example of Ag-Gd-Sr-In in Example 7
  • alloys of Ag—Gd—Zr, Ag—Gd—Sn, Ag—Gd—Zn, and Ag—Gd—In were evaluated as prototypes, but as in Examples 1 and 2.
  • Comparative Example 5 is a 4N silver Ag alloy
  • Comparative Example 6 is a 92.5% Ag alloy.
  • the high-purity silver alloy of the present invention exhibited hardness and tensile strength equivalent to or higher than those of Ag 925 silver alloy, and also had heat resistance.
  • the silver alloy of the present invention has a Young's modulus of 8500 kgf / mm 2 or more, and the value can be adjusted.
  • FIG. 5 shows a continuous spray test of sodium chloride of the silver alloy of the present invention and a humidity of 90. /. These are the results of the spray test. It can be seen that there is no change in the appearance, and that discoloration and corrosion are less likely to occur. It has a remarkable effect. It was found that the sulfuration resistance was significantly improved by adding 0.1% by weight or more of palladium Pd. It was found that the effect of adding Pd was remarkable in the silver-Ag alloy of the present invention. Palladium was evaluated by adding PdO. 01%, 0.10%, 1.00%, and 10.00%.
  • the hard noble metal alloy member according to the fourth embodiment of the present invention is selected from a noble metal element group consisting of gold Au, silver Ag, bratium Pt, palladium Pd, rhodium Rh, ruthenium Ru, and osmium Os2.
  • a precious metal alloy composed of at least one element, gadolinium Gd and a hardening additive composed of at least one element selected from the group consisting of zirconium Zr, tin Sn, and indium In in total It is included in the range of 50 ppm or more and less than 15000 ppm.
  • the hard noble metal alloy member according to the fifth embodiment of the present invention is selected from a noble metal element group consisting of gold Au, silver Ag, platinum Pt, palladium Pd, rhodium Rh, ruthenium Ru, and osmium Os1.
  • a noble metal element group consisting of gold Au, silver Ag, platinum Pt, palladium Pd, rhodium Rh, ruthenium Ru, and osmium Os1.
  • Precious metal alloys composed of at least one element, gadolinium Gd, and a hardening additive composed of at least one element selected from the group consisting of zirconium Zr, tin Sn, and indium In At 50 ppm or more and less than 15000 ppm.
  • the hard noble metal alloy member according to the sixth embodiment of the present invention has a Au content of 99.45% by weight or more and is selected from the group consisting of gadolinium Gd, zirconium Zr, tin Sn, and indium In. It is composed of a gold alloy containing at least 50 ppm and less than 15,000 ppm in total of a hardening additive composed of at least one element.
  • the alloy applied to the embodiment is not particularly limited.
  • the components other than the above-mentioned hardening additive may be any components used in ordinary noble metal alloys, and are not particularly limited. That is, the hardening additive is effective for any existing noble metal alloy.
  • Manufacturing of the alloy member according to these embodiments is the same as in the first practical embodiment. In the case of fabrication, an alloy material having the above composition is fabricated, and the material is subjected to a solution treatment in which the material is heated to a predetermined temperature and then rapidly cooled. Thereafter, aging treatment is performed at a predetermined temperature as needed.
  • a processed alloy an alloy material having the above composition is manufactured, the material is subjected to a solution treatment in which the material is heated at a predetermined temperature and then rapidly cooled, and the material is processed into a predetermined shape. Later aging treatment for the first half material Is applied.
  • the solution treatment temperature can be 600 to 2700 ° C, and the aging temperature can be 150 to 700 ° C.
  • Particularly preferred conditions are a solution treatment temperature of 500 to 1,600 ° C and a temperature of 150 ° C to 600 ° C.
  • the processing efficiency at the time of processing is arbitrary, but the preferred range is the same as in the first embodiment.
  • Hard precious metal alloy member according to the seventh embodiment of the present invention is platinum P t content 99.4 5 wt 0/0 above, gadolinium G d and zirconium Z r, tin S n, indium I n It is composed of a platinum alloy containing at least 50 ppm and less than 15000 ppm in total of a hardening additive composed of at least one element selected from the group consisting of:
  • the hard noble metal alloy member according to the seventh embodiment of the present invention has a silver Ag content of at least 99.45% by weight and is selected from the group consisting of gadolinium Gd, zirconium Zr, tin Sn, and indium In. It is composed of a silver alloy contained in the range of 50 to less than 15,000 ppm in total of the hardening additive composed of at least one selected element.
  • the hard metal alloy member according to the ninth embodiment of the present invention has a copper Cu content of 40.00% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, and silicon.
  • a total of 50 hardening additives composed of at least one element selected from the group consisting of It is composed of a copper alloy that is contained in the range of p pm to 15,000 ppm.
  • the solution treatment temperature can be 600-2,500 ° C
  • the B effect temperature can be 150-780 ° C.
  • Particularly preferred conditions are a solution treatment temperature of 600 to 1600 ° C and an aging treatment temperature of 150 to 680 ° C.
  • the processing efficiency at the time of processing is arbitrary, but the preferred range is the same as in the first embodiment.
  • Example 8 and Example 9 are metal alloy members made of copper Cu, and gadolinium Gd alone, gadolinium Gd and zirconium Zr are respectively added in appropriate amounts, and the above-described treatment is performed. And tensile strength.
  • the hardness after processing and treatment at 315 ° C. for 2 hours was 219 Hv and 23 23 ⁇ . After the treatment at 810 ° CX30, it became 16 OHv and 13 ⁇ .
  • the tensile strength was 53.2 kgf Zmm 2
  • the high-purity copper Cu alloy of the present invention had improved hardness, tensile strength, and Young's modulus, and exhibited paneling properties. Easy to process and good workability.
  • the Young's modulus is 13500 kgf / mm 2 or more, and this value can be adjusted.
  • the metal alloy member made of the Cu alloy according to the embodiment is processed by adding the appropriate amount of a hardening additive composed of gadolinium Gd alone or in combination with another element, and performing the above-described processing. It shows unprecedented high value of 12 OHv or more in a forged alloy not added. In the case of processing, the processing rate is 50. /. It shows a value of 200 HV or more at a rate of 150 HV or more and a processing rate of 90% or more.
  • Comparative Example 7 is 4N copper Cu, and Comparative Example 8 is Cr / Zr copper.
  • Cu—Gd, Cu—Gd—Zr are examples of the additive alloys in which elements other than Cu are added to Cu at 50 to 15000 ppm, and other examples include Cu—Gd—Sr.
  • Cu—Gd—Ca, Cu—Gd—Zr, Cu—Gd—Sn, Cu—Gd—Zn, and Cu—Gd—In were evaluated as prototypes, and were the same as in Examples 8 and 9.
  • the properties of hardness, tensile strength, Young's modulus, and heat resistance improved, and spring properties were exhibited. Easy to process and good workability.
  • It is composed of at least one element selected from the group consisting of copper Cu and zinc Zn, tin Sn, aluminum A1, nickel Ni, beryllium Be, lead Pb, manganese Mn, and indium In.
  • An additive alloy obtained by adding the above element to a Cu alloy was subjected to trial manufacture and evaluation. The hardness, tensile strength, Young's modulus, heat resistance were improved, and spring properties were exhibited, as in the case of the Cu additive alloy. It is easy to process and has good workability.
  • the hard metal alloy member according to the tenth embodiment of the present invention has an iron Fe content of 40.00% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, Hardening additive composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium In or lead Pb, and nickel Ni 50 p in total It is composed of an iron alloy contained in the range of pm to 15,000 ppm.
  • the solution treatment was performed at 820 ° C for 1 hour, and the aging treatment was performed at 480 ° C for 3 hours.
  • the solution treatment temperature can be 600 to 2800 ° C, and the B effect temperature can be 150 to 700 ° C.
  • Particularly preferred conditions are a solution treatment temperature of 600 to 2000 ° C and an aging treatment temperature of 150 to 700 ° C.
  • the processing efficiency at the time of processing is arbitrary, but the preferred range is the same as in the first embodiment.
  • Field Form 10 Field Form 1
  • the hardness of 1 Fe Fe alloy is 120Hv and 156HV.
  • Tensile strength is 87 and 1 20 kg / mm 2.
  • the effect of adding the Fe Fe alloy of the present invention is remarkable. Almost no decrease in corrosion resistance, electrical resistance, etc. was observed even when adding 4 N iron Fe.
  • the hardness, tensile strength, Young's modulus, and heat resistance improved, and one spring was produced.
  • the Young's modulus is 22000 kgf / mm 2 or more, and this value can be adjusted.
  • Comparative Example 7 is 99.94% by weight high purity iron.
  • additive alloys in which elements other than Fe are added to iron Fe at 50 to 15000 ppm are Fe-Gd, Fe-Gd-Si, and Fe-Gd-S. r, Fe-Gd-Ca, Fe-Gd-Zr, Fe-Gd-Sn, Fe-Gd-Zn, Fe-Gd-In, Fe-Gd-Mn
  • the hardness, tensile strength, Young's modulus and heat resistance were improved as in Examples 8 and 9, and panel properties were exhibited. Easy to process and good workability.
  • It is composed of at least one element selected from the group consisting of iron Fe and copper Cu, silicon Si, manganese Mn, nickel Ni, chromium Cr, molybdenum Mo, and cobalt Co.
  • An alloy obtained by adding the above element to a Fe alloy was evaluated by trial production. The hardness, tensile strength, Young's modulus and heat resistance were improved and the spring property was exhibited, as in the case of the Fe alloy. Easy to process and workability is good.
  • the hard metal alloy member according to the first embodiment of the present invention has an aluminum A1 content of 40.00% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, Hardening additives composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium I! 1 lead Pb, and nickel Ni It is composed of an aluminum alloy containing 50 ppm or more and less than 15000 ppm.
  • Aluminum A1 alloy can have a solution treatment temperature of 300-2000 ° C and a B effect temperature of 50-450 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1600 ° C and an aging temperature of 50 to 400 ° C.
  • the processing efficiency at the time of processing is arbitrary, but the preferred range is the same as in the first embodiment.
  • the hardness of the aluminum A1 alloy of Examples 10 and 11 is 76 Hv and 115 Hv, and the tensile strength is 55 kgf / mm 2 and 81 kgf / mm 2 .
  • the aluminum A1 alloy of the present invention has improved hardness, tensile strength, Young's modulus, and heat resistance, and has paneling properties. Easy to process and good workability.
  • the Young's modulus is 7400 kgf / mm 2 or more, and this value can be adjusted.
  • the ratio Comparative Examples 10 is a high-purity aluminum 99.90 wt 0/0.
  • Aluminum Addition of elements other than A1 to aluminum A1 from 50 to: L 5000 ppm is exemplified by Al—Gd and A1—Gd—Mn.
  • AI—Gd—S r, Al—Gd—Ca, Al—Gd—Zr, Al—Gd—Sn, Al—Gd—Zn, Al—Gd—In, and A1-Gd—Si As in Example 10 and Example 11, hardness, tensile strength, Young's modulus, and heat resistance were improved, and spring properties were exhibited. Easy to process and workability.
  • It is composed of aluminum A1 and at least one element selected from the group consisting of copper Cu, iron Fe, manganese Mn, silicon Si, magnesium Mg, zinc Zn, tin Sn, and indium I ⁇ .
  • An alloy with the above elements added to the A1 alloy was evaluated as a prototype, but the hardness, tensile strength, Young's modulus, and heat resistance were improved, paneling was exhibited, and processing was similar to that of the A1 alloy. Good workability.
  • the hard metal alloy member according to the twelfth embodiment of the present invention has a magnesium Mg content of 40.00% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, and silicon.
  • a total of 50 hardening additives composed of at least one element selected from the group consisting of Si, boron B, zirconium Zr, tin Sn, indium In or lead Pb, and nickel Ni It is composed of a magnesium alloy that is contained in the range from ppm to less than 15000 ppm.
  • Magnesium Mg alloy can have a solution treatment temperature of 250-500 ° C and an aging temperature of 110-500 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1000 ° C and an aging treatment temperature of 100 to 450 ° C.
  • the processing efficiency at the time of processing is arbitrary, but the preferable range is the same as that of the first embodiment.
  • the hardness of magnesium Mg in Examples 14 and 15 was 81 Hv and 12 ⁇ , and the tensile strength Are 52 kgf / mm 2 and 80.
  • the solution treatment was performed at 390 ° C for 10 hours, and the aging treatment was performed at 260 ° C for 5 hours.
  • the magnesium-Mg alloy of the present invention has improved hardness, tensile strength, Young's modulus, and heat resistance, and has a nematic property. Easy to process and good workability. Young's modulus is 4400 kgf / mm 2 or more, was improved by about 15%.
  • Comparative Examples 11 and 12 had a purity of 99.8 and a 99.99 weight of 0 /. Is pure magnesium.
  • Mg—Gd examples of additive alloys in which elements other than Mg are added to Mg at 50 to 15000 ppm
  • Mg—Gd examples of additive alloys in which elements other than Mg are added to Mg at 50 to 15000 ppm
  • Mg—Gd examples of additive alloys in which elements other than Mg are added to Mg at 50 to 15000 ppm
  • Mg—Gd examples of additive alloys in which elements other than Mg are added to Mg at 50 to 15000 ppm
  • Mg—Gd examples of additive alloys in which elements other than Mg are added to Mg at 50 to 15000 ppm
  • Mg—Gd examples of additive alloys in which elements other than Mg are added to Mg at 50 to 15000 ppm
  • Mg—Gd examples of additive alloys in which elements other than Mg are added to Mg at 50 to 15000 ppm
  • Mg—Gd examples of additive alloys in which elements other than Mg are added to Mg at 50 to 15000 ppm
  • the heat treatment method includes a patch treatment method and a continuous treatment method.
  • the hard metal alloy member according to the thirteenth embodiment of the present invention has a copper Cu content of 70.00% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, A total of 50 hardening additives composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zj :, tin Sn, indium In or lead Pb, and nickel Ni. It is composed of a copper alloy that is contained in the range from p pm to less than 15000 ppm.
  • the hard metal alloy member according to the fourteenth embodiment of the present invention has an Fe content of 70.00% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, A total of 50 hardening additives composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium In or lead Pb, and nickel Ni It is composed of an iron alloy contained in the range from p pm to less than 15000 ppm.
  • the hard metal alloy member according to the fifteenth embodiment of the present invention has an aluminum A1 content of 70.00% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, Hardening additive consisting of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium lead, lead Pb, and nickel Ni. It is composed of an aluminum alloy containing 50 ppm or more and less than 15000 ppm.
  • the hard metal alloy member according to the sixteenth embodiment of the present invention has a magnesium Mg content of 70.00% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, silicon S i, Boron B, Zirconium Zr, Tin Sn, Indium I ⁇ Lead Pb, Nickel Ni Hardening additive composed of at least one element selected from the group consisting of 50 p Magnesium contained in the range of pm or more and less than 150 ppm It is composed of a Pum alloy.
  • the hard metal alloy member according to the seventeenth embodiment of the present invention has a Cu Cu content of 99.45% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, Hardening additives composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, and nickel Ni. It is composed of a copper alloy containing less than 15,000 ppm.
  • the hard metal alloy member according to the eighteenth embodiment of the present invention has an Fe content of 99.45% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, 50 pm total hardening additive composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium In lead Pb, and nickel Ni It is composed of an iron alloy containing less than 15,000 ppm.
  • the hard metal alloy member according to the nineteenth embodiment of the present invention has an aluminum A1 content of 99.45% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, and silicon.
  • a total of 50 hardening additives composed of at least one element selected from the group consisting of Si, boron B, zirconium Zr, tin Sn, indium lead, lead Pb, and nickel Ni It is composed of an aluminum alloy contained in the range of not less than ppm and less than 15000 ppm.
  • the hard metal alloy member according to the twentieth embodiment of the present invention has a magnesium Mg content of 99.45% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, silicon S i, Boron B, Zirconium Zr, Tin Sn, Indium In or Lead Pb, Nickel Ni Hardening additive composed of at least one element selected from the group consisting of 50 p in total It is composed of a magnesium alloy contained in the range of pm to less than 15000 ppm.
  • the alloy applied to the embodiment is not particularly limited.
  • the components other than the hardening additive are not particularly limited as long as they are those used in ordinary metal alloys. That is, the hardening additive is effective for existing general metal alloys.
  • Manufacture of the alloy members according to these embodiments is the same as the actual form of the noble metal alloy. In the case of cycling, an alloy material having the above composition is produced, and the material is subjected to a solution treatment of heating to a predetermined temperature and then rapidly cooling. Thereafter, aging treatment is performed at a predetermined temperature as needed.
  • an alloy material having the above composition is manufactured, the material is subjected to a solution treatment in which the material is heated to a predetermined temperature and then rapidly cooled, and the material is processed into a predetermined shape. Later, the material is aged.
  • zirconium Zr, tin Sn, indium In, and manganese Mn are newly used and evaluated for trial production. It was easy to process and workability was good. The effect was found to be remarkable.
  • copper Cu alloy, iron Fe alloy, aluminum A1 alloy, and magnesium Mg alloy, Gd and rare earth elements, and Gd and aluminum earth elements were mixed, and the prototypes were evaluated. Hardness, tensile hardness, Young's modulus, etc. improved. It had a paneling property, was easy to process, and had good workability.
  • the hard metal alloy member according to the embodiment of the present invention has a content of 37.50 to 99.995 weight of gold Au, platinum Pt, silver Ag, copper Cu, iron Fe, aluminum A1, magnesium Mg, and the like. 0/0, gadolinium Gd alone or rare earth elements other than gadolinium Gd,, ⁇ alkaline earth elements, silicon S i, aluminum a 1, manganese Mn, zirconium Z r, tin Sn, zinc Zn, indium I n, It is composed of a metal alloy containing a hardening additive composed of at least one element selected from the group consisting of boron B in a total range of 50 ppm to less than 15000 ppm.
  • the hard metal alloy member according to the embodiment of the present invention is a metal alloy made of gold Au, platinum Pt alloy, silver Ag alloy, copper Cu alloy, iron Fe alloy, aluminum A1 alloy, magnesium Mg alloy.
  • At least one or more metal alloys selected from the group include gadolinium Gd alone or rare earth elements other than gadolinium Gd, alkaline earth elements, silicon Si, aluminum Al, manganese Mn, zirconium Zr, tin Metal alloy containing a hardening additive composed of at least one element selected from the group consisting of Sn, zinc Zn, indium In, and boron B in a total range of 50 ppm to less than 15000 ppm It consists of.
  • Gadolinium Gd is the most effective hardening element in consideration of the volume occupancy, and the improvement in heat resistance is remarkable. In particular, it has been found that extremely low Young's modulus can be obtained by adding Gd. As described above, since Gd has a large effect of improving hardness, Young's modulus and tensile strength, the amount of added calorie may be small, and a good color tone can be obtained without changing the color tone of the base alloy. Furthermore, since the addition amount is small and the occupied volume is small, the characteristics unique to the base alloy can be utilized.
  • the effect as a hardening additive is exhibited by Gd alone, but excellent properties are obtained due to the synergistic effect of complex addition with at least one element selected from the group consisting of the above elements other than Gd. Obtainable.
  • the hard metal member of the present invention is excellent in fff durability because it has high hardness, good strength and good corrosion resistance. In addition, it has a high Young's modulus, has paneling properties, and has high tensile strength and brittleness. And since it has such excellent mechanical properties, it is possible to reduce the weight and thickness. Furthermore, it has good color tone, and has good workability and good workability.
  • the metal alloy member of the present invention has improved hardness, tensile strength and Young's modulus, has spring properties, has elongation and the like, is easy to process, and has good workability. Different from conventional alloy members. Further, it is a great feature that these characteristics can be adjusted according to the user's preference.
  • the greatest feature is that an ultra-high performance noble metal alloy / metal alloy of the above elements and a unique noble metal alloy Z metal alloy adjusted according to the user's preference are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Adornments (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

A hard metal alloy member which comprises a copper alloy comprising copper (Cu) in an amount of 40.00 to 99.45 wt % and, gadolinium (Gd) and at least one element selected from the group consisting of a rare earth element except Gd , an alkaline earth element, zirconium (Zr), tin (Sn), lead (Zn), indium (In), manganese (Mn), beryllium (Be) and cobalt (Co) in an amount of not less than 50 ppm and less than 15000 ppm.

Description

明 細 書 硬質金属合金部材とその製造方法 技術分野  Description Hard metal alloy members and manufacturing method
本発明は、 電子部材、 自動車/航空部材、 理化学部材、 医療部材、 宝飾部材、 楽器部材、 食器部材、 構造部材等に好適な金属合金部材及び製造方法に関する。 背景技術  The present invention relates to a metal alloy member suitable for electronic members, automotive / aviation members, physicochemical members, medical members, jewelry members, musical instrument members, tableware members, structural members, and the like, and a manufacturing method. Background art
従来、 金属材料として鉄 (F e )、 銅 (C u)、 アルミニウム (A 1 )、 マグネシウム (M g )、 チタン (T i )、 亜鉛 (Z n)、 鈴(S n)、 ベリリウム(B e )、 ジルコニウム(Z r )、 金 (A u)、 プラチナ (P t )、銀 (A g )、パラジウム(P d )等が知られており、各分野で使用されている。 Conventionally, iron (Fe), copper (Cu), aluminum (A1), magnesium (Mg), titanium (Ti), zinc (Zn), bell (Sn), beryllium (B e), zirconium (Zr), gold (Au), platinum (Pt), silver (Ag), palladium (Pd) and the like are known and used in various fields.
(貴金属材料の金、 プラチナ、 銀、 パラジウム等については P C T/ J P / 0 2 0 1 4で 出願済みであり、 本出願では、 これを金属材料に拡大出願するものである。 各材料のもつ 素晴らしい特性を生かすために、 硬度、 引張強度、 伸び、 ヤング率、 耐食性、 変色性、 髙 温特性、 作業性、 パネ性等を改良向上させるものである。 各材料のもつ特徴を生かすため に、 長所を伸ばし、 短所を改良タリヤーするものである。 (Applications for precious metal materials such as gold, platinum, silver, and palladium have already been filed in PCT / JP / 0214, and in this application, this is an application to expand to metal materials. In order to make the best use of the properties, it improves and improves the hardness, tensile strength, elongation, Young's modulus, corrosion resistance, discoloration, temperature characteristics, workability, paneling, etc. Advantages of making use of the characteristics of each material To improve the shortcomings and improve the shortcomings.
上記金属材料は、 各分野の用途に用いる場合に硬度やヤング率等の機械的性質、 物理的 特性、 化学的特性、 耐食性、 変色等が必ずしも充分と言えない。 また作業性が悪いという 問題もある。 本発明の目的は、 上記金属材料の持つ特徴を維持して、 これらの不具合な特 性を改善、 改良し、 向上させることで、 要求する新部材を得ること。  The above-mentioned metallic materials are not necessarily sufficient in mechanical properties such as hardness and Young's modulus, physical properties, chemical properties, corrosion resistance, discoloration, etc. when used in applications in various fields. There is also the problem of poor workability. An object of the present invention is to obtain the required new member by improving, improving, and improving the characteristics of these defects while maintaining the characteristics of the metal material.
本発明の金属合金部材は、硬度、 引張強度、 ヤング率、 耐熱性が向上し、 パネ性があり、 加工し易く、 作業性がよいことを特徴とする。 加工し易いので、 焼鈍なしで 9 0 %以上の 加工ができる。 圧延方向を変えても割れが発生しない等の特徴を示す。 伸びもある。 本発明の金 A u合金は、 硬度、 ヤング率、 引張強度、 伸び、 ばね性の特性が高い。 加工 もし易く、 作業性がよい。 高純度で添加元素の体積占有率も小さいので、 電気伝導率、 熱 伝導率の高い電子材料が得られる。 ヤング率が高いので音響のよい部材が得られる。 ばね 性があるので柔軟性があり、 コシのある線材、 板材が得られる。 耐熱性があるので機械強 度があり、 更に物理特性、 電気特性の高い材料が得られる。 金合金の超高性能部材が得ら れる。  The metal alloy member of the present invention is characterized in that hardness, tensile strength, Young's modulus, heat resistance are improved, it has panel properties, it is easy to process, and the workability is good. Since it is easy to process, more than 90% can be processed without annealing. It shows features such as no cracking even if the rolling direction is changed. There is also growth. The gold Au alloy of the present invention has high hardness, Young's modulus, tensile strength, elongation, and spring properties. Processing Easy and good workability. Because of the high purity and small volume occupancy of the added elements, electronic materials with high electrical and thermal conductivity can be obtained. Since the Young's modulus is high, a member with good sound can be obtained. Because of the spring property, flexible and stiff wire and plate can be obtained. Because of its heat resistance, a material with high mechanical strength and high physical and electrical properties can be obtained. An ultra-high performance member of a gold alloy can be obtained.
プラチナ P t合金は、 硬度、 引張強度、 ヤング率、 耐熱性が向上し、 パネ性があり、 加 ェし易く、 作業性もよい。 更に、 伸び、 クリープ強度のある、 高い特性を示す強化型部材、 耐熱型部材が得られる。 ルツポ、 プラグ、 歯科材、 理化学器、 宝飾等用途は広い。  Platinum Pt alloy has improved hardness, tensile strength, Young's modulus, and heat resistance, has panel properties, is easy to add, and has good workability. Furthermore, a reinforced member and a heat-resistant member having high properties with elongation and creep strength can be obtained. Widely used for rutupo, plug, dental material, physicochemical equipment, jewelry, etc.
銀 A g合金は電子部材、 食器部材、 装飾部材に注目されているが、 強度を上げると耐食 性 (耐酸化/硫化性)が不足し、変色する。美的価値を維持するため、 ロジウム R hメツキ等を 行って商品化しているのが現状である。 しかしながら、 それでも酸化、 硫化が生じ変色し ている。 更に、 作業性も悪い。 Silver Ag alloys are attracting attention for electronic components, tableware components, and decorative components. However, when the strength is increased, the corrosion resistance (oxidation / sulfide resistance) is insufficient, and discoloration occurs. In order to maintain aesthetic value, it is currently commercialized using rhodium rheology. However, still, oxidation and sulfidation occur and discoloration occurs. ing. Furthermore, workability is poor.
本発明の銀 A g合金は硬度、 引張強度、 ヤング率、 耐熱性があり、 パネ性があり、 加工 し易く、 作業性がよい。 特に、 高純度合金は電気抵抗が低く、 高温特性の良い電子材料が 得られる。 本発明の銀 A g合金は、 食器、 液晶反射膜、 光ディスク反射膜、 反射型 L C D 電極、 半導体電極、 歯科材、 宝飾等用途は広い。  The silver Ag alloy of the present invention has hardness, tensile strength, Young's modulus, heat resistance, panel properties, easy processing, and good workability. In particular, high-purity alloys have low electrical resistance and can provide electronic materials with good high-temperature characteristics. The silver Ag alloy of the present invention has a wide range of uses such as tableware, liquid crystal reflective films, optical disk reflective films, reflective LCD electrodes, semiconductor electrodes, dental materials, and jewelry.
本発明の銅 C u合金は、 硬度、 引張強度、 ヤング率、 耐熱性があり、 加工し易く、 作業 性がよい。 高純度品は電気伝導性がよく電子材料として好適である。 0 . 2 mm以下板厚 にしてもパネ性を示す。 最新仕様のリードフレーム、 コネクタ一、 リレー、 スィッチ等の 部材仕様を満たす。  The copper Cu alloy of the present invention has hardness, tensile strength, Young's modulus, heat resistance, is easy to process, and has good workability. High-purity products have good electric conductivity and are suitable as electronic materials. Even when the plate thickness is 0.2 mm or less, paneling is exhibited. Meets the latest specifications for lead frames, connectors, relays, switches, and other components.
本発明鉄 F e合金は、 高純度で硬度、 引張強度、 ヤング率、 耐熱性を上げられ、 加工し 易く、 作業 1·生がよく、 パネ性のある。 髙純度で酸化し難くなる高純度鉄 F eを生かすこと が可能である。 鉄合金は、 超強力、 超耐熱、 超耐食、 超耐低温、 超耐磨耗などの極限部材 が得られれば、 未来像としての期待は大きい。 本発明の鉄 F e合金組成と製造方法が有益 になる可能性を示している。 '  The Fe Fe alloy of the present invention has high purity, high hardness, tensile strength, Young's modulus and heat resistance, is easy to process, has good work life, and has good paneling properties.高 It is possible to make use of high-purity iron Fe that is difficult to oxidize due to its purity. Iron alloys are expected to be a future vision if ultra-strong, super-heat-resistant, super-corrosion-resistant, ultra-low-temperature, and super-wear-resistant materials can be obtained. This shows that the iron Fe alloy composition and manufacturing method of the present invention may be useful. '
耐食'生のある材料の高純度鉄は、 高純度で硬度 ·引張強度があり、 ヤング率が高く、 ノ ネ性があり、 伸びのある特性を得ることによって、 将来の部材への期待が大きい。  High-purity iron, which is a material with corrosion resistance, has high purity, hardness and tensile strength, high Young's modulus, negligible properties, and elongation properties, so high expectations for future parts are obtained. .
軽量のアルミニウム A 1合金は、 機械的特性、 電気特性の優れている部材が要求されて いる。 本発明アルミニウム A 1合金は、 高純度で硬度、 引張強度、 ヤング率、 耐熱性があ り、 加工し易く、 作業性がよく、 パネ性、 電気伝導性もよい。 本発明 A 1合金の用途は自 動車、 航空機、 船舶、 農機具、 冷蔵庫、 洗濯機、接点 ボンデングワイヤー等非常に多い。 軽量であるマグネシウム M g合金は、 硬度、 引張強度、 ヤング率、 伸ぴ等の機械的特性 の優れた部材が求められている。 本発明 M g合金は、 ホイール、 シートフレーム、 バソコ ンボディ、 携帯電話、 ビデオカメラ筐体等の小物部品からヘリコプターの大物部品まで用 途は広い。  Lightweight aluminum A1 alloy is required to be a member with excellent mechanical and electrical properties. The aluminum A1 alloy of the present invention has high purity, hardness, tensile strength, Young's modulus and heat resistance, is easy to process, has good workability, and has good paneling and electrical conductivity. The use of the alloy A1 of the present invention is very numerous in automobiles, aircraft, ships, agricultural equipment, refrigerators, washing machines, contact bonding wires and the like. Lightweight magnesium Mg alloys are required to have excellent mechanical properties such as hardness, tensile strength, Young's modulus and elongation. The Mg alloy of the present invention has a wide range of uses, from small parts such as wheels, seat frames, basson bodies, mobile phones and video camera housings to large parts for helicopters.
金 A u、 白金 P t、 銀 A g、銅 C u、 ァノレミニゥム A 1、 マグネシウム M g等の合金は、 硬度が高く、 高温での耐熱性があり、 引張強度も強く、機械特性のよいものが、 工業材料、 宝飾材料として求められている。 金 A u、 銀 A g、 銅 C u、 アルミニウム A 1等では、 電 子部材として電気抵抗の低い、 機械強度のある高純度部材が求められている。  Alloys such as gold Au, platinum Pt, silver Ag, copper Cu, anoremium A1, and magnesium Mg have high hardness, heat resistance at high temperatures, high tensile strength, and good mechanical properties. However, they are required as industrial materials and jewelry materials. For gold Au, silver Ag, copper Cu, aluminum A1, etc., high purity materials with low electric resistance and high mechanical strength are required as electronic members.
薄膜においても耐酸性と耐硫化性.のある、耐食性を示す材料が求められている。銀食器、 宝飾品でも酸化/酸化し難い材料が求められている。 用途は限りなく多大である。 発明の開示  There is a need for a corrosion-resistant material having acid resistance and sulfidation resistance even in a thin film. Silver tableware and jewelry also require materials that are hardly oxidized / oxidized. The applications are endless. Disclosure of the invention
本発明は、 上述のような市場の要求から生じたものであり、 その目的は、 機械 Z物理/ 化学的性質に優れ、 更に加工し易く、 作業性のよい高性能硬質金属合金部材及ぴその製造 方法を提供することである。  The present invention has arisen from the above-mentioned market demands, and its object is to provide a high-performance hard metal alloy member having excellent mechanical / physical / chemical properties, easy to process, and good workability, and the like. It is to provide a manufacturing method.
更に、 耐食性、 変色性にも優れた高性能硬質金属合金部材及ぴその製造方法と上記常温 での特性のみならず、 高温での機械特性、 電気特性の優れた硬質金属合金部材及ぴその製 造方法を提供することを目的とする。 Furthermore, a high-performance hard metal alloy member excellent in corrosion resistance and discoloration, a method for producing the same, and the above-mentioned room temperature It is an object of the present invention to provide a hard metal alloy member having excellent mechanical properties and electrical properties at a high temperature as well as excellent properties at high temperatures, and a method for producing the same.
貴金属合金の欠点を解決するための P C T/ J P 9 6 / 0 0 5 1 0 、 PCT/J P 97/02014、 PCT/J P 00/04411を提案してきた。 本発明 は、 更に広範囲に展開するものである。新に金属合金銅 Cu、 鉄 F e、 アルミニウム A 1、 マグネシウム Mgまで展開した。 貴金属合金のこれらの解決方法は上記金属合金でも欠点 を角 ¥決出来ることを見出した。 図面の簡単な説明  PCT / JP96 / 050510, PCT / JP97 / 02014 and PCT / JP00 / 04411 have been proposed to solve the disadvantages of precious metal alloys. The invention extends further. Newly developed metal alloy copper Cu, iron Fe, aluminum A1, magnesium Mg. We have found that these solutions for precious metal alloys can solve the disadvantages even with the above metal alloys. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の金 Au合金、 プラチナ P t合金、 銀 Ag合金、 及び銅 Cu合金の本実 施形態組成とその比較例組成を示す。 FIG. 1 shows the composition of the present embodiment of the gold Au alloy, the platinum Pt alloy, the silver Ag alloy, and the copper Cu alloy of the present invention and the composition of the comparative example.
第 2図は、 本発明貴金属合金の高純度金 A u合金の硬度、 引張強度、 伸ぴ、 及び軟化特性 を示す。 FIG. 2 shows the hardness, tensile strength, elongation, and softening properties of the high purity gold Au alloy of the noble metal alloy of the present invention.
第 3図は、 本発明貴金属合金の高純度プラチナ P t合金の硬度、 引張強度、 伸ぴ、 及ぴ軟 化特性を示す。 FIG. 3 shows the hardness, tensile strength, elongation, and softening characteristics of the high-purity platinum Pt alloy of the noble metal alloy of the present invention.
第 4図は、本発明貴金属合金の高純度銀 A g合金の硬度、 引張強度、及び軟化特性を示す。 第 5図は 本発明金属合金の高純度銅 Cu合金の硬度、 引張強度、 及び軟化特性を示す。 第 6図は、 本発明高純度銀 A g合金の変色性と耐食性の改善効果を示す。 FIG. 4 shows the hardness, tensile strength and softening characteristics of the high purity silver Ag alloy of the noble metal alloy of the present invention. FIG. 5 shows the hardness, tensile strength, and softening characteristics of the high purity copper Cu alloy of the metal alloy of the present invention. FIG. 6 shows the effect of improving the discoloration and corrosion resistance of the high-purity silver Ag alloy of the present invention.
第 7図は、 本発明の鉄 F e合金、 アルミニウム A 1合金、 マグネシウム Mg合金の本実施 形態組成とその比較例組成を示す。 FIG. 7 shows the composition of this embodiment of the iron Fe alloy, the aluminum A1 alloy, and the magnesium Mg alloy of the present invention, and the composition of a comparative example thereof.
第 8図は、 本発明の鉄 F e合金、 アルミニウム A 1合金、 マグネシウム Mg合金の硬度と 引張強度特性を示す 発明を実施するための最良の形態 Fig. 8 shows the hardness and tensile strength characteristics of the iron Fe alloy, aluminum A1 alloy, and magnesium Mg alloy of the present invention.
本発明の第 1の実施形態に係る貴金属合金部材は、 Au含有量 37. 50〜98. 45 重量0 /0、 であり、 ガドリニウム Gdを単独、 あるいはガドリウム Gと、 ジ コニゥム Z r、 スズ S n、 インジウム I nの群から選択される少なくとも 1種の元素とで構成さられる硬 質化添加剤を合計で 50 p p m以上 15000 p p m未満の範囲で含有させた金合金で構 成される。 First embodiment according noble metal alloy of the present invention, Au content from 37.50 to 98.45 wt 0/0, a, alone gadolinium Gd or a gadolinium G,, di Koniumu Z r, tin S n, Indium In It is composed of a gold alloy containing a hardening additive composed of at least one element selected from the group consisting of In and In in a total range of 50 ppm or more and less than 15000 ppm.
このように金 Au含有量を 37. 50〜98. 45重量0 /0、 あるいは 98. 45重量0 /0 以上とし、 ガドリニウム Gdと他の元素と複合化してなる硬質化添加剤を適量添加するこ とにより、 加工を加えない錶造合金であっても 11 OHv以上という高い硬度を示し、、 6 000 k g f /mm2という今までにない高いヤング率が得られる。 ヤング率の高い金合金 は 9000 k g f Zmm2以上を示す。 Thus gold Au content from 37.50 to 98.45 wt 0/0, or a 98.45 weight 0/0 or more, an appropriate amount of a hardening additive comprising complexed with gadolinium Gd and other elements As a result, even a non-processed forged alloy exhibits a high hardness of 11 OHv or more and an unprecedentedly high Young's modulus of 6 000 kgf / mm 2 . Gold alloys with high Young's modulus show 9000 kgf Zmm 2 or more.
G dは、 体積含有率を考量すると最も有効な硬質化元素であり、 耐熱性の高い向上効果 を示す。 さらに、 特に高いヤング率と強い引張強度が確保可能なことを見出した。 このよ うに、 Gdは、 硬度、 ヤング率、 引張強度の向上が大きいためか、 添加量は少量でよく、 基合金の特徴を変化させずに、 良好な特性をもつその合金部材を得ることができる。 対象とする金合金としては、 金品位で 9 K (カラット) 以上の合金であれば特に制限さ れず通常のものであれば適用可能である。 基本的に銅等の耐食性の劣る元素を含まれてい ない場合には、 良好な耐食性を示す。 貴金属はもちろん、 貴金属以外の合金元素を含む金 合金であってもよい。 上記硬質化添加剤は、 既存のどのような金合金に対しても有効であ る。 Gd is the most effective hardening element in consideration of the volume content, and shows a high heat resistance improving effect. Furthermore, they have found that particularly high Young's modulus and strong tensile strength can be secured. This As described above, because Gd has a large improvement in hardness, Young's modulus and tensile strength, the addition amount may be small, and an alloy member having good characteristics can be obtained without changing the characteristics of the base alloy. The target gold alloy is not particularly limited as long as it is an alloy having a gold grade of 9 K (carat) or more, and can be applied to ordinary gold alloys. Basically, it shows good corrosion resistance when it does not contain elements with poor corrosion resistance such as copper. A gold alloy containing an alloy element other than the noble metal may of course be used. The hardening additive is effective for any existing gold alloy.
次に、 上記特性の合金部材の製造方法について説明する。  Next, a method for manufacturing an alloy member having the above characteristics will be described.
先ず、 铸造合金の場合には、 上記組成の合金素材を铸造し、 その素材に対して所定温度 に加熱後急冷する溶体化処理を施し、 必要ならばその後所定温度で時効処理を施す。 次に、 加工合金の場合には、 上記組成の合金素材を铸造し、 その素材に対して所定温度 に加熱後急冷する溶体化処理を施し、 その素材を所定形状に加工し、 その加工の前または 後で前記素材に対して時効処理を施す。  First, in the case of a forged alloy, an alloy material having the above composition is forged, and the material is subjected to a solution treatment in which the material is heated to a predetermined temperature and then rapidly cooled, and then, if necessary, is subjected to an aging treatment at a predetermined temperature. Next, in the case of a processed alloy, an alloy material having the above composition is formed, the material is subjected to a solution treatment of heating to a predetermined temperature and then rapidly cooling, and the material is processed into a predetermined shape. Or, aging treatment is performed on the material later.
この際の金 金素材を錄造し、 溶体化処理温度は 500°Cし〜 2700°C、 時効処理温 度は- 100°C〜600°Cとすることが可能である。  At this time, the gold material is manufactured, and the solution heat treatment temperature can be 500 ° C to 2700 ° C, and the aging temperature can be -100 ° C to 600 ° C.
本発明によれば、 金純度よらず高硬度、 強引張強度および高ヤング率を兼備した合金部 材を得ることができる。 従来の 24 Kの金合金はヤング率が 4000 k g f /mm2程度で あり、 18 Kでは 5800 k g f mm2程度であつたが、 本実施形態では、 18 K合金で は、 ヤング率 6000 k g f /mm2以上を示し、 高いものは 7000 k g f Zmm2以上 を示す。 組成おょぴ条件を最適化することにより、 ヤング率は 9000 k g f /mm2以上 を示す。 硬度についても、 通常 18K (5/5) イェローの硬度は高くても 25 OHv程 度であるが、 本発明 18 K合金の硬度は 37 OHv以上を示す。 According to the present invention, it is possible to obtain an alloy member having high hardness, high tensile strength and high Young's modulus irrespective of gold purity. Gold alloy of the conventional 24 K is the Young's modulus of about 4000 kgf / mm 2, 18 K but was filed at about 5800 kgf mm 2 at, in the present embodiment, 18 in the K alloy, Young's modulus 6000 kgf / mm 2 or higher, and higher ones indicate 7000 kgf Zmm 2 or higher. By optimizing the composition Contact Yopi conditions, the Young's modulus indicates a 9000 kgf / mm 2 or more. The hardness of 18K (5/5) yellow is usually about 25 OHv at most, but the hardness of the 18K alloy of the present invention is 37 OHv or more.
金 11純度37. 8〜99. 45重量0 /0の場合、 99. 45 %以上の場合、 いずれも、 高硬度、 髙ヤング率、 強引張強度を得るために特に好ましい製造条件は、 溶体化処理温度 600〜1000°C、 時効処理温度は 150〜550°Cである。 For gold 11 purity 37.8 to 99.45 wt 0/0, not less than 99.45%, both, particularly preferred production conditions for obtaining high hardness,髙Young's modulus, strength tensile strength solution The processing temperature is 600-1000 ° C, and the aging temperature is 150-550 ° C.
図 1は 99. 95重量%の電解金を用いて、 実施例 1と実施例 2の金合金を溶製した。 先ず、 錡造機で 8 mm φワイヤーに錄造し、 その後、 鎵造素材を 800°CX 1時間の条件 で溶体化処理し、 溝ロールとダイスで所定のサイズませカ卩ェした。 日#効処理は加工前また は後に 250 °C X 3時間の条件で行つた。 比較例 1はガドリニウム G d、単独添加合金であ り、 比較例 2は 4 N金 A uの高純度金である。  In FIG. 1, the gold alloys of Example 1 and Example 2 were melted using 99.95% by weight of electrolytic gold. First, it was made into an 8 mm diameter wire with a sculpture machine, and then the sculpture material was subjected to a solution treatment under the conditions of 800 ° C for 1 hour, and was squeezed to a predetermined size with a groove roll and a die. The aging treatment was performed before or after processing at 250 ° C for 3 hours. Comparative Example 1 is gadolinium Gd, a single additive alloy, and Comparative Example 2 is high purity gold of 4N Au.
このように溶体化処理および時効処理を行うことにより、 主に G dの作用および他の添 加元素との相乗作用によって著しく硬化し、 加工を加えない鍚造合金の場合でも 130H V以上、 組成および条件を適切に選択すれば 15 OHv以上と従来よりも極めて大きな値 とすることが可能である。 加工合金の場合には加工率 50%以上で 15 OHv以上、 加工 率 90%以上で 18 OHv以上、 高いものでは 20 OHv以上の値を得ることが可能であ る。 この際の加工率は任意の値とすることが可能であるが、 99. 0%まで、更には 99. 6 %までの範囲が好ましい。 By performing the solution treatment and the aging treatment in this way, the hardening is remarkably hardened mainly by the action of Gd and the synergistic action with other additive elements. With appropriate selection of conditions and conditions, it is possible to set the value to 15 OHv or more, which is much larger than before. In the case of processed alloys, it is possible to obtain a value of 15 OHv or more at a processing rate of 50% or more, 18 OHv or more at a processing rate of 90% or more, and 20 OHv or more at a high processing rate. The processing rate at this time can be set to any value, but up to 99.0%, and even 99. A range of up to 6% is preferred.
本発明の高純度金合金の硬度は 170 H V以上のビッ力ス硬度を示し、 耐熱性が有り、 引張強度も 80 k g f /mm2以上ある。 更に、 伸ぴも 4%以上で、 ヤング率も 8600以 上、 更に、 9000 k g f Zmm2以上を示した。 本発明処理によって、 所定の伸びを確保 しながら、 硬度、 引張強度おょぴヤング率を向上させることが出来ることを確認した。 バ ネ性があり、 加工し易く、 作業性もよい。 The high-purity gold alloy of the present invention has a hardness of 170 HV or more, a heat resistance, and a tensile strength of 80 kgf / mm 2 or more. Furthermore, the elongation was 4% or more, the Young's modulus was 8600 or more, and 9000 kgf Zmm 2 or more. It was confirmed that the treatment of the present invention can improve hardness, tensile strength and Young's modulus while securing a predetermined elongation. It is easy to process and has good workability.
適用される合金は特に限定されるものではないが、 金 A u合金に、 ガドリニウム Gdと Gd以外の元素を 50〜15000 p p m添加する添加合金として実施例 3で Au _G d 一 Z r、 実施例 4で Au— G d— S n例示され、 その他に A u— G d— S r、 Au— Gd 一 Zn、 Au_Gd— I n、 A u— G d— S r— Z rの合金について試作評価したが、 実 施例 1と実施例 2と同様に、 硬度、 引張強度、 ヤング率、 耐熱性が向上した。 パネ性があ り、 加工し易く、 作業性もよい  The alloy to be applied is not particularly limited, but as an additive alloy in which gadolinium Gd and an element other than Gd are added to the gold Au alloy at 50 to 15000 ppm, Au_Gd-Zr in Example 3 In Fig. 4, Au—Gd—Sn is exemplified, and Au—Gd—Sr, Au—Gd—Zn, Au_Gd—In, and Au—Gd—Sr—Zr However, the hardness, tensile strength, Young's modulus, and heat resistance were improved as in Examples 1 and 2. Easy to process and easy to work
本発明の第 2の実施形態に係る硬質貴金属合金部材は、 ブラチュウム P t含有量が 85. 0重量0 /0以上であり、 ガドリニウム G dとジルコニウム Z r、 スズ Sn、 インジウム I n からなる群から選択される少なくも 1種の元素で構成された硬質化添加剤合計で 50 p p m以上 15000 p pm未満の範囲で含有させたプラチナ合金で構成される。 Hard precious metal alloy member according to the second embodiment of the present invention is Burachuumu P t content 85.0 weight 0/0 above, gadolinium G d and zirconium Z r, tin Sn, the group consisting of indium I n It is composed of a platinum alloy containing at least 50 ppm and less than 15000 ppm in total of a hardening additive composed of at least one element selected from the group consisting of:
実施形態のブラチュウム合金からなる貴金属合金部材は、 ガドリニウム Gdと、 他の元 素と複合してなる硬質化添加剤を適量添加し、 上述のような処理を施すことにより、 加工 を加えない铸造合金で 12 OHv以上の今までにない高い値を示した。 また、 加工の場合 には、 加工率 50 %程度で 150 H V以上、 加工率 90 %以上では、 200 H v以上の値 を得ることが可能である。  The noble metal alloy member made of the brassium alloy according to the embodiment is manufactured by adding an appropriate amount of gadolinium Gd and a hardening additive that is combined with another element, and performing the above-described processing, so that a processed alloy is not added. Showed an unprecedented high value of over 12 OHv. In the case of processing, a value of 150 HV or more can be obtained at a processing rate of about 50%, and a value of 200 Hv or more can be obtained at a processing rate of 90% or more.
ブラチュウム合金は、 ヤング率は高いが、 硬度が低いという欠点があり、 本発明が意図 する用途に適用することが困難であるか、 Cu等の元素を添加することにより、 適用する ことができても、 その硬度が必ずしも充分と言えないばかり、 Cu等により耐食性や色調 に問題が生じる。 これに対して本発明は、 上述のように髙硬度 ·強引張強度にすることが できる。 8000 k g f /mm2以上の高いヤング率を維持することができる。 組成や製造 条件を調整すると、 高硬度と強引張強度を維持しつつヤング率を 10,000 k g/mm2 以上、 さらに 15000 k g f /mm2, 20000 k g f /mm2以上の極めて高い値と することが可能である。 Bratium alloys have the disadvantage of high Young's modulus but low hardness, and are difficult to apply to the intended use of the present invention, or can be applied by adding elements such as Cu. However, the hardness is not always sufficient, and problems such as corrosion resistance and color tone arise due to Cu and the like. On the other hand, according to the present invention, the hardness and the tensile strength can be reduced as described above. High Young's modulus of 8000 kgf / mm 2 or more can be maintained. When adjusting the composition and manufacturing conditions, the Young's modulus 10,000 kg / mm 2 or more while maintaining high hardness and strength tensile strength, further 15000 kgf / mm 2, 20000 kgf / mm 2 or more can be a very high value It is.
プラチウム P t合金は、 溶体化処理温度は 600〜2800。C、 時効処理温度は 150 〜 700°Cが可能である。 特に好ましい条件は溶体化処理温度が 500〜 1600°C、 時 効処理温度は 150〜600°Cである。 加工の際の加工効率は任意であるが、 好ましい範 囲は、 第 1の実施形態と同様である。  Platinum Pt alloy has a solution treatment temperature of 600-2800. C, aging temperature can be 150-700 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1600 ° C and an aging temperature of 150 to 600 ° C. The processing efficiency at the time of processing is arbitrary, but a preferable range is the same as that of the first embodiment.
図 3は、 2 Omm角の合金を錄造し、 1000 °Cで 1時間溶体化処理を行ない、 550°C で 3時間時効処理を行った。 加工を加えない錡造合金で 1 O OHv以上と 150Hvを得 ることが可能である。 加工率すると 208Hv以上と 25 OHv以上である。 比較例 3と して 4NP t地金、 比較例 4として P t—Rh合金を示した。 800°CX 30分熱処理で も実施例 3が 236Hv、 実施例 4が 197Hvを保持している。 1400ででも 1 17 Hvと 97Hvを保持している。 引張強度は 88. 3 k g f Zmm2、 破断伸ぴは 20 %で 大きい。 In FIG. 3, a 2 Omm square alloy was prepared, subjected to a solution treatment at 1000 ° C. for 1 hour, and subjected to an aging treatment at 550 ° C. for 3 hours. It is possible to obtain more than 1 O OHv and 150Hv with a non-processed forged alloy. The processing rate is above 208Hv and above 25 OHv. Comparative Example 3 and As a comparative example 4, a Pt-Rh alloy was shown as a 4NPt base metal. Example 3 maintains 236Hv and Example 4 maintains 197Hv even at 800 ° C for 30 minutes. Even at 1400, it holds 117 Hv and 97 Hv. The tensile strength is 88.3 kgf Zmm 2 and the elongation at break is large at 20%.
実施例 3と実施例 4は、 硬度が 200 H V以上、 引張強度が 85 k g f /mm2以上であ る。 耐熱性があり、 ヤング率も 1700 k g f /mm2以上を示し、 バネ性がある。 硬度、 引張強度、 ヤング率、 耐熱性が向上するが確認できた。 加工し易く、 作業性もよい。 Example 3 and Example 4 have a hardness of 200 HV or more and a tensile strength of 85 kgf / mm 2 or more. It is heat resistant, has a Young's modulus of 1700 kgf / mm 2 or more, and has spring properties. Hardness, tensile strength, Young's modulus, and heat resistance improved, but it was confirmed. Easy to process and good workability.
適用される合金は特に限定されるものではないが、 ブラチュウム P tに、 ガドリニウム G dと G d以外の元素を 50〜15000 p pm添加する添加合金として実施例 3で P t — Gd— S r— Z r、 実施例 4で P t— G d— Z rが例示され、 その他に P t— Gd—酸 化ジルコニウム、 P t— Gd_Rh、 P t— Gd— Z r、 P t— Gd— Sn、 P t— Gd — Zn、 P t-Gd- I nの合金にっレ、て試作評価したが、実施例 1と実施例 2と同様に、 硬度、 引張強度、 ヤング率、 耐熱性が向上した。 パネ性があり、 加工し易く、 作業性もよ い。  The alloy to be applied is not particularly limited. However, in Example 3, Pt—Gd—Sr was used as an additive alloy in which gadolinium Gd and an element other than Gd were added to the platinum at 50 to 15000 ppm. — Zr, Pt—Gd—Zr in Example 4, Pt—Gd—Zirconium oxide, Pt—Gd_Rh, Pt—Gd—Zr, Pt—Gd—Sn , Pt-Gd-Zn and Pt-Gd-In alloys were tested and evaluated. As in Examples 1 and 2, the hardness, tensile strength, Young's modulus, and heat resistance were improved. did. It has panel properties, is easy to process, and has good workability.
プラチュウム p tとパラジウム P d、 銅 Cu、 マンガン Mn、 スズ Sn、 インジウム I nからなる群から選択される少なくも 1種以上の元素から構成される P t合金に上記元 素を添加して添加合金を試作評価したが、 上記 P tの添加合金と同様に硬度、 引張強度。 ヤング率、 耐熱性が向上し、 バネ性を示した。 加工し易く、 作業性もよい。  Addition of the above elements to a Pt alloy composed of at least one element selected from the group consisting of palladium pt and palladium Pd, copper Cu, manganese Mn, tin Sn, and indium In The hardness and tensile strength were evaluated in the same manner as the above Pt-added alloy. Improved Young's modulus and heat resistance, and exhibited spring properties. Easy to process and good workability.
本発明の第 3実施形態に係る硬質貴金属合金部材は、 銀 A g含有量が 85. 0重量%以 上であり、 ガドリニウム Gdとジルコニウム Z r、 スズ Sn、 インジウム I nからなる群 から選択される少なくも 1種の元素で構成された硬質化添加剤合計で 50 p pm以上 15 000 p pm未満の範囲で含有させた銀合金で構成される。  The hard noble metal alloy member according to the third embodiment of the present invention has a silver Ag content of 85.0% by weight or more and is selected from the group consisting of gadolinium Gd, zirconium Zr, tin Sn, and indium In. It is composed of a silver alloy containing at least 50 ppm and less than 15 000 ppm in total of a hardening additive composed of at least one element.
銀 A g合金は、 溶体化処理温度は 450〜2200°C、 B寺効処理温度は 100〜60 0°Cが可能である。 特に好ましい条件は溶体化処理温度が 500〜1550°C、 時効処理 温度は 1 50〜500°Cである。 加工の際の加工効率は任意であるが、 好ましい範囲は、 第 1の実施形態と同様である。  The solution treatment temperature of silver Ag alloy can be 450 ~ 2200 ° C, and the temperature of B-tempering can be 100 ~ 600 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1550 ° C and an aging treatment temperature of 150 to 500 ° C. The processing efficiency at the time of processing is arbitrary, but the preferred range is the same as in the first embodiment.
実施例 5、 6、 7はガドリニウム Gdとスト口チウム S rを適量添カ卩し、更にスズ Sn、 ジルコニウム Z r、 インジウム I nをそれぞれに添加して、 上述の処理を施すことによつ て、 図 3に示す硬度 H Vを得た。 板加工後 250°CX 2時間処理後の硬度は 169 H v ~ 1 76Hvを示し。 800°CX 30分処理後の硬度は 115Hv~l 24H Vを示した。 引張 強度は 52 k §//πιπι2〜60 k g/mm2であった。ヤン後率は 9000 k g/mm2以上 であり、 約 12%向上した。 硬度、 引張強度、 ヤング率、 耐熱性が向上した。 パネ性があ り、 加工し易く、 作業性もよい。 In Examples 5, 6, and 7, gadolinium Gd and stotium Sr were added in appropriate amounts, and tin Sn, zirconium Zr, and indium In were added to each, and the above treatment was performed. Thus, the hardness HV shown in FIG. 3 was obtained. The hardness after plate processing at 250 ° C for 2 hours shows 169 Hv to 176 Hv. The hardness after treatment at 800 ° C for 30 minutes showed 115Hv ~ l24HV. The tensile strength was 52 k § // πιπι 2 〜60 kg / mm 2 . The post-Yan rate was over 9000 kg / mm 2 , an improvement of about 12%. Hardness, tensile strength, Young's modulus and heat resistance improved. It has panel properties, is easy to process, and has good workability.
適用される合金は特に限定されるものではないが、 銀 Agに、 ガドリニウム Gdと Gd 以外の元素を 50〜15000 p p m添加する添加合金として実施例 5で A g— G d— S r一 S n、 実施例 6で Ag— Gd— S r— Z r、 実施例 7で Ag— Gd— S r— I nが例 示され、 その他に Ag— Gd— Z r、 Ag— Gd— Sn、 Ag— Gd— Zn、 A g -G d 一 I nの合金について試作評価したが、 実施例 1と実施例 2と同様に、 硬度、 引張強度、 ヤング率、 耐熱性が向上した。 バネ性があり、 加工し易く、 作業性もよい。 The alloy to be applied is not particularly limited. However, in Example 5, Ag—Gd—Sr-Sn was used as an additive alloy in which gadolinium Gd and an element other than Gd were added at 50 to 15000 ppm to silver Ag. Example of Ag-Gd-Sr-Zr in Example 6, Example of Ag-Gd-Sr-In in Example 7 In addition, alloys of Ag—Gd—Zr, Ag—Gd—Sn, Ag—Gd—Zn, and Ag—Gd—In were evaluated as prototypes, but as in Examples 1 and 2. , Hardness, tensile strength, Young's modulus, heat resistance improved. It has spring properties, is easy to process, and has good workability.
比較例 5は 4 N銀 A g、 比較例 6は 92. 5 % A g合金である。  Comparative Example 5 is a 4N silver Ag alloy, and Comparative Example 6 is a 92.5% Ag alloy.
本発明高純度銀合金は、 Ag 925銀合金相当以上の硬度と引張強度を示し、 耐熱性も あることが分かった。 本発明銀合金は、 ヤング率は 8500 k g f ノ mm2以上を示し、 そ の値は調整が可能である。 It was found that the high-purity silver alloy of the present invention exhibited hardness and tensile strength equivalent to or higher than those of Ag 925 silver alloy, and also had heat resistance. The silver alloy of the present invention has a Young's modulus of 8500 kgf / mm 2 or more, and the value can be adjusted.
図 5は、 本発明銀合金の塩化ナトリゥム連続噴霧テストと湿度 90。/。以上噴霧テスト結 果である。 概観変化無く、 変色と腐食がされにくくなつていることが分かる。 顕著な効果 を示す。 0. 10重量%以上のパラジウム P dを添加する耐硫化性が顕著に向上すること が分かった。 本発明銀 A g合金では P d添加効果が顕著であることが分かった。 パラジゥ ム P d O. 01%、 0. 10%、 1. 00%、 10. 00%添加で評価した。  FIG. 5 shows a continuous spray test of sodium chloride of the silver alloy of the present invention and a humidity of 90. /. These are the results of the spray test. It can be seen that there is no change in the appearance, and that discoloration and corrosion are less likely to occur. It has a remarkable effect. It was found that the sulfuration resistance was significantly improved by adding 0.1% by weight or more of palladium Pd. It was found that the effect of adding Pd was remarkable in the silver-Ag alloy of the present invention. Palladium was evaluated by adding PdO. 01%, 0.10%, 1.00%, and 10.00%.
本発明の第 4実施形態に係る硬質貴金属合金部材は、 金 Au、 銀 Ag、 ブラチュウム P t、 パラジウム P d、 ロジウム Rh、 ルテニウム Ruおよびオスミウム O sからなる貴金 属元素群から選択された 2種以上の元素で構成された貴金属合金に、 ガドリニウム Gdと、 ジルコニウム Z r、 スズ Sn、 インジウム I nからなる群から選択される少なくも 1種の 元素で構成された硬質化添加剤を合計で 50 p pm以上 1 5000 p pm未満の範囲で含 有させてなる。  The hard noble metal alloy member according to the fourth embodiment of the present invention is selected from a noble metal element group consisting of gold Au, silver Ag, bratium Pt, palladium Pd, rhodium Rh, ruthenium Ru, and osmium Os2. A precious metal alloy composed of at least one element, gadolinium Gd and a hardening additive composed of at least one element selected from the group consisting of zirconium Zr, tin Sn, and indium In in total It is included in the range of 50 ppm or more and less than 15000 ppm.
本発明の第 5実施形態に係る硬質貴金属合金部材は、 金 Au、 銀 Ag、 プラチニゥム P t、 パラジウム P d、 ロジウム Rh、 ルテニウム Ruおよびオスミウム O sからなる貴金 属元素群から選択された 1種以上の元素で構成された貴金属合金に、 ガドリニゥム G dと、 ジルコニウム Z r、 スズ Sn、 インジウム I nからなる群から選択される少なくも 1種の 元素で構成された硬質化添加剤を合計で 50 p pm以上 15000 p p m未満の範囲で含 有させてなる。  The hard noble metal alloy member according to the fifth embodiment of the present invention is selected from a noble metal element group consisting of gold Au, silver Ag, platinum Pt, palladium Pd, rhodium Rh, ruthenium Ru, and osmium Os1. Precious metal alloys composed of at least one element, gadolinium Gd, and a hardening additive composed of at least one element selected from the group consisting of zirconium Zr, tin Sn, and indium In At 50 ppm or more and less than 15000 ppm.
本発明の第 6実施形態に係る硬質貴金属合金部材は、 金 A u含有量が 99. 45重量% 以上であり、 ガドリニウム Gdとジルコニウム Z r、 スズ Sn、 インジウム I nからなる 群から選択される少なくも 1種の元素で構成された硬質化添加剤合計で 50 p pm以上 15000 p pm未満の範囲で含有させた金合金で構成される。  The hard noble metal alloy member according to the sixth embodiment of the present invention has a Au content of 99.45% by weight or more and is selected from the group consisting of gadolinium Gd, zirconium Zr, tin Sn, and indium In. It is composed of a gold alloy containing at least 50 ppm and less than 15,000 ppm in total of a hardening additive composed of at least one element.
実施形態に適用される合金は特に限定されるものでない。 上記硬質化添加剤以外の成分 も通常の貴金属合金に用いられるものであればどのようなものでもよく特に限定されなレ、。 つまり、 上記硬質化添加剤は、 既存のどのような貴金属合金に対しても有効である。 これ ら実施形態に係る合金部材を製造する際にも第 1の実地形態と同様である。 铸造の場合に は、 上記組成の合金素材を铸造し、 その素材に対して所定温度に加熱後急冷する溶体化処 理を施す。 その後必要に応じて所定温度で時効処理を施す。 また、 加工合金の場合には、 上記組成の合金素材を铸造し、 その素材に対して所定温度加熱後急冷する溶体化処理を施 し、 その素材を所定形状に加工し、 この加工前または加工後に前期素材に対して時効処理 を施す。 この際の溶体化処理温度は 600〜2700°C、時効処理温度は 1 50〜700°C が可能である。 特に好ましい条件は溶体化処理温度が 500〜1 600°C、 B寺効処理温度 は 1 50〜600°Cである。 加工の際の加工効率は任意であるが、 好ましい範囲は、 第 1 の実施形態と同様である。 The alloy applied to the embodiment is not particularly limited. The components other than the above-mentioned hardening additive may be any components used in ordinary noble metal alloys, and are not particularly limited. That is, the hardening additive is effective for any existing noble metal alloy. Manufacturing of the alloy member according to these embodiments is the same as in the first practical embodiment. In the case of fabrication, an alloy material having the above composition is fabricated, and the material is subjected to a solution treatment in which the material is heated to a predetermined temperature and then rapidly cooled. Thereafter, aging treatment is performed at a predetermined temperature as needed. In the case of a processed alloy, an alloy material having the above composition is manufactured, the material is subjected to a solution treatment in which the material is heated at a predetermined temperature and then rapidly cooled, and the material is processed into a predetermined shape. Later aging treatment for the first half material Is applied. In this case, the solution treatment temperature can be 600 to 2700 ° C, and the aging temperature can be 150 to 700 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1,600 ° C and a temperature of 150 ° C to 600 ° C. The processing efficiency at the time of processing is arbitrary, but the preferred range is the same as in the first embodiment.
本発明の第 7の実施形態に係る硬質貴金属合金部材は、 プラチナ P t含有量が 99. 4 5重量0 /0以上であり、 ガドリニウム G dとジルコニウム Z r、 スズ S n、 インジウム I n からなる群から選択される少なくも 1種の元素で構成された硬質化添加剤合計で 50 p p m以上 1 5000 p pm未満の範囲で含有させたプラチナ合金で構成される。 Hard precious metal alloy member according to the seventh embodiment of the present invention is platinum P t content 99.4 5 wt 0/0 above, gadolinium G d and zirconium Z r, tin S n, indium I n It is composed of a platinum alloy containing at least 50 ppm and less than 15000 ppm in total of a hardening additive composed of at least one element selected from the group consisting of:
本発明の第 7の実施形態に係る硬質貴金属合金部材は、銀 A g含有量が 99. 45重量% 以上であり、 ガドリニウム G dとジルコニウム Z r、 スズ S n、 インジウム I nからなる 群から選択される少なくも 1種の元素で構成された硬質化添加剤合計で 50 p pm以上 1 5000 p pm未満の範囲で含有させた銀合金で構成される。  The hard noble metal alloy member according to the seventh embodiment of the present invention has a silver Ag content of at least 99.45% by weight and is selected from the group consisting of gadolinium Gd, zirconium Zr, tin Sn, and indium In. It is composed of a silver alloy contained in the range of 50 to less than 15,000 ppm in total of the hardening additive composed of at least one selected element.
本発明の第 9実施形態に係る硬質金属合金部材は、 銅 C u含有量が 40. 00重量%以 上であり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元素、 アルカリ 土類元素、 シリコン S i、 ボロン: B、 ジルコニウム Z r、 スズ S n、 インジウム I n力鉛 P b、 ニッケル N iらなる群から選択される少なくも 1種の元素で構成された硬質化添加 剤合計で 50 p pm以上 1 5000 p p m未満の範囲で含有させた銅合金で構成される。 銅 C u合金は、溶体化処理温度は 600〜 2500 °C、 Bき効処理温度は 150〜780°C が可能である。 特に好ましい条件は溶体化処理温度が 600〜1 600°C、 時効処理温度 は 1 50〜680°Cである。 加工の際の加工効率は任意であるが、 好ましい範囲は、 第 1 の実施形態と同様である。  The hard metal alloy member according to the ninth embodiment of the present invention has a copper Cu content of 40.00% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, and silicon. S i, boron: B, zirconium Z r, tin Sn, indium I n lead Pb, nickel Ni A total of 50 hardening additives composed of at least one element selected from the group consisting of It is composed of a copper alloy that is contained in the range of p pm to 15,000 ppm. For copper Cu alloys, the solution treatment temperature can be 600-2,500 ° C, and the B effect temperature can be 150-780 ° C. Particularly preferred conditions are a solution treatment temperature of 600 to 1600 ° C and an aging treatment temperature of 150 to 680 ° C. The processing efficiency at the time of processing is arbitrary, but the preferred range is the same as in the first embodiment.
実施例 8と実施例 9は、 銅 C uからなる金属合金部材で、 ガドリニウム G d単独、 ガド リニゥム Gdとジルコニウム Z rをそれぞれ適量添加し、 上述の処理を施すことによって、 図 4の硬度 Hvと引張強度を得た。 加工して 3 1 5°CX 2時間処理後の硬度は、 2 1 9 Hvと 23 ΟΗνであった。 81 0°CX 30処理後は 1 6 OHvと 1 3 ΙΗνになった。 引張強度は 5 3. 2 k g f Zmm2であり、 本発明高純度銅 C u合金は、 硬度、 引張強度、 ヤング率が向上し、 パネ性を示した。 加工し易く、 作業性もよい。 ヤング率は 1 3500 k g f /mm2以上を示し、 この値は調整が可能である。 Example 8 and Example 9 are metal alloy members made of copper Cu, and gadolinium Gd alone, gadolinium Gd and zirconium Zr are respectively added in appropriate amounts, and the above-described treatment is performed. And tensile strength. The hardness after processing and treatment at 315 ° C. for 2 hours was 219 Hv and 23 23ν. After the treatment at 810 ° CX30, it became 16 OHv and 13ΙΗν. The tensile strength was 53.2 kgf Zmm 2 , and the high-purity copper Cu alloy of the present invention had improved hardness, tensile strength, and Young's modulus, and exhibited paneling properties. Easy to process and good workability. The Young's modulus is 13500 kgf / mm 2 or more, and this value can be adjusted.
実施形態の C u合金からなる金属合金部材は、 ガドリニウム G dを単独、 または他の元 素と複合してなる硬質化添加剤を適量添加し、 上述のような処理を施すことにより、 加工 を加えない铸造合金で 1 2 OHv以上の今までにない高い値を示す。 また、 加工の場合に は、 加工率 50。/。程度で 1 50 H V以上、 加工率 90 %以上では、 200 H V以上の値を 示す。  The metal alloy member made of the Cu alloy according to the embodiment is processed by adding the appropriate amount of a hardening additive composed of gadolinium Gd alone or in combination with another element, and performing the above-described processing. It shows unprecedented high value of 12 OHv or more in a forged alloy not added. In the case of processing, the processing rate is 50. /. It shows a value of 200 HV or more at a rate of 150 HV or more and a processing rate of 90% or more.
比較例 7は 4N銅 Cu、 比較例 8は C r/Z r銅である。  Comparative Example 7 is 4N copper Cu, and Comparative Example 8 is Cr / Zr copper.
ジルコニウム Z r元素を添加することによって、 上述貴金属合金及び金属合金の特性が 更に向上することが分かった。 酸化ジルコニウムを添加しても顕著な特性向上が見られた。 銅 Cuに、 Cu以外の元素を 50〜15000 p pm添加する添カ卩合金としては、 C u— Gd、 C u— G d— Z rが例示され、 その他に C u— G d— S r、 Cu— Gd— Ca、 C u— Gd— Z r、 Cu— Gd— Sn、 Cu— Gd— Zn、 C u— G d— I nについて試作 評価したが、 実施例 8と実施例 9と同様に硬度、 引張強度、 ヤング率、 耐熱性の特性が向 上し、バネ性を示した。 加工し易く、 作業性もよい。 It has been found that the addition of the zirconium Zr element further improves the properties of the above-mentioned noble metal alloys and metal alloys. Even when zirconium oxide was added, a remarkable improvement in characteristics was observed. Cu—Gd, Cu—Gd—Zr are examples of the additive alloys in which elements other than Cu are added to Cu at 50 to 15000 ppm, and other examples include Cu—Gd—Sr. , Cu—Gd—Ca, Cu—Gd—Zr, Cu—Gd—Sn, Cu—Gd—Zn, and Cu—Gd—In were evaluated as prototypes, and were the same as in Examples 8 and 9. In addition, the properties of hardness, tensile strength, Young's modulus, and heat resistance improved, and spring properties were exhibited. Easy to process and good workability.
銅 C uと亜鉛 Z n、 スズ S n、 アルミニウム A 1、 ニッケル N i、 ベリリゥム B e、 鉛 Pb、 マンガン Mn、 インジウム I nからなる群から選択される少なくも 1種以上の元素 から構成される C u合金に上記元素を添カ卩した添加合金を試作評価したが、 上記 C uの添 加合金と同様に硬度、 引張強度、 ヤング率、 耐熱性が向上し、 バネ性を示した。 加工しや すく、 作業性もよい。  It is composed of at least one element selected from the group consisting of copper Cu and zinc Zn, tin Sn, aluminum A1, nickel Ni, beryllium Be, lead Pb, manganese Mn, and indium In. An additive alloy obtained by adding the above element to a Cu alloy was subjected to trial manufacture and evaluation. The hardness, tensile strength, Young's modulus, heat resistance were improved, and spring properties were exhibited, as in the case of the Cu additive alloy. It is easy to process and has good workability.
本発明の第 10実施形態に係る硬質金属合金部材は、 鉄 F e含有量が 40. 00重量% 以上であり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元素、 アル力 リ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z r、 スズ Sn、 インジウム I nか 鉛 Pb、 ニッケル N i らなる群から選択される少なくも 1種の元素で構成された硬質化添 加剤合計で 50 p pm以上 1 5000 p p m未満の範囲で含有させた鉄合金で構成される。 溶体化処理は 820°CX 1時間行ない、 時効処理は 480°CX 3時間行った。  The hard metal alloy member according to the tenth embodiment of the present invention has an iron Fe content of 40.00% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, Hardening additive composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium In or lead Pb, and nickel Ni 50 p in total It is composed of an iron alloy contained in the range of pm to 15,000 ppm. The solution treatment was performed at 820 ° C for 1 hour, and the aging treatment was performed at 480 ° C for 3 hours.
鉄 F e合金は、溶体化処理温度は 600〜 2800 °C、 Bき効処理温度は 150〜700°C が可能である。 特に好ましい条件は溶体化処理温度が 600〜2000°C、 時効処理温度 は 150〜700°Cである。 加工の際の加工効率は任意であるが、 好ましい範囲は、 第 1 の実施形態と同様である。  For iron Fe alloys, the solution treatment temperature can be 600 to 2800 ° C, and the B effect temperature can be 150 to 700 ° C. Particularly preferred conditions are a solution treatment temperature of 600 to 2000 ° C and an aging treatment temperature of 150 to 700 ° C. The processing efficiency at the time of processing is arbitrary, but the preferred range is the same as in the first embodiment.
実地形態 10、 実地形態 1 1の鉄 F e合金の硬度は 120Hvと 156HVであり。 引 張強度は 87と 1 20 k g /mm2である。 本発明鉄 F e合金の添加効果は、 顕著である。 4 N鉄 F eに添カ卩しても耐食性、 電気抵抗等の低下はほとんど見られなかった。 硬度、 引 張強度、 ヤング率、 耐熱性が向上し、 バネ 1生を示した。 ヤング率は 22000 k g f /m m 2以上を示し、 この値は調整が可能である。 Field Form 10, Field Form 1 The hardness of 1 Fe Fe alloy is 120Hv and 156HV. Tensile strength is 87 and 1 20 kg / mm 2. The effect of adding the Fe Fe alloy of the present invention is remarkable. Almost no decrease in corrosion resistance, electrical resistance, etc. was observed even when adding 4 N iron Fe. The hardness, tensile strength, Young's modulus, and heat resistance improved, and one spring was produced. The Young's modulus is 22000 kgf / mm 2 or more, and this value can be adjusted.
比較例 7は、 99. 94重量%高純度鉄である。  Comparative Example 7 is 99.94% by weight high purity iron.
鉄 F eに、 F e以外の元素を 50〜15000 p pm添加する添加合金としては、 F e 一 G d、 F e— G d— S iが例示され、 その他に F e— G d— S r、 F e— G d— C a、 F e— Gd— Z r、 F e— Gd— Sn、 F e— Gd— Zn、 F e—Gd— I n、 F e— G d— Mnについて試作評価したが、 実施例 8と実施例 9と同様に硬度、 引張強度、 ヤング 率、 耐熱性が向上し、 パネ性を示した。 加工し易く、 作業性がよい。  Examples of additive alloys in which elements other than Fe are added to iron Fe at 50 to 15000 ppm are Fe-Gd, Fe-Gd-Si, and Fe-Gd-S. r, Fe-Gd-Ca, Fe-Gd-Zr, Fe-Gd-Sn, Fe-Gd-Zn, Fe-Gd-In, Fe-Gd-Mn As a result of evaluation, the hardness, tensile strength, Young's modulus and heat resistance were improved as in Examples 8 and 9, and panel properties were exhibited. Easy to process and good workability.
鉄 F eと銅 C u、 シリコン S i、 マンガン Mn、 ニッケル N i、 クロム C r、 モリブデ ン M o、 コバルト C o力 らなる群力 ら選択された少なくも 1種以上の元素から構成される F e合金に上記元素を添加した添加合金を試作評価したが、 上記 F eの添加合金と同様に 硬度、 引張強度、 ヤング率、 耐熱性が向上し、 バネ性を示した。 加工し易く、 作業性もよ い。 本発明の第 1 1実施形態に係る硬質金属合金部材は、 アルミニウム A 1含有量が 40. 00重量%以上であり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元 素、 アルカリ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z r、 スズ Sn、 インジ ゥム I !1カ鉛 P b、 ニッケル N i らなる群から選択される少なくも 1種の元素で構成され た硬質化添加剤合計で 50 p pm以上 15000 p p m未満の範囲で含有させたアルミ二 ゥム合金で構成される。 It is composed of at least one element selected from the group consisting of iron Fe and copper Cu, silicon Si, manganese Mn, nickel Ni, chromium Cr, molybdenum Mo, and cobalt Co. An alloy obtained by adding the above element to a Fe alloy was evaluated by trial production. The hardness, tensile strength, Young's modulus and heat resistance were improved and the spring property was exhibited, as in the case of the Fe alloy. Easy to process and workability is good. The hard metal alloy member according to the first embodiment of the present invention has an aluminum A1 content of 40.00% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, Hardening additives composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium I! 1 lead Pb, and nickel Ni It is composed of an aluminum alloy containing 50 ppm or more and less than 15000 ppm.
アルミニウム A 1合金は、 溶体化処理温度は 300〜 2000 °C、 B奢効処理温度は 50 〜450°Cが可能である。 特に好ましい条件は溶体化処理温度が 500〜1600°C、 時 効処理温度は 50〜400°Cである。 加工の際の加工効率は任意であるが、 好ましい範囲 は、 第 1の実施形態と同様である。  Aluminum A1 alloy can have a solution treatment temperature of 300-2000 ° C and a B effect temperature of 50-450 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1600 ° C and an aging temperature of 50 to 400 ° C. The processing efficiency at the time of processing is arbitrary, but the preferred range is the same as in the first embodiment.
実施例 10と実施例 1 1のアルミニウム A 1合金の硬度は 76Hvと 1 15Hvであり、 引張強度は 55 k g f /mm2と 81 k g f /mm2である。 本発明アルミニウム A 1合金 は、 硬度、 引張強度、 ヤング率、 耐熱性が向上し、 パネ性を示した。 加工し易く、 作業性 がよい。 ヤング率は、 7400 k g f /mm2以上を示し、 この値は調整が可能である。 比 較例 10は 99. 90重量0 /0の高純度アルミニウムである。 The hardness of the aluminum A1 alloy of Examples 10 and 11 is 76 Hv and 115 Hv, and the tensile strength is 55 kgf / mm 2 and 81 kgf / mm 2 . The aluminum A1 alloy of the present invention has improved hardness, tensile strength, Young's modulus, and heat resistance, and has paneling properties. Easy to process and good workability. The Young's modulus is 7400 kgf / mm 2 or more, and this value can be adjusted. The ratio Comparative Examples 10 is a high-purity aluminum 99.90 wt 0/0.
アルミニウム A 1に、 A 1以外の元素を 50〜: L 5000 p pm添加する添加合金とし ては、 A l— Gd、 A 1— G d— Mnが例示され、 その他に A I— G d— S r、 Al— G d— Ca、 A l— Gd— Z r、 Al— Gd— Sn、 Al— Gd— Zn、 Al— Gd— I n、 A 1 -Gd— S iについて試作評価したが、 実施例 10と実施例 1 1と同様に硬度、 引張 強度ヤング率、 耐熱性が向上し、 バネ性を示した。 加工し易く、 作業性がよレ、。  Aluminum Addition of elements other than A1 to aluminum A1 from 50 to: L 5000 ppm is exemplified by Al—Gd and A1—Gd—Mn. In addition, AI—Gd—S r, Al—Gd—Ca, Al—Gd—Zr, Al—Gd—Sn, Al—Gd—Zn, Al—Gd—In, and A1-Gd—Si As in Example 10 and Example 11, hardness, tensile strength, Young's modulus, and heat resistance were improved, and spring properties were exhibited. Easy to process and workability.
アルミニウム A 1 と、 銅 C u、 鉄 F e、 マンガン Mn、 シリコン S i、 マグネシウム M g、 亜鉛 Zn、 スズ Sn、 インジウム I ηからなる群から選択された少なくも 1種以上の 元素から構成される A 1合金に上記元素を添加した添加合金を試作評価したが、 上記 A 1 の添加合金と同様に、 硬度、 引張強度、 ヤング率、 耐熱性が向上し、 パネ性を示し、 加工 しゃすく、 作業性もよい。  It is composed of aluminum A1 and at least one element selected from the group consisting of copper Cu, iron Fe, manganese Mn, silicon Si, magnesium Mg, zinc Zn, tin Sn, and indium Iη. An alloy with the above elements added to the A1 alloy was evaluated as a prototype, but the hardness, tensile strength, Young's modulus, and heat resistance were improved, paneling was exhibited, and processing was similar to that of the A1 alloy. Good workability.
本発明の第 12実施形態に係る硬質金属合金部材は、 マグネシウム Mg含有量が 40. 00重量%以上でぁり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元 素、 アルカリ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z r、 スズ Sn、 インジ ゥム I nか鉛 P b、 ニッケル N iらなる群から選択される少なくも 1種の元素で構成され た硬質化添加剤合計で 50 p pm以上 15000 p p m未満の範囲で含有させたマグネシ ゥム合金で構成される。  The hard metal alloy member according to the twelfth embodiment of the present invention has a magnesium Mg content of 40.00% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, and silicon. A total of 50 hardening additives composed of at least one element selected from the group consisting of Si, boron B, zirconium Zr, tin Sn, indium In or lead Pb, and nickel Ni It is composed of a magnesium alloy that is contained in the range from ppm to less than 15000 ppm.
マグネシウム Mg合金は、 溶体化処理温度は 250〜1050°C、 時効処理温度は 1 1 00〜500°Cが可能である。 特に好ましい条件は溶体化処理温度が 500〜1000°C、 時効処理温度は 100〜450°Cである。 加工の際の加工効率は任意であるが、 好ましい 範囲は、 第 1の実施形態と同様である。  Magnesium Mg alloy can have a solution treatment temperature of 250-500 ° C and an aging temperature of 110-500 ° C. Particularly preferred conditions are a solution treatment temperature of 500 to 1000 ° C and an aging treatment temperature of 100 to 450 ° C. The processing efficiency at the time of processing is arbitrary, but the preferable range is the same as that of the first embodiment.
実施例 14、 15のマグネシウム Mgの硬度は 81 Hvと 12 ΙΗνであり、 引張強度 は 52 k g f /mm 2と 80である。 溶体化処理は 390 °C X 10時間、 時効処理は 26 0°CX 5時間行った。 本発明マグネシウム Mg合金は、 硬度、 引張強度、 ヤング率、 耐熱 性が向上し、 ノ ネ性を示した。 加工し易く、 作業性もよい。 ヤング率は 4400 k g f / mm2以上であり、 約 15 %向上した。 比較例 1 1と比較例 12は、 純度 99. 8と 99. 99重量0 /。の髙純度マグネシウムである。 The hardness of magnesium Mg in Examples 14 and 15 was 81 Hv and 12ΙΗν, and the tensile strength Are 52 kgf / mm 2 and 80. The solution treatment was performed at 390 ° C for 10 hours, and the aging treatment was performed at 260 ° C for 5 hours. The magnesium-Mg alloy of the present invention has improved hardness, tensile strength, Young's modulus, and heat resistance, and has a nematic property. Easy to process and good workability. Young's modulus is 4400 kgf / mm 2 or more, was improved by about 15%. Comparative Examples 11 and 12 had a purity of 99.8 and a 99.99 weight of 0 /. Is pure magnesium.
マグネシウム Mgに、 Mg以外の元素を 50〜15000 p pm添加する添加合金とし ては、 Mg— Gd、 Mg— G d— Mnが例示され、 その他に M g _ G d— S r、 Mg— G d— Ca、 Mg— Gd_Z r、 Mg— Gd— Sn、 Mg_Gd— Zn、 Mg— Gd— I n、 Mg-Gd-S iについて試作評価したが、 実施例 14と実施例 15と同様に硬度、 引張 強度、 ヤング率、、 耐熱性が向上し、 パネ性を示した。 加工し易く、 作業性もよい。  Magnesium Examples of additive alloys in which elements other than Mg are added to Mg at 50 to 15000 ppm include Mg—Gd, Mg—Gd—Mn, and other alloys such as Mg—Gd—Sr and Mg—G d-Ca, Mg-Gd_Zr, Mg-Gd-Sn, Mg_Gd-Zn, Mg-Gd-In, and Mg-Gd-Si were evaluated as prototypes. Tensile strength, Young's modulus, heat resistance improved, and paneling was demonstrated. Easy to process and good workability.
マグネシウム Mgとアルミニウム A 1、 鉄 F e、 亜口、 Zn、 マンガン Mn、 ジルコニゥ ム Z r、 銅 Cu、 リチウム L i、 シリコン S iからなる群から選択された少なくも 1種以 上の元素から構成される M g合金に上記元素を添加した添加合金を試作評価したが、 上記 Mgの添加合金と同様に硬度、 引張強度、 ヤング率、 耐熱性が向上し、 パネ性を示した。 熱処理方法は、 パッチ処理方式と連続処理方式がある。  Magnesium Mg and aluminum A1, Iron Fe, Aguchi, Zn, Manganese Mn, Zirconium Zr, Copper Cu, Lithium Li, Silicon Si From at least one element selected from the group consisting of An additive alloy in which the above elements were added to the constituted Mg alloy was evaluated as a trial, and the hardness, tensile strength, Young's modulus, and heat resistance were improved and the panel properties were exhibited, similarly to the above Mg-added alloy. The heat treatment method includes a patch treatment method and a continuous treatment method.
本発明の第 13実施形態に係る硬質金属合金部材は、 銅 C u含有量が 70. 00重量% 以上であり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元素、 アル力 リ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z j:、 スズ Sn、 インジウム I nか 鉛 Pb、 ニッケル N i らなる群から選択される少なくも 1種の元素で構成された硬質化添 加剤合計で 50 p pm以上 15000 p p m未満の範囲で含有させた銅合金で構成される。 本発明の第 14実施形態に係る硬質金属合金部材は、 鉄 F e含有量が 70. 00重量% 以上であり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元素、 アル力 リ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z r、 スズ Sn、 インジウム I nか 鉛 P b、 ニッケル N i らなる群から選択される少なくも 1種の元素で構成された硬質化添 加剤合計で 50 p pm以上 15000 p p m未満の範囲で含有させた鉄合金で構成される。 本発明の第 15実施形態に係る硬質金属合金部材は、 アルミニウム A 1含有量が 70. 00重量%以上でぁり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元 素、 アルカリ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z r、 スズ Sn、 インジ ゥム I n力鉛 P b、 ニッケル N i らなる群から選択される少なくも 1種の元素で構成され た硬質化添加剤合計で 50 p pm以上 15000 p p m未満の範囲で含有させたアルミ二 ゥム合金で構成される。  The hard metal alloy member according to the thirteenth embodiment of the present invention has a copper Cu content of 70.00% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, A total of 50 hardening additives composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zj :, tin Sn, indium In or lead Pb, and nickel Ni. It is composed of a copper alloy that is contained in the range from p pm to less than 15000 ppm. The hard metal alloy member according to the fourteenth embodiment of the present invention has an Fe content of 70.00% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, A total of 50 hardening additives composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium In or lead Pb, and nickel Ni It is composed of an iron alloy contained in the range from p pm to less than 15000 ppm. The hard metal alloy member according to the fifteenth embodiment of the present invention has an aluminum A1 content of 70.00% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, Hardening additive consisting of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium lead, lead Pb, and nickel Ni. It is composed of an aluminum alloy containing 50 ppm or more and less than 15000 ppm.
本発明の第 16実施形態に係る硬質金属合金部材は、 マグネシウム Mg含有量が 70. 00重量%以上であり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元 素、 アルカリ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z r、 スズ Sn、 インジ ゥム I η力鉛 P b、 ニッケル N i らなる群から選択される少なくも 1種の元素で構成され た硬質化添加剤合計で 50 p pm以上 150◦ 0 p p m未満の範囲で含有させたマグネシ ゥム合金で構成される。 The hard metal alloy member according to the sixteenth embodiment of the present invention has a magnesium Mg content of 70.00% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, silicon S i, Boron B, Zirconium Zr, Tin Sn, Indium I η Lead Pb, Nickel Ni Hardening additive composed of at least one element selected from the group consisting of 50 p Magnesium contained in the range of pm or more and less than 150 ppm It is composed of a Pum alloy.
本発明の第 17実施形態に係る硬質金属合金部材は、 銅 C u含有量が 99. 45重量% 以上であり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元素、 アル力 リ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z r、 スズ Sn、 インジウム I n力 鉛 Pb、 ニッケル Ni らなる群から選択される少なくも 1種の元素で構成された硬質化添 加剤合計で 50 p pm以上 15000 p p m未満の範囲で含有させた銅合金で構成される。 本発明の第 18実施形態に係る硬質金属合金部材は、 鉄 F e含有量が 99. 45重量% 以上であり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元素、 アル力 リ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z r、 スズ Sn、 インジウム I n力 鉛 Pb、 ニッケル N i らなる群から選択される少なくも 1種の元素で構成された硬質化添 加剤合計で 50 pm以上 1 5000 p p m未満の範囲で含有させた鉄合金で構成される。 本発明の第 19実施形態に係る硬質金属合金部材は、 アルミニウム A 1含有量が 99. 45重量%以上であり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元 素、 アルカリ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z r、 スズ Sn、 インジ ゥム I n力鉛 P b、 ニッケル N i らなる群から選択される少なくも 1種の元素で構成され た硬質化添加剤合計で 50 p pm以上 15000 p p m未満の範囲で含有させたアルミ二 ゥム合金で構成される。  The hard metal alloy member according to the seventeenth embodiment of the present invention has a Cu Cu content of 99.45% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, Hardening additives composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium In, lead Pb, and nickel Ni. It is composed of a copper alloy containing less than 15,000 ppm. The hard metal alloy member according to the eighteenth embodiment of the present invention has an Fe content of 99.45% by weight or more, gadolinium Gd alone, gadolinium Gd and a rare earth element other than Gd, an alkaline earth element, 50 pm total hardening additive composed of at least one element selected from the group consisting of silicon Si, boron B, zirconium Zr, tin Sn, indium In lead Pb, and nickel Ni It is composed of an iron alloy containing less than 15,000 ppm. The hard metal alloy member according to the nineteenth embodiment of the present invention has an aluminum A1 content of 99.45% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, and silicon. A total of 50 hardening additives composed of at least one element selected from the group consisting of Si, boron B, zirconium Zr, tin Sn, indium lead, lead Pb, and nickel Ni It is composed of an aluminum alloy contained in the range of not less than ppm and less than 15000 ppm.
本発明の第 20実施形態に係る硬質金属合金部材は、 マグネシウム Mg含有量が 99. 45重量%以上であり、 ガドリニウム Gd単独、 ガドリニウム Gdと Gd以外の希土類元 素、 アルカリ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z r、 スズ Sn、 インジ ゥム I nか鉛 P b、 ニッケル N iらなる群から選択される少なくも 1種の元素で構成され た硬質化添加剤合計で 50 p pm以上 15000 p p m未満の範囲で含有させたマグネシ ゥム合金で構成される。  The hard metal alloy member according to the twentieth embodiment of the present invention has a magnesium Mg content of 99.45% by weight or more, gadolinium Gd alone, gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, silicon S i, Boron B, Zirconium Zr, Tin Sn, Indium In or Lead Pb, Nickel Ni Hardening additive composed of at least one element selected from the group consisting of 50 p in total It is composed of a magnesium alloy contained in the range of pm to less than 15000 ppm.
実施形態に適用される合金は特に限定されるものでない。 上記硬質化添加剤以外の成分 も通常の金属合金に用いられるものであればどのようなものでもよく特に限定されない。 つまり、 上記硬質化添加剤は、 既存の一般金属合金に対しても有効である。 これら実施形 態に係る合金部材を製造する際にも貴金属合金の実地形態と同様である。 鐃造の場合には、 上記組成の合金素材を铸造し、 その素材に対して所定温度に加熱後急冷する溶体化処理を 施す。 その後必要に応じて所定温度で時効処理を施す。 また、 加工合金の場合には、 上記 組成の合金素材を鎢造し、 その素材に対して所定温度加熱後急冷する溶体化処理を施し、 その素材を所定形状に加工し、 この加工前または加工後に前期素材に対して時効処理を施 す。  The alloy applied to the embodiment is not particularly limited. The components other than the hardening additive are not particularly limited as long as they are those used in ordinary metal alloys. That is, the hardening additive is effective for existing general metal alloys. Manufacture of the alloy members according to these embodiments is the same as the actual form of the noble metal alloy. In the case of cycling, an alloy material having the above composition is produced, and the material is subjected to a solution treatment of heating to a predetermined temperature and then rapidly cooling. Thereafter, aging treatment is performed at a predetermined temperature as needed. In the case of a processed alloy, an alloy material having the above composition is manufactured, the material is subjected to a solution treatment in which the material is heated to a predetermined temperature and then rapidly cooled, and the material is processed into a predetermined shape. Later, the material is aged.
貴金属合金のガドリニウム Gd複合添加剤として、 新にジルコニウム Z r、 スズ Sn、 インジウム I n、 マンガン Mn使用し、 試作評価したところ、 硬度、 引張強度、 ヤング率 等が向上し、 パネ性があり、 加工し易く、 作業性もよかった。 その効果が顕著であること が分かった。 銅 Cu合金、鉄 F e合金、アルミニウム A 1合金およびマグネシウム Mg合金について、 G dと希土類元素、 G dとアル力リ土類元素について、 それぞれ複合添カ卩して、,試作評価 したが、 硬度、 引張硬度、 ヤング率等が向上した。 パネ性があり、 加工し易く、 作業性も よかった。 更に、 G dとカルシウム C a、 ストロンチウム S r、 シリコン S i、 ベリリウ ム B e、 ボロン B、 ジ Λ·^コニゥム Z r、 スズ Sn、 インジウム I n、 マンガン Mnの複合 添加でも同様な結果が得られ、 顕著な上記と同じ効果が見られることが分かった。 As a gadolinium-Gd composite additive for precious metal alloys, zirconium Zr, tin Sn, indium In, and manganese Mn are newly used and evaluated for trial production. It was easy to process and workability was good. The effect was found to be remarkable. For copper Cu alloy, iron Fe alloy, aluminum A1 alloy, and magnesium Mg alloy, Gd and rare earth elements, and Gd and aluminum earth elements were mixed, and the prototypes were evaluated. Hardness, tensile hardness, Young's modulus, etc. improved. It had a paneling property, was easy to process, and had good workability. Furthermore, similar results were obtained with the combined addition of Gd and calcium Ca, strontium Sr, silicon Si, beryllium Be, boron B, diconium Zr, tin Sn, indium In, and manganese Mn. It was found that the same effect as above was obtained.
本発明の実施形態に係る硬質金属合金部材は、金 Au、 プラチナ P t、銀 Ag、銅 Cu、 鉄 F e、 アルミニウム A 1、 マグネシウム Mg等の含有量が 37. 50〜99. 995重 量0 /0であり、 ガドリニウム Gd単独の、 あるいはガドリニウム Gd以外の希土類元素、 ァ ルカリ土類元素、 シリコン S i、 アルミニウム A 1、 マンガン Mn、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 インジウム I n、 ボロン Bからなる群から選択される少なくとも 1 種の元素とで構成される硬質化添加剤を合計で 50 p pm以上 15000 p p m未満の範 囲で含有させた金属合金で構成される。 The hard metal alloy member according to the embodiment of the present invention has a content of 37.50 to 99.995 weight of gold Au, platinum Pt, silver Ag, copper Cu, iron Fe, aluminum A1, magnesium Mg, and the like. 0/0, gadolinium Gd alone or rare earth elements other than gadolinium Gd,, § alkaline earth elements, silicon S i, aluminum a 1, manganese Mn, zirconium Z r, tin Sn, zinc Zn, indium I n, It is composed of a metal alloy containing a hardening additive composed of at least one element selected from the group consisting of boron B in a total range of 50 ppm to less than 15000 ppm.
更に、 本発明の実施形態に係る硬質金属合金部材は、 金 Au、 プラチナ P t合金、 銀 A g合金、 銅 Cu合金、 鉄 F e合金、 アルミニウム A 1合金、 マグネシウム Mg合金からな る金属合金群から選択された少なくも 1種以上の金属合金に、 ガドリニウム Gd単独の、 あるいはガドリニウム Gd以外の希土類元素、 アルカリ土類元素、 シリコン S i、 アルミ ニゥム A l、 マンガン Mn、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 インジウム I n、 ボロン Bからなる群から選択される少なくとも 1種の元素とで構成される硬質化添加剤を 合計で 50 p pm以上 15000 p p m未満の範囲で含有させた金属合金で構成される。 このように金属の含有率を 37. 5%〜99. 995重量0 /0とし、 ガドリニウム Gdを 単独、 または他の元素と複合化してなる硬質化添加剤を適量添加することにより、 加工を 加えない錄造合金であっても従来にない高い硬度が得られるとともに、 今までにない高い 硬度、 ヤング率、 引張強度、 耐熱性、 作業性を得ることができる。 Further, the hard metal alloy member according to the embodiment of the present invention is a metal alloy made of gold Au, platinum Pt alloy, silver Ag alloy, copper Cu alloy, iron Fe alloy, aluminum A1 alloy, magnesium Mg alloy. At least one or more metal alloys selected from the group include gadolinium Gd alone or rare earth elements other than gadolinium Gd, alkaline earth elements, silicon Si, aluminum Al, manganese Mn, zirconium Zr, tin Metal alloy containing a hardening additive composed of at least one element selected from the group consisting of Sn, zinc Zn, indium In, and boron B in a total range of 50 ppm to less than 15000 ppm It consists of. Thus the content of metal 37.5% 99. And 995 weight 0/0 alone gadolinium Gd or other elements and by the composite to become hardening additive added in an appropriate amount, processing the added Even hard alloys can achieve unprecedentedly high hardness and unprecedentedly high hardness, Young's modulus, tensile strength, heat resistance, and workability.
ガドリニウム G dは、 体積占有率を考慮すると最も有効な硬質化元素であり、 耐熱性の 向上も顕著である。 特に、 Gdを添加することにより極めて髙ぃヤング率が得られること を見出した。 このように Gdは硬度、 ヤング率、 引張強度の向上効果が大きいため、 添カロ 量は少量でよく, 基合金の色調を変化させないで良好な色調を得ることができる。 更に添 加量が少量で占有体積が小さいので、 基合金特有の特性を生かすことができる。  Gadolinium Gd is the most effective hardening element in consideration of the volume occupancy, and the improvement in heat resistance is remarkable. In particular, it has been found that extremely low Young's modulus can be obtained by adding Gd. As described above, since Gd has a large effect of improving hardness, Young's modulus and tensile strength, the amount of added calorie may be small, and a good color tone can be obtained without changing the color tone of the base alloy. Furthermore, since the addition amount is small and the occupied volume is small, the characteristics unique to the base alloy can be utilized.
硬質化添加剤としての効果は G d単体で発揮されるが、 G d以外の上記元素からなる群 から選択される少なくとも 1種の元素と複合添加することによる相乗効果によつて優れた 特性を得ることができる。  The effect as a hardening additive is exhibited by Gd alone, but excellent properties are obtained due to the synergistic effect of complex addition with at least one element selected from the group consisting of the above elements other than Gd. Obtainable.
本発明の硬質金属部材は、 硬度が高く力、つ耐食性が良好であるため、 ff 久性に優れてい る。 また、 ヤング率が高くパネ性があり、 引張強度も強く脆さがなレ、。 そして、 このよう な優れた機械的特性を有するため、 軽量化及び薄形化が可能である。 更に、 良好な色調を 有しており、 更に加工性が良好で作業性がよい。 本発明の金属合金部材は、 硬度、 引張強度、 ヤング率が向上し、 バネ性があり、 伸び等 もり、 加工し易く、 作業性がよい。 従来の合金部材とは異なる。 更に、 これらの特性をュ 一ザ一の好みに応じて調整できることが大きな特徴である。 The hard metal member of the present invention is excellent in fff durability because it has high hardness, good strength and good corrosion resistance. In addition, it has a high Young's modulus, has paneling properties, and has high tensile strength and brittleness. And since it has such excellent mechanical properties, it is possible to reduce the weight and thickness. Furthermore, it has good color tone, and has good workability and good workability. The metal alloy member of the present invention has improved hardness, tensile strength and Young's modulus, has spring properties, has elongation and the like, is easy to process, and has good workability. Different from conventional alloy members. Further, it is a great feature that these characteristics can be adjusted according to the user's preference.
従って、 上記元素の超高性能の貴金属合金/金属合金とユーザーの好みに応じて調整し た個性的な貴金属合金 Z金属合金が得られるのが最大の特徴である。  Therefore, the greatest feature is that an ultra-high performance noble metal alloy / metal alloy of the above elements and a unique noble metal alloy Z metal alloy adjusted according to the user's preference are obtained.

Claims

請 求 の 範 囲 The scope of the claims
1. 金 Au含有量が 37. 5〜98. 45重量0 /0であり、 ガドリニウム Gdと、 G d以外 のジルコニウム Z r、 スズ Sn、 インジウム I n、 マンガン Mnからなる群から選択 される少なくとも 1種の元素とを 50 p pm以上 15000 p pm未満の範囲で含有 させた金合金で構成された硬質貴金属合金部材。 1. gold Au content from 37.5 to 98. A 45 weight 0/0, and gadolinium Gd, G zirconium other than d Z r, tin Sn, indium I n, at least is selected from the group consisting of manganese Mn A hard noble metal alloy member composed of a gold alloy containing one element in the range of 50 to less than 15,000 ppm.
2. プラチニゥム P t含有量が 85. 00重量0 /0以上であり、 ガドリニウム Gdと、 Gd 以外のジルコニウム Z j:、 スズ Sn、 インジウム I n、 マンガン Mnからなる群から 選択される少なくとも 1種の元素とを 50 p pm以上 15000 p p m未満の範囲で 含有させたブラチュウム合金で構成された硬質貴金属合金部材。 2. is a Purachiniumu P t content 85.00 weight 0/0 or more, at least one selected gadolinium Gd, zirconium other than Gd Z j :, tin Sn, indium I n, from the group consisting of manganese Mn A hard noble metal alloy member composed of a bratium alloy containing the following elements in the range of 50 ppm to less than 15000 ppm.
3. 銀 A g含有量が 80. 00重量%以上であり、 ガドリニウム Gdと、 Gd以外のジル コニゥム Z r、 スズ Sn、 インジウム I n、 マンガン Mnからなる群から選択される 少なくとも 1種の元素とを 50 p p m以上 15000 p p m未満の範囲で含有させた 銀合金で構成された硬質貴金属合金部材。  3. The silver Ag content is 80.00% by weight or more, and at least one element selected from the group consisting of gadolinium Gd and zirconium Zr, tin Sn, indium In, and manganese Mn other than Gd. A hard precious metal alloy member composed of a silver alloy containing at least 50 ppm and less than 15000 ppm.
4. 金 Au、 銀 A g、 白金 P t、 パラジウム P t、 ロジウム Rh、 イリジジゥム I r、 ノレ テリゥム Ru、 およぴォスユウム O sからなる貴金属合金群から選択される少なくと も 1種以上の元素と、 ジルコニウム Z r、 インジウム I n、 錫 Sn、 マンガン Mnか らなる群から選抜された少なくも 1種以上の元素と構成された貴金属合金に、 ガドリ ニゥム Gdを 50 p pm以上 15000 p p m未満の範囲で含有させてなる硬質貴金 属合金部材。  4. At least one or more precious metal alloys selected from the group consisting of gold Au, silver Ag, platinum Pt, palladium Pt, rhodium Rh, iridium Ir, norterium Ru, and osmium Os. Gadolinium Gd from 50 ppm to less than 15000 ppm in a noble metal alloy composed of the element and at least one element selected from the group consisting of zirconium Zr, indium In, tin Sn, and manganese Mn A hard precious metal alloy member contained in the range described above.
5. 金 Au、 銀 A g、 白金 P t、 パラジウム P t、 ロジウム Rh、 ィリジジゥム I r、 ノレ テリゥム Ru、 およびォスニゥム O sからなる貴金属合金群から選択される少なくと も 2種以上の元素と、 ジルコニウム Z r、 インジウム I n、 錫 Sn、 マンガン Mnか らなる群から選抜された少なくも 1種以上の元素と構成された貴金属合金に、 ガドリ ニゥム Gdを 50 p pm以上 1 5000 p p m未満の範囲で含有させてなる硬質貴金 属合金部材。  5. At least two elements selected from the precious metal alloy group consisting of gold Au, silver Ag, platinum Pt, palladium Pt, rhodium Rh, iridium Ir, norterium Ru, and osmium Os. , Zirconium Zr, indium In, tin Sn, manganese Mn, a precious metal alloy composed of at least one element selected from the group consisting of gadolinium Gd of 50 ppm or more and less than 15,000 ppm. Hard precious metal alloy members contained in the range.
6. 金 A u含有量が 98. 45重量%以上であり、 ガドリ-ゥム Gd、 Gd以外のジルコ ユウム Z r、 スズ Sn、 インジウム I n、 マンガン Mnからなる群から選択される少 なくとも 1種の元素とを 50 pm以上 15000 p p m未満の範囲で含有させた金 合金で構成された硬質貴金属合金部材。  6. The gold Au content is 98.45% by weight or more and is at least selected from the group consisting of gadolinium Gd, zirconium Zr other than Gd, tin Sn, indium In, and manganese Mn. A hard noble metal alloy member made of a gold alloy containing one element in the range of 50 pm or more and less than 15000 ppm.
7. 金 Au含有量が 99. 45重量%以上であり、 ガドリニウム Gd、 Gd以外のジルコ ニゥム Z r、 スズ S n、 インジウム I n、 マンガン Mnからなる群から選択される少 なくとも 1種の元素とを 50 p p m以上 15000 p p m未満の範囲で含有させた金 合金で構成された硬質貴金属合金部材。  7. At least one kind selected from the group consisting of gadolinium Gd, zirconium Zr other than Gd, tin Sn, indium In, and manganese Mn having a gold Au content of 99.45% by weight or more. A hard noble metal alloy member composed of a gold alloy containing 50 ppm or more and less than 15000 ppm of elements.
8. プラチュウム P t含有量が 99. 45重量0 /0以上であり、 ガドリニウム Gdと、 Gd 以外のジルコニウム Z r、 スズ Sn、 インジウム I n、 マンガン Mnからなる群から 選択される少なくとも 1種の元素とを 50 p pm以上 5000 p m未満の範囲で含 有させたブラチニゥム合金で構成された硬質貴金属合金部材。 8. is a Purachuumu P t content 99.45 weight 0/0 or more, and gadolinium Gd, zirconium other than Gd Z r, tin Sn, indium I n, at least one selected from the group consisting of manganese Mn Element in the range of 50 ppm or more and less than 5000 pm A hard noble metal alloy member made of a platinum alloy.
9. 銀 Ag含有量が 37. 50〜99. 45重量%であり、 ガドリニウム Gdと、 Gd以 外のジルコニウム Z r、 スズ Sn、 インジウム I n、 マンガン Mnからなる群から選 択される少なくとも 1種の元素とを 50 p pm以上 5000 p p m未満の範囲で含有 させた銀合金で構成された硬質貴金属合金部材。  9. The silver content is 37.50 to 99.45% by weight, and at least one selected from the group consisting of gadolinium Gd and zirconium Zr, tin Sn, indium In, and manganese Mn other than Gd. A hard noble metal alloy member composed of a silver alloy containing at least 50 ppm and less than 5000 ppm of various elements.
10. 金 Auとマンガン Mn、 スズ S nおよびインジウム I nから選択された少なくとも 1種の元素と構成された貴金属合金にガドリニウム Gdを 50 pm以上 15000 p p m未満の範囲で含有させてなる硬質貴金属合金部材。  10. Hard noble metal alloy containing gadolinium Gd in the range of 50 pm or more and less than 15000 ppm in a noble metal alloy composed of at least one element selected from gold Au, manganese Mn, tin Sn and indium In Element.
1 1. 金 Auとマンガン Mn、 スズ Snおよびインジウム I nから選択された少なくとも 1種の元素と構成された貴金属合金にガドリニウム Gdと、 Gd以外のジルコニウム Z r、 スズ Sn、 インジウム I n、 マンガン Mnからなる群から選択される少なくと も 1種の元素とを 50 p p m以上 15000 p p m未満の範囲で含有させた金合金で 構成された硬質貴金属合金部材。  1 1. Precious metal alloys composed of at least one element selected from gold Au, manganese Mn, tin Sn and indium In, gadolinium Gd, zirconium other than Gd Zr, tin Sn, indium In, manganese A hard noble metal alloy member made of a gold alloy containing at least one element selected from the group consisting of Mn in a range of 50 ppm or more and less than 15000 ppm.
12. 銀 Ag含有量が 99. 45重量%以上であり、 ガドリニウム Gdと、 Gd以外のジ ルコェゥム Z r、 スズ Sn、 インジウム I n、 マンガン Mnからなる群から選択され る少なくとも 1種の元素とを 50 p p m以上 50◦◦ p p m未満の範囲で含有させた 銀合金で構成された硬質貴金属合金部材。  12. Gadolinium Gd and at least one element selected from the group consisting of zirconium Zr, tin Sn, indium In, and manganese Mn having an Ag content of 99.45% by weight or more and other than Gd. Is a hard noble metal alloy member composed of a silver alloy containing at least 50 ppm and less than 50 ◦ ppm.
13. 銀 Agとマンガン Mn、 スズ S nおよびインジウム I nから選択された少なくとも 1種の元素と構成された貴金属合金にガドリニウム Gdを 50 p pm以上 15000 p p m未満の範囲で含有させてなる銀合金で構成された硬質貴金属合金部材。  13. A silver alloy comprising gadolinium Gd in a range of 50 ppm to 15,000 ppm in a noble metal alloy composed of at least one element selected from silver Ag, manganese Mn, tin Sn and indium In A hard noble metal alloy member composed of
14. 銀 Agとマンガン Mn、 スズ S nおよびインジウム I nから選択された少なくとも 1種の元素と構成された貴金属合金にガドリニウム Gdと、 Gd以外のジルコニウム Z r、 スズ Sn、 インジウム I n、 マンガン Mnからなる群から選択される少なくと も 1種の元素とを 50 p p m以上 15000 p p m未満の範囲で含有させた銀合金で 構成された硬質貴金属合金部材。  14. Precious metal alloy composed of at least one element selected from silver Ag and manganese Mn, tin Sn and indium In, gadolinium Gd, zirconium other than Gd Zr, tin Sn, indium In, manganese A hard noble metal alloy member composed of a silver alloy containing at least one element selected from the group consisting of Mn in a range of 50 ppm or more and less than 15000 ppm.
15. 銅 Cu含有量が 40. 00〜99. 45重量0 /0であり、 ガドリニウム G dを 50 p pm以上 1 5000 p pm未満の範囲で含有させた銅合金で構成された硬質金属合金 部材。 15. Copper Cu content from 40.00 to 99.45 on a weight 0/0, gadolinium G d and 50 p pm over 1 5000 p pm less hard metal alloy member made of a copper alloy which contains in the range .
16. 銅 Cu含有量が 40. 00〜99. 45重量%であり、 ガドリニウム Gdと、 Gd 以外の希土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 ィ ンジゥム I n、 マンガン Mnからなる群から選択される少なくとも 1種の元素とを 5 0 p pm以上 15000 p p m未満の範囲で含有させた銅合金で構成された硬質金属 合金部材。  16. Copper Cu content is 40.00-99.45 wt%, gadolinium Gd, rare earth element other than Gd, alkaline earth element, zirconium Zr, tin Sn, zinc Zn, zinc In, manganese A hard metal alloy member made of a copper alloy containing at least one element selected from the group consisting of Mn in a range of 50 ppm or more and less than 15000 ppm.
17. 鉄 F e含有量が 40. 00〜99. 45重量0 /。であり、 ガドリニウム G dを 50 p pm以上 1 5000 p pm未満の範囲で含有させた鉄合金で構成された硬質金属合金 部材 17. Iron Fe content 40.00 ~ 99.45 weight 0 /. A hard metal alloy member composed of an iron alloy containing gadolinium Gd in a range of 50 ppm or more and less than 15000 ppm
18. 鉄 F e含有 ¾が 40. 00〜99· 45重量%であり、 ガドリニウム Gdと、 Gd 以外の希土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 ィ ンジゥム I n、 マンガン Mnからなる群から選択される少なくとも 1種の元素とを 5 0 p pm以上 15000 p p m未満の範囲で含有させた鉄合金で構成された硬質金属 合金部材。 18. Iron Fe content is 40.00-99 · 45% by weight, gadolinium Gd, rare earth element other than Gd, alkaline earth element, zirconium Zr, tin Sn, zinc Zn, zinc In, A hard metal alloy member composed of an iron alloy containing at least one element selected from the group consisting of manganese Mn in a range of 50 ppm or more and less than 15000 ppm.
1 9. アルミニウム A 1含有量が 40. 00〜99. 45重量0 /0であり、 ガドリニウムを 50 p pm以上 15000 p p m未満の範囲で含有させたアルミニウム合金で構成さ れる硬質金属合金部材。 1 9. Aluminum A 1 content from 40.00 to 99.45 on a weight 0/0, hard metal alloy member is composed of an aluminum alloy which contains gadolinium in a range of less than 50 p pm or 15000 ppm.
20. アルミニウム A 1含有量が 40. 00〜99. 45重量0 /0であり、 ガドリニウム Gdと、 Gd以外の希土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 インジウム I n、 マンガン Mnからなる群から選択される少なくとも 1種 の元素とを 50 p pm以上 1 5000 p p m未満の範囲で含有させたアルミニウム合 金で構成される硬質金属合金部材。 20. Aluminum A 1 content from 40.00 to 99.45 on a weight 0/0, gadolinium Gd and rare earth elements other than Gd, alkaline-earth element, zirconium Z r, tin Sn, zinc Zn, indium I n A hard metal alloy member made of aluminum alloy containing at least one element selected from the group consisting of manganese and Mn in a range of 50 ppm to less than 15,000 ppm.
21. マグネシウム Mg含有量が 40. 00~99. 45重量0 /。であり、 ガドリニウム G dを 50 p p m以上 15000 p p m未満の範囲で含有させたマグネシウム合金で 構成された硬質金属合金部材。 21. Magnesium Mg content 40.00 ~ 99.45 weight 0 /. A hard metal alloy member made of a magnesium alloy containing gadolinium Gd in a range of 50 ppm or more and less than 15000 ppm.
22. マグネシウム Mg含有量が 40. 00〜99. 45重量0 /0であり、 ガドリニウム G dと、 Gd以外の希土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜 鉛 Zn、 インジウム I n、 マンガン Mnからなる群から選択される少なくとも 1種の 元素とを 50 p pm以上 15000 p p m未満の範囲で含有させたマグネシウム合金 で構咸された硬質金属合金部材。 22. Magnesium Mg content from 40.00 to 99.45 on a weight 0/0, and gadolinium G d, rare earth elements other than Gd, alkaline-earth element, zirconium Z r, tin Sn, zinc Zn, indium I A hard metal alloy member composed of a magnesium alloy containing at least one element selected from the group consisting of n and manganese Mn in a range of 50 ppm or more and less than 15000 ppm.
23. 銅 Cu含有量が 70. 00重量%以上であり、 ガドリニウム Gdを 50 p pm以上 15000 p pm未満の範囲で含有させた銅合金で構成された硬質金属合金部材 23. Copper A hard metal alloy member composed of a copper alloy having a Cu content of 70.00% by weight or more and containing gadolinium Gd in a range of 50 ppm or more and less than 15000 ppm.
24. 銅 Cu含有量が 70. 00重量%以上でぁり、 ガドリニウム Gdと、 Gd以外の希 土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 インジウム I n、 マンガン Mnからなる群から選択される少なくとも 1種の元素とを 50 p p m 以上 15000 p pm未満の範囲で含有させた銅合金で構成された硬質金属合金部材。24. Copper Cu content is more than 70.00% by weight, gadolinium Gd, rare earth element other than Gd, alkaline earth element, zirconium Zr, tin Sn, zinc Zn, indium In, manganese Mn A hard metal alloy member composed of a copper alloy containing at least one element selected from the group consisting of at least 50 ppm and less than 15,000 ppm.
25. 鉄 F e含有量が 70. 00重量%以上でぁり、 ガドリニウム Gdと、 。(1を50 pm以上 15000 p pm未満の範囲で含有させた鉄合金で構成された硬質金属合金 部材。 25. Iron Fe content should be more than 70.00% by weight, gadolinium Gd. (A hard metal alloy member composed of an iron alloy containing 1 in a range of 50 pm or more and less than 15000 ppm.
26. 鉄 F e含有量が 70. 00重量%以上であり、 ガドリニウム Gdと、 Gd以外の希 土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 インジウム I n、 マンガン Mnからなる群から選択される少なくとも 1種の元素とを 50 p p m 以上 15000 p pm未満の範囲で含有させた鉄合金で構成された硬質金属合金部材。 26. Fe Fe content is 70.00% by weight or more, gadolinium Gd, rare earth elements other than Gd, alkaline earth elements, zirconium Zr, tin Sn, zinc Zn, indium In, manganese Mn A hard metal alloy member composed of an iron alloy containing at least one element selected from the group consisting of at least 50 ppm and less than 15,000 ppm.
27. アルミニウム A 1含有量が 70. 00重量%以上であり、 ガドリニウム Gdを 50 p pm以上 15000 p p m未満の範囲で含有させたアルミニウム合金で構成される 硬質金属合金部材。 27. Aluminum alloy with aluminum A1 content of 70.00% by weight or more and containing gadolinium Gd in the range of 50 ppm to less than 15000 ppm Hard metal alloy members.
28. アルミニウム A 1含有量が 70. 00重量%以上であり、 ガドリニウム Gdと、 Gd以外の希土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 インジウム I n、 マンガン Mnからなる群から選択される少なくとも 1種の元素とを 50 p pm以上 15000 p p m未満の範囲で含有させたアルミニウム合金で構成さ れる硬質金属合金部材。  28. Aluminum A 1 content is 70.00% by weight or more and consists of gadolinium Gd, rare earth elements other than Gd, alkaline earth elements, zirconium Zr, tin Sn, zinc Zn, indium In, and manganese Mn A hard metal alloy member made of an aluminum alloy containing at least one element selected from the group in a range of 50 ppm to less than 15000 ppm.
29. マグネシウム Mg含有量が 70. 00重量0 /0以上であり、 ガドリニウム Gdを 50 p pm以上 1 5000 p pm未満の範囲で含有させたマグネシウム合金で構成された 硬質金属合金部材。 29. Magnesium Mg content is at 70.00 wt 0/0 or more, hard metal alloy member composed of a magnesium alloy which contains gadolinium Gd in a range of less than 1 5000 p pm or 50 p pm.
30. マグネシウム Mg含有量が 70. 00重量%以上であり、 ガドリニウム Gdと、 G d以外の希土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 インジウム I n、 マンガン Mnからなる群から選択される少なくとも 1種の元素とを 30. Magnesium Mg content is 70.00% by weight or more, consisting of gadolinium Gd, rare earth elements other than Gd, alkaline earth elements, zirconium Zr, tin Sn, zinc Zn, indium In, and manganese Mn At least one element selected from the group
50 p pm以上 15000 p p m未満の範囲で含有させたマグネシウム合金で構成さ れた硬質金属合金部材。 A hard metal alloy member composed of a magnesium alloy contained in the range of 50 ppm or more and less than 15000 ppm.
31. 銅 Cu含有量が 99. 45重量%以上であり、 ガドリニウム Gdを 50 p pm以上31. Copper Cu content is more than 99.45% by weight and gadolinium Gd is more than 50 ppm
5000 p pm未満の範囲で含有させた銅合金で構成された硬質金属合金部材。 A hard metal alloy member composed of a copper alloy contained in a range of less than 5000 ppm.
32. 銅 Cu含有量が 99. 45重量%以上であり、 ガドリニウム Gdと、 Gd以外の希 土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 インジウム I n、 マンガン Mnからなる群から選択される少なくとも 1種の元素とを 50 p pm 以上 5000 p pm未満の範囲で含有させた銅合金で構成された硬質金属合金部材。 32. Copper Cu content is 99.45% by weight or more. From gadolinium Gd, rare earth element other than Gd, alkaline earth element, zirconium Zr, tin Sn, zinc Zn, indium In, manganese Mn A hard metal alloy member made of a copper alloy containing at least one element selected from the group consisting of at least 50 ppm and less than 5000 ppm.
33. 鉄 F e含有量が 99. 45重量%以上であり、 ガドリニウム G dを 50 p p m以上33. Iron Fe content is more than 99.45% by weight and gadolinium Gd is more than 50 ppm
5000 p p m未満の範囲で含有させた鉄合金で構成された硬質金属合金部材。 A hard metal alloy member composed of an iron alloy contained in a range of less than 5000 ppm.
34. 鉄 F e含有量が 99. 45重量%以上であり、 ガドリュウム Gdと、 Gd以外の希 土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 インジウム I n、 マンガン Mnからなる群から選択される少なくとも 1種の元素とを 50 p p m 以上 5000 p pm未満の範囲で含有させた鉄合金で構成された硬質金属合金部材。 34. Iron Fe content is 99.45 wt% or more, gadmium Gd, rare earth element other than Gd, alkaline earth element, zirconium Zr, tin Sn, zinc Zn, indium In, manganese Mn A hard metal alloy member made of an iron alloy containing at least one element selected from the group consisting of at least 50 ppm and less than 5000 ppm.
35. アルミニウム A 1含有量が 99. 45重量0 /0以上であり、 ガドリニウム Gdを 50 p pm以上 5000 p pm未満の範囲で含有させたアルミニウム合金で構成された硬 質金属合金部材。 35. Aluminum A is 1 content of 99.45 wt 0/0 or more, hard quality metal alloy member configured gadolinium Gd an aluminum alloy which contains in a range of less than 50 p pm or 5000 p pm.
36. アルミニウム A 1含有量が 99. 45重量。/。以上であり、 ガドリニウム Gdと、 G d以外の希土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜鉛 Zn、 インジウム I n、 マンガン Mnからなる群から選択される少なくとも 1種の元素とを 50 pm以上 5000 p m未満の範囲で含有させたアルミユウム合金で構成され た硬質金属合金部材。  36. Aluminum A 1 content is 99.45 weight. /. Gadolinium Gd and at least one element selected from the group consisting of rare earth elements other than Gd, alkaline earth elements, zirconium Zr, tin Sn, zinc Zn, indium In, and manganese Mn. A hard metal alloy member composed of an aluminum alloy contained in the range of 50 pm or more and less than 5000 pm.
37. マグネシウム Mg含有量が 99. 45重量0/。以上であり、 ガドリニウム Gdを 50 p pm以上 5000 pm未満の範囲で含有させたマグネシウム合金で構成された硬 質金属合金部材。 37. Magnesium Mg content 99. 45 weight 0 /. And a hard alloy composed of a magnesium alloy containing gadolinium Gd in a range of 50 ppm or more and less than 5000 pm. High quality metal alloy members.
38. マグネシウム Mg含有量が 99. 45重量%以上であり、 ガドリニウム Gdと、 G d以外の希土類元素、 アルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 亜 、 Zn、 インジウム I n、 マンガン Mnからなる群から選択される少なくとも 1種の元素とを 50 p pm以上 5000 p p m未満の範囲で含有させたマグネシウム合金で構成され た硬質金属合金部材。  38. Magnesium Mg content is 99.45% by weight or more, from gadolinium Gd and rare earth elements other than Gd, alkaline earth elements, zirconium Zr, tin Sn, zinc, Zn, indium In, manganese Mn A hard metal alloy member made of a magnesium alloy containing at least one element selected from the group consisting of not less than 50 ppm and less than 5000 ppm.
39. 銅 Cuと亜鉛 Zn、 マンガン Mn、 スズ Sn、 アルミニウム A 1、 ニッケノレ N i、 ベリリゥム B e、 鉛 P bおよびインジウム I ηから選択された少なくとも 1種の元素 と構成された金属合金にガドリニウム G dとを 50 p pm以上 15000 p p m未満 の範囲で含有させた銅合金で構成された硬質金属合金部材。  39. Copper Cu and zinc Zn, manganese Mn, tin Sn, aluminum A1, nickel nickle Ni, beryllium Be, lead Pb and indium I η at least one element selected from the group consisting of gadolinium and metal alloys A hard metal alloy member composed of a copper alloy containing Gd in the range of 50 ppm to less than 15000 ppm.
40. 銅 Cuと亜鉛 Zn、 マンガン Mn、 スズ Sn、 アルミニウム A 1、 ニッケル N i、 ベリリウム B e、 鉛 P bおよびインジウム I nから選択された少なくとも 1種の元素 と構成された金属合金にガドリニウム Gdと、 Gd以外の希土類元素、 アルカリ土類 元素、 ジルコニウム Z r、 スズ Sn、 インジウム I n、 マンガン Mnからなる群から 選択される少なくとも 1種の元素とを 50 p pm以上 1 5000 p p m未満の範囲で 含有させた銅合金で構成された硬質金属合金部材。  40. Copper Cu and zinc Zn, manganese Mn, tin Sn, aluminum A1, nickel Ni, beryllium Be, lead Pb and indium In selected from at least one element selected from gadolinium and metal alloys Gd and at least one element selected from the group consisting of rare earth elements other than Gd, alkaline earth elements, zirconium Zr, tin Sn, indium In, and manganese Mn at 50 ppm to less than 15,000 ppm Hard metal alloy members composed of copper alloys contained in the range.
41. 鉄 F eと銅 C u、 シリコン S i、 亜鉛 Z n、 マンガン Mn、 ニッケル N i、 クロム C r、 モリプデン Mo、 およびコバルト C oから選択された少なくとも 1種の元素と 構成された金属合金にガドリニウム Gdを 50 p pm以上 1 5000 p p m未満の範 囲で含有させた鉄合金で構成された硬質金属合金部材。  41. Metals composed of at least one element selected from iron Fe and copper Cu, silicon Si, zinc Zn, manganese Mn, nickel Ni, chromium Cr, molybdenum Mo, and cobalt Co A hard metal alloy member composed of an iron alloy containing gadolinium Gd in the range of 50 ppm to less than 15000 ppm.
42. 鉄 F eと銅 Cu、 シリコン S i、 亜鉛 Z n、 マンガン Mn、 ニッケル N i、 クロム C r、 モリプデン Mo、 およびコバルト C oから選択された少なくとも 1種の元素と 構成された金属合金にガドリニウム Gdと、 Gd以外の希土類元素、 アルカリ土類元 素、 ジルコニウム Z r、 スズ Sn、 インジウム I n、 マンガン Mnからなる群から選 択される少なくとも 1種の元素とを 50 p pm以上 15000 p p m未満の範囲で含 有させた鉄合金で構成された硬質金属合金部材。  42. Metal alloys composed of at least one element selected from iron Fe and copper Cu, silicon Si, zinc Zn, manganese Mn, nickel Ni, chromium Cr, molybdenum Mo, and cobalt Co Gadolinium Gd and at least one element selected from the group consisting of rare earth elements other than Gd, alkaline earth elements, zirconium Zr, tin Sn, indium In, and manganese Mn at least 50 ppm and 15,000 A hard metal alloy member made of an iron alloy contained in the range of less than ppm.
43. アルミニウム A 1 と銅 Cu、 マンガン Mn、 スズ Sn、 シリコン S i、 ニッケル N i、 マグネシウム Mg、 亜鉛 Z nおよびインジウム I nから選択された少なくとも 1種の元素と構成された金属合金にガドリニウム Gdを 50 p pm以上 15000 p m未満の範囲で含有させたアルミニゥム合金で構成された硬質金属合金部材。 43. Aluminum alloys and gadolinium in metal alloys composed of copper, Cu, manganese Mn, tin Sn, silicon Si, nickel Ni, magnesium Mg, zinc Zn and indium In A hard metal alloy member composed of an aluminum alloy containing Gd in the range of 50 ppm or more and less than 15000 pm.
44. アルミニウム A 1 と銅 C u、 マンガン Mn、 スズ Sn、 シリコン S i、 ニッケノレ N i、 マグネシウム Mg、 亜鉛 Znおよびインジウム I nから選択された少なくとも 1種の元素と構成された金属合金にガドリニウム Gdと、 Gd以外の希土類元素、 ァ ルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 インジウム I n、 マンガン Mnから なる群から選択される少なくとも 1種の元素とを 50 p pm以上 15000 p p m未 満の範囲で含有させたアルミニゥム合金で構成された硬質金属合金部材。 44. Gadolinium in a metal alloy composed of at least one element selected from aluminum A1 and copper Cu, manganese Mn, tin Sn, silicon Si, nickele Ni, magnesium Mg, zinc Zn and indium In Gd and at least one element selected from the group consisting of rare earth elements other than Gd, alkaline earth elements, zirconium Zr, tin Sn, indium In, and manganese Mn are at least 50 ppm and less than 15,000 ppm A hard metal alloy member composed of an aluminum alloy contained in the above range.
45. マグネシウム Mgと亜鉛 Z n、 マンガン Mn、 スズ Sn、 アルミニウム A 1、 ジル コニゥム Z r、 銅 Cu、 リチウム L iおよびシリコン S iから選択された少なくとも 1種の元素と構成された金属合金にガドリニウム Gdを 50 p pm以上 15000 p p m未満の範囲で含有させたマグネシゥム合金で構成された硬質金属合金部材。45. Magnesium Mg and zinc Zn, manganese Mn, tin Sn, aluminum A1, zirconium Zr, copper Cu, lithium Li and silicon Si A hard metal alloy member composed of a magnesium alloy containing gadolinium Gd in the range of 50 ppm to less than 15000 ppm.
46. マグネシウム Mgと亜鉛 Z n、 マンガン Mn、 スズ Sn、 アルミニウム A 1、 ジル コニゥム Z r、 銅 Cu、 リチウム L iおよびシリコン S iから選択された少なくとも 1種の元素と構成された金属合金にガドリニウム Gdと、 Gd以外の希土類元素、 ァ ルカリ土類元素、 ジルコニウム Z r、 スズ Sn、 インジウム I n、 マンガン Mnから なる群から選択される少なくとも 1種の元素とを 50 p pm以上 15000 p p m未 満の範囲で含有させたマグネシゥム合金で構成された硬質金属合金部材。 46. For metal alloys composed of at least one element selected from magnesium Mg and zinc Zn, manganese Mn, tin Sn, aluminum A1, zirconium Zr, copper Cu, lithium Li and silicon Si Gadolinium Gd and at least one element selected from the group consisting of rare earth elements other than Gd, alkali earth elements, zirconium Zr, tin Sn, indium In, and manganese Mn are not less than 50 ppm and not more than 15000 ppm. A hard metal alloy member composed of a magnesium alloy contained in the full range.
47. 前記溶体化処理は前記金属合金を 200°C〜28◦ 0°Cで加熱処理後急冷し、 前記 時効処理は、 前記金属合金を 100°C〜 1000°C加熱処理することを特徴とする請 求範囲に記載の金属合金の製造方法。  47. The solution treatment is characterized in that the metal alloy is heated at 200 ° C to 28 ° C and then rapidly cooled, and the aging treatment is performed by heating the metal alloy to 100 ° C to 1000 ° C. The method for producing a metal alloy described in the claim range.
48. 前記溶体化処理を行つた後、 加工処理と B寺効処理を交互に繰返し行うことを特徴と する請求範囲に記載の金属合金の製造方法。 '  48. The method for manufacturing a metal alloy according to claim, wherein after the solution treatment is performed, the processing and the B-effect treatment are alternately repeated. '
49. 鉄 F e、 アルミニウム A 1、 マグネシウム Mg、 銅 C uからなる金属元素群から選 択された 2種以上で構成された金属合金に、 ガドリゥム Gd単独の、 あるいはガドリ ニゥム Gdと Gd以外の希土類元素、 アルカリ土類元素、 シリコン S i、 ボロン B、 ジルコニウム Z r、 亜鉛 Zn、 錫 Sn、 インジウム I n、 鉛 Pb、 ニッケル N iのう ち一種以上を累計で 50〜15000 p pm含有する金属合金に対してその溶解度曲 線より高い温度まで加熱して、 ガドリゥム Gdやその他の添加物を均一に分散させて から急冷する溶体化処理を行うことを特徴とする硬質金属合金の製造方法。  49. Metal alloys composed of two or more selected from the metal element group consisting of iron Fe, aluminum A1, magnesium Mg, copper Cu, and gadolinium Gd alone, or gadolinium Gd and other than gadolinium Gd Contains at least one of rare earth elements, alkaline earth elements, silicon Si, boron B, zirconium Zr, zinc Zn, tin Sn, indium In, lead Pb, and nickel Ni in a total of 50 to 15,000 ppm. A method for producing a hard metal alloy, comprising heating a metal alloy to a temperature higher than its solubility curve, uniformly dispersing gadmium Gd and other additives, and then rapidly cooling the metal alloy.
50. 上述銅 Cu、 鉄 F e、 アルミニウム A 1およびマグネシウム Mgからなる金属元素 群から選択された 1種以上の元素で構成される金属合金にガドリ-ゥム G dを単独、 ありいはガドリニウム Gdと Gd以外の希土類元素、 アルカリ土類元素、 鉛 Pb、 シ リコン S i、 ジルコニウム Z r、 錫 S n、 亜鉛 Z n、 インジウム I nからなる群から 選択される少なくとも 1種の元素とを合計で 50 p pm以上 1 5000 p p m未満の 範囲で含有させることを特徴とする硬質金属合金部材。  50. Gadolinium Gd alone or gadolinium in a metal alloy composed of one or more elements selected from the group consisting of the above-mentioned metal elements consisting of copper Cu, iron Fe, aluminum A1 and magnesium Mg Gd and at least one element selected from the group consisting of rare earth elements other than Gd, alkaline earth elements, lead Pb, silicon Si, zirconium Zr, tin Sn, zinc Zn, and indium In. A hard metal alloy member characterized by being contained in a total amount of 50 ppm or more and less than 15000 ppm.
51. 請求項の貴金属合金部材および金属合金部材の素材を铸造する工程と  51. The step of manufacturing the material of the noble metal alloy member and the metal alloy member according to the claim;
その素材に対して溶体化処理を施す工程とを有する硬質金属合金部材の製造方法。 Subjecting the material to a solution treatment.
52. 請求項の貴金属合金部材および金属合金部材の素材を錄造する工程と 52. The step of manufacturing the material of the noble metal alloy member and the metal alloy member according to the claim;
その素材に対して溶体化処理を施す工程と  Subjecting the material to solution treatment
前記加工の前または後で前記素材に対して時効処理を施す工程とを有する硬質金属合 金部材の製造方法。  Performing an aging treatment on the material before or after the processing.
53. 請求項の貴金属合金部材および金属合金部材の素材を铸造する工程と  53. The step of manufacturing the material of the noble metal alloy member and the metal alloy member according to the claim;
その素材に対して溶体化処理を施す工程と その素材を所定形状に加工する工程と Subjecting the material to solution treatment Processing the material into a predetermined shape;
前記加工の前または後で前記素材に対して時効処理を施す工程とを有する硬質金属合 金部材の製造方法。  Performing an aging treatment on the material before or after the processing.
54. 請求項のいずれかの方法において、 溶体化処理温度が 300〜2800°C、 時効処 理温度が 100〜800°Cである硬質金属合金部材の製造方法。  54. The method for producing a hard metal alloy member according to any one of claims, wherein the solution treatment temperature is 300 to 2800 ° C and the aging temperature is 100 to 800 ° C.
55. 請求項のいずれかの方法において、 溶体化処理温度が 300〜2500°C、 時効処 理温度が 50〜600°Cである硬質金属合金部材の製造方法。 55. The method for producing a hard metal alloy member according to any one of claims, wherein the solution treatment temperature is 300 to 2500 ° C and the aging treatment temperature is 50 to 600 ° C.
56. 請求項のいずれかの方法において、 溶体化処理温度が 250〜2200°C、 時効処 理 度が 100〜500°Cである硬質金属合金部材の製造方法 56. The method for producing a hard metal alloy member according to any one of claims, wherein the solution treatment temperature is 250 to 2200 ° C and the aging treatment degree is 100 to 500 ° C.
57. 請求項金属合金部材の添加剤としてジルコニウム Z rの代わりに酸化ジルコニウム57. Zirconium oxide instead of zirconium Zr as additive in metal alloy members
Z r 02含有させることを特徴とする金属合金の製造方法とその組成。 Method for producing a metal alloy, characterized in that to Z r 0 2 contained and its composition.
58. 請求項金属合金部材の添加剤としてジルコニウム Z rと酸化ジルコニウム Z r 02含 有させることを特徴とする金属合金の製造方法とその組成。 58. The method according to claim metal alloy zirconium oxide and zirconium Z r as an additive member Z r 0 2 metal alloy, characterized in that to free organic and its composition.
Room
Au Pt Ag Cu Mg Gd Sr Zr S n In Cr Rh 実施例 1 - 99.85 0,09 0.06  Au Pt Ag Cu Mg Gd Sr Zr Sn In Cr Rh Example 1-99.85 0,09 0.06
実施例 2 99.85 0.09 o.oe Example 2 99.85 0.09 o.oe
比較例 1 99.85 0.15 Comparative Example 1 99.85 0.15
比較例 2 99.99 Comparative Example 2 99.99
実施例 3 99.7 0.15 0.02 0.03 Example 3 99.7 0.15 0.02 0.03
実施例 4 99.7 0.15 0.05 Example 4 99.7 0.15 0.05
比較例 3 99.99 Comparative Example 3 99.99
比較例 4 90.0 10.0 実施例 5 99.50 0.20 0.10 0.^0 Comparative Example 4 90.0 10.0 Example 5 99.50 0.20 0.10 0. ^ 0
実施例 6 99.50 0.20 0.10 0.20 Example 6 99.50 0.20 0.10 0.20
実施例 7 99.50 0.20 0.10 0.20 Example 7 99.50 0.20 0.10 0.20
99.99  99.99
比較例 6 92.5 7.5  Comparative Example 6 92.5 7.5
実施例 8 99.8 0.20  Example 8 99.8 0.20
実施例 9 99.8 0.15 0.05  Example 9 99.8 0.15 0.05
比較例 7 99.99  Comparative Example 7 99.99
比較例 8 99.6 0.04 0.10 0.25  Comparative Example 8 99.6 0.04 0.10 0.25
第 2 図 Fig. 2
軟化特性 (H v ) 引張強度 処理温度 強度 伸ぴ 150Ό Χ 30分 250 350 450 (kgf/mm2) (%) 実施例 Softening characteristics (H v) Tensile strength Processing temperature Strength Elongation 150Ό Χ 30 minutes 250 350 450 (kgf / mm 2 ) (%)
1 170 171 162 135 81.6 4.1 実施例  1 170 171 162 135 135 81.6 4.1 Example
2 173 173 155 125 80.6 4.0 比較例  2 173 173 155 125 80.6 4.0 Comparative example
1 123 125 120 108  1 123 125 120 108
比較例  Comparative example
2 58 57 27 23 22.0 3.5 第 3 図 2 58 57 27 23 22.0 3.5 Fig. 3
Figure imgf000024_0001
Figure imgf000024_0001
第 4 図 Fig. 4
軟化特性 (Hv)  Softening characteristics (Hv)
温度処理 400 600 800 引張強度 Temperature treatment 400 600 800 Tensile strength
、 200°CX30分 (k fmm") 実施例 5 174 172 134 121 56 実施例 6 169 167 127 115 52 実施例 7 176 174 136 124 60 比較例 5 85 36 比較例 6 156. 154 120 109 55 , 200 ° C. for 30 minutes (k fmm ") Example 5 174 172 134 121 56 Example 6 169 167 127 115 52
第 5 図 Fig. 5
軟化特性 (Hv) 引張試験 温度処理 400 600 800 (kgfmm2) 200°CX30分 Softening characteristics (Hv) Tensile test Temperature treatment 400 600 800 (kgfmm 2 ) 200 ° C for 30 minutes
実施例 8 219 210 205 160 53.2 実施例 9 230 211 192 131  Example 8 219 210 205 160 53.2 Example 9 230 211 192 131
比較例 7 100 45 45 45 30.0 比較例 8 142 141 90 52 43.1 6 図Comparative Example 7 100 45 45 45 30.0 Comparative Example 8 142 141 90 52 43.1 6 Figure
Figure imgf000025_0001
Figure imgf000025_0001
第 7 図 Fig. 7
Figure imgf000025_0002
Figure imgf000025_0002
第 8 図 Fig. 8
Figure imgf000025_0003
Figure imgf000025_0003
差替え用紙(規則 26)  Replacement form (Rule 26)
PCT/JP2003/001993 2002-03-01 2003-02-25 Hard metal alloy member and method for manufacture thereof WO2003074745A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003211455A AU2003211455A1 (en) 2002-03-01 2003-02-25 Hard metal alloy member and method for manufacture thereof
JP2003573189A JP4417115B2 (en) 2002-03-01 2003-02-25 Hard metal alloy member and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-104529 2002-03-01
JP2002104529 2002-03-01

Publications (1)

Publication Number Publication Date
WO2003074745A1 true WO2003074745A1 (en) 2003-09-12

Family

ID=27785565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001993 WO2003074745A1 (en) 2002-03-01 2003-02-25 Hard metal alloy member and method for manufacture thereof

Country Status (3)

Country Link
JP (1) JP4417115B2 (en)
AU (1) AU2003211455A1 (en)
WO (1) WO2003074745A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072485A1 (en) * 2006-11-24 2008-06-19 Kazuo Ogasa High-performance elastic metal alloy member and process for production thereof
JP2011195930A (en) * 2010-03-23 2011-10-06 Kumamoto Univ Magnesium alloy and method for producing the same
WO2012169285A1 (en) * 2011-06-06 2012-12-13 株式会社スリーオー Fine crystallite high-performance metal alloy member and method for manufacturing same
CN114164365A (en) * 2021-12-06 2022-03-11 重庆大学 High-plasticity rapidly-degradable magnesium alloy and preparation method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174535A (en) * 1982-04-07 1983-10-13 Hashimoto Kasei Kogyo Kk Manufacture of aluminum-zirconium mother alloy
JPS6338553A (en) * 1986-08-01 1988-02-19 Kobe Steel Ltd Aluminum alloy having superior thermal neutron absorbing power
JPH03188233A (en) * 1989-12-14 1991-08-16 Seiko Instr Inc Surface hardened color silver alloy
JPH0649579A (en) * 1992-07-01 1994-02-22 Mitsui Mining & Smelting Co Ltd Gadolinium-containing high-strength magnesium alloy
JPH0790517A (en) * 1993-09-17 1995-04-04 Chichibu Onoda Cement Corp Aluminum-base alloy
JPH07207384A (en) * 1994-01-14 1995-08-08 Tanaka Kikinzoku Kogyo Kk Ag or agcu alloy for ornament to be brazed
EP0685565A1 (en) * 1993-09-06 1995-12-06 Mitsubishi Materials Corporation Golden ornament material hardened by alloying with minor components
US5518691A (en) * 1993-07-29 1996-05-21 Tanaka Kikinzoku Kogyo K.K. Precious metal material
JPH09263871A (en) * 1996-03-29 1997-10-07 Mitsui Mining & Smelting Co Ltd Hot forged product made of high strength magnesium alloy and its production
EP0819773A1 (en) * 1995-04-07 1998-01-21 Kazuo Ogasa High-purity hard gold alloy and process for production thereof
US5820818A (en) * 1996-08-08 1998-10-13 Sumitomo Metal Industries, Ltd. Stainless steel having excellent thermal neutron absorption ability
JPH1180861A (en) * 1997-09-05 1999-03-26 Fujikura Ltd High strength and high conductivity copper alloy wire rod and its production
JPH11229072A (en) * 1998-02-13 1999-08-24 Kubota Corp High speed steel type cast iron material containing crystallized graphite, excellent in surface roughing resistance

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174535A (en) * 1982-04-07 1983-10-13 Hashimoto Kasei Kogyo Kk Manufacture of aluminum-zirconium mother alloy
JPS6338553A (en) * 1986-08-01 1988-02-19 Kobe Steel Ltd Aluminum alloy having superior thermal neutron absorbing power
JPH03188233A (en) * 1989-12-14 1991-08-16 Seiko Instr Inc Surface hardened color silver alloy
JPH0649579A (en) * 1992-07-01 1994-02-22 Mitsui Mining & Smelting Co Ltd Gadolinium-containing high-strength magnesium alloy
US5518691A (en) * 1993-07-29 1996-05-21 Tanaka Kikinzoku Kogyo K.K. Precious metal material
EP0685565A1 (en) * 1993-09-06 1995-12-06 Mitsubishi Materials Corporation Golden ornament material hardened by alloying with minor components
JPH0790517A (en) * 1993-09-17 1995-04-04 Chichibu Onoda Cement Corp Aluminum-base alloy
JPH07207384A (en) * 1994-01-14 1995-08-08 Tanaka Kikinzoku Kogyo Kk Ag or agcu alloy for ornament to be brazed
EP0819773A1 (en) * 1995-04-07 1998-01-21 Kazuo Ogasa High-purity hard gold alloy and process for production thereof
JPH09263871A (en) * 1996-03-29 1997-10-07 Mitsui Mining & Smelting Co Ltd Hot forged product made of high strength magnesium alloy and its production
US5820818A (en) * 1996-08-08 1998-10-13 Sumitomo Metal Industries, Ltd. Stainless steel having excellent thermal neutron absorption ability
JPH1180861A (en) * 1997-09-05 1999-03-26 Fujikura Ltd High strength and high conductivity copper alloy wire rod and its production
JPH11229072A (en) * 1998-02-13 1999-08-24 Kubota Corp High speed steel type cast iron material containing crystallized graphite, excellent in surface roughing resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072485A1 (en) * 2006-11-24 2008-06-19 Kazuo Ogasa High-performance elastic metal alloy member and process for production thereof
JPWO2008072485A1 (en) * 2006-11-24 2010-03-25 和男 小笠 High performance elastic metal alloy member and manufacturing method thereof
JP2011195930A (en) * 2010-03-23 2011-10-06 Kumamoto Univ Magnesium alloy and method for producing the same
WO2012169285A1 (en) * 2011-06-06 2012-12-13 株式会社スリーオー Fine crystallite high-performance metal alloy member and method for manufacturing same
JP2012251235A (en) * 2011-06-06 2012-12-20 Three O Co Ltd Fine crystallite high-performance metal alloy member, and manufacturing method therefor
CN103748243A (en) * 2011-06-06 2014-04-23 株式会社斯立欧 Fine crystallite high-performance metal alloy member and method for manufacturing same
CN114164365A (en) * 2021-12-06 2022-03-11 重庆大学 High-plasticity rapidly-degradable magnesium alloy and preparation method thereof

Also Published As

Publication number Publication date
JP4417115B2 (en) 2010-02-17
AU2003211455A1 (en) 2003-09-16
JPWO2003074745A1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4660735B2 (en) Method for producing copper-based alloy sheet
KR101336495B1 (en) Method of Producing a Precipitate -type Copper Alloy Material for Electronic Machinery and Tools
JP4230218B2 (en) Hard noble metal alloy member and manufacturing method thereof
JPWO2008072485A1 (en) High performance elastic metal alloy member and manufacturing method thereof
HU228707B1 (en) Method for producing copper alloy band or bar
JPS5834536B2 (en) Copper alloy for lead material of semiconductor equipment
WO2012169285A1 (en) Fine crystallite high-performance metal alloy member and method for manufacturing same
JP2007039804A (en) Copper alloy for electronic apparatus and method of producing the same
JP2007039804A5 (en)
JP2002069550A (en) Metallic material, sputtering target material for thin film deposition and thin film
TWI763982B (en) Copper alloy plate and method for producing same
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
WO2003074745A1 (en) Hard metal alloy member and method for manufacture thereof
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JP2007270305A (en) Cu-Cr-Si-BASED ALLOY AND Cu-Cr-Si-BASED ALLOY FOIL FOR ELECTRICAL/ELECTRONIC COMPONENT
JPH03188247A (en) Production of high strength and high conductivity copper alloy excellent in bendability
JPS6365039A (en) Copper alloy for electronic and electrical equipment
KR20010023699A (en) Copper based alloy featuring precipitation hardening and solid-solution hardening
JPS6046340A (en) Copper alloy for lead frame
JP2009030146A (en) High performance elastic metal alloy member, and method for producing the same
JPS6250426A (en) Copper alloy for electronic appliance
CN1295367C (en) Production of TiNiPd shape memory alloy thin membrane by cold rolling superthin laminated alloy
JPS63109132A (en) High-strength conductive copper alloy and its production
JP3982793B2 (en) Ag alloy reflective film for display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CH CN DE ES IN IS JP KR LK MX PH RU SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IE IT NL SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003573189

Country of ref document: JP

122 Ep: pct application non-entry in european phase