JP3982793B2 - Ag alloy reflective film for display device - Google Patents

Ag alloy reflective film for display device Download PDF

Info

Publication number
JP3982793B2
JP3982793B2 JP2001279661A JP2001279661A JP3982793B2 JP 3982793 B2 JP3982793 B2 JP 3982793B2 JP 2001279661 A JP2001279661 A JP 2001279661A JP 2001279661 A JP2001279661 A JP 2001279661A JP 3982793 B2 JP3982793 B2 JP 3982793B2
Authority
JP
Japan
Prior art keywords
film
reflectance
alloy
display device
reflective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001279661A
Other languages
Japanese (ja)
Other versions
JP2003089830A (en
Inventor
英夫 村田
勉 高橋
育男 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Geomatec Co Ltd
Original Assignee
Hitachi Metals Ltd
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Geomatec Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001279661A priority Critical patent/JP3982793B2/en
Publication of JP2003089830A publication Critical patent/JP2003089830A/en
Application granted granted Critical
Publication of JP3982793B2 publication Critical patent/JP3982793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
本発明は、例えば液晶ディスプレイ、プラズマディスプレイパネル(以下、PDP)、フィールドエミッションディスプレイ(以下、FED)、エレクトロルミネッセンス(以下、EL)等の平面表示装置や、電子ペーパー等に利用される電気泳動型ディスプレイにおいて、高い光学反射率と耐食性、パターニング性、延性、密着性が要求される表示装置用Ag合金反射膜に関するものである。
【0002】
【従来の技術】
従来、液晶表示装置は、光源(ランプ)を内蔵し背面から照射することで高い表示品質を有する透過型液晶ディスプレイが一般的であった。しかし、透過型液晶ディスプレイは光源であるバックライトの消費電力が大きく、電池駆動の携帯情報端末としては使用時間が短くなると言う問題があった。このため、近年、外光を効率よく利用しバックライトを基本的に使用しない反射型液晶ディスプレイの開発や、反射型と従来の透過型を組み合わせた半透過型液晶ディスプレイの開発が行われている。
【0003】
このような反射型、半透過型ディスプレイに用いる反射膜、反射膜と導電膜である電極、配線膜を兼用するディスプレイ用途には、金属の中でも可視光域の反射率の高く、電気抵抗も低い元素であるAlまたはAl合金薄膜が多く用いられてきた。しかし、近年、ディスプレイの表示品質向上のために、その反射膜にはペーパーホワイトと呼ばれる高い反射と可視光域でフラットな反射特性が求められている。また、高精細化を図るためにより低抵抗な材料が求められている。このため、Alより反射率の高くかつ低抵抗なAgが注目されている。
【0004】
【発明が解決しようとする課題】
上述のAl系反射膜の場合、液晶ディスプレイの製造工程中の加熱工程でヒロック等が発生したり、また粒成長により反射率が低下する問題がある。このため、上記ヒロックや粒成長の抑制のために、Alに遷移金属であるTi、Ta等の耐食性向上元素を添加するAl合金が用いられている。このAl合金により液晶ディスプレイ製造時の反射率低減は抑制できる。しかし、素材の反射率そのものが低下してしまう問題がある。
【0005】
一方、Alより反射率の高いAg反射膜の場合、液晶ディスプレイ用の基板であるガラスやプラスチックに対しての密着性が低く、プロセス中に剥がれが生じるという問題がある。さらに、この密着性が低いことに起因し、ディスプレイの製造時の加熱工程等で膜が凝集し大幅に反射率が低下すると共に、抵抗値が増加してしまう。また、耐食性が低く、基板上に成膜した後、1日程度大気に放置しただけで変色し、黄色味を帯びた反射特性となる。そして、ディスプレイの製造時に使用する薬液により腐食され、大幅に反射率が低下し、抵抗値も増加してしまう問題があった。
【0006】
以上の問題を解決するために、特開平9−324264にはAuを0.1〜2.5at%、Cuを0.3〜3at%添加したAg合金が、特開平11−119664には接着層上にPt、Pd、Au、Cu、Niを添加したAg合金が提案されている。さらに、用途は異なるが、反射膜として特開2000−109943にはAgにPdを0.5〜4.5at%添加した合金が、特開2001−192752にはAgにPdを0.1〜3wt%、Al、Au、Pt、Cu、Ta、Cr、Ti等を0.1〜3wt%含有した合金が提案されている。
【0007】
しかし、Pd、Ni等はわずかに添加するだけで反射率が低下し、特に可視光域の低波長側での反射率の低下が大きい問題がある。またAuとCuを添加した場合は反射率の低下は少ないが耐熱性に問題がある。また、Ta、Cr、Tiを添加すると反射率が低下するとともに大幅に抵抗値が増加し、Agの持つ低抵抗な特徴が失われてしまう。
【0008】
本発明の目的は、例えば反射型液晶ディスプレイ、FED、有機EL等のような平面表示装置、樹脂フィルム基板等のフレキシブルな曲面表示装置等において要求される高い反射率と低抵抗、プロセス中での耐熱性、耐食性を兼ね備え、さらに基板への密着性を改善した表示装置用Ag合金反射膜を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するべく、鋭意検討を行った結果、Agに、選択した元素を加えた反射膜とすることにより、本来Agの持つ高い反射率を大きく低下させることなく耐熱性、耐環境性を向上し、さらに基板への密着性も改善できることを見いだし、本発明に到達した。
【0010】
すなわち、本発明は、Ce、Nd、Gdの群から選ばれる1種または2種以上の元素を合計で0.1〜2at%、さらにCu、Au、Pd、Ptの群から選ばれる1種または2種以上の元素を合計で0.1〜1at%含み、残部Agおよび不可避的不純物からなるAg合金膜からなり、かつ該Ag合金膜の膜厚が50〜300nmであることを特徴とする表示装置用Ag合金反射膜である。そのうち、Cu、Au、Pd、Ptの群からPdを選択し、Pdを0.1〜0.45at%含むことを特徴とする表示装置用Ag合金反射膜である。
【0012】
本発明の特徴は、素材自体の反射率が高いAgを基として、そのAg膜の有する密着性や耐食性、耐熱性といった課題を補償するに最適な合金構成を見だしたところにある。具体的には、Ce、Nd、Gdから選ばれる1種または2種以上の元素を合計で0.1〜2at%、さらにCu、Au、Pd、Ptの群から選ばれる1種または2種以上の元素を合計で0.1〜1at%含み、残部Agおよび不可避的不純物からなる表示装置用Ag合金反射膜であり、特には、そのCu、Au、Pd、Ptの群からPdを選択し、Pdを0.1〜0.45at%含む表示装置用Ag合金反射膜である。そして、同組成のスパッタリングターゲットであれば、本発明のAg合金膜の形成に有効である。
【0013】
通常、Agの反射膜を作製すると、膜としての反射率は高いものの、その反射膜を用いて製品(例えば液晶ディスプレイなど)を作製する際のプロセスにおいて反射率が低下してしまうという問題があることは、上述の通りである。そこで、本発明では、AgにCe、Nd、Gdの群から選ばれる1種または2種以上の元素とCu、Au、Pd、Ptの群から選ばれる1種または2種以上の元素とを適量添加することにより、素材自体の反射率を大きく低下させることなく、プロセス過程での反射率の低下を抑制した反射膜を作製することができる。
【0014】
例えば液晶ディスプレイ、有機ELといった製品の製造工程では、その反射膜を形成した後に何度かの加熱処理を伴う工程があり、その際の加工工程にてAg反射膜は反射率が低下する。つまり、加熱による膜成長や凝集等が起こり、膜表面はより凹凸のある形状となったり、ボイドが発生したりする。そして、その加熱雰囲気によっては膜表面が変色し、これも反射率の低下の原因となる。この場合であっても、本発明の表示装置用Ag合金反射膜は高い反射率を維持できる。そして、膜自体の変質も少ないため、低い抵抗値を維持することもできる。
【0015】
本発明のAg合金反射膜は、Ce、Nd、Gdの群から選ばれる1種または2種以上の元素を合計で0.1〜2at%、さらにCu、Au、Pd、Ptの群から選ばれる1種または2種以上の元素を合計で0.1〜1at%添加するものである。これは、Ce、Nd、Gdの合計量が0.1at%未満ではその含有による耐食性の改善効果がなく、2at%を超えると十分な反射率を維持・確保できないためである。好ましくは0.2〜0.5at%であり、さらに高い反射率に加えて、耐熱性の向上の上でも望ましい。
【0016】
また、同時に添加するCu、Au、Pd、Ptの群から選ばれる1種または2種以上の元素の合計量が0.1at%未満ではヒロックの抑制効果が少なく、1at%を越えると可視光域の低波長側での反射率が低下してしまう。よって、Cu、Au、Pd、Ptは合計で0.1〜1at%とする。なお、それら元素のうちPdは膜の低抵抗を維持するに好ましい。Pdを選択した際には、Pdを0.1〜0.45at%とすることで、さらに高い反射率と低抵抗な表示装置用Ag合金膜を得ることが可能となる。
【0017】
本発明の上記元素群の含有による反射膜の、その反射率の維持または向上の理由は明確ではない。しかし、本発明で選定したCe、Nd、Gdの添加元素はAgと化合物を形成し易く、粒界に析出し易いことからAg粒界腐食を抑制し、耐環境性を向上させるものと考えられる。そして、さらにAgより融点が高く、Agと混ざり易いCu、Au、Pd、Ptを添加することで、原子の拡散を遅らせヒロックの発生を抑制して、高い反射率を維持できるものと考えられる。
【0018】
また、粒界でのAgとCe、Nd、Gdの化合物の析出と、粒内に滞留するCu、Au、Pd、Ptの相互効果により、加熱工程での原子の移動に伴う粒成長や凝集が抑制されるため、耐熱性が向上する。そして、微細で平滑な表面の膜形態となるために反射率の低下を抑制できる。さらに、これら元素の添加により膜応力が低減される効果と、凝集抑制の両方の効果により、密着性が改善されると考えられる。
【0019】
本発明の表示装置用Ag合金反射膜は、安定した反射率を得るために膜厚としては50〜300nmとすることが好ましい。50nm未満であると、膜の表面形態が変化し易く、さらに例えば平面表示装置に用いた場合に光が透過するために、反射率が低下する。一方、300nmを超える膜厚であると、反射率は大きく変化しないが、膜を形成する際に時間が掛かる。なお、半透過膜として利用する場合には10〜50nmとすることが可能である。
【0020】
本発明の表示装置用Ag合金反射膜を形成する場合、ターゲットを用いたスパッタリングが最適である。スパッタリング法ではターゲット材とほぼ同組成の膜が容易に形成できるためであり、本発明の表示装置用Ag合金反射膜を安定に形成することが可能となる。このため、本発明のスパッタリングターゲットは、Ce、Nd、Gdの群から選ばれる1種または2種以上の元素を合計で0.1〜2at%、さらにCu、Au、Pd、Ptの群から選ばれる1種または2種以上の元素を合計で0.1〜1at%含み、残部Agおよび不可避的不純物からなる。そして、Cu、Au、Pd、Ptの群からPdを選択する場合は、Pdを0.1〜0.45at%含むスパッタリングターゲットである。
【0021】
ターゲットの製造方法については種々あるが、一般にターゲットに要求される高純度、均一組織、高密度等を達成できるものであれば良い。例えば、真空溶解法により所定の組成に調整した後、金属製の鋳型に鋳込み、さらにその後、鍛造、圧延等により板状に加工し、機械加工により所定の形状のターゲットに仕上げることで製造できる。
【0022】
本発明の表示装置用Ag合金反射膜をスパッタリングにより形成する場合、その際に用いる基板として、ガラス基板、Siウェハーを用いることが好適ではあるが、スパッタリングで薄膜を形成できるものであればよく、例えば樹脂基板、金属基板であってもよい。
【0023】
【実施例】
(実施例1)
評価する電子部品用Ag合金膜の目標組成と実質的に同一となるように真空溶解法で調整、鋳造してインゴットを作製し、冷間圧延にて板状に加工した後、機械加工により直径100mm、厚さ5mmのターゲットを作製した。そのターゲットを用いたスパッタリングにより、表面の平滑なガラス基板またはSiウェハー上に膜厚200nmのAg合金膜を形成し、同様に形成した純Ag膜も合わせて、光学反射率計を用いてその可視光域での平均反射率を測定した。
【0024】
さらに、所定製品としての製造工程を経た後での反射率を評価するために、上記形成した純Ag膜、Ag合金膜を温度250℃、2時間の大気中で加熱処理した後の反射率、環境試験として温度60℃、湿度90%の環境に24h放置した際の反射率、そして、プロセス試験として、60℃の純水に30分間浸漬した後の反射率を測定した。また、膜の密着性を評価するために、加熱処理を行なった純Ag膜、Ag合金膜に2mm間隔で碁盤の目状に切れ目を入れた後、膜表面にテープを貼り、引き剥がした。その際に基板上に残った桝目を面積率で表わし、密着力として評価した。以上の測定した結果を表1に示す。
【0025】
【表1】

Figure 0003982793
【0026】
純Ag膜(No.1)は、成膜時にて99%を超える非常に高い反射率を有するが、加熱処理、環境試験を行なうと大幅に反射率が低下するとともに、その密着性も低いことがわかる。また、従来提案されているAgにPd、Cu、Auを添加したAg合金膜(No.19,20,21)では、成膜時の反射率は高いが、加熱処理後の反射率が90%未満に低下し耐熱性が低い。さらに、AgにNdやGdを添加したAg合金膜(No.14,22)では、プロセス試験後の反射率と密着性の低下が大きいことがわかる。
【0027】
一方、AgにCe、Nd、Gdの群から選ばれる1種または2種以上の元素とCu、Au、Pd、Ptの群から選ばれる1種または2種以上の元素を含むAg合金膜は、成膜時の反射率については純Ag膜やAgにCu、Au、Pdを加えたAg合金膜より低いが、熱処理後、環境試験後、プロセス試験後でも高い反射率を維持し、密着性も大幅に改善されていることがわかる。そして、その改善効果は上記添加量の増加により向上し、各群の合計量が0.1at%以上で明確となり、各試験を行なった後も93%以上の反射率を維持している。
【0028】
しかし、これら添加量が増加すると各試験後の反射率の低下こそ少ないが、成膜時の反射率が低下し、93%以上の反射率が得難くなる(No.4,7,11)。Ce、Nd、Gdはその合計量が2at%を超えると93%以上の反射率の維持が難しくなり、Cu、Au、Pd、Ptもその合計量が1at%を越えると反射率が大きく低下する。
【0029】
純Al膜の反射率は、その成膜時から製品に亘って92%程度であるところ、本発明のAg合金膜であればこれ以上の反射率を達成することが可能である。本発明のAg合金膜において96%以上のより高い反射率を安定して得るには、Ce、Nd、Gdから選ばれる元素の含有量を合計で0.2〜0.5at%、Cu、Au、Pd、Ptから選ばれる元素の含有量を合計で0.3〜0.5at%とすることが望ましい。また、本発明のAg合金膜はいずれも5μΩcm以下の比抵抗を有し、低抵抗な金属膜としての利用にも適している。
【0030】
(実施例2)
実施例1と同様にターゲットを作製、スパッタリングにより、AgにCe、Nd、Gdのいずれかまたは複数とPdを添加したAg合金膜を形成した。そして、成膜時、プロセス試験後の可視光域での平均反射率、さらにプロセス試験後については短波長側の400nmの反射率も、同様に形成した純Ag膜なども合わせて測定した。結果を表2に示す。
【0031】
【表2】
Figure 0003982793
【0032】
プロセス試験後において、純Ag膜(No.23)の反射率は可視光域の短波長側で低下している。これに従い、Ag合金膜であってもプロセス試験後の短波長側の反射率は低下するが、Ce、Nd、Gdを添加することでその低下率を低くすることができる。そして、Pdを添加することで低抵抗かつ可視光域での平均反射率自体を高く維持させることができる。
【0033】
この場合、Pdの添加量が増加すると短波長側での反射率が低下し、0.5at%を越えると85%以上の反射率が得難くなる。表2において、Ce、Nd、Gdを0.1〜2at%、Pdを選択して0.1〜0.45at%含有したAg合金膜とすることで、プロセス試験後の400nmの短波長側であっても85%以上の反射率を維持でき、平均反射率との差が少なく光学的にフラットな反射率が安定して得られていることがわかる。平均反射率、400nmの反射率の両方でより高い反射率を得るには、その含有量がCe、Nd、Gdの合計で0.2〜0.5at%、Pdは0.2〜0.4at%が好ましい。
【0034】
本発明であれば、高い反射率と耐熱性、耐環境性、そして基板との密着性を改善した表示装置用Ag合金反射膜を得ることが可能である。よって、携帯情報端末等に用いられる低消費電力が要求される反射型液晶ディスプレイ等の平面表示装置に有用であり、産業上の価値は高い。[0001]
The present invention is an electrophoretic type used in flat display devices such as liquid crystal displays, plasma display panels (hereinafter referred to as PDP), field emission displays (hereinafter referred to as FED), electroluminescence (hereinafter referred to as EL), and electronic paper. in the display, it relates to a high optical reflectivity and corrosion resistance, patterning properties, ductility, Ag alloy reflective film for a display device which adhesion is required.
[0002]
[Prior art]
Conventionally, a transmissive liquid crystal display having a high display quality by incorporating a light source (lamp) and irradiating it from the back is generally used as the liquid crystal display device. However, the transmissive liquid crystal display has a problem that the power consumption of the backlight, which is a light source, is large, and the use time is shortened as a battery-driven portable information terminal. For this reason, in recent years, the development of reflective liquid crystal displays that efficiently use external light and basically do not use a backlight, and the development of transflective liquid crystal displays that combine a reflective type and a conventional transmissive type have been carried out. .
[0003]
Reflective films used in such reflective and transflective displays, electrodes that are reflective films and conductive films, and display applications that also serve as wiring films, have a high visible light reflectance and low electrical resistance among metals. Al or Al alloy thin films, which are elements, have been often used. However, in recent years, in order to improve the display quality of the display, the reflective film is required to have high reflection called paper white and flat reflection characteristics in the visible light range. In addition, there is a demand for a material with lower resistance in order to achieve higher definition. For this reason, Ag having higher reflectivity and lower resistance than Al is attracting attention.
[0004]
[Problems to be solved by the invention]
In the case of the above-described Al-based reflective film, there are problems that hillocks and the like are generated in the heating process during the manufacturing process of the liquid crystal display, and the reflectivity is lowered due to grain growth. For this reason, in order to suppress the hillock and grain growth, an Al alloy is used in which a corrosion resistance improving element such as Ti or Ta which is a transition metal is added to Al. With this Al alloy, it is possible to suppress a reduction in reflectivity when manufacturing a liquid crystal display. However, there is a problem that the reflectance of the material itself is lowered.
[0005]
On the other hand, in the case of an Ag reflecting film having a higher reflectance than Al, there is a problem that the adhesion to glass or plastic, which is a substrate for a liquid crystal display, is low, and peeling occurs during the process. Further, due to the low adhesion, the film is aggregated in the heating process at the time of manufacturing the display and the reflectivity is greatly lowered, and the resistance value is increased. In addition, the corrosion resistance is low, and after forming a film on the substrate, it is discolored just by leaving it in the atmosphere for about one day, resulting in a yellowish reflection characteristic. And it corroded by the chemical | medical solution used at the time of manufacture of a display, there existed a problem that a reflectance will fall significantly and resistance value would also increase.
[0006]
In order to solve the above problems, Japanese Patent Application Laid-Open No. 9-324264 includes an Ag alloy added with 0.1 to 2.5 at% Au and 0.3 to 3 at% Cu, and Japanese Patent Application Laid-Open No. 11-119664 discloses an adhesive layer. An Ag alloy to which Pt, Pd, Au, Cu, and Ni are added has been proposed. Furthermore, although the application is different, as an reflecting film, JP 2000-109943 discloses an alloy obtained by adding 0.5 to 4.5 at% of Pd to Ag, and JP 2001-192752 discloses 0.1 to 3 wt. An alloy containing 0.1 to 3 wt% of Al, Au, Pt, Cu, Ta, Cr, Ti and the like has been proposed.
[0007]
However, there is a problem that the reflectance is lowered by adding a small amount of Pd, Ni or the like, and the reflectance is greatly lowered particularly on the low wavelength side in the visible light region. In addition, when Au and Cu are added, there is a problem in heat resistance although there is little decrease in reflectance. Further, when Ta, Cr, or Ti is added, the reflectance is lowered and the resistance value is greatly increased, and the low resistance characteristic of Ag is lost.
[0008]
An object of the present invention is to provide high reflectivity and low resistance required in a flat display device such as a reflective liquid crystal display, FED, and organic EL, and a flexible curved display device such as a resin film substrate. It is an object to provide an Ag alloy reflective film for a display device which has both heat resistance and corrosion resistance and has improved adhesion to a substrate.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have made a reflective film obtained by adding a selected element to Ag without significantly reducing the high reflectance inherent in Ag. The present inventors have found that heat resistance and environment resistance can be improved and adhesion to a substrate can be improved, and the present invention has been achieved.
[0010]
That is, in the present invention, one or more elements selected from the group of Ce, Nd, and Gd are combined in a total amount of 0.1 to 2 at%, and one or more elements selected from the group of Cu, Au, Pd, and Pt are used. two or more elements comprises 0.1~1At% in total, made of an Ag alloy film consisting of the balance Ag and inevitable impurities, and the film thickness of the Ag alloy film is characterized in that it is a 50~300nm display It is an Ag alloy reflective film for devices . Of these, an Ag alloy reflective film for a display device , wherein Pd is selected from the group of Cu, Au, Pd, and Pt, and 0.1 to 0.45 at% of Pd is contained.
[0012]
The feature of the present invention lies in finding an optimum alloy configuration for compensating for the problems such as adhesion, corrosion resistance, and heat resistance of the Ag film based on Ag having high reflectivity of the material itself. Specifically, one or two or more elements selected from Ce, Nd, and Gd are combined in a total amount of 0.1 to 2 at%, and one or more elements selected from the group of Cu, Au, Pd, and Pt. Is a Ag alloy reflective film for a display device comprising a total of 0.1 to 1 at% of the elements and the balance Ag and unavoidable impurities , and in particular, selecting Pd from the group of Cu, Au, Pd, and Pt, An Ag alloy reflective film for a display device containing 0.1 to 0.45 at% of Pd. And if it is a sputtering target of the same composition, it is effective for formation of the Ag alloy film of this invention.
[0013]
Usually, when a reflective film of Ag is produced, the reflectance as the film is high, but there is a problem that the reflectance is lowered in a process for producing a product (for example, a liquid crystal display) using the reflective film. This is as described above. Therefore, in the present invention, Ag contains an appropriate amount of one or more elements selected from the group of Ce, Nd, and Gd and one or more elements selected from the group of Cu, Au, Pd, and Pt. By adding, the reflective film which suppressed the fall of the reflectance in a process process can be produced, without reducing the reflectance of material itself.
[0014]
For example, in a manufacturing process of a product such as a liquid crystal display or an organic EL, there is a process that involves several heat treatments after the reflective film is formed, and the reflectance of the Ag reflective film is lowered during the processing process. That is, film growth, aggregation, and the like occur due to heating, and the film surface has a more uneven shape or voids. And depending on the heating atmosphere, the film surface may be discolored, which also causes a decrease in reflectance. Even in this case, the Ag alloy reflective film for a display device of the present invention can maintain a high reflectance. And since there is little alteration of the film itself, a low resistance value can also be maintained.
[0015]
The Ag alloy reflective film of the present invention is selected from the group of one or more elements selected from the group of Ce, Nd, and Gd in a total of 0.1 to 2 at%, and further selected from the group of Cu, Au, Pd, and Pt. One or two or more elements are added in a total amount of 0.1 to 1 at%. This is because if the total amount of Ce, Nd, and Gd is less than 0.1 at%, there is no effect of improving the corrosion resistance due to the inclusion, and if it exceeds 2 at%, sufficient reflectance cannot be maintained and secured. Preferably, it is 0.2 to 0.5 at%, and it is desirable for improving heat resistance in addition to higher reflectance.
[0016]
Further, if the total amount of one or more elements selected from the group of Cu, Au, Pd, and Pt added at the same time is less than 0.1 at%, the effect of suppressing hillocks is small, and if it exceeds 1 at%, the visible light region is exceeded. As a result, the reflectance on the low wavelength side decreases. Therefore, Cu, Au, Pd, and Pt are 0.1 to 1 at% in total. Of these elements, Pd is preferable for maintaining the low resistance of the film. When Pd is selected, it is possible to obtain an Ag alloy film for a display device with higher reflectance and low resistance by setting Pd to 0.1 to 0.45 at%.
[0017]
The reason for maintaining or improving the reflectance of the reflective film containing the above element group of the present invention is not clear. However, it is considered that the additive elements of Ce, Nd, and Gd selected in the present invention easily form a compound with Ag and easily precipitate at the grain boundary, thereby suppressing Ag grain boundary corrosion and improving environmental resistance. . Further, it is considered that by adding Cu, Au, Pd, and Pt, which has a higher melting point than Ag and is easily mixed with Ag, it is possible to delay the diffusion of atoms, suppress the generation of hillocks, and maintain a high reflectance.
[0018]
In addition, the precipitation of Ag and Ce, Nd, Gd compounds at the grain boundaries and the mutual effect of Cu, Au, Pd, Pt staying in the grains, grain growth and aggregation accompanying the movement of atoms in the heating process. Since it is suppressed, heat resistance is improved. And since it becomes the film | membrane form of a fine and smooth surface, the fall of a reflectance can be suppressed. Furthermore, it is considered that the adhesion is improved by the effect of reducing the film stress by the addition of these elements and the effect of suppressing aggregation.
[0019]
The Ag alloy reflective film for a display device of the present invention preferably has a thickness of 50 to 300 nm in order to obtain a stable reflectance. When the thickness is less than 50 nm, the surface form of the film is easily changed, and further, for example, when used in a flat display device, light is transmitted, so that the reflectance is lowered. On the other hand, if the film thickness exceeds 300 nm, the reflectance does not change greatly, but it takes time to form the film. In addition, when using as a semipermeable membrane, it is possible to set it as 10-50 nm.
[0020]
When forming the Ag alloy reflective film for a display device of the present invention, sputtering using a target is optimal. This is because the sputtering method can easily form a film having almost the same composition as the target material, and the Ag alloy reflective film for a display device of the present invention can be stably formed. For this reason, the sputtering target of the present invention is selected from a total of 0.1 to 2 at% of one or more elements selected from the group of Ce, Nd, and Gd, and further selected from the group of Cu, Au, Pd, and Pt. One or two or more elements are contained in a total of 0.1 to 1 at%, and the remainder is composed of Ag and inevitable impurities . And when selecting Pd from the group of Cu, Au, Pd, and Pt, it is a sputtering target containing 0.1 to 0.45 at% of Pd.
[0021]
There are various methods for producing the target, and any method can be used as long as it can achieve the high purity, uniform structure, high density and the like generally required for the target. For example, it can be manufactured by adjusting to a predetermined composition by a vacuum melting method, casting into a metal mold, then processing into a plate shape by forging, rolling, etc., and finishing to a target having a predetermined shape by machining.
[0022]
When the Ag alloy reflective film for a display device of the present invention is formed by sputtering, it is preferable to use a glass substrate or a Si wafer as a substrate used at that time, as long as a thin film can be formed by sputtering. For example, a resin substrate or a metal substrate may be used.
[0023]
【Example】
Example 1
An ingot is prepared by adjusting and casting by a vacuum melting method so that it is substantially the same as the target composition of the Ag alloy film for electronic parts to be evaluated. A target with a thickness of 100 mm and a thickness of 5 mm was produced. By sputtering using the target, an Ag alloy film having a film thickness of 200 nm is formed on a glass substrate or Si wafer having a smooth surface, and a pure Ag film formed in the same manner is combined with the visible light using an optical reflectometer. The average reflectance in the light region was measured.
[0024]
Furthermore, in order to evaluate the reflectivity after passing through the manufacturing process as a predetermined product, the reflectivity after heat-treating the formed pure Ag film and Ag alloy film in the atmosphere at a temperature of 250 ° C. for 2 hours, As an environmental test, the reflectance when left in an environment of 60 ° C. and 90% humidity for 24 hours, and as a process test, the reflectance after being immersed in pure water at 60 ° C. for 30 minutes were measured. Further, in order to evaluate the adhesion of the film, the heat-treated pure Ag film or Ag alloy film was cut into a grid pattern at intervals of 2 mm, and then a tape was attached to the film surface and peeled off. At that time, the cells remaining on the substrate were expressed by area ratio and evaluated as adhesion. Table 1 shows the measurement results.
[0025]
[Table 1]
Figure 0003982793
[0026]
The pure Ag film (No. 1) has a very high reflectivity exceeding 99% at the time of film formation, but when the heat treatment and the environmental test are performed, the reflectivity is greatly lowered and the adhesion is also low. I understand. Further, in the conventionally proposed Ag alloy films (No. 19, 20, and 21) in which Pd, Cu, and Au are added to Ag, the reflectivity during film formation is high, but the reflectivity after heat treatment is 90%. The heat resistance is low. Furthermore, it can be seen that in the Ag alloy films (Nos. 14 and 22) in which Nd or Gd is added to Ag, the reflectance and adhesiveness after the process test are greatly reduced.
[0027]
On the other hand, an Ag alloy film containing one or more elements selected from the group of Ce, Nd, and Gd and one or more elements selected from the group of Cu, Au, Pd, and Pt in Ag, The reflectivity at the time of film formation is lower than that of pure Ag film or Ag alloy film in which Cu, Au, Pd is added to Ag, but it maintains a high reflectivity even after heat treatment, environmental test, and process test, and also has good adhesion. It can be seen that there is a significant improvement. And the improvement effect is improved by the increase in the addition amount, the total amount of each group becomes clear when it is 0.1 at% or more, and the reflectance of 93% or more is maintained after each test.
[0028]
However, when these addition amounts increase, the decrease in reflectivity after each test is small, but the reflectivity during film formation decreases and it becomes difficult to obtain a reflectivity of 93% or more (No. 4, 7, 11). When the total amount of Ce, Nd, and Gd exceeds 2 at%, it becomes difficult to maintain a reflectance of 93% or more, and when the total amount of Cu, Au, Pd, and Pt exceeds 1 at%, the reflectance greatly decreases. .
[0029]
The reflectivity of a pure Al film is about 92% over the entire product from the time of film formation. However, if the Ag alloy film of the present invention is used, a higher reflectivity can be achieved. In order to stably obtain a higher reflectance of 96% or more in the Ag alloy film of the present invention, the total content of elements selected from Ce, Nd, and Gd is 0.2 to 0.5 at%, Cu, Au The total content of elements selected from Pd, Pd, and Pt is preferably 0.3 to 0.5 at%. Further, any of the Ag alloy films of the present invention has a specific resistance of 5 μΩcm or less and is suitable for use as a low resistance metal film.
[0030]
(Example 2)
A target was prepared in the same manner as in Example 1, and an Ag alloy film in which one or more of Ce, Nd, Gd and Pd and Pd were added to Ag was formed by sputtering. At the time of film formation, the average reflectance in the visible light region after the process test, and after the process test, the reflectance at 400 nm on the short wavelength side were also measured together with the similarly formed pure Ag film and the like. The results are shown in Table 2.
[0031]
[Table 2]
Figure 0003982793
[0032]
After the process test, the reflectance of the pure Ag film (No. 23) decreases on the short wavelength side in the visible light region. Accordingly, even in the case of an Ag alloy film, the reflectance on the short wavelength side after the process test is lowered, but the reduction rate can be lowered by adding Ce, Nd, and Gd. And by adding Pd, it is possible to keep the average reflectance itself in a low resistance and visible light region high.
[0033]
In this case, when the amount of Pd added increases, the reflectance on the short wavelength side decreases, and when it exceeds 0.5 at%, it is difficult to obtain a reflectance of 85% or more. In Table 2, by selecting Ce, Nd, and Gd from 0.1 to 2 at% and selecting Pd as an Ag alloy film containing 0.1 to 0.45 at%, the 400 nm short wavelength side after the process test is obtained. Even if it exists, the reflectance of 85% or more can be maintained, it turns out that there is little difference with an average reflectance, and the optically flat reflectance is obtained stably. In order to obtain a higher reflectance at both the average reflectance and the reflectance at 400 nm, the total content of Ce, Nd, and Gd is 0.2 to 0.5 at%, and Pd is 0.2 to 0.4 at. % Is preferred.
[0034]
If it is this invention, it is possible to obtain the Ag alloy reflective film for display devices which improved the high reflectance, heat resistance, environmental resistance, and adhesiveness with a board | substrate. Therefore, it is useful for a flat display device such as a reflective liquid crystal display which is required for low power consumption used for a portable information terminal or the like, and has high industrial value.

Claims (2)

Ce、Nd、Gdの群から選ばれる1種または2種以上の元素を合計で0.1〜2at%、さらにCu、Au、Pd、Ptの群から選ばれる1種または2種以上の元素を合計で0.1〜1at%含み、残部Agおよび不可避的不純物からなるAg合金膜からなり、かつ該Ag合金膜の膜厚が50〜300nmであることを特徴とする表示装置用Ag合金反射膜。  A total of 0.1 to 2 at% of one or more elements selected from the group of Ce, Nd, and Gd, and one or more elements selected from the group of Cu, Au, Pd, and Pt. Ag alloy reflective film for display device, comprising 0.1 to 1 at% in total, remaining Ag and inevitable impurities, and comprising Ag alloy film having a thickness of 50 to 300 nm . Cu、Au、Pd、Ptの群からPdを選択し、Pdを0.1〜0.45at%含むことを特徴とする請求項1に記載の表示装置用Ag合金反射膜。  2. The Ag alloy reflective film for a display device according to claim 1, wherein Pd is selected from the group consisting of Cu, Au, Pd, and Pt, and 0.1 to 0.45 at% of Pd is contained.
JP2001279661A 2001-09-14 2001-09-14 Ag alloy reflective film for display device Expired - Fee Related JP3982793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279661A JP3982793B2 (en) 2001-09-14 2001-09-14 Ag alloy reflective film for display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279661A JP3982793B2 (en) 2001-09-14 2001-09-14 Ag alloy reflective film for display device

Publications (2)

Publication Number Publication Date
JP2003089830A JP2003089830A (en) 2003-03-28
JP3982793B2 true JP3982793B2 (en) 2007-09-26

Family

ID=19103803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279661A Expired - Fee Related JP3982793B2 (en) 2001-09-14 2001-09-14 Ag alloy reflective film for display device

Country Status (1)

Country Link
JP (1) JP3982793B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029849A (en) * 2003-07-07 2005-02-03 Kobe Steel Ltd Ag ALLOY REFLECTIVE FILM FOR REFLECTOR, REFLECTOR USING THE Ag ALLOY REFLECTIVE FILM, AND Ag ALLOY SPUTTERING TARGET FOR DEPOSITING THE Ag ALLOY REFLECTIVE FILM
JP4384453B2 (en) 2003-07-16 2009-12-16 株式会社神戸製鋼所 Ag-based sputtering target and manufacturing method thereof
JP5159962B1 (en) 2012-01-10 2013-03-13 三菱マテリアル株式会社 Silver alloy sputtering target for forming conductive film and method for producing the same

Also Published As

Publication number Publication date
JP2003089830A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
US7022384B2 (en) Reflective film, reflection type liquid crystal display, and sputtering target for forming the reflective film
WO2006132414A1 (en) Silver alloy having excellent reflectivity/transmissivity maintaining characteristics
JP3856386B2 (en) Sputtering target material
KR100506474B1 (en) Ag FILM AND SPUTTERING-TARGET FOR FORMING THE Ag FILM
JP4305809B2 (en) Ag alloy-based sputtering target material
JP4105956B2 (en) Light reflection film, liquid crystal display device using the same, and sputtering target for light reflection film
KR20050054469A (en) Ag-base alloy wiring/electrode film for flat panel display, ag-base alloy sputtering target, and flat panel display
WO2006132410A1 (en) Silver alloy for electrode, wiring and electromagnetic shielding
JP4671579B2 (en) Ag alloy reflective film and method for producing the same
JP3656898B2 (en) Ag alloy reflective film for flat panel display
JP2004131747A (en) Silver alloy for display device, and display device using electrode film or reflection film formed by using the silver alloy
JP4714477B2 (en) Ag alloy film and manufacturing method thereof
WO2006132412A1 (en) Silver alloy for electrode, wiring and electromagnetic shielding
JP2006028641A (en) Sputtering target, silver alloy film, and method for producing the film
JPWO2006132417A1 (en) Silver alloy with excellent reflectivity and transmittance maintenance characteristics
JP2004277780A (en) Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it
JP3982793B2 (en) Ag alloy reflective film for display device
JP4103067B2 (en) Ag alloy reflective film for flat panel display
JP2004061844A (en) Ag ALLOY FILM FOR DISPLAY DEVICE, Ag ALLOY REFLECTING FILM FOR DISPLAY DEVICE, FLAT PANEL DISPLAY DEVICE AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION
JP3778425B2 (en) Ag alloy film for electronic parts used for display device and sputtering target material for forming Ag alloy film for electronic parts used for display device
JP4062599B2 (en) Ag alloy film for display device, flat display device, and sputtering target material for forming Ag alloy film
JP2002323611A (en) Light-reflecting film, reflection type liquid crystal display element and sputtering target for light- reflecting film
JP3994386B2 (en) Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film
JP3778443B2 (en) Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film
JP2004204254A (en) Ag ALLOY FILM, FLAT PANEL DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees