WO2006132410A1 - Silver alloy for electrode, wiring and electromagnetic shielding - Google Patents

Silver alloy for electrode, wiring and electromagnetic shielding Download PDF

Info

Publication number
WO2006132410A1
WO2006132410A1 PCT/JP2006/311713 JP2006311713W WO2006132410A1 WO 2006132410 A1 WO2006132410 A1 WO 2006132410A1 JP 2006311713 W JP2006311713 W JP 2006311713W WO 2006132410 A1 WO2006132410 A1 WO 2006132410A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver alloy
thin film
silver
electrode
wiring
Prior art date
Application number
PCT/JP2006/311713
Other languages
French (fr)
Japanese (ja)
Inventor
Tomokazu Obata
Hiroshi Yanagihara
Original Assignee
Tanaka Kikinzoku Kogyo K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo K.K. filed Critical Tanaka Kikinzoku Kogyo K.K.
Priority to JP2007520198A priority Critical patent/JPWO2006132410A1/en
Publication of WO2006132410A1 publication Critical patent/WO2006132410A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • C22C5/08Alloys based on silver with copper as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • H01M4/0488Alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a silver alloy useful as an electrode and wiring material, and further as an electromagnetic wave shielding material, and relates to a silver alloy having significantly improved environmental resistance and a low specific resistance value.
  • Silver is a metal material that has the lowest specific resistance among metals and is excellent in electrical conductivity, and can be expected to be applicable as an electrode material or a wiring material.
  • a solar cell electrode material a display device such as an organic light emitting display or a liquid crystal display, a thin film electrode material of various electronic components, and a wiring material is being studied. This is because refractory metal materials such as tantalum, chromium, molybdenum, and titanium that have been used as wiring materials in the past have a relatively high electrical resistance value and therefore signal delay has become a problem. It is.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-48650
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-328184
  • Silver is a material that can be expected as a constituent material for electromagnetic wave shields because of its low specific resistance. This is because attenuation (absorption) when electromagnetic waves pass through an object depends on the frequency of the electromagnetic waves and the specific resistance of the object, but there is a tendency for attenuation to increase as the specific resistance decreases.
  • Patent Document 3 JP-A-6-164186
  • Patent Document 4 Japanese Patent Laid-Open No. 11 97885
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-152389
  • the low specific resistance leads to the fact that a film as thin as possible can be formed while suppressing the resistance value. Therefore, silver is also useful for forming a light-transmitting film having electrical conductivity (having an electromagnetic wave shielding effect).
  • transparent electrodes such as transparent electrodes and glass are used. As a material to give an electromagnetic wave shielding effect to the body I can expect.
  • an object of the present invention is to provide a material suitable as an electrode wiring material and an electromagnetic wave shielding material while greatly improving the environmental resistance and maintaining a low specific resistance.
  • the environmental resistance refers to the property of suppressing the specific resistance and transmittance due to the influence of the environment in which the silver alloy is placed, such as a heating atmosphere, a humidified atmosphere, and a sulfurized atmosphere. Sometimes referred to as heat resistance, moisture resistance, and sulfidation resistance.
  • the inventors of the present invention who should solve the above problems, have selected a suitable additive element for improving the environmental resistance while mainly using silver.
  • additive elements such as aluminum, indium, tin, bismuth, gallium, zinc, strontium, calcium, germanium, magnesium, antimony, lithium, and phosphorus, which have lower melting points than silver, are added as additive elements.
  • the inventors have found that there is an effect of improving the environmental performance, and have come up with the present invention.
  • the present invention is mainly composed of silver, and at least aluminum, indium, tin, bismuth, gallium, zinc, strontium, calcium, germanium, magnesium, antimony, lithium, and phosphorus as the first additive element group. It is a silver alloy for electrode, wiring, and electromagnetic wave shielding that contains one kind.
  • the moisture resistance required for the membrane is maintained at a particularly high level.
  • the first additive element other than gallium, indium, tin, zinc, magnesium, and aluminum is also effective in improving moisture resistance.
  • the second additive element group includes platinum, gold, rhodium, iridium, ruthenium, palladium, lead, copper, manganese, silicon, nickel, chromium, connort, yttrium, iron, scandium, zirconium. , Titanium, Niobium, Molybdenum, Tantalum, Tandastene, Hafnium, Lanthanum, Cerium, Prasium, Neodium, Samarium, Palladium, Gadolinium, Terbium, Dysprosium, Holmium, Thulium, Ytterbium, Boron, Erbium, Carbon These are preferably further added. These elements work together with the first additive element group to further improve the environmental resistance.
  • a silver alloy to which palladium, dysprosium, copper, titanium, zirconium, manganese, gadolinium, erbium, prasedium, samarium, lanthanum, and yttrium are added as the second additive element group is in a heating environment. It is a preferable alloy because it can effectively suppress the aggregation phenomenon occurring in the thin film material.
  • the second additive element group component is added mainly for the purpose of improving the heat resistance of the alloy. That is, these elements that should ensure the heat resistance required for the thin film are added alone, or two elements, three elements, or more multi-elements are selected and added.
  • the concentration of the additive element group 0. 01-20. 0 preferably the atoms 0/0. This is because if the amount added is less than 0.01 atomic percent, the effect of improving the environmental resistance is not achieved, and if the concentration of the added element exceeds 20.0 atomic percent, the specific resistance of the alloy increases.
  • the present invention basically has a high transmittance and a low specific resistance, but there are many products that require a thin film having a maximum environmental resistance. In such a case, the maximum value of the additive element concentration is 20.0 atomic%.
  • the concentration of additive elements when improving the transmittance and specific resistance while emphasizing environmental resistance performance is 10.0 atomic% or less. Furthermore, when the highest priority is given to transmittance and specific resistance, the concentration of the additive element is 5.0 atomic percent or less. In this way, the type and amount of additive element can be adjusted in consideration of the required specifications for each product to which the thin film is applied.
  • the above-described silver alloy as the reflecting / transmitting film material according to the present invention is produced by a melting and forging method, It can be manufactured by the ligation method. There is no particular difficulty in the production by the melting and forging method, and it can be produced by a general method in which each raw material is weighed, melted and mixed to produce it. In addition, in the production by the sintering method, it is possible to produce by a general method in which each raw material is weighed and sintered.
  • the silver alloy according to the present invention is suitable as various electrical and electronic devices, electrode materials for components, and wiring materials.
  • the silver alloy according to the present invention also has good light transmittance by adjusting the film thickness appropriately. Therefore, it is also useful as a wiring material for transparent electrodes such as ITO.
  • the film thickness is preferably 40 to 1500A. This is to ensure fine workability while considering reliability and durability. Also, in this film thickness range, 40 to 150 A is preferable when the wiring material is used for a transparent electrode that places importance on transmittance, but 1000 to 1200 for electrodes and wiring that do not place importance on transmittance. To do that.
  • the silver alloy according to the present invention is also suitable as a constituent material of an electromagnetic wave shielding body.
  • an electromagnetic wave shielding body can be obtained by vapor-depositing or joining a silver alloy according to the present invention on an appropriate support surface.
  • the support plate-like, sheet-like rubber and fiber can be applied.
  • the silver alloy according to the present invention can be thinned while maintaining the electromagnetic wave attenuation capability, and can have good transmittance, so that it has light transmittance with glass as a support. It can be a shielding material.
  • a coating for shielding electromagnetic waves may be applied to the light emitting surface.
  • the present invention which has excellent light transmission, can also be applied to powerful applications.
  • the form of the silver alloy in the electromagnetic wave shielding application may be any of a thin film, a plate material, a net, and a powder, but a thin film is preferred. Its film thickness is 400-150A, especially 50-120
  • A is preferable. While maintaining the electromagnetic shielding effect by ensuring conductivity, the transmittance
  • the sputtering target having the silver alloy force according to the present invention can produce electrodes, wirings, and electromagnetic wave shielding materials made of an alloy film having desirable characteristics.
  • the silver alloy according to the present invention has remarkably improved environmental resistance compared to pure silver, and can maintain characteristics such as transmittance and specific resistance even during long-term use. .
  • the present invention is useful as an electromagnetic shielding material in addition to an electrode material and a wiring material.
  • the silver alloy according to the present invention has good adhesion in a thin film state, and is suitable for the above-mentioned use from this viewpoint.
  • silver alloys having various compositions ranging from binary to quinary with silver as the main component were produced, and targets were produced from these to form thin films by sputtering.
  • the thin film was subjected to corrosion tests (acceleration tests) under various environments, and changes in properties after the corrosion tests were examined.
  • the alloy according to the present invention is not limited to the binary to quinary alloys targeted by the present embodiment, but may be a multi-element alloy having more than that.
  • multi-component alloys with 6 or more elements can be manufactured. In its manufacture, there are no particular problems and mass production is possible.
  • each metal is weighed to a predetermined concentration, melted in a high-frequency melting furnace, and mixed to obtain an alloy. Then, this was put into a mold and solidified to form an ingot, which was forged, rolled, and heat treated, and then molded into a sputtering target. Target production by powder sintering is also possible.
  • the thin film was manufactured by placing a slide glass substrate (borosilicate glass) and a target in a sputtering apparatus, evacuating the apparatus to 5.0 X 10 _3 Pa, and then adding argon gas to 5. OX 10 _1 Introduced up to Pa. As sputtering conditions, a film was formed at a direct current of 0.4 kW for 8 seconds, and the film thickness was 120 A. The film thickness distribution was within ⁇ 10%.
  • the evaluation of the properties of the manufactured thin film was conducted by conducting a corrosion test in which the thin film was exposed to various environments and evaluating the properties of the thin film before and after the test.
  • a composition test focusing on environmental resistance performance and a composition testing focusing on transmittance and specific resistance were performed.
  • a salt drop test and an adhesion test were performed as tests for compositions that place importance on environmental resistance.
  • priority is given to ensuring durability in human living environments. That is, a product having a silver thin film needs to be maintained without deterioration in performance even if there is a corrosive factor such as a person touching it directly or a food or food adhering.
  • the salt water drop test and adhesion test conducted this time take into consideration such a use environment.
  • the salt water drop test is intended to perform a deterioration acceleration test on the assumption of adhesion of seasonings such as human sweat, soy sauce, and miso. 10. Prepare a 0% NaCl aqueous solution (25 ° C), drop 2 or 3 drops onto the 120A silver alloy film immediately after film formation on a slide glass, and observe the change to judge the durability performance. . The evaluation was made by the following 0-5 grade evaluation.
  • a test for evaluating the adhesion of the thin film to the substrate was conducted for the salt water drop test with a rating of 3 or more.
  • the adhesion test was performed on three types of samples after exposure to the following environment using thin film samples (film thickness 120 A) on glass slides of each composition.
  • Table 1 shows the evaluation results of the salt water drop test and the adhesion test. For comparison, the table also shows the pure silver thin film and the test results.
  • a silver alloy having a composition giving priority to transmittance and specific resistance was evaluated.
  • a thin film sample (film thickness 120A) deposited on a slide glass was placed on a hot plate, heated in air at 250 ° C for 1 hour, and the characteristics after heating were evaluated (heating test) ).
  • the thin film was exposed to an atmosphere at a temperature of 100 ° C and a humidity of 100%, and the characteristics after humidification were evaluated. In the humidification test, the exposure time was 24 hours.
  • the properties evaluated before and after the corrosion test are transmittance and specific resistance.
  • the transmittance was measured by a spectrophotometer, a thin film was formed, and the transmittance of each thin film was evaluated relative to the transmittance of the substrate (borosilicate glass) as 100.
  • Table 2 shows the evaluation results of the transmittance before and after the corrosion test. Each measured value is a value at wavelengths of 400 ⁇ m, 550 nm, and 650 nm (corresponding to blue, yellow, and red wavelengths in the visible light region). The table also shows the test results for thin films manufactured from targets that also have pure silver power for comparison.
  • Table 3 shows the evaluation results of the specific resistance of each silver alloy thin film before and after the corrosion test.
  • the adhesiveness is greatly improved, and in particular, it is possible to obtain a strong adhesive force that does not peel off at all as well as immediately after film formation after the environmental test. This is very effective for practical purposes of creating electrodes and wiring patterns.
  • the etching properties of each thin film were also evaluated. Again, above A thin film before and after the corrosion test was used as a sample. Photoresist was applied to the thin film on the substrate with a spin coater, dried, and a special pattern (100 m line and space) was exposed with a photomask, held for a certain period of time, then developed and dried. Then, the thin film was etched for about 30 seconds in the silver etching solution (adjusted appropriately depending on the type of additive element because of the difference in etching rate). After that, the resist was peeled off, washed, and dried, and the substrate was completed. This substrate was observed using an optical microscope and an electron microscope of 100 to 400 times.
  • a substrate with a resist was used to measure the amount of overetching and taper, and the cross section was observed and measured after cutting.
  • the evaluation was made on a five-point scale based on each item. The “0” and “1” judgments were unsuitable for practical use, and the “4” and “5” judgments were judged to be recommended for practical use. The evaluation results are shown in Table 5.
  • the present invention is useful as an electrode wiring material for various display devices such as a thin film transistor type liquid crystal display (TFT-LCD), an organic EL display, and a plasma display.
  • TFT-LCD thin film transistor type liquid crystal display
  • organic EL display organic EL display
  • plasma display a plasma display.
  • a TFT-LCD has a structure in which a liquid crystal material is sealed between two glass substrates.
  • a filter is formed on the upper glass substrate, and a thin transistor (TFT) is formed on the lower glass substrate.
  • the A gate electrode, a source electrode, and a drain electrode are formed on the TFT substrate side electrode.
  • the silver alloy according to the present invention is useful as a wiring material for these electrode materials and ITO transparent electrodes.
  • an insulating film or the like is formed on a transparent substrate of borosilicate glass, and Ag—O. 5% Ga-0.3% 01 is formed with a film thickness of 120 as an example of the silver alloy thin film according to the present invention.
  • the resistivity was evaluated by etching, the resistivity was as low as 3.945 ⁇ 'cm, and it was confirmed to have excellent environmental resistance and its usefulness.
  • An organic EL display is a display that utilizes the electoluminescence phenomenon, and the EL element itself emits light.
  • the back electrode phosphor is sandwiched between a pair of dielectrics.
  • the silver alloy according to the present invention is effective as a wiring material for the electrode material and the ITO transparent conductive film.
  • an ITO transparent conductive film is formed on a transparent substrate of borosilicate glass, and then Ag-O.
  • 2% Ga-0.2% Cu is formed with a film thickness of 120A as an example of a silver alloy thin film according to the present invention.
  • the resistivity was evaluated as a wiring material after etching, the resistivity was as low as 3.203 ⁇ 'cm, and it was confirmed to have excellent environmental resistance and its usefulness.
  • a plasma display has a structure in which a data electrode and a display electrode (scanning Z sustaining electrode) are mounted in parallel in a glass substrate, and a neon-based gas is sealed in the gap. Then, the neon-dominated gas sealed in each pixel is turned into plasma by voltage and released. Electricity is emitted to emit ultraviolet rays from the gas, and this is emitted to the red, blue and green phosphors coated on the inside of the glass substrate.
  • the silver alloy according to the present invention is effective as an electrode for various electrodes.
  • a protective film, a dielectric layer, etc. are formed on a transparent substrate of borosilicate glass, and Ag—O. 2% Ga-0. 3% Pd is used as an electrode material as an example of a silver alloy thin film according to the present invention. As a result, it was confirmed that the resistivity was 3.599 ⁇ 'cm, which was low, and it was excellent in environmental resistance.
  • the silver alloy which concerns on this invention is suitable also as a constituent material of an electromagnetic wave shielding body.
  • an electromagnetic wave shielding body When applied to an electromagnetic wave shielding body, an electromagnetic wave shielding body can be obtained by depositing or bonding a silver alloy according to the present invention on an appropriate support surface.
  • the support plate-like acrylic polycarbonate, sheet-like rubber, or fiber can be applied.
  • it can be set as the light-transmitting shielding material using glass as a support. Therefore, even if a coating for shielding electromagnetic waves is applied to the light emitting surface of the plasma display panel, high reliability can be obtained because there is no deterioration in image quality due to high light transmittance.
  • a transparent dielectric layer and an Ag—O For example, a transparent dielectric layer and an Ag—O.
  • 5% Ga thin film (thickness 12 OA) as a practical example of the silver alloy thin film according to the present invention were formed on a transparent substrate of borosilicate glass and evaluated as a multilayer structure.
  • the specific resistance is 3.559 ⁇ 'cm, which is a low specific resistance.
  • This transparent dielectric layer had good adhesion to the silver alloy thin film, and high transmittance exceeding 50% was obtained over all wavelengths.

Abstract

Disclosed is a silver alloy for electrodes, wiring and electromagnetic shielding which is mainly composed of silver while containing at least one element selected from aluminum, indium, tin, bismuth, gallium, zinc, strontium, calcium, germanium, magnesium, antimony, lithium and phosphorus as first additional elements. Gallium, indium, tin and zinc are preferable as the first additional elements, and it is further preferable to add at least one element selected from palladium, dysprosium and copper as second additional elements. The total concentration of these additional elements is preferably 0.01-20.0 atom%.

Description

明 細 書  Specification
電極、配線及び電磁波遮蔽用の銀合金  Silver alloy for electrode, wiring and electromagnetic shielding
技術分野  Technical field
[0001] 本発明は、電極及び配線材料、更には、電磁波遮蔽材料として有用な銀合金に関 し、耐環境性が著しく改善され、比抵抗値も低い銀合金に関する。  [0001] The present invention relates to a silver alloy useful as an electrode and wiring material, and further as an electromagnetic wave shielding material, and relates to a silver alloy having significantly improved environmental resistance and a low specific resistance value.
背景技術  Background art
[0002] 銀は、金属の中で最も比抵抗が低く電気伝導性に優れており、電極材料又は配線 材料としての適用性が期待できる金属材料である。とりわけ、太陽電池の電極材料、 有機発光ディスプレイや液晶ディスプレイ等の表示デバイス、各種電子部品の薄膜 電極材料、配線材料としての適用が検討されている。これは、従来から配線材料とし て使用されてきたタンタル、クロム、モリブデン、チタン等の高融点金属材料等は、電 気抵抗値が比較的高いため信号遅延が問題となっていたことに応えるものである。 特許文献 1 :特開平 10— 48650号公報  [0002] Silver is a metal material that has the lowest specific resistance among metals and is excellent in electrical conductivity, and can be expected to be applicable as an electrode material or a wiring material. In particular, application as a solar cell electrode material, a display device such as an organic light emitting display or a liquid crystal display, a thin film electrode material of various electronic components, and a wiring material is being studied. This is because refractory metal materials such as tantalum, chromium, molybdenum, and titanium that have been used as wiring materials in the past have a relatively high electrical resistance value and therefore signal delay has become a problem. It is. Patent Document 1: Japanese Patent Laid-Open No. 10-48650
特許文献 2:特開 2003 - 328184号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-328184
[0003] また、近年、ノ ソコン、ワープロ等の電子機器の普及により、これらの電子機器が発 生する電磁波ノイズによる機器同士及び人体への影響を鑑みて電磁波遮蔽の必要 性がクローズアップされてきている。銀はその比抵抗の低さ故に、電磁波遮蔽体の構 成材料としても期待できる材料である。電磁波が物体を透過する際の減衰(吸収)は 、電磁波の周波数、該物体の比抵抗に依存するが、比抵抗が低い材料ほど減衰が 大きくなる傾向があるからである。  [0003] In recent years, with the spread of electronic devices such as notebook computers and word processors, the necessity of shielding electromagnetic waves has been highlighted in view of the effects of electromagnetic noise generated by these electronic devices on each other and on the human body. ing. Silver is a material that can be expected as a constituent material for electromagnetic wave shields because of its low specific resistance. This is because attenuation (absorption) when electromagnetic waves pass through an object depends on the frequency of the electromagnetic waves and the specific resistance of the object, but there is a tendency for attenuation to increase as the specific resistance decreases.
特許文献 3 :特開平 6— 164186号公報  Patent Document 3: JP-A-6-164186
特許文献 4:特開平 11 97885号公報  Patent Document 4: Japanese Patent Laid-Open No. 11 97885
特許文献 5 :特開 2003— 152389号公報  Patent Document 5: Japanese Patent Laid-Open No. 2003-152389
[0004] 更に、比抵抗が低いということは、抵抗値を抑制しつつ可能な限り薄い膜を形成で きること〖こ繋がる。そのため、銀は導電性を有する(電磁波遮蔽効果を有する)光透 過膜を形成するのにも有用であり、上記の電極 ·配線材料及び電磁波遮蔽材料にお いて、透明電極、ガラス等の透明体に電磁波遮蔽効果を付与するための材料として 期待できる。 [0004] Further, the low specific resistance leads to the fact that a film as thin as possible can be formed while suppressing the resistance value. Therefore, silver is also useful for forming a light-transmitting film having electrical conductivity (having an electromagnetic wave shielding effect). In the above electrode / wiring material and electromagnetic wave shielding material, transparent electrodes such as transparent electrodes and glass are used. As a material to give an electromagnetic wave shielding effect to the body I can expect.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上記利点がある反面、銀は耐環境性に乏しぐ腐食し易いという問題がある。腐食 による銀の変化は、黒色化という外観上のものが顕著ではある力 同時に比抵抗の 上昇、透過率の悪化も生じる。また、この銀の腐食の原因は、その詳細は用途により 異なるが、基本的に使用環境における水分、熱によるものである。そして、かかる銀 の腐食による特性悪ィ匕の問題は、装置の信頼性に影響を与えることとなる。  [0005] On the other hand, there is a problem that silver is easily corroded because of poor environmental resistance. The change in silver due to corrosion is a force that is marked by the appearance of blackening. At the same time, the resistivity increases and the transmittance deteriorates. The cause of this silver corrosion is basically due to moisture and heat in the environment of use, although the details differ depending on the application. And the problem of characteristic deterioration due to such corrosion of silver affects the reliability of the apparatus.
課題を解決するための手段  Means for solving the problem
[0006] そこで、本発明は、耐環境性を大きく改善し、低比抵抗を維持しつつ、電極'配線材 料、電磁波遮蔽材料として好適な材料を提供することを目的とする。尚、本発明にお いて、耐環境性とは、加熱雰囲気、加湿雰囲気、硫化雰囲気等、その銀合金が置か れる環境の影響による比抵抗、透過率の悪ィ匕を抑制する性質をいい、耐熱性、耐湿 性、耐硫化性とも称することがある。  [0006] Accordingly, an object of the present invention is to provide a material suitable as an electrode wiring material and an electromagnetic wave shielding material while greatly improving the environmental resistance and maintaining a low specific resistance. In the present invention, the environmental resistance refers to the property of suppressing the specific resistance and transmittance due to the influence of the environment in which the silver alloy is placed, such as a heating atmosphere, a humidified atmosphere, and a sulfurized atmosphere. Sometimes referred to as heat resistance, moisture resistance, and sulfidation resistance.
[0007] 上記課題を解決すベぐ本発明者等は、銀を主体としつつ、耐環境性改善のため に好適な添加元素の選定を行った。その結果、添加元素として、銀よりも低融点の元 素であるアルミニウム、インジウム、錫、ビスマス、ガリウム、亜鉛、ストロンチウム、カル シゥム、ゲルマニウム、マグネシウム、アンチモン、リチウム、リンの添カ卩により、耐環境 性向上の効果があることを見出し、本発明に想到するに至った。  [0007] The inventors of the present invention, who should solve the above problems, have selected a suitable additive element for improving the environmental resistance while mainly using silver. As a result, additive elements such as aluminum, indium, tin, bismuth, gallium, zinc, strontium, calcium, germanium, magnesium, antimony, lithium, and phosphorus, which have lower melting points than silver, are added as additive elements. The inventors have found that there is an effect of improving the environmental performance, and have come up with the present invention.
[0008] 即ち、本発明は、銀を主成分とし、第 1の添加元素群としてアルミニウム、インジウム 、錫、ビスマス、ガリウム、亜鉛、ストロンチウム、カルシウム、ゲルマニウム、マグネシゥ ム、アンチモン、リチウム、リンを少なくとも 1種含んでなる電極、配線及び電磁波遮蔽 用の銀合金である。  That is, the present invention is mainly composed of silver, and at least aluminum, indium, tin, bismuth, gallium, zinc, strontium, calcium, germanium, magnesium, antimony, lithium, and phosphorus as the first additive element group. It is a silver alloy for electrode, wiring, and electromagnetic wave shielding that contains one kind.
[0009] 本発明者等の検討によれば、第 1の添加元素群として挙げられる低融点の元素の 中でもガリウム、インジウム、錫、亜鉛、マグネシウム、アルミニウムを添カロした銀合金 において、反射 ·透過膜に要求される耐湿性を特に高い次元で保持することが確認 されている。これらの元素を単独で、若しくは、群の中から 2元素、 3元素又はそれ以 上の多元素を選択し、組合せて「第 1の添加元素群」として使用することにより、著しく 耐湿性を向上できる。また、ガリウム、インジウム、錫、亜鉛、マグネシウム、アルミ-ゥ ム以外の上記第 1の添加元素も、耐湿性向上にそれぞれ効果がある。 According to the study by the present inventors, among the low melting point elements listed as the first additive element group, in a silver alloy containing gallium, indium, tin, zinc, magnesium and aluminum, reflection / transmission It has been confirmed that the moisture resistance required for the membrane is maintained at a particularly high level. By selecting these elements singly or by selecting 2 elements, 3 elements or more elements from the group and using them in combination as the `` first additive element group '', Moisture resistance can be improved. In addition, the first additive element other than gallium, indium, tin, zinc, magnesium, and aluminum is also effective in improving moisture resistance.
[0010] そして本発明においては第 2の添加元素群として、白金、金、ロジウム、イリジウム、 ルテニウム、パラジウム、鉛、銅、マンガン、シリコン、ニッケル、クロム、コノルト、イット リウム、鉄、スカンジウム、ジルコニウム、チタン、ニオブ、モリブデン、タンタル、タンダ ステン、ハフニウム、ランタン、セリウム、プラセォジゥム、ネオジゥム、サマリウム、ユー 口ピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、ツリウム、イツテルビゥ ム、ホウ素、エルビウム、炭素の少なくとも 1種を、更に添カ卩したものが好ましい。これ らの元素は、第 1の添加元素群と共に更に複合的に耐環境性の向上に作用する。  In the present invention, the second additive element group includes platinum, gold, rhodium, iridium, ruthenium, palladium, lead, copper, manganese, silicon, nickel, chromium, connort, yttrium, iron, scandium, zirconium. , Titanium, Niobium, Molybdenum, Tantalum, Tandastene, Hafnium, Lanthanum, Cerium, Prasium, Neodium, Samarium, Palladium, Gadolinium, Terbium, Dysprosium, Holmium, Thulium, Ytterbium, Boron, Erbium, Carbon These are preferably further added. These elements work together with the first additive element group to further improve the environmental resistance.
[0011] 特に、第 2の添加元素群としてパラジウム、ジスプロシウム、銅、チタン、ジルコユウ ム、マンガン、ガドリニウム、エルビウム、プラセォジゥム、サマリウム、ランタン、イツトリ ゥムを添加する銀合金は、加熱環境中にお!ヽて薄膜材料中で発生する凝集現象を 有効に抑制することができ、好ましい合金である。  [0011] In particular, a silver alloy to which palladium, dysprosium, copper, titanium, zirconium, manganese, gadolinium, erbium, prasedium, samarium, lanthanum, and yttrium are added as the second additive element group is in a heating environment. It is a preferable alloy because it can effectively suppress the aggregation phenomenon occurring in the thin film material.
[0012] 第 2の添加元素群力 なる成分は、特に合金の耐熱性の向上を主目的として添カロ される。即ち、薄膜に要求される耐熱性を確保すベぐこれらの元素を単独で、若しく は、 2元素、 3元素又はそれ以上の多元素を選択して添加される。  [0012] The second additive element group component is added mainly for the purpose of improving the heat resistance of the alloy. That is, these elements that should ensure the heat resistance required for the thin film are added alone, or two elements, three elements, or more multi-elements are selected and added.
[0013] ここで、添加元素群の濃度は、 0. 01-20. 0原子0 /0とするのが好ましい。 0. 01原 子%未満の添加量では耐環境性向上の効果がなぐまた添加元素濃度が 20. 0原 子%を超えると、合金の比抵抗が大きくなるからである。ここで、本発明に係る銀合金 力もなる薄膜を用いる商品は、実際には各種様々あり、要求される特性仕様も様々な ものがある。この点、本発明は、基本的に、透過率が高く比抵抗が低いものであるが 、耐環境性能が最大となった薄膜を備えることを要求する商品も多い。かかる場合の 添加元素濃度の最大値は、 20. 0原子%である。一方、耐環境性能を重視しつつ、 透過率、比抵抗を向上させる場合の添加元素濃度は、 10. 0原子%以下である。更 に、透過率、比抵抗を最優先する場合は、添加元素濃度は 5. 0原子%以下である。 このように、薄膜が適用される商品ごとの要求仕様を考慮して、添加元素の種類、添 加量を調整することができる。 [0013] Here, the concentration of the additive element group, 0. 01-20. 0 preferably the atoms 0/0. This is because if the amount added is less than 0.01 atomic percent, the effect of improving the environmental resistance is not achieved, and if the concentration of the added element exceeds 20.0 atomic percent, the specific resistance of the alloy increases. Here, there are actually a variety of products using the thin film having a silver alloy strength according to the present invention, and there are various required characteristic specifications. In this respect, the present invention basically has a high transmittance and a low specific resistance, but there are many products that require a thin film having a maximum environmental resistance. In such a case, the maximum value of the additive element concentration is 20.0 atomic%. On the other hand, the concentration of additive elements when improving the transmittance and specific resistance while emphasizing environmental resistance performance is 10.0 atomic% or less. Furthermore, when the highest priority is given to transmittance and specific resistance, the concentration of the additive element is 5.0 atomic percent or less. In this way, the type and amount of additive element can be adjusted in consideration of the required specifications for each product to which the thin film is applied.
[0014] 以上説明した本発明に係る反射'透過膜材料としての銀合金は、溶解铸造法、焼 結法により製造可能である。溶解铸造法による製造においては特段に困難な点はな ぐ各原料を秤量し、溶融混合して铸造する一般的な方法により製造可能である。ま た、焼結法による製造においても、特に困難な点はなぐ各原料を秤量し、焼結する 一般的な方法により製造可能である。 [0014] The above-described silver alloy as the reflecting / transmitting film material according to the present invention is produced by a melting and forging method, It can be manufactured by the ligation method. There is no particular difficulty in the production by the melting and forging method, and it can be produced by a general method in which each raw material is weighed, melted and mixed to produce it. In addition, in the production by the sintering method, it is possible to produce by a general method in which each raw material is weighed and sintered.
[0015] 本発明に係る銀合金は、各種電気'電子デバイス、部品の電極材料、配線材料とし て好適である。また、本発明に係る銀合金は、膜厚を適宜に調整することで光透過性 も良好となる。従って、 ITO等の透明電極に対する配線材料としても有用である。こ れら電極材料、配線材料の用途へ適用する場合、その膜厚は 40〜1500Aとするこ とが好ましい。信頼性、耐久性を考慮しつつ、微細加工性を確保するためである。ま た、この膜厚範囲において、透過率を重視する透明電極への配線材料とする場合に は 40〜150Aとするのが好ましいが、透過率が重視されない電極、配線については 、 1000〜1200 とすることカ 子まし 、。  The silver alloy according to the present invention is suitable as various electrical and electronic devices, electrode materials for components, and wiring materials. The silver alloy according to the present invention also has good light transmittance by adjusting the film thickness appropriately. Therefore, it is also useful as a wiring material for transparent electrodes such as ITO. When applied to the use of these electrode materials and wiring materials, the film thickness is preferably 40 to 1500A. This is to ensure fine workability while considering reliability and durability. Also, in this film thickness range, 40 to 150 A is preferable when the wiring material is used for a transparent electrode that places importance on transmittance, but 1000 to 1200 for electrodes and wiring that do not place importance on transmittance. To do that.
[0016] また、本発明に係る銀合金は、電磁波遮蔽体の構成材料としても好適である。本発 明を電磁波遮蔽体へ適用する場合、適宜の支持体表面に、本発明に係る銀合金を 蒸着又は接合することで電磁波遮蔽体とすることができる。支持体としては、板状、シ ート状のゴム、繊維が適用できる。また、本発明に係る銀合金は、電磁波減衰能力を 維持しつつ薄膜ィ匕することが可能であり、透過率を良好なものとすることができるので 、ガラスを支持体として光透過性を有する遮蔽材とすることができる。また、プラズマ ディスプレイでは、発光面に対して電磁波遮蔽のためのコーティングを施すことがあ るが、光透過性に優れる本発明は力かる用途にも適用できる。  [0016] The silver alloy according to the present invention is also suitable as a constituent material of an electromagnetic wave shielding body. When the present invention is applied to an electromagnetic wave shielding body, an electromagnetic wave shielding body can be obtained by vapor-depositing or joining a silver alloy according to the present invention on an appropriate support surface. As the support, plate-like, sheet-like rubber and fiber can be applied. Further, the silver alloy according to the present invention can be thinned while maintaining the electromagnetic wave attenuation capability, and can have good transmittance, so that it has light transmittance with glass as a support. It can be a shielding material. In plasma displays, a coating for shielding electromagnetic waves may be applied to the light emitting surface. However, the present invention, which has excellent light transmission, can also be applied to powerful applications.
[0017] 尚、電磁波遮蔽の用途における銀合金の形態は、薄膜、板材、網体、粉体いずれ でも良いが、好ましいのは薄膜である。その膜厚は、 400〜150A、特に、 50〜120[0017] The form of the silver alloy in the electromagnetic wave shielding application may be any of a thin film, a plate material, a net, and a powder, but a thin film is preferred. Its film thickness is 400-150A, especially 50-120
Aとすることが好ましい。導電性確保による電磁波遮蔽効果を維持しつつ、透過率をA is preferable. While maintaining the electromagnetic shielding effect by ensuring conductivity, the transmittance
80%以上とするためである。 This is to make it 80% or more.
[0018] そして、上記用途に対して本発明に係る銀合金からなる薄膜を形成する場合、スパ ッタリング法が適用可能である。従って、本発明に係る銀合金力もなるスパッタリング ターゲットは、好ましい特性を有する合金膜からなる電極、配線、電磁波遮蔽材を製 造することができる。 発明の効果 [0018] Then, when forming a thin film made of the silver alloy according to the present invention for the above application, a sputtering method can be applied. Therefore, the sputtering target having the silver alloy force according to the present invention can produce electrodes, wirings, and electromagnetic wave shielding materials made of an alloy film having desirable characteristics. The invention's effect
[0019] 以上説明したように、本発明に係る銀合金は、耐環境性が純銀に対して著しく改善 されており、長期の使用に際しても透過率や比抵抗等の特性を維持することができる 。本発明は、電極材料、配線材料の他、電磁波遮蔽材料として有用である。尚、本発 明に係る銀合金は、薄膜状態における密着性も良好であり、この観点からも上記用 途に好適である。  [0019] As described above, the silver alloy according to the present invention has remarkably improved environmental resistance compared to pure silver, and can maintain characteristics such as transmittance and specific resistance even during long-term use. . The present invention is useful as an electromagnetic shielding material in addition to an electrode material and a wiring material. The silver alloy according to the present invention has good adhesion in a thin film state, and is suitable for the above-mentioned use from this viewpoint.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の好適な実施形態を比較例と共に説明する。ここでは、銀を主要成 分とする 2元系〜 5元系の各種の組成の銀合金を製造し、これからターゲットを製造 してスパッタリング法にて薄膜を形成した。そして、この薄膜について種々の環境下 での腐食試験 (加速試験)を行い、腐食試験後の特性の変化について検討した。尚 、本発明に係る合金は、本実施形態が対象とする、 2元系〜 5元系の合金に限られる ものではなぐそれ以上の多元系のものとしても良い。商品仕様に応じて 6元系以上 の多元系合金も製造可能である。そして、その製造においては、特段の問題はなく 量産も可能である。 Hereinafter, preferred embodiments of the present invention will be described together with comparative examples. Here, silver alloys having various compositions ranging from binary to quinary with silver as the main component were produced, and targets were produced from these to form thin films by sputtering. The thin film was subjected to corrosion tests (acceleration tests) under various environments, and changes in properties after the corrosion tests were examined. Note that the alloy according to the present invention is not limited to the binary to quinary alloys targeted by the present embodiment, but may be a multi-element alloy having more than that. Depending on the product specifications, multi-component alloys with 6 or more elements can be manufactured. In its manufacture, there are no particular problems and mass production is possible.
[0021] 銀合金の製造は、各金属を所定濃度になるように秤量し、高周波溶解炉中で溶融 させて混合して合金とする。そして、これを铸型に铸込んで凝固させインゴットとし、こ れを鍛造、圧延、熱処理した後、成形してスパッタリングターゲットとした。また、粉末 焼結法によるターゲット製造も可能である。  In the production of a silver alloy, each metal is weighed to a predetermined concentration, melted in a high-frequency melting furnace, and mixed to obtain an alloy. Then, this was put into a mold and solidified to form an ingot, which was forged, rolled, and heat treated, and then molded into a sputtering target. Target production by powder sintering is also possible.
[0022] 薄膜の製造は、スライドガラス基板 (ホウ珪酸ガラス)及びターゲットをスパッタリング 装置に設置し、装置内を 5. 0 X 10_3Paまで真空に引いた後、アルゴンガスを 5. O X 10_1Paまで導入した。スパッタリング条件は、直流 0. 4kWで 8秒間の成膜を行ない 、膜厚を 120Aとした。尚、膜厚分布は ± 10%以内であった。 [0022] The thin film was manufactured by placing a slide glass substrate (borosilicate glass) and a target in a sputtering apparatus, evacuating the apparatus to 5.0 X 10 _3 Pa, and then adding argon gas to 5. OX 10 _1 Introduced up to Pa. As sputtering conditions, a film was formed at a direct current of 0.4 kW for 8 seconds, and the film thickness was 120 A. The film thickness distribution was within ± 10%.
[0023] 製造した薄膜の特性の評価'検討は、薄膜を種々の環境中に暴露する腐食試験を 行い、試験前後の薄膜の特性を評価することで行なった。本実施形態では、製造し た各種の銀合金薄膜について、耐環境性能を重視する組成の試験、及び、透過率、 比抵抗を重視する組成の試験を行った。  [0023] The evaluation of the properties of the manufactured thin film was conducted by conducting a corrosion test in which the thin film was exposed to various environments and evaluating the properties of the thin film before and after the test. In the present embodiment, for the various silver alloy thin films that were produced, a composition test focusing on environmental resistance performance and a composition testing focusing on transmittance and specific resistance were performed.
[0024] A:耐環境性能重視の組成 耐環境性能を重視する組成にっ ヽての試験として、塩水滴下試験と密着性試験を 行った。銀合金薄膜を備える商品の実用性に関しては、人間の居住環境における耐 久性の確保が優先される。即ち、銀薄膜を有する商品は、人が直接に手で触れる、 飲食物等が付着する等の腐食要因があっても性能の劣化がなく維持されることが必 要である。今回行った塩水滴下試験と密着性試験は、このような使用環境を考慮す るものである。 [0024] A: Composition with emphasis on environmental resistance A salt drop test and an adhesion test were performed as tests for compositions that place importance on environmental resistance. As for the practicality of products with silver alloy thin films, priority is given to ensuring durability in human living environments. That is, a product having a silver thin film needs to be maintained without deterioration in performance even if there is a corrosive factor such as a person touching it directly or a food or food adhering. The salt water drop test and adhesion test conducted this time take into consideration such a use environment.
[0025] 塩水滴下試験は、人間の汗や醤油、味噌等の調味料の付着を想定し、劣化の加 速試験を行うものである。 10. 0%の NaCl水溶液(25°C)を作製し、スライドガラス上 の成膜直後の銀合金薄膜 120A上に 2〜3滴滴下し、その変化を観察し耐久性能を 判定するものである。評価は次の 0〜5段階評価で判定した。  [0025] The salt water drop test is intended to perform a deterioration acceleration test on the assumption of adhesion of seasonings such as human sweat, soy sauce, and miso. 10. Prepare a 0% NaCl aqueous solution (25 ° C), drop 2 or 3 drops onto the 120A silver alloy film immediately after film formation on a slide glass, and observe the change to judge the durability performance. . The evaluation was made by the following 0-5 grade evaluation.
「5」 :取良 · · ·はがれ無し  "5": Torayo · · · No peeling
「4」 :良 · · '一部はがれ  "4": Good · · 'Some peeling
「3」 :普通- · ·半分はがれ  "3": Normal-· Half peel off
「1」 • . fftt、 · · •一部残り  “1” • .fftt, • • Some remaining
「0」 ' · ·全面はがれ  "0" '· ·
[0026] 上記塩水滴下試験で、評価 3以上のものについて、更に基板に対する薄膜の密着 性を評価する試験を行った。密着性試験は、各組成のスライドガラス上の薄膜試料( 膜厚 120 A)で、下記環境に暴露後の 3種類の試料について行った。  [0026] A test for evaluating the adhesion of the thin film to the substrate was conducted for the salt water drop test with a rating of 3 or more. The adhesion test was performed on three types of samples after exposure to the following environment using thin film samples (film thickness 120 A) on glass slides of each composition.
(1)成膜直後の試料  (1) Sample immediately after film formation
(2)成膜後、ホットプレート上で大気中、 250°Cで 1時間加熱した加熱試験後の試料 (2) Sample after heating test after film formation, heated on air at 250 ° C for 1 hour on hot plate
(3)成膜後、温度 100°C、湿度 100%の雰囲気中に 24時間暴露した加湿試験後の 試料 (3) Sample after humidification test after film formation and exposed to an atmosphere of 100 ° C and 100% humidity for 24 hours
[0027] 各試料については、基板上の薄膜に、メタルマスクの専用冶具を用いてカツターナ ィフにより lmmピッチで 11本の刻み線を入れてクロスカットし、 1mm角のマス目を 10 0マス(縦横 10 X 10)形成した。そして、クロスカット部を覆うように市販のセロハンテ ープを貼り付け、十分に押圧して密着させた後、一気に面に直角方向に剥がした。 テープを剥がした後、残ったマスの数を数え、 5段階で評価した。  [0027] For each sample, 11 mm score lines were placed on the thin film on the substrate using a metal mask special tool with a cutter niff at lmm pitch and cross-cut. (Vertical and horizontal 10 × 10) was formed. A commercially available cellophane tape was affixed so as to cover the cross-cut portion, and after sufficiently pressing and adhering, it was peeled off at right angles to the surface. After peeling off the tape, the number of remaining squares was counted and evaluated in five stages.
「5」:最良','はがれ無し 「4」:良 部はがれ “5”: Best, no peeling "4": good part peeling
「3」:普通','半分はがれ  “3”: normal, half peeled
「1」:悪 部残り  "1": Evil part remaining
「0」:最悪' ' '全面はがれ  "0": Worst '' '
[0028] 以上の塩水滴下試験、密着性試験の評価結果を表 1に示す。表中には比較のた め純銀薄膜にっレ、ての試験結果も示してレ、る。  [0028] Table 1 shows the evaluation results of the salt water drop test and the adhesion test. For comparison, the table also shows the pure silver thin film and the test results.
[0029] [表 la] [0029] [Table la]
Figure imgf000009_0001
Figure imgf000009_0001
O一 OZAV O-one OZAV
〕舊 0 ?
Figure imgf000010_0001
] 0?
Figure imgf000010_0001
lc] lc]
験 試料組成 塩水滴下試験 密着性試  Sample composition Salt water drop test Adhesion test
成膜直後 加熱試験後 I加湿試験後 Immediately after film formation After heating test I After humidification test
121 Ag-1.2Ga-0.2E(-0.2Ce 5 5 5 5121 Ag-1.2Ga-0.2E (-0.2Ce 5 5 5 5
122 AE-1.2Ga-0.2Er-0.2Ho 4 5 5 4122 AE-1.2Ga-0.2Er-0.2Ho 4 5 5 4
123 Ag-1.2Ga-0.2Pr-0.2Nd 5 5 4 5123 Ag-1.2Ga-0.2Pr-0.2Nd 5 5 4 5
124 AE-1.2Ga-0.2Pr-0.2Yb 5 5 5 5124 AE-1.2Ga-0.2Pr-0.2Yb 5 5 5 5
125 Ag-1.2Ga-0.2Pi-0.2Tb 5 5 4 5125 Ag-1.2Ga-0.2Pi-0.2Tb 5 5 4 5
126 Ag-1.2Ga-0.2Pi~0.2Ce 5 5 5 5126 Ag-1.2Ga-0.2Pi ~ 0.2Ce 5 5 5 5
127 Ag-1.2Ga-0.2Pr-0.2Ho 4 5 5 4127 Ag-1.2Ga-0.2Pr-0.2Ho 4 5 5 4
128 Ag-1.0Ga-1.7Cu-0.1 Dy 5 5 5 5128 Ag-1.0Ga-1.7Cu-0.1 Dy 5 5 5 5
129 Ag-1.OGa-1.7Cu-0.1 Gd 5 5 5 5129 Ag-1.OGa-1.7Cu-0.1 Gd 5 5 5 5
130 AE-1 -OGa-1.7Cu-0.1Er 5 5 5 5130 AE-1 -OGa-1.7Cu-0.1Er 5 5 5 5
131 Ag-1. OGa-1.7Cu-0.1Pr 5 5 5 5131 Ag-1. OGa-1.7Cu-0.1Pr 5 5 5 5
132 Ag-1 OGa-1.7CU-0.1 5 5 5 5132 Ag-1 OGa-1.7CU-0.1 5 5 5 5
133 Ag-1. OGa-1.7Cu-0.1Y 5 5 4 5133 Ag-1. OGa-1.7Cu-0.1Y 5 5 4 5
134 Ag-1.OGa-1 ,7Cu-0.1 Sin 5 5 5 4134 Ag-1.OGa-1, 7Cu-0.1 Sin 5 5 5 4
135 Ag-1.OGa-1.7Cu-0.1 Nd 5 5 5 4135 Ag-1.OGa-1.7Cu-0.1 Nd 5 5 5 4
136 Ag-1.0Ga-1.7Cu-0.1Yb 5 5 5 5136 Ag-1.0Ga-1.7Cu-0.1Yb 5 5 5 5
137 Ag-1.0Ga-1.7Cu-0.1Tb 5 5 4 5137 Ag-1.0Ga-1.7Cu-0.1Tb 5 5 4 5
138 Ag-1. OGa-1.7Cu-0.1Ce 5 5 5 5138 Ag-1. OGa-1.7Cu-0.1Ce 5 5 5 5
139 Ag-1.0Ga-1.7Cu-0.1 Ho 5 5 4 4139 Ag-1.0Ga-1.7Cu-0.1 Ho 5 5 4 4
140 Ag-1.0Ga-1.7Cu-0.1So 4 5 5 4140 Ag-1.0Ga-1.7Cu-0.1So 4 5 5 4
141 Ag-1. OGa-1.7Cu-0.1Eu 4 5 5 4141 Ag-1. OGa-1.7Cu-0.1Eu 4 5 5 4
142 Ag-1.OGa-1 JCu-0.1 Tm 4 5 4 5142 Ag-1.OGa-1 JCu-0.1 Tm 4 5 4 5
143 Ag-1.OGa-1.7Cu-0.1 Dy-0.1Pd 5 5 5 5143 Ag-1.OGa-1.7Cu-0.1 Dy-0.1Pd 5 5 5 5
144 AB-1.OGa-1.7Cu-0.1 Gd-0.1 Pd 5 5 5 5144 AB-1.OGa-1.7Cu-0.1 Gd-0.1 Pd 5 5 5 5
145 Ag-1.OGa-1.7CU-0.1 Er-0.1 Pd 5 5 5 5145 Ag-1.OGa-1.7CU-0.1 Er-0.1 Pd 5 5 5 5
146 Ag-1.OGa-1.7Cu-0.1 Pr-0.1 Pd 5 5 5 5146 Ag-1.OGa-1.7Cu-0.1 Pr-0.1 Pd 5 5 5 5
147 Ag-1.OGa-1.7Cu-0.1 La-0.1 Pd 5 5 5 5147 Ag-1.OGa-1.7Cu-0.1 La-0.1 Pd 5 5 5 5
148 Ag-1.OGa-1 JCu-0.1 Y-0.1 Pd 4 5 4 4148 Ag-1.OGa-1 JCu-0.1 Y-0.1 Pd 4 5 4 4
149 Ag-1 OGa-1 JCu-O.I Sm-0.1 Pd 4 5 5 4149 Ag-1 OGa-1 JCu-O.I Sm-0.1 Pd 4 5 5 4
150 Ag-1.OGa-1.7CU-0.1 Gd-0.1 Er 5 5 5 5150 Ag-1.OGa-1.7CU-0.1 Gd-0.1 Er 5 5 5 5
151 Ag-1.OGa-1.7Cu-D 1 Gd-0.1 Pr 5 5 5 5151 Ag-1.OGa-1.7Cu-D 1 Gd-0.1 Pr 5 5 5 5
152 Ag-1 OGa-1 7Cu-0.1 Er-0.1 Pr 5 5 5 5152 Ag-1 OGa-1 7Cu-0.1 Er-0.1 Pr 5 5 5 5
153 Ag-1.OGa-1.7CU-0.1 Gd-0.1 Dy 4 5 5 5153 Ag-1.OGa-1.7CU-0.1 Gd-0.1 Dy 4 5 5 5
154 Ag-1.OGa-1 JCu-0.1 Gd-0.1 Sm 5 5 5 4154 Ag-1.OGa-1 JCu-0.1 Gd-0.1 Sm 5 5 5 4
155 Ag-1.OGa-1.7Cu-0.1 Gd-0.1 La 5 5 5 5155 Ag-1.OGa-1.7Cu-0.1 Gd-0.1 La 5 5 5 5
156 Ag-1.OGa-1 JCu-O.I Gd-0.1 Y 5 5 4 5156 Ag-1.OGa-1 JCu-O.I Gd-0.1 Y 5 5 4 5
157 Ag-1.OGa-1.7Cu-0.1 Er-0.1 Dy 5 5 5 5157 Ag-1.OGa-1.7Cu-0.1 Er-0.1 Dy 5 5 5 5
158 Ag-1.QGa-1.7Cu-0.1 Er-0.1 Sm 4 5 5 5158 Ag-1.QGa-1.7Cu-0.1 Er-0.1 Sm 4 5 5 5
159 Ag-1 OGa-1 7Cu-0.1 Er-0.1 La 5 5 5 5159 Ag-1 OGa-1 7Cu-0.1 Er-0.1 La 5 5 5 5
160 Ag-1.OGa-1.7Cu-0.1 Er-0.1 Y 5 5 5 4160 Ag-1.OGa-1.7Cu-0.1 Er-0.1 Y 5 5 5 4
161 Ag-1.OGa-1 JCu-0.1 Pr-0.1 Dy 5 5 5 5161 Ag-1.OGa-1 JCu-0.1 Pr-0.1 Dy 5 5 5 5
162 Ag-1.OGa-1.7Cu-0.1 Pr-0.1 Sm 5 5 4 5162 Ag-1.OGa-1.7Cu-0.1 Pr-0.1 Sm 5 5 4 5
163 Ag-1.OGa-1.7Cu-0.1 Pi-0.1La 5 5 5 5163 Ag-1.OGa-1.7Cu-0.1 Pi-0.1La 5 5 5 5
164 Ag-1.0Ga-1.7Cu-0.1 Pr-0.1Y 5 5 5 4164 Ag-1.0Ga-1.7Cu-0.1 Pr-0.1Y 5 5 5 4
165 Ag-1.2Ga-1.7Cu-0.1 Er-0.1 d 5 5 4 5165 Ag-1.2Ga-1.7Cu-0.1 Er-0.1 d 5 5 4 5
166 Ag-1.2Ga-1 7Cu-0.1 Er-0.1 Yb 5 5 5 5166 Ag-1.2Ga-1 7Cu-0.1 Er-0.1 Yb 5 5 5 5
167 Ag-1.2Ga-1 7CU-0.1 Ei~0.1Tb 5 5 4 4167 Ag-1.2Ga-1 7CU-0.1 Ei ~ 0.1Tb 5 5 4 4
168 Ag-1.2Ga-1.7CU-0.1 Er-0.1 Ce 5 5 5 5168 Ag-1.2Ga-1.7CU-0.1 Er-0.1 Ce 5 5 5 5
169 Ag-1.2Ga-1 JCu-0.1 Er^O.1 Ho 5 5 5 4169 Ag-1.2Ga-1 JCu-0.1 Er ^ O.1 Ho 5 5 5 4
170 Ag-1.2Ga-1.7CU-0.1 Pr-0.1 Nd 5 5 4 5170 Ag-1.2Ga-1.7CU-0.1 Pr-0.1 Nd 5 5 4 5
171 Ag-1.2Ga-1 JCu-0.1 Pr-0.1 Yb 5 5 5 5171 Ag-1.2Ga-1 JCu-0.1 Pr-0.1 Yb 5 5 5 5
172 Ag-1.2Ga-1.7Cu-0.1 Pr-0.1 Tb 5 5 5 4172 Ag-1.2Ga-1.7Cu-0.1 Pr-0.1 Tb 5 5 5 4
173 Ag-1.2Ga-1.7Cu-0.1 Pr-0.1 Ce 5 5 5 5173 Ag-1.2Ga-1.7Cu-0.1 Pr-0.1 Ce 5 5 5 5
174 Ag-1.2Ga-1 JCu-O.I Pr-0.1 Ho 5 5 5 4174 Ag-1.2Ga-1 JCu-O.I Pr-0.1 Ho 5 5 5 4
175 Ag-1.OGa-1.OSn-0.1 Dy-0.1 Pd 5 5 5 5175 Ag-1.OGa-1.OSn-0.1 Dy-0.1 Pd 5 5 5 5
176 Ag-1.OGa-1.OSn-0.1 Gd-0.1 Pd 5 5 5 5176 Ag-1.OGa-1.OSn-0.1 Gd-0.1 Pd 5 5 5 5
177 Ag- 1.OGa-1.OSn-0.1 Et^O.1 Pd 5 5 5 5177 Ag- 1.OGa-1.OSn-0.1 Et ^ O.1 Pd 5 5 5 5
178 Ag-1.OGa-1 OSn-0.1 Pr-0.1 Pd 5 5 4 4178 Ag-1.OGa-1 OSn-0.1 Pr-0.1 Pd 5 5 4 4
179 Ag-1 OGa-1 OSn-0.1 La-0.1 Pd 5 5 5 5179 Ag-1 OGa-1 OSn-0.1 La-0.1 Pd 5 5 5 5
180 AE-1.OGa-1.0Sn-0.1Y-0.1 Pd 4 5 5 4 180 AE-1.OGa-1.0Sn-0.1Y-0.1 Pd 4 5 5 4
Ae 0 I 3 0 0 [0032] これらの試験結果から、本実施形態で製造した銀合金薄膜は、 Vヽずれも純銀薄膜 よりも塩水に対する耐久性に優れ、密着性も良好となり、高い耐環境性を有すること が確認された。この耐環境性は、添加元素の濃度の上昇に伴い向上する。 Ae 0 I 3 0 0 [0032] From these test results, it was confirmed that the silver alloy thin film produced in the present embodiment was excellent in durability against salt water, better adhesion than pure silver thin film, and had high environmental resistance. It was done. This environmental resistance improves as the concentration of the additive element increases.
[0033] B:诱渦率及び比抵抗重視の組成  [0033] B: Composition with emphasis on the eddy rate and resistivity
次に、透過率、比抵抗を優先する組成の銀合金の評価を行った。この評価でも、ス ライドガラス上に成膜した薄膜試料 (膜厚 120A)をホットプレート上に載置し、大気 中で 250°Cで 1時間加熱し、加熱後の特性を評価した (加熱試験)。また、薄膜の耐 湿性を検討するための加湿試験として、薄膜を温度 100°C、湿度 100%の雰囲気中 に暴露し、加湿後の特性を評価した。加湿試験は、暴露時間を 24時間とした。  Next, a silver alloy having a composition giving priority to transmittance and specific resistance was evaluated. In this evaluation as well, a thin film sample (film thickness 120A) deposited on a slide glass was placed on a hot plate, heated in air at 250 ° C for 1 hour, and the characteristics after heating were evaluated (heating test) ). In addition, as a humidification test to examine the moisture resistance of the thin film, the thin film was exposed to an atmosphere at a temperature of 100 ° C and a humidity of 100%, and the characteristics after humidification were evaluated. In the humidification test, the exposure time was 24 hours.
[0034] 腐食試験前後に評価する特性は、透過率、比抵抗である。透過率の測定は、分光 光度計により行 、、薄膜を形成して 、な 、基板 (ホウ珪酸ガラス)の透過率を 100とし て、各薄膜の透過率を相対評価した。  [0034] The properties evaluated before and after the corrosion test are transmittance and specific resistance. The transmittance was measured by a spectrophotometer, a thin film was formed, and the transmittance of each thin film was evaluated relative to the transmittance of the substrate (borosilicate glass) as 100.
[0035] まず、腐食試験前後の透過率の評価結果を表 2に示す。各測定値は、波長 400η m、 550nm、 650nm (可視光領域において、青色、黄色、赤色の波長に相当する。 )における値である。また、表中には比較のため純銀力もなるターゲットから製造した 薄膜につ 、ての試験結果も示して 、る。  [0035] First, Table 2 shows the evaluation results of the transmittance before and after the corrosion test. Each measured value is a value at wavelengths of 400 η m, 550 nm, and 650 nm (corresponding to blue, yellow, and red wavelengths in the visible light region). The table also shows the test results for thin films manufactured from targets that also have pure silver power for comparison.
[0036] [表 2] [0036] [Table 2]
400nm 550nm 650nm 試料組成 400nm 550nm 650nm Sample composition
蒸着直後加熱弒 6 加湿弒験蒸着直後加熱試験加湿試験蒸着直後加熱弒験加湿轼敏 Heating immediately after deposition 6 Humidity test Heating test immediately after deposition Humidification test Heating test immediately after deposition
Ag-3.9AI 82.5 72.4 76.2 64.5 54.3 57.7 56.2 45.8 49.3Ag-3.9AI 82.5 72.4 76.2 64.5 54.3 57.7 56.2 45.8 49.3
Ag-0.9In 81.9 72.0 77.2 66.7 56.4 61.3 56.4 46.1 51.0Ag-0.9In 81.9 72.0 77.2 66.7 56.4 61.3 56.4 46.1 51.0
Ag-0.9Sn 76.9 85.8 77.7 61.6 70.2 61.8 51.5 59.9 51.4Ag-0.9Sn 76.9 85.8 77.7 61.6 70.2 61.8 51.5 59.9 51.4
Ag-1.4Sr 76.8 86.3 77.5 60.7 70.0 60.8 51.4 60.3 51.3Ag-1.4Sr 76.8 86.3 77.5 60.7 70.0 60.8 51.4 60.3 51.3
Ag-2.6Ca 86.9 76.0 77.3 69.4 57.9 58.7 60.4 49.4 50.3Ag-2.6Ca 86.9 76.0 77.3 69.4 57.9 58.7 60.4 49.4 50.3
Ag-0.3Ga 75.8 79.6 75.9 62.5 65.9 61.7 53.5 56.7 52.7Ag-0.3Ga 75.8 79.6 75.9 62.5 65.9 61.7 53.5 56.7 52.7
Ag-0.5Ga 79.7 86.1 81.2 61.2 67.3 62.2 53.5 59.5 54.2Ag-0.5Ga 79.7 86.1 81.2 61.2 67.3 62.2 53.5 59.5 54.2
Ag-0.8Ga 81.8 82.9 82.6 66.0 66.6 66.1 56.6 56.9 56.9Ag-0.8Ga 81.8 82.9 82.6 66.0 66.6 66.1 56.6 56.9 56.9
Ag-1.5Ga 81.9 82.3 82.5 66.0 66.6 66.7 56.Θ 57.5 57.3Ag-1.5Ga 81.9 82.3 82.5 66.0 66.6 66.7 56.Θ 57.5 57.3
Ag-2.0Ga 82.1 83.4 82.9 68.9 69.7 68.9 59.1 60.5 59.7Ag-2.0Ga 82.1 83.4 82.9 68.9 69.7 68.9 59.1 60.5 59.7
Ag-0.5AI-0.5In 85.9 76.2 77.5 70.0 59.9 60.7 60.4 50.2 51.2Ag-0.5AI-0.5In 85.9 76.2 77.5 70.0 59.9 60.7 60.4 50.2 51.2
Ag-0.5In-0.4Sm 85.7 76.1 77.3 70.5 60.5 61.4 60.0 50.2 51.1Ag-0.5In-0.4Sm 85.7 76.1 77.3 70.5 60.5 61.4 60.0 50.2 51.1
Ag-0.5In-O.8Cu 86.2 76.5 77.9 68.2 58.4 59.1 59.7 49.9 51.1Ag-0.5In-O.8Cu 86.2 76.5 77.9 68.2 58.4 59.1 59.7 49.9 51.1
Ag-0.5In-0.5Bi 77.8 86.0 76.3 60.6 68.2 58.4 53.3 60.9 50.7Ag-0.5In-0.5Bi 77.8 86.0 76.3 60.6 68.2 58.4 53.3 60.9 50.7
Ag-0.5In-0.5Ge 77.0 86.7 77.9 63.6 73.0 63.6 54.5 63.8 54.6Ag-0.5In-0.5Ge 77.0 86.7 77.9 63.6 73.0 63.6 54.5 63.8 54.6
Ag-0.5Sn-0.4Cu 77.2 86.0 77.3 62.2 70.3 61.0 52.9 61.2 52.0Ag-0.5Sn-0.4Cu 77.2 86.0 77.3 62.2 70.3 61.0 52.9 61.2 52.0
Ag-0.8Ga-0.52n 86.0 75.3 78.0 68.7 57.6 60.0 61.2 50.2 52.3Ag-0.8Ga-0.52n 86.0 75.3 78.0 68.7 57.6 60.0 61.2 50.2 52.3
Ag-0.2Ga-0.2Cu 75.3 79.1 75.4 59.4 62.8 58.6 49.3 53.1 49.1Ag-0.2Ga-0.2Cu 75.3 79.1 75.4 59.4 62.8 58.6 49.3 53.1 49.1
Ag-0.5Ga-0.3Cu 76.2 78.9 75.1 60.8 63.2 59.3 51.7 54.1 50.1Ag-0.5Ga-0.3Cu 76.2 78.9 75.1 60.8 63.2 59.3 51.7 54.1 50.1
Ag-1.0Ga-0.5Cu 81.5 81.8 82.1 66.3 66.2 66.5 56.1 55.9 56.0Ag-1.0Ga-0.5Cu 81.5 81.8 82.1 66.3 66.2 66.5 56.1 55.9 56.0
Ag-0.25Ga-0.25Sn 86.2 76.5 77.9 73.2 62.8 64.0 64.1 53.6 54.4Ag-0.25Ga-0.25Sn 86.2 76.5 77.9 73.2 62.8 64.0 64.1 53.6 54.4
Ag-0.5Ga-0.5Sn 77.6 87.0 76.8 60.0 68.9 58.4 51.9 60.4 50.3Ag-0.5Ga-0.5Sn 77.6 87.0 76.8 60.0 68.9 58.4 51.9 60.4 50.3
Ag~0.2Ga-0.3Pd 79.0 85.2 80.4 61.8 67.4 62.8 54.3 60.5 55.3Ag ~ 0.2Ga-0.3Pd 79.0 85.2 80.4 61.8 67.4 62.8 54.3 60.5 55.3
Ag-0.5Ga-0.5Pd 79.3 85.7 80.8 65.3 71.4 66.1 55.9 61.8 56.6Ag-0.5Ga-0.5Pd 79.3 85.7 80.8 65.3 71.4 66.1 55.9 61.8 56.6
Ag-1.0Ga-0.5Pd 80.1 86.5 81.7 62.6 68.4 63.4 53.9 59.9 54.7Ag-1.0Ga-0.5Pd 80.1 86.5 81.7 62.6 68.4 63.4 53.9 59.9 54.7
Ag-0.5Ga-0.5In 86.2 75.8 77.6 72.2 61.5 62.9 62.7 51.9 53.3Ag-0.5Ga-0.5In 86.2 75.8 77.6 72.2 61.5 62.9 62.7 51.9 53.3
Ag-0.2Ga-0.2ln 78.0 86.3 76.7 64.2 72.0 62.1 55.5 62.4 52.4Ag-0.2Ga-0.2ln 78.0 86.3 76.7 64.2 72.0 62.1 55.5 62.4 52.4
Ag-1.2Ga-0.2In 86.2 76.4 77.0 70.9 60.8 61.0 61.9 51.6 51.8Ag-1.2Ga-0.2In 86.2 76.4 77.0 70.9 60.8 61.0 61.9 51.6 51.8
Ag-0.6Ga-0.2In 77.1 86.β 76.4 59.6 68.5 58.1 50.8 60.0 49.4Ag-0.6Ga-0.2In 77.1 86.β 76.4 59.6 68.5 58.1 50.8 60.0 49.4
Ag 76.5 69.8 66.5 58.7 52.2 50.8 48.4 42.9 42.2 Ag 76.5 69.8 66.5 58.7 52.2 50.8 48.4 42.9 42.2
[0037] この透過率の評価において、本発明に係る銀合金力 なる薄膜について、成膜直 後と腐食試験後の変化率を比較してみると、全て純銀の場合の変化率よりも低ぐ各 波長で銀合金が純銀に優っていることが確認された。また、全般的にみると、短波長 域では透過率が高くなつている力 短波長 400nmの透過率と長波長 650nmの透過 率との差をみると、純銀の場合は 28%と大きぐ銀合金の場合はこの値よりも小さい。 このように波長による透過率低下の差が低!、ことは、透過光として白色光を得ようとす る場合に大きな利点となる。 [0037] In the evaluation of the transmittance, regarding the thin film having the silver alloy strength according to the present invention, when the rate of change immediately after the film formation and after the corrosion test are compared, all are lower than the rate of change in the case of pure silver. It was confirmed that the silver alloy was superior to pure silver at each wavelength. Overall, the power that increases the transmittance in the short wavelength range. The difference between the transmittance at the short wavelength of 400 nm and the transmittance at the long wavelength of 650 nm shows that silver is a large 28% in the case of pure silver. In the case of an alloy, it is smaller than this value. In this way, the difference in transmittance reduction with wavelength is low! This is a great advantage when trying to obtain white light as transmitted light.
[0038] 次に、表 3に各銀合金薄膜の、腐食試験前後の比抵抗の評価結果を示す。  [0038] Next, Table 3 shows the evaluation results of the specific resistance of each silver alloy thin film before and after the corrosion test.
[0039] [表 3] 比抵钪 { U Q cm) 轼料組成 [0039] [Table 3] Specific gravity (UQ cm) Material composition
成膜直後 加熱試験後 加湿試験後 Immediately after film formation After heating test After humidification test
Ag-3.9AI 4.655 4.869 4.846Ag-3.9AI 4.655 4.869 4.846
Ag-0.9In 4.803 4.998 4.981Ag-0.9In 4.803 4.998 4.981
Ag-0.9Sn 8.448 8.811 8.777Ag-0.9Sn 8.448 8.811 8.777
Ag-1.4Sr 3.895 4.156 4.136Ag-1.4Sr 3.895 4.156 4.136
Ag-2.6Ca 5.072 5.493 5.381Ag-2.6Ca 5.072 5.493 5.381
Ag-0.3Ga 2.673 2.895 2.863Ag-0.3Ga 2.673 2.895 2.863
Ag-0.5Ga 3.559 3.741 3.755Ag-0.5Ga 3.559 3.741 3.755
Ag-0.8Ga 3.670 3.776 3.754Ag-0.8Ga 3.670 3.776 3.754
Ag-1.5Ga 5.634 5.775 5.752Ag-1.5Ga 5.634 5.775 5.752
Ag-2.0Ga 6.344 6.477 6.503Ag-2.0Ga 6.344 6.477 6.503
Ag-0.5AI-0.5In 4.856 5.109 5.075Ag-0.5AI-0.5In 4.856 5.109 5.075
Ag-0.5In-0.4Sm 4.189 4.428 4.407Ag-0.5In-0.4Sm 4.189 4.428 4.407
Ag-0.5In-0.8Cu 4.970 5.199 5.174Ag-0.5In-0.8Cu 4.970 5.199 5.174
Ag-0.5In-0.5Bi 4.354 4.537 4.511Ag-0.5In-0.5Bi 4.354 4.537 4.511
Ag-0.5In-0.5Ge 4.664 4.998 4.972Ag-0.5In-0.5Ge 4.664 4.998 4.972
Ag-0.5Sn-0.4Cu 4.363 4.642 4.612Ag-0.5Sn-0.4Cu 4.363 4.642 4.612
Ag-0.8Ga-0.5Zn 4.692 4.889 4.861Ag-0.8Ga-0.5Zn 4.692 4.889 4.861
Ag-0.2Ga-0.2Cu 3.203 3.254 3.261Ag-0.2Ga-0.2Cu 3.203 3.254 3.261
Ag-0.5Ga-0.3Cu 3.945 3.992 4.004Ag-0.5Ga-0.3Cu 3.945 3.992 4.004
Ag-1.0Ga-0.5Cu 5.227 5.253 5.248Ag-1.0Ga-0.5Cu 5.227 5.253 5.248
Ag-0.25Ga-0.25Sn 3.799 3.955 3.940Ag-0.25Ga-0.25Sn 3.799 3.955 3.940
Ag-0.5Ga-0.5Sn 5.076 5.264 5.238Ag-0.5Ga-0.5Sn 5.076 5.264 5.238
Ag-0.2Ga-0.3Pd 3.599 3.682 3.671Ag-0.2Ga-0.3Pd 3.599 3.682 3.671
Ag-0.5Ga-0.5Pd 4.677 4.761 4.738Ag-0.5Ga-0.5Pd 4.677 4.761 4.738
Ag-1.0Ga-0.5Pd 4.856 4.914 4.905Ag-1.0Ga-0.5Pd 4.856 4.914 4.905
Ag-0.5Ga-0.5In 4.827 5.001 4.981Ag-0.5Ga-0.5In 4.827 5.001 4.981
Ag-0.2Ga-0.2In 4.065 4.276 4.289Ag-0.2Ga-0.2In 4.065 4.276 4.289
Ag-1.2Ga-0.2In 5.428 5.596 5.569Ag-1.2Ga-0.2In 5.428 5.596 5.569
Ag-0.6Ga-0.2In 4.274 4.454 4.424 Ag-0.6Ga-0.2In 4.274 4.454 4.424
Ag 2.521 3.252 3.126 比抵抗の評価において、腐食試験前の純銀の比抵抗は最も低いが、加熱試験後 には 29%の上昇、加湿試験後には 24%も上昇してしまっている。これに対し、本発 明に係る銀合金の場合は、比抵抗の上昇率は 0. 5%〜8. 3%以内である。これらの 結果は銀合金の場合、環境試験により透過率が変化しにくいことと一致しており、電 気的にも安定であることを示して 、る。 Ag 2.521 3.252 3.126 In the resistivity evaluation, the resistivity of pure silver before the corrosion test was the lowest, but increased by 29% after the heating test and increased by 24% after the humidification test. In contrast to this In the case of the silver alloy according to Ming, the rate of increase in the specific resistance is within 0.5% to 8.3%. These results are consistent with the fact that in the case of a silver alloy, the transmittance is not easily changed by an environmental test, indicating that it is electrically stable.
[0041] 次に、上記腐食試験前後の薄膜につ!、て密着性試験を行った。この試験は、上記 の密着性試験と同様、薄膜をクロスカットし、 1mm角のマス目を 100マス形成した。 そして、セロハンテープを貼り付け、密着させて一気に剥がした。評価の方法は上記 と同様、 5段階で評価した。表 4は、この密着性試験の結果を示す。  [0041] Next, an adhesion test was performed on the thin film before and after the corrosion test. In this test, similar to the adhesion test described above, the thin film was cross-cut to form 100 squares of 1 mm square. Then, cellophane tape was affixed and brought into close contact and peeled off at once. The evaluation method was evaluated in five stages as described above. Table 4 shows the results of this adhesion test.
[0042] [表 4] [0042] [Table 4]
Figure imgf000016_0001
Figure imgf000016_0001
[0043] この結果、純銀薄膜の場合、腐食試験後には薄膜が基板力 全面剥がれが生じる ことがわかる。これに対し、本発明に係る銀合金の場合、密着性が大きく改善されて おり、特に、環境試験実施後も成膜直後と同様に全くはがれない強い密着力を得る ことが可能になった。これは、電極、配線パターン作成の実用目的には大いに有効 である。  As a result, in the case of a pure silver thin film, it can be seen that the entire surface of the thin film peels off after the corrosion test. On the other hand, in the case of the silver alloy according to the present invention, the adhesiveness is greatly improved, and in particular, it is possible to obtain a strong adhesive force that does not peel off at all as well as immediately after film formation after the environmental test. This is very effective for practical purposes of creating electrodes and wiring patterns.
[0044] 本実施形態では、更に、各薄膜のエッチング性の評価も行なった。ここでも上記の 腐食試験前後の薄膜を試料とした。基板上の薄膜に、フォトレジストをスピンコーター で塗布、乾燥し、フォトマスクにより専用パターン(100 mのライン &スペース)を露 光後、一定時間ホールドし、その後現像、乾燥した。そして、銀のエッチング液に約 3 0秒 (添加元素の種類によっては、エッチング速度に差があるため適宜に調整した)、 薄膜のエッチングを行った。その後、レジスト剥離、洗浄、乾燥し、ノ タニングが完成 された基板とした。この基板につき、 100〜400倍の光学顕微鏡、電子顕微鏡を用い て観察した。オーバーエッチング量、テーパーの測定には、レジスト付きの基板を使 用し、切断後断面観察、測定した。評価は各項目を総合し、 5段階で判定した。「0」「 1」判定は、実用には不向きな状態で、「4」「5」判定は、実用に推奨できる状態として 判断した。この評価結果を表 5に示す。 [0044] In this embodiment, the etching properties of each thin film were also evaluated. Again, above A thin film before and after the corrosion test was used as a sample. Photoresist was applied to the thin film on the substrate with a spin coater, dried, and a special pattern (100 m line and space) was exposed with a photomask, held for a certain period of time, then developed and dried. Then, the thin film was etched for about 30 seconds in the silver etching solution (adjusted appropriately depending on the type of additive element because of the difference in etching rate). After that, the resist was peeled off, washed, and dried, and the substrate was completed. This substrate was observed using an optical microscope and an electron microscope of 100 to 400 times. A substrate with a resist was used to measure the amount of overetching and taper, and the cross section was observed and measured after cutting. The evaluation was made on a five-point scale based on each item. The “0” and “1” judgments were unsuitable for practical use, and the “4” and “5” judgments were judged to be recommended for practical use. The evaluation results are shown in Table 5.
[表 5] [Table 5]
εϊ/-π//ε900ί1:2 ^ 0/ϊ3εϊ900ΟΖΑν εϊ / -π // ε900ί1: 2 ^ 0 / ϊ3εϊ900ΟΖΑν
Figure imgf000018_0001
Figure imgf000018_0001
[0046] 評価結果から、純銀薄膜の場合は、直線性は良くエッチング後の残渣物も少なか つたが、断面パターンでのオーバーエッチング量が多ぐこれに起因するテーパーが きつく実用には不向きであった。一方、本発明に係る銀合金薄膜の場合は、各種添 加元素の効果により大きく改善され、実用レベルに到達している。 [0046] From the evaluation results, in the case of a pure silver thin film, the linearity was good and the amount of residue after etching was small, but the amount of over-etching in the cross-sectional pattern was large, and the resulting taper was not suitable for practical use. there were. On the other hand, in the case of the silver alloy thin film according to the present invention, it is greatly improved by the effect of various additive elements and has reached a practical level.
産業上の利用可能性  Industrial applicability
[0047] 本発明は、薄膜トランジスタ型液晶ディスプレイ (TFT—LCD)、有機 ELディスプレ ィ、プラズマディスプレイといった各種の表示デバイスの電極'配線材料として有用で ある。 [0047] The present invention is useful as an electrode wiring material for various display devices such as a thin film transistor type liquid crystal display (TFT-LCD), an organic EL display, and a plasma display.
[0048] TFT—LCDでは、 2枚のガラス基板間に液晶材が封入される構造を有し、上側の ガラス基板にはフィルターが、下側のガラス基板には薄型トランジスタ (TFT)が形成 される。 TFT基板側の電極には、ゲート電極、ソース電極、ドレイン電極が形成される oこれらの電極材料及び ITO透明電極に対する配線材料として、本発明に係る銀合 金が有用である。例えば、ホウ珪酸ガラスの透明基板に絶縁膜等を形成し、これに本 発明に係る銀合金薄膜の一例として Ag— O. 5%Ga- 0. 3%01を膜厚120 で形 成し、エッチングを行い比抵抗値を評価すると、 3. 945 μ Ω ' cmと低い比抵抗であり 、耐環境性にも優れその有用性が確認できた。  [0048] A TFT-LCD has a structure in which a liquid crystal material is sealed between two glass substrates. A filter is formed on the upper glass substrate, and a thin transistor (TFT) is formed on the lower glass substrate. The A gate electrode, a source electrode, and a drain electrode are formed on the TFT substrate side electrode. O The silver alloy according to the present invention is useful as a wiring material for these electrode materials and ITO transparent electrodes. For example, an insulating film or the like is formed on a transparent substrate of borosilicate glass, and Ag—O. 5% Ga-0.3% 01 is formed with a film thickness of 120 as an example of the silver alloy thin film according to the present invention. When the resistivity was evaluated by etching, the resistivity was as low as 3.945 μΩ 'cm, and it was confirmed to have excellent environmental resistance and its usefulness.
[0049] 有機 ELディスプレイはエレクト口ルミネッセンス現象を利用したディスプレイであり、 用いられる EL素子自体が発光する。一般的には、ガラス基板 ZITO透明電極 Z第 1 誘電体層 Z蛍光体層 Z第 2誘電体層 Z背面電極の蛍光体を一対の誘電体で挟ん だ構造をしている。本発明に係る銀合金は、電極材料および ITO透明導電膜に対す る配線材料として有効である。例えば、ホウ珪酸ガラスの透明基板に ITO透明導電 膜を形成し、次いで、本発明に係る銀合金薄膜の一例として Ag— O. 2%Ga - 0. 2 %Cuを膜厚 120Aで形成し、エッチングをして配線材料として比抵抗を評価したとこ ろ、 3. 203 μ Ω ' cmと低い比抵抗であり、耐環境性にも優れその有用性が確認でき た。  [0049] An organic EL display is a display that utilizes the electoluminescence phenomenon, and the EL element itself emits light. In general, the glass substrate ZITO transparent electrode Z first dielectric layer Z phosphor layer Z second dielectric layer Z The back electrode phosphor is sandwiched between a pair of dielectrics. The silver alloy according to the present invention is effective as a wiring material for the electrode material and the ITO transparent conductive film. For example, an ITO transparent conductive film is formed on a transparent substrate of borosilicate glass, and then Ag-O. 2% Ga-0.2% Cu is formed with a film thickness of 120A as an example of a silver alloy thin film according to the present invention. When the resistivity was evaluated as a wiring material after etching, the resistivity was as low as 3.203 μΩ 'cm, and it was confirmed to have excellent environmental resistance and its usefulness.
[0050] プラズマディスプレイは、一般的に、ガラス基板内にデータ電極と表示電極(走査 Z 維持電極)を並列に取り付け、その間隙にネオン主体のガスを封入した構造をしてい る。そして、各画素に封入されたネオン主体のガスを電圧によってプラズマ化して放 電させてガスから紫外線を放出させ、これをガラス基板内側に塗布してある赤、青、 緑の蛍光体に照射して発光させる。本発明に係る銀合金は、各種電極の電極として 有効である。例えば、ホウ珪酸ガラスの透明基板に保護膜、誘電体層等を形成させ、 電極材料として本発明に係る銀合金薄膜の一例として Ag—O. 2%Ga-0. 3%Pd を膜厚 120Aで形成し、評価を行ったところ、その比抵抗は 3. 599 Ω 'cmと低い 比抵抗であり、耐環境性にも優れその有用性が確認された。 [0050] In general, a plasma display has a structure in which a data electrode and a display electrode (scanning Z sustaining electrode) are mounted in parallel in a glass substrate, and a neon-based gas is sealed in the gap. Then, the neon-dominated gas sealed in each pixel is turned into plasma by voltage and released. Electricity is emitted to emit ultraviolet rays from the gas, and this is emitted to the red, blue and green phosphors coated on the inside of the glass substrate. The silver alloy according to the present invention is effective as an electrode for various electrodes. For example, a protective film, a dielectric layer, etc. are formed on a transparent substrate of borosilicate glass, and Ag—O. 2% Ga-0. 3% Pd is used as an electrode material as an example of a silver alloy thin film according to the present invention. As a result, it was confirmed that the resistivity was 3.599 Ω'cm, which was low, and it was excellent in environmental resistance.
本発明に係る銀合金は、電磁波遮蔽体の構成材料としても好適である。電磁波遮 蔽体へ適用する場合、適宜の支持体表面に、本発明に関わる銀合金を蒸着又は接 合することで電磁波遮蔽体とすることができる。支持体としては、板状のアクリルゃポ リカーボネ—ト、シート状のゴム、繊維が適用できる。また、ガラスを支持体として光透 過性を有する遮蔽材とすることができる。従って、プラズマディスプレイパネルの発光 面に電磁波遮蔽のためのコーティングを施しても、光の透過率が高ぐ画質の劣化が 無いため高い信頼性が得られる。例えば、ホウ珪酸ガラスの透明基板に、透明誘電 体層、及び、本発明に係る銀合金薄膜の実用例として Ag— O. 5%Ga薄膜 (膜厚 12 OA)を形成し多層構造として評価した場合、比抵抗が 3. 559 Ω 'cmと低い比抵 抗であり、耐環境性にも優れその有用性が確認された。この透明誘電体層は銀合金 薄膜との密着力も良好であり、透過率も全波長にわたって 50%を超える高い透過率 が得られた。  The silver alloy which concerns on this invention is suitable also as a constituent material of an electromagnetic wave shielding body. When applied to an electromagnetic wave shielding body, an electromagnetic wave shielding body can be obtained by depositing or bonding a silver alloy according to the present invention on an appropriate support surface. As the support, plate-like acrylic polycarbonate, sheet-like rubber, or fiber can be applied. Moreover, it can be set as the light-transmitting shielding material using glass as a support. Therefore, even if a coating for shielding electromagnetic waves is applied to the light emitting surface of the plasma display panel, high reliability can be obtained because there is no deterioration in image quality due to high light transmittance. For example, a transparent dielectric layer and an Ag—O. 5% Ga thin film (thickness 12 OA) as a practical example of the silver alloy thin film according to the present invention were formed on a transparent substrate of borosilicate glass and evaluated as a multilayer structure. In this case, the specific resistance is 3.559 Ω'cm, which is a low specific resistance. This transparent dielectric layer had good adhesion to the silver alloy thin film, and high transmittance exceeding 50% was obtained over all wavelengths.

Claims

請求の範囲 The scope of the claims
[I] 銀を主成分とし、第 1の添加元素群としてアルミニウム、インジウム、錫、ビスマス、ガリ ゥム、亜鉛、ストロンチウム、カルシウム、ゲルマニウム、マグネシウム、アンチモン、リ チウム、リンを少なくとも 1種含んでなる電極、配線及び電磁波遮蔽用の銀合金。  [I] Containing silver as a main component and containing at least one kind of aluminum, indium, tin, bismuth, gallium, zinc, strontium, calcium, germanium, magnesium, antimony, lithium, and phosphorus as a first additive element group A silver alloy for shielding electrodes, wiring and electromagnetic waves.
[2] 第 1の添加元素群は、ガリウム、インジウム、錫、亜鉛、マグネシウム、アルミニウムで ある請求項 1記載の銀合金。 2. The silver alloy according to claim 1, wherein the first additive element group is gallium, indium, tin, zinc, magnesium, and aluminum.
[3] 更に、第 2の添加元素群として、白金、金、ロジウム、イリジウム、ルテニウム、パラジゥ ム、鉛、銅、マンガン、シリコン、ニッケル、クロム、コノルト、イットリウム、鉄、スカンジ ゥム、ジルコニウム、チタン、ニオブ、モリブデン、タンタル、タングステン、ハフニウム、 ランタン、セリウム、プラセォジゥム、ネオジゥム、サマリウム、ユーロピウム、ガドリニゥ ム、テルビウム、ジスプロシウム、ホルミウム、ツリウム、イッテルビウム、ホウ素、ェルビ ゥム、炭素の少なくとも 1種を添加する請求項 1又は請求項 2記載の銀合金。 [3] Furthermore, as a second additive element group, platinum, gold, rhodium, iridium, ruthenium, palladium, lead, copper, manganese, silicon, nickel, chromium, connort, yttrium, iron, scandium, zirconium, Add at least one of titanium, niobium, molybdenum, tantalum, tungsten, hafnium, lanthanum, cerium, prasedium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, thulium, ytterbium, boron, erbium, and carbon The silver alloy according to claim 1 or 2.
[4] 第 2の添加元素群は、パラジウム、ジスプロシウム、銅、チタン、ジルコニウム、マンガ ン、ガドリニウム、エルビウム、プラセォジゥム、サマリウム、ランタン、イットリウムの少な くとも 1種である請求項 3記載の銀合金。 [4] The silver alloy according to claim 3, wherein the second additive element group is at least one of palladium, dysprosium, copper, titanium, zirconium, manganone, gadolinium, erbium, prasedium, samarium, lanthanum, and yttrium. .
[5] 添加元素濃度の合計力 0. 01〜20. 0原子%である請求項 1〜請求項 4のいずれ 力 1項に記載の銀合金。 [5] The silver alloy according to any one of claims 1 to 4, wherein the total strength of the additive element concentration is 0.01 to 20.0 at%.
[6] 添加元素濃度の合計が、 0. 01〜: LO. 0原子%である請求項 5記載の銀合金。 6. The silver alloy according to claim 5, wherein the total concentration of the additive elements is 0.01 to: LO. 0 atomic%.
[7] 請求項 1〜請求項 6のいずれか 1項に記載の銀合金からなる電極又は配線を備える 電子部品。 [7] An electronic component comprising the electrode or wiring made of the silver alloy according to any one of [1] to [6].
[8] 請求項 1〜請求項 6の 、ずれか 1項に記載の銀合金カゝらなる電極又は配線を備える 表示デバイス。  [8] A display device comprising the electrode or wiring comprising the silver alloy cover according to any one of claims 1 to 6.
[9] 請求項 1〜請求項 6のいずれか 1項に記載の銀合金力 なる薄膜と、該薄膜を支持 する支持体からなる電磁波遮蔽体。  [9] An electromagnetic wave shielding body comprising the silver alloy thin film according to any one of claims 1 to 6 and a support that supports the thin film.
[10] 請求項 1〜請求項 6の ヽずれか 1項に記載の銀合金からなる薄膜を備える液晶ディ スプレイ。 [10] A liquid crystal display comprising the thin film of the silver alloy according to any one of [1] to [6].
[II] 請求項 1〜請求項 6のいずれか 1項に記載の銀合金力 なる薄膜を備える ELデイス プレイ。 [II] An EL display comprising the thin film having a silver alloy strength according to any one of claims 1 to 6.
[12] 請求項 1〜請求項 6のいずれか 1項に記載の銀合金力 なる薄膜を備えるプラズマ ディスプレイ。 [12] A plasma display comprising the thin film of the silver alloy strength according to any one of [1] to [6].
[13] 請求項 1〜請求項 6のいずれか 1項に記載の銀合金力 なる薄膜を備える SEDディ スプレイ。  [13] An SED display comprising the thin film having the silver alloy strength according to any one of claims 1 to 6.
[14] 請求項 1〜請求項 6のいずれか 1項に記載の銀合金力 なる薄膜を備える反射防止 膜。  [14] An antireflection film comprising the thin film having the silver alloy strength according to any one of [1] to [6].
[15] 請求項 1〜請求項 6のいずれか 1項に記載の銀合金力 なるターゲット。  [15] The silver alloy force target according to any one of claims 1 to 6.
PCT/JP2006/311713 2005-06-10 2006-06-12 Silver alloy for electrode, wiring and electromagnetic shielding WO2006132410A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007520198A JPWO2006132410A1 (en) 2005-06-10 2006-06-12 Silver alloy for electrode, wiring and electromagnetic shielding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-170866 2005-06-10
JP2005170866 2005-06-10

Publications (1)

Publication Number Publication Date
WO2006132410A1 true WO2006132410A1 (en) 2006-12-14

Family

ID=37498592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311713 WO2006132410A1 (en) 2005-06-10 2006-06-12 Silver alloy for electrode, wiring and electromagnetic shielding

Country Status (2)

Country Link
JP (1) JPWO2006132410A1 (en)
WO (1) WO2006132410A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219306A (en) * 2011-04-06 2012-11-12 Mitsubishi Materials Corp Silver alloy sputtering target for forming conductive film, and method for manufacturing the same
JP2013062203A (en) * 2011-09-15 2013-04-04 Mitsubishi Materials Corp Conductive film and manufacturing method thereof, and silver alloy sputtering target for forming conductive film and manufacturing method thereof
CN103643073A (en) * 2013-11-20 2014-03-19 北海鑫利坤金属材料科技开发有限公司 Silver alloy material with characteristics of oxidation-sulfurization resistance and high temperature resistance
CN103985687A (en) * 2013-02-07 2014-08-13 光洋应用材料科技股份有限公司 Silver alloy solder wire for semiconductor package
JP2014196562A (en) * 2012-12-21 2014-10-16 三菱マテリアル株式会社 Ag alloy sputtering target
KR101564291B1 (en) 2013-12-02 2015-10-29 신화일렉트론 주식회사 Composition of a silver alloy target for a sputtering process
WO2018084375A1 (en) * 2016-11-01 2018-05-11 희성금속 주식회사 Silver alloy composition for forming conductive film, and preparation method therefor
US10104770B2 (en) 2013-04-09 2018-10-16 3M Innovative Properties Company Touch panel, preparing method thereof, and Ag—Pd—Nd alloy for touch panel
CN109576527A (en) * 2018-11-02 2019-04-05 广东佳博电子科技有限公司 A kind of silver wire plating anti-oxidation product of palladium and preparation method thereof
GB2576080A (en) * 2018-06-01 2020-02-05 Allied Gold Ltd Treatment of articles of silver alloy
WO2023035955A1 (en) * 2021-09-07 2023-03-16 惠州市拓普金属材料有限公司 Silver alloy target material, and preparation method therefor and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073363A (en) * 1993-04-22 1995-01-06 Mitsubishi Materials Corp High corrosion resistant ag-mg alloy and thin film thereof
JP2002117587A (en) * 2000-07-21 2002-04-19 Target Technology Co Llc Alloy for reflective or semi-reflective layer of optical storage medium
JP2003101052A (en) * 2001-09-27 2003-04-04 Fuji Electric Co Ltd Conductive light-reflecting film, forming method therefor and solar battery
JP2004235505A (en) * 2003-01-31 2004-08-19 Shin Etsu Handotai Co Ltd Ohmic electrode structure for light emitting element and semiconductor element
JP2004277780A (en) * 2003-03-13 2004-10-07 Furuya Kinzoku:Kk Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it
JP2004315970A (en) * 2003-04-03 2004-11-11 Kobe Steel Ltd Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING, AND LAMINATE OF Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING
JP2004339585A (en) * 2003-05-16 2004-12-02 Kobe Steel Ltd Ag-Bi-BASED ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002929A (en) * 2001-08-03 2004-01-08 Furuya Kinzoku:Kk Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073363A (en) * 1993-04-22 1995-01-06 Mitsubishi Materials Corp High corrosion resistant ag-mg alloy and thin film thereof
JP2002117587A (en) * 2000-07-21 2002-04-19 Target Technology Co Llc Alloy for reflective or semi-reflective layer of optical storage medium
JP2003101052A (en) * 2001-09-27 2003-04-04 Fuji Electric Co Ltd Conductive light-reflecting film, forming method therefor and solar battery
JP2004235505A (en) * 2003-01-31 2004-08-19 Shin Etsu Handotai Co Ltd Ohmic electrode structure for light emitting element and semiconductor element
JP2004277780A (en) * 2003-03-13 2004-10-07 Furuya Kinzoku:Kk Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it
JP2004315970A (en) * 2003-04-03 2004-11-11 Kobe Steel Ltd Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING, AND LAMINATE OF Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING
JP2004339585A (en) * 2003-05-16 2004-12-02 Kobe Steel Ltd Ag-Bi-BASED ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219306A (en) * 2011-04-06 2012-11-12 Mitsubishi Materials Corp Silver alloy sputtering target for forming conductive film, and method for manufacturing the same
JP2013062203A (en) * 2011-09-15 2013-04-04 Mitsubishi Materials Corp Conductive film and manufacturing method thereof, and silver alloy sputtering target for forming conductive film and manufacturing method thereof
JP2014196562A (en) * 2012-12-21 2014-10-16 三菱マテリアル株式会社 Ag alloy sputtering target
CN103985687A (en) * 2013-02-07 2014-08-13 光洋应用材料科技股份有限公司 Silver alloy solder wire for semiconductor package
US10104770B2 (en) 2013-04-09 2018-10-16 3M Innovative Properties Company Touch panel, preparing method thereof, and Ag—Pd—Nd alloy for touch panel
CN103643073A (en) * 2013-11-20 2014-03-19 北海鑫利坤金属材料科技开发有限公司 Silver alloy material with characteristics of oxidation-sulfurization resistance and high temperature resistance
CN103643073B (en) * 2013-11-20 2015-09-09 北海鑫利坤金属材料科技开发有限公司 The resistant to elevated temperatures silver alloy of a kind of anti-oxidant sulfuration
KR101564291B1 (en) 2013-12-02 2015-10-29 신화일렉트론 주식회사 Composition of a silver alloy target for a sputtering process
WO2018084375A1 (en) * 2016-11-01 2018-05-11 희성금속 주식회사 Silver alloy composition for forming conductive film, and preparation method therefor
GB2576080A (en) * 2018-06-01 2020-02-05 Allied Gold Ltd Treatment of articles of silver alloy
CN109576527A (en) * 2018-11-02 2019-04-05 广东佳博电子科技有限公司 A kind of silver wire plating anti-oxidation product of palladium and preparation method thereof
WO2023035955A1 (en) * 2021-09-07 2023-03-16 惠州市拓普金属材料有限公司 Silver alloy target material, and preparation method therefor and application thereof

Also Published As

Publication number Publication date
JPWO2006132410A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
WO2006132410A1 (en) Silver alloy for electrode, wiring and electromagnetic shielding
WO2006132413A1 (en) Silver alloy for electrode, wiring and electromagnetic shielding
WO2006132414A1 (en) Silver alloy having excellent reflectivity/transmissivity maintaining characteristics
WO2006132412A1 (en) Silver alloy for electrode, wiring and electromagnetic shielding
EP3435385A1 (en) Laminated transparent conductive film, laminated wiring film, and method for producing laminated wiring film
JP2004002929A (en) Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material
JP2005008983A (en) Silver-base alloy and its use for forming reflective layer, sputtering material and vapor deposition material
JP2013060655A (en) Laminated wiring film for electronic component and sputtering target material for forming coating layer
KR20140093739A (en) Ag ALLOY FILM FOR REFLECTIVE ELECTRODES, AND REFLECTIVE ELECTRODE
KR20160106184A (en) Ag ALLOY SPUTTERING TARGET
JP2004131747A (en) Silver alloy for display device, and display device using electrode film or reflection film formed by using the silver alloy
KR20190010701A (en) Laminate wiring layer for an electronic component and a sputtering target material for forming a coating layer
KR20140103061A (en) METHOD OF MANUFACTURING Mo ALLOY SPUTTERING TARGET MATERIAL AND Mo ALLOY SPUTTERING TARGET MATERIAL
TWI576454B (en) Spraying target for forming wiring film and coating layer for electronic parts
WO2006132416A1 (en) Silver alloy excellent in reflectance/transmittance maintaining characteristics
KR100999908B1 (en) Al-Ni-B ALLOY MATERIAL FOR REFLECTION FILM
WO2006132411A1 (en) Silver alloy for electrode, wiring and electromagnetic shielding
JP6870332B2 (en) Method for manufacturing laminated transparent conductive film, laminated wiring film and laminated wiring film
JP6361957B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP2014185393A (en) METALLIC THIN FILM AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METALLIC THIN FILM
JP2013060656A (en) Laminated wiring film for electronic component and sputtering target material for forming coating layer
JP2014074225A (en) SPUTTERING TARGET FOR FORMING Ag ALLOY FILM
JP6507848B2 (en) ALLOY TARGET FOR SPUTTERING AND METHOD FOR MANUFACTURING ALLOY TARGET FOR SPUTTERING
JP3982793B2 (en) Ag alloy reflective film for display device
JP2005091543A (en) Thin film wiring layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007520198

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766575

Country of ref document: EP

Kind code of ref document: A1