JP4671579B2 - Ag alloy reflective film and method for producing the same - Google Patents

Ag alloy reflective film and method for producing the same Download PDF

Info

Publication number
JP4671579B2
JP4671579B2 JP2002363648A JP2002363648A JP4671579B2 JP 4671579 B2 JP4671579 B2 JP 4671579B2 JP 2002363648 A JP2002363648 A JP 2002363648A JP 2002363648 A JP2002363648 A JP 2002363648A JP 4671579 B2 JP4671579 B2 JP 4671579B2
Authority
JP
Japan
Prior art keywords
film
alloy
reflective film
gas
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002363648A
Other languages
Japanese (ja)
Other versions
JP2004197117A (en
JP2004197117A5 (en
Inventor
禎之 浮島
典明 谷
日出夫 竹井
暁 石橋
衛平 柴
豊 金
正三 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002363648A priority Critical patent/JP4671579B2/en
Priority to TW092135255A priority patent/TW200419003A/en
Priority to KR1020030091353A priority patent/KR101101732B1/en
Publication of JP2004197117A publication Critical patent/JP2004197117A/en
Publication of JP2004197117A5 publication Critical patent/JP2004197117A5/ja
Application granted granted Critical
Publication of JP4671579B2 publication Critical patent/JP4671579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LCD、有機LED等のフラットパネルディスプレイ(FPD)用のAg合金反射膜およびAg合金反射膜の製造方法に関するものである。
【0002】
【従来の技術】
従来、表示デバイスにおける反射膜としてはAlおよびその合金(Al−Nd系等)が用いられているが、可視光領域において短波長側で反射率の低下が起こり、また、耐薬品性および耐熱性に劣るために、保護膜が必要である等の欠点があった。
【0003】
上記理由からAg薄膜を用いる試みもなされている。このAg薄膜は耐蝕性に劣るので、雰囲気中の硫黄成分や塩素分により変色が起こり、反射率の低下を引き起こす。また、基板との密着性にも劣るので、膜剥離やピンホールが生じやすい。そのため、上層保護膜や下地密着層が必要となる。このAg薄膜の耐蝕性を改善する方法として、AgPd合金やAgPdCu合金等の使用が提案されている(例えば、特許文献1および2参照)。しかし、これらの合金と基板との密着性は不十分で、金属酸化物等の密着層が必要であった。
【0004】
【特許文献1】
特開2000−109943号公報(特許請求の範囲等)
【0005】
【特許文献2】
特開2000−285517号公報(特許請求の範囲等)
【0006】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術の問題を解決することにあり、高反射率を有し、基板との密着性、耐蝕性にも優れたAg合金反射膜を提供すると共に、その合金反射膜製造に適したスパッタリングターゲットを用いるAg合金反射膜製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、純Ag薄膜の持っていた耐蝕性、密着性の不備を解消しつつ高反射特性を実現するためには、AuとSnとの添加が有効であることを見出し、本発明を完成した。
【0008】
請求項1記載の発明は、Agを主成分としてAuおよびSnを含有するAg合金からなり、Au含有量が0.1〜4.0at%、Sn含有量が0.1〜2.5at%であるAg合金反射膜であって、さらにスパッタリングガスとしてのArガスと添加ガスとしてのO 、H OおよびH +O から選ばれた少なくとも1つの酸素含有ガスとを用いるスパッタリングにより酸素0.1〜3.0at%含ませてなり、これにより基板とのバインダーとなるSnO 成分をAg合金反射膜中に発生せしめてなることを特徴とするフラットパネルディスプレイ用のAg合金反射膜である。このAg合金反射膜は、可視光領域(波長400〜700nm)において反射率が90%以上で、耐蝕性、ガラス基板等との密着性に優れている。この範囲を外れると、Ag合金反射膜は、反射率、耐蝕性、密着性の全てを満足することはできない。この反射膜において、耐蝕性については主にAu、密着性については主にSnの添加が有効である。また、この範囲内の酸素を含有する膜は、基板との密着性に優れている。
【0009】
請求項2記載の発明は、上記反射膜が、上記Ag合金反射膜と金属酸化物膜とを積層した積層薄膜からなることを特徴とする
請求項3記載の発明は、上記金属酸化物膜が、ITO、IZO、酸化アンチモンをドープした酸化錫、酸化亜鉛−酸化アルミニウム、酸化チタンから選ばれた金属酸化物の膜であることを特徴とする。
【0010】
請求項4記載の発明は、Agを主成分としてAuおよびSnを含有するAg合金からなり、Au含有量が0.1〜4.0at%、Sn含有量が0.1〜2.5at%であるAg合金スパッタリングターゲットを用い、スパッタリングガスとしてのArガスと添加ガスとしてのO、HOおよびH+Oから選ばれた少なくとも1つの酸素含有ガスとを用いてスパッタし、Agを主成分とし、Au含有量が0.1〜4.0at%、Sn含有量が0.1〜2.5at%であり、さらに酸素含有量が0.1〜3.0at%であるAg合金反射膜であって、これにより基板とのバインダーとなるSnO 成分をAg合金反射膜中に発生せしめてなるAg合金膜を製造することを特徴とするフラットパネルディスプレイ用のAg合金反射膜の製造方法である。Au含有量が0.1〜4.0at%、およびSn含有量が0.1〜2.5at%である組成のターゲットを用いてスパッタすることにより、可視光領域(波長400〜700nm)において反射率が90%以上で、耐蝕性、ガラス基板等との密着性に優れたAg合金反射膜が得られる。この範囲を外れると、反射率、耐蝕性、密着性の全てを満足するAg合金反射膜は得られない。
【0011】
上記Ag合金反射膜の製造方法は、特に基板温度が低い成膜の場合(基板温度100℃以下)でも、基板との密着性に優れたAg合金薄膜を得るために有効な手段である。
請求項記載の発明は、上記合金反射膜の製造方法において、酸素含有ガスをスパッタによる成膜初期にのみ供給することを特徴とする。
【0012】
請求項記載の発明は、上記合金反射膜製造方法において、下地層としての金属酸化物膜の上にAg合金反射膜を積層形成すること、但し、スパッタ時に、添加ガスを供給してまたは供給せずにスパッタしてAg合金反射膜を製造することを特徴とする積層構造を有するAg合金反射膜製造方法である。このような積層構造を有する薄膜としては、例えば、Ag合金反射膜と、ITO、IZO、酸化アンチモンをドープした酸化錫、酸化亜鉛−酸化アルミニウム、酸化チタン等から選ばれた金属酸化物の薄膜との積層構造を有するものがある。反射膜を有機LEDのアノード電極に用いる場合は、ホール輸送層との仕事関数の調整のために必要なため、ホール注入効率に優れた反射電極膜を得るのに有効な手段である。また、金属酸化物薄膜を下地層に用いた場合は、上記添加ガスとしてのO、HO、H+Oガスを用いなくとも、基板との密着性に優れたAg合金反射膜を提供することができる。
【0013】
なお、本発明で用いるAg合金ターゲットはSnを含有しているために、上記O、HO、H+Oの添加ガスを微量用いることにより、膜中にSnO成分が発生する。このSnO成分が基板とのバインダーとなるために、容易に密着性に優れたAg合金反射膜を提供することができる。基板としては、ガラス、シリコンの他、プラスチックフィルム等でも有効である。
上記したAg合金ターゲットを用いることにより、耐蝕性、密着性に優れ、高反射率を有するAg合金反射膜を提供することができる。本明細書中では反射膜としての用途を中心に記載してあるが、得られるAg合金反射膜の比抵抗は9μΩcm以下であるので配線膜としても使用可能である。
【0014】
【実施例】
以下、本発明の実施例および比較例を図面を参照して説明する。図1に実施例および比較例で使用したインライン式スパッタリング装置の概略の構成を模式的に示す。
【0015】
このスパッタ装置は、第1、第2、第3のスパッタ室1、2、3を有している。各スパッタ室はそれぞれ、ゲートバルブ4、5で仕切られている。スパッタ室1、2、3は、個別に真空排気系に接続できる構成になっており、各スパッタ室内部には、それぞれ、磁気回路を有したカソード電極1a、2a、3aが配置されており、このカソード電極の上にはそれぞれターゲット1b、2b、3bが取付けられている。各ターゲット1b、2b、3bは、金属酸化物(ITO等)、Ag合金等からなるものであり、電源1c、2c、3cからDCバイアスを印加できるように構成されている。これらのターゲットとしては、目的とするAg合金薄膜の組成に応じて適宜選択した所定の割合の金属から構成されたものを使用する。また、スパッタ室1、2、3には、それぞれ、ガス導入系1d、2d、3dが接続され、各スパッタ室にArの他にO、HO、H等の導入が可能になるように構成されている。図中、6は基板搬送トレイまたは基板支持台であり、7は基板である。
【0016】
(実施例1)
第1スパッタ室1のターゲット1bとして、Agを主成分とし、0.94at%(1.7wt%)のAuおよび1.84at%(2.0wt%)のSnを添加したターゲット、第2スパッタ室2のターゲット2bとして、Agを主成分とし、0.55at%(1.0wt%)のAuおよび1.10at%(1.2wt%)のSnを添加したターゲット、第3スパッタ室3のターゲット3bとして、Agを主成分とし、0.28at%(0.5wt%)のAuおよび0.46at%(0.5wt%)のSnを添加したターゲットをそれぞれ各スパッタ室内にセットした。
【0017】
図示しないが、第1スパッタ室1の隣には真空排気系を有した仕込み室があり、基板7を第1スパッタ室へ搬送できる構成になっている。第1スパッタ室1にArガス200SCCM、酸素ガス0.5SCCM(O分圧2.67×10−3Pa)を導入し、DCパワー500W(パワー密度1W/cm)をターゲット1bに投入した。スパッタ圧力は0.667Pa程度であった。仕込み室から、洗浄したガラス基板(コーニング1737)7を保持した基板搬送トレイ6を20cm/minの搬送速度で第1スパッタ室1へ移送し、室温および200℃で通過成膜を行った。トレイ6がターゲット1bを通過した時点で、放電を終了し、トレイを仕込み室へ戻した。基板7上に膜厚150nmのAg合金膜1−1を作製した。
【0018】
第2スパッタ室2および第3スパッタ室3でも上記と同様な操作を行い、それぞれの基板上に膜厚150nmのAg合金膜1−2、Ag合金膜1−3を作製した。
本実施例ではインライン式での成膜方法について記載したが、基板を固定したバッチ式、枚葉式の成膜装置でも作製可能である。
【0019】
得られたAg合金膜1−1〜1−3の反射率、密着性、耐食性、抵抗値、エッチング特性を調べた。反射率は、Si基板をリファレンスとし、可視光領域(波長400〜800nm)で分光光度計を用いて測定した。密着性は、クロスカット法に従って、5mm□の大きさの25マス(5×5)になるようにカッターで膜中に切れ目を入れ、テープ(3M製2422)による碁盤目試験で、25マス中の剥がれなかったマスの数を調べて評価した。耐食性の評価は、5%NaCl溶液中にAg合金膜が形成された基板を96時間放置し、目視により腐食の状態を観察することにより行った。抵抗値は、4探針式の抵抗測定器(三菱化学製ロレスタ)で測定した。エッチング特性は、通常のフォトレジストプロセスで0.2mmのLine&Spaceのパターンを形成し、エッチング液として燐酸:硝酸:水=4:1:5〜10の混合溶液を用いてエッチングを行って評価した。比較のために、APC(Ag−0.9wt%Pd−1.0wt%Cu)膜も作製し、同様の評価を行った。得られた結果を表1に示す。
【0020】
(表1)

Figure 0004671579
【0021】
表1中、反射率R(%)は480nmでの値を記し、また、密着性におけるMはAg合金膜であり、Iは以下の実施例4における下地層のITO膜である。
表1から明らかなように、いずれのAg合金膜もAPCと同等程度またはそれ以上の反射率を有していた。Au、Sn添加量の1番少ないAg合金膜1−3が一番高い反射率を示した。これは、添加剤の含有量が効いているものと予想される。
【0022】
密着性については、Ag合金薄膜1−1〜1−3のいずれもが、APCとの比較において、ガラス基板との密着性に優れていた。これは、ターゲットに含有されるSn元素がスパッタ中に添加したOガスと反応してSnOが形成されるからと推測される。
また、上記室温成膜により得られたAg合金膜1−1〜1−3、および酸素ガス導入量のみを変えただけで室温成膜により上記と同様にして得たAg合金膜について、オージェ分析を行ったところ、得られたAg合金膜中の酸素含有量は表2に示す通りであった。
【0023】
(表2)
Figure 0004671579
(注)成膜初期だけ酸素を導入した場合であり、その際の初期層の膜厚は300Å以下であった。
【0024】
表2から明らかなように、本発明の成膜条件で得られたAg合金膜中の酸素含有量は、成膜時の添加酸素量によっても変わるが、0.1〜3.0at%程度であった。
特に、ガラス基板との密着性は界面での制御が重要であるために、成膜初期だけ酸素ガスを導入して、Ag合金膜を作製する方法でも、その膜組成は、初期層のみに酸素が0.1〜1.0at%程度含まれており、密着性を充分満足する膜が得られた。
耐食性については、Ag合金膜1−1〜1−3のいずれも、5%NaCl溶液に96時間浸漬後も概観変化はなく、良好な耐食性を示していた。比較のために、純銀についての耐食性テストを行ったところ、24時間経過した時点で表面の光沢がなくなり、耐食性が不十分であった。
【0025】
比抵抗については、Sn添加量の多いAg合金膜1−1において室温成膜の場合に8.3μΩcmであり、その他の場合の合金膜ではさらに低い比抵抗を有しているので、これらの合金膜は配線膜としても十分使用できるレベルであることが確認された。
Ag合金膜1−1〜1−3のエッチング特性については、100nm/min程度のエッチング速度を有し、良好なパターニング形状が得られた。レジストプロセスにも対応可能であることから、耐アルカリ性、耐有機溶剤性にも優れた膜であることが分かった。
【0026】
(実施例2)
実施例1の添加ガスの代わりにHO(HOガス分圧2.67×10−3Pa)を導入し、添加ガス以外は実施例1に準じた方法でAg合金膜2−1、2−2、2−3を作製した。得られた薄膜について実施例1と同様にその物性を調べたところ、反射率、密着性、耐食性、比抵抗、エッチング加工性に優れた膜であることが確認された。
【0027】
(実施例3)
実施例1の添加ガスの代わりにH+Oガスを用いて、添加ガス以外は実施例1に準じた方法でAg合金薄膜3−1、3−2、3−3を作製した。Hガスについては、3%H含有Arガスとして導入し、Oガスについては、Oガス分圧2.67×10−3Paで導入した。得られた薄膜について実施例1と同様にその物性を調べたところ、反射率、密着性、耐食性、比抵抗、エッチング加工性に優れた膜であることが確認された。
【0028】
(実施例4)
図1の第1スパッタ室1および第3スパッタ室3のそれぞれのターゲット1b、3bとしてITO(In+10wt%SnO)ターゲットを、また、第2スパッタ室2のターゲット2bとしてAgを主成分とし0.28at%(0.5wt%)のAuおよび0.46at%(0.5wt%)のSnを添加したAg合金ターゲットをそれぞれセットした。実施例1記載の方法に準じて、但し、添加ガスは使用せずに、ガラス基板7上にITO膜(15nm)/Ag合金膜1−3(150nm)/ITO膜(15nm)の積層構造膜を作製した。得られた積層構造膜について反射率を実施例1と同様に測定した。得られた反射膜の反射率は235%(Siリファレンス)であり、Ag合金膜単独の場合と同様に高反射率であった。密着性、耐食性も実施例1の場合と同様に良好であった。また、得られた膜の表面平滑性をAFMで調べたところ、Rmax=7.0nm、Ra=0.7nmと優れていた。本実施例で得られた反射膜は有機LEDのアノード電極として用いる場合に特に有効である。
上記したような積層構造を有する薄膜としては、ITO膜以外に、例えば、Ag合金反射膜と、IZO、酸化アンチモンをドープした酸化錫、酸化亜鉛−酸化アルミニウム、酸化チタン等から選ばれた金属酸化物の薄膜との積層構造を有するものがある。反射膜を有機LEDのアノード電極に用いる場合は、ホール輸送層との仕事関数の調整のために必要なため、ホール注入効率に優れた反射電極膜を得るのに有効な手段である。また、金属酸化物薄膜を下地層に用いた場合は、上記添加ガスとしてのO 、H O、H +O ガスを用いなくとも、基板との密着性に優れたAg合金反射膜を提供することができる。
【0029】
なお、上記と同様にしてAPC膜/ITO膜およびAg合金膜1−1〜1−3/ITO膜の積層構造膜を作製し、これらの膜の密着性を測定した。その結果を表1に示す。いずれの膜も密着性に優れていた。
実施例1から4に記載した方法では基板上に室温および基板加熱(200℃)で成膜した膜について説明したが、その他の温度(350℃)での基板加熱で成膜した場合も、また、室温成膜後のアフターアニールを行った場合も同様な高反射膜が得られた。すなわち、室温〜350℃で良好な結果が得られた。
【0030】
(比較例1)
図1の第1スパッタ室1のターゲット1bとして、Agを主成分とし、0.94at%(1.7wt%)のAuを添加したターゲット、第2スパッタ室2のターゲット2bとして、Agを主成分とし、0.55at%(1.0wt%)のAuを添加したターゲット、第3スパッタ室3のターゲット3bとして、Agを主成分とし、0.28at%(0.5wt%)のAuを添加したターゲットをそれぞれセットし、実施例1と同様な条件で成膜を行い、Ag合金膜1500Åをガラス基板上へ作製した。但し、酸素ガスの導入量については、0Pa、2.67×10−3Pa、6.65×10−2Paと変えて成膜を行った。
得られた各Ag合金膜の特性を実施例1と同様に調べたところ、反射率、耐食性、エッチング特性は良好であったが、密着性については表3に示すように酸素導入量を増加しても不十分であった。
【0031】
(表3)
Figure 0004671579
【0032】
(比較例2)
図1の第1スパッタ室1のターゲット1bとして、Agを主成分とし、1.84at%(2.0wt%)のSnを添加したターゲット、第2スパッタ室2のターゲット2bとして、Agを主成分とし、1.10at%(1.2wt%)のSnを添加したターゲット、第3スパッタ室3のターゲット3bとして、Agを主成分とし、0.46at%(0.5wt%)のSnを添加したターゲットをそれぞれセットし、実施例1と同様な条件で成膜を行い、Ag合金膜1500Åをガラス基板上へ作製した。但し、酸素ガスの導入量については、0Pa、2.67×10−3Pa、6.65×10−2Paと変えて成膜を行った。
得られた各Ag合金膜の特性を実施例1と同様に調べたところ、反射率、密着性、エッチング特性は良好であったが、耐食性については表4に示すように不十分であった。
【0033】
(表4)
Figure 0004671579
【0034】
【発明の効果】
本発明によれば、上記した特定組成のAg合金ターゲットを用いることにより、ガラス基板等との密着性に優れ、また、耐食性、エッチング加工性にも優れ、さらに高反射率を有するAg合金膜を提供することができる。
Ag合金膜の抵抗値は十分低いため、反射膜を電極膜、配線膜として使用することも可能である。
【図面の簡単な説明】
【図1】 本発明の実施例で使用したインライン式スパッタリング装置の概略の構成図。
【符号の説明】
1 第1スパッタ室 2 第2スパッタ室
3 第3スパッタ室 1a、2a、3a カソード電極
1b、2b、3b ターゲット 1c、2c、3c 電源
1d、2d、3d ガス導入系 4、5 ゲートバルブ
6 基板搬送トレイ 7 基板[0001]
BACKGROUND OF THE INVENTION
The present invention, LCD, a method of manufacturing the Ag alloy reflective film Contact and Ag alloy reflective film for a flat panel display (FPD) such as organic LED.
[0002]
[Prior art]
Conventionally, Al and its alloys (Al—Nd system, etc.) have been used as a reflective film in display devices, but the reflectance decreases on the short wavelength side in the visible light region, and also has chemical resistance and heat resistance. Therefore, there are drawbacks such as the need for a protective film.
[0003]
Attempts to use Ag thin films have also been made for the above reasons. Since this Ag thin film is inferior in corrosion resistance, discoloration occurs due to the sulfur component and chlorine content in the atmosphere, causing a decrease in reflectance. Moreover, since it is inferior in adhesiveness with a board | substrate, film peeling and a pinhole are easy to produce. Therefore, an upper protective film and a base adhesion layer are required. As a method for improving the corrosion resistance of the Ag thin film, use of an AgPd alloy, an AgPdCu alloy, or the like has been proposed (see, for example, Patent Documents 1 and 2). However, the adhesion between these alloys and the substrate is insufficient, and an adhesion layer such as a metal oxide is required.
[0004]
[Patent Document 1]
JP 2000-109943 A (Claims etc.)
[0005]
[Patent Document 2]
JP 2000-285517 A (Claims etc.)
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems of the prior art, and provide an Ag alloy reflective film having high reflectivity, excellent adhesion to a substrate and excellent corrosion resistance, and the alloy reflective film. An object of the present invention is to provide an Ag alloy reflective film manufacturing method using a sputtering target suitable for manufacturing.
[0007]
[Means for Solving the Problems]
The present inventors have found that the addition of Au and Sn is effective in order to realize high reflection characteristics while eliminating the deficiencies in corrosion resistance and adhesion that a pure Ag thin film has. Was completed.
[0008]
The invention described in claim 1 is composed of an Ag alloy containing Au and Sn containing Ag as a main component, with an Au content of 0.1 to 4.0 at% and an Sn content of 0.1 to 2.5 at%. a Ag alloy reflective film Ru Oh, a further oxygen by sputtering using at least one oxygen-containing gas O 2, selected from H 2 O and H 2 + O 2 as Ar gas and the additive gas as the sputtering gas will be included 0.1~3.0at%, Ag alloy reflective films for flat panel displays thereby characterized Rukoto such by by which the SnO 2 component as a binder with the substrate during Ag alloy reflective film It is. This Ag alloy reflective film has a reflectance of 90% or more in the visible light region (wavelength 400 to 700 nm), and is excellent in corrosion resistance and adhesion to a glass substrate and the like. Outside this range, the Ag alloy reflective film cannot satisfy all of reflectance, corrosion resistance, and adhesion. In this reflective film, it is effective to add mainly Au for corrosion resistance and mainly Sn for adhesion. In addition, a film containing oxygen within this range has excellent adhesion to the substrate.
[0009]
According to a second aspect of the invention, the reflective film, wherein the Rukoto such a laminated film formed by laminating the above Ag alloy reflective film and a metal oxide film.
According to a third aspect of the invention, the metal oxide film, ITO, IZO, tin oxide doped with antimony oxide, zinc oxide - wherein the aluminum oxide, the film Der Rukoto metal oxide selected from titanium oxide And
[0010]
The invention according to claim 4 is composed of an Ag alloy containing Au and Sn containing Ag as a main component, with an Au content of 0.1 to 4.0 at% and an Sn content of 0.1 to 2.5 at%. Sputtering was performed using an Ag alloy sputtering target using Ar gas as a sputtering gas and at least one oxygen-containing gas selected from O 2 , H 2 O, and H 2 + O 2 as an additive gas. An Ag alloy reflective film having, as components, an Au content of 0.1 to 4.0 at%, an Sn content of 0.1 to 2.5 at%, and an oxygen content of 0.1 to 3.0 at% a is, thereby the Ag alloy reflective film for a flat panel display, characterized in that to produce the Ag alloy film of SnO 2 component as a binder composed allowed occurred during Ag alloy reflective film of the substrate It is a production method. Reflection in the visible light region (wavelength 400 to 700 nm) by sputtering using a target having a composition with an Au content of 0.1 to 4.0 at% and an Sn content of 0.1 to 2.5 at% When the rate is 90% or more, an Ag alloy reflective film excellent in corrosion resistance and adhesion to a glass substrate or the like can be obtained. Outside this range, an Ag alloy reflective film that satisfies all of reflectance, corrosion resistance, and adhesion cannot be obtained.
[0011]
The method for producing an Ag alloy reflective film is an effective means for obtaining an Ag alloy thin film having excellent adhesion to a substrate even when the substrate temperature is low (substrate temperature of 100 ° C. or less).
The invention according to claim 5 is characterized in that, in the method for producing an alloy reflective film , an oxygen-containing gas is supplied only at the initial stage of film formation by sputtering.
[0012]
According to a sixth aspect of the present invention, in the method for manufacturing an alloy reflective film, an Ag alloy reflective film is formed on a metal oxide film as a base layer, provided that an additive gas is supplied or supplied during sputtering. A method for producing an Ag alloy reflective film having a laminated structure, characterized in that an Ag alloy reflective film is produced without sputtering. As a thin film having such a laminated structure, for example, an Ag alloy reflective film, a thin film of metal oxide selected from ITO, IZO, tin oxide doped with antimony oxide, zinc oxide-aluminum oxide, titanium oxide, etc. Some have a laminated structure. When the reflective film is used for the anode electrode of the organic LED, it is an effective means for obtaining a reflective electrode film having excellent hole injection efficiency because it is necessary for adjusting the work function with the hole transport layer. When a metal oxide thin film is used for the underlayer, an Ag alloy reflective film having excellent adhesion to the substrate can be obtained without using the O 2 , H 2 O, and H 2 + O 2 gases as the additive gas. Can be provided.
[0013]
In addition, since the Ag alloy target used in the present invention contains Sn, a SnO 2 component is generated in the film by using a small amount of the additive gas of O 2 , H 2 O, and H 2 + O 2 . Since this SnO 2 component becomes a binder with the substrate, it is possible to easily provide an Ag alloy reflective film having excellent adhesion. As the substrate, glass, silicon, plastic film or the like is also effective.
By using the above Ag alloy target, it is possible to provide an Ag alloy reflective film that is excellent in corrosion resistance and adhesion and has a high reflectance. In this specification, the application as a reflective film is mainly described. However, since the specific resistance of the obtained Ag alloy reflective film is 9 μΩcm or less, it can be used as a wiring film.
[0014]
【Example】
Hereinafter, examples and comparative examples of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a schematic configuration of an in-line sputtering apparatus used in Examples and Comparative Examples.
[0015]
This sputtering apparatus has first, second, and third sputtering chambers 1, 2, and 3. Each sputtering chamber is partitioned by gate valves 4 and 5, respectively. The sputtering chambers 1, 2, and 3 are configured to be individually connected to an evacuation system, and cathode electrodes 1a, 2a, and 3a each having a magnetic circuit are disposed in each sputtering chamber, Targets 1b, 2b and 3b are mounted on the cathode electrode, respectively. Each of the targets 1b, 2b, and 3b is made of a metal oxide (ITO or the like), an Ag alloy, or the like, and is configured so that a DC bias can be applied from the power sources 1c, 2c, and 3c. As these targets, those composed of a predetermined proportion of metal appropriately selected according to the composition of the target Ag alloy thin film are used. Further, gas introduction systems 1d, 2d, and 3d are connected to the sputtering chambers 1, 2, and 3, respectively, and it is possible to introduce O 2 , H 2 O, H 2 and the like in addition to Ar into each sputtering chamber. It is configured as follows. In the figure, 6 is a substrate carrying tray or substrate support, and 7 is a substrate.
[0016]
Example 1
As a target 1b of the first sputtering chamber 1, a target containing Ag as a main component, 0.94 at% (1.7 wt%) Au, and 1.84 at% (2.0 wt%) Sn is added. As a target 2b of the sputtering chamber 2, a target containing Ag as a main component, added with 0.55 at% (1.0 wt%) Au and 1.10 at% (1.2 wt%) Sn, a third sputtering chamber 3 as targets 3b, targets each containing Ag as a main component and 0.28 at% (0.5 wt%) Au and 0.46 at% (0.5 wt%) Sn are set in each sputtering chamber. did.
[0017]
Although not shown, there is a preparation chamber having an evacuation system next to the first sputtering chamber 1 so that the substrate 7 can be transferred to the first sputtering chamber. Ar gas 200 SCCM and oxygen gas 0.5 SCCM (O 2 partial pressure 2.67 × 10 −3 Pa) were introduced into the first sputtering chamber 1, and DC power 500 W (power density 1 W / cm 2 ) was introduced into the target 1 b. . The sputtering pressure was about 0.667 Pa. The substrate transfer tray 6 holding the cleaned glass substrate (Corning 1737) 7 was transferred from the preparation chamber to the first sputter chamber 1 at a transfer speed of 20 cm / min, and passed film formation was performed at room temperature and 200 ° C. When the tray 6 passed the target 1b, the discharge was terminated and the tray was returned to the preparation chamber. An Ag alloy film 1-1 having a thickness of 150 nm was formed on the substrate 7.
[0018]
The same operation as described above was performed in the second sputtering chamber 2 and the third sputtering chamber 3 to produce an Ag alloy film 1-2 and an Ag alloy film 1-3 with a film thickness of 150 nm on the respective substrates.
In this embodiment, the in-line film forming method is described, but it can also be manufactured by a batch type or single wafer type film forming apparatus in which a substrate is fixed.
[0019]
The reflectance, adhesion, corrosion resistance, resistance value, and etching characteristics of the obtained Ag alloy films 1-1 to 1-3 were examined. The reflectance was measured using a spectrophotometer in the visible light region (wavelength 400 to 800 nm) using the Si substrate as a reference. According to the cross-cut method, the adhesiveness is cut in the film with a cutter so that it becomes 25 squares (5 × 5) with a size of 5 mm □, and in a grid pattern test with tape (3M 2422), The number of cells that did not peel off was examined and evaluated. Evaluation of corrosion resistance was performed by leaving a substrate on which an Ag alloy film was formed in a 5% NaCl solution for 96 hours and visually observing the state of corrosion. The resistance value was measured with a 4-probe type resistance measuring instrument (Loresta manufactured by Mitsubishi Chemical Corporation). The etching characteristics were evaluated by forming a 0.2 mm Line & Space pattern by an ordinary photoresist process and performing etching using a mixed solution of phosphoric acid: nitric acid: water = 4: 1: 5-10 as an etching solution. For comparison, an APC (Ag-0.9 wt% Pd-1.0 wt% Cu) film was also produced and evaluated in the same manner. The obtained results are shown in Table 1.
[0020]
(Table 1)
Figure 0004671579
[0021]
In Table 1, the reflectance R (%) is a value at 480 nm, M in adhesion is an Ag alloy film, and I is an ITO film as a base layer in Example 4 below.
As is apparent from Table 1, all Ag alloy films had a reflectance equivalent to or higher than that of APC. The Ag alloy film 1-3 with the smallest amount of added Au and Sn showed the highest reflectance. It is expected that this is because the additive content is effective.
[0022]
About adhesiveness, all of Ag alloy thin film 1-1 to 1-3 were excellent in adhesiveness with a glass substrate in comparison with APC. This is presumed that Sn element contained in the target reacts with O 2 gas added during sputtering to form SnO 2 .
Further, Auger analysis was performed on the Ag alloy films 1-1 to 1-3 obtained by the room temperature film formation and the Ag alloy films obtained by the room temperature film formation in the same manner as described above only by changing the amount of oxygen gas introduced. As a result, the oxygen content in the obtained Ag alloy film was as shown in Table 2.
[0023]
(Table 2)
Figure 0004671579
(Note) In this case, oxygen was introduced only at the initial stage of film formation, and the film thickness of the initial layer at that time was 300 mm or less.
[0024]
As apparent from Table 2, the oxygen content in the Ag alloy film obtained under the film forming conditions of the present invention varies depending on the amount of oxygen added during film formation, but is about 0.1 to 3.0 at%. there were.
In particular, since adhesion at the glass substrate is important to control at the interface, even in a method of producing an Ag alloy film by introducing oxygen gas only at the initial stage of film formation, the film composition is oxygen only in the initial layer. Is contained in an amount of about 0.1 to 1.0 at%, and a film sufficiently satisfying the adhesion was obtained.
As for the corrosion resistance, none of the Ag alloy films 1-1 to 1-3 was changed in appearance after being immersed in a 5% NaCl solution for 96 hours, and showed good corrosion resistance. For comparison, when a corrosion resistance test was performed on pure silver, the glossiness of the surface disappeared after 24 hours and the corrosion resistance was insufficient.
[0025]
The specific resistance is 8.3 μΩcm in the case of film formation at room temperature in the Ag alloy film 1-1 with a large amount of Sn addition, and the alloy films in other cases have a lower specific resistance. It was confirmed that the film is at a level that can be sufficiently used as a wiring film.
Regarding the etching characteristics of the Ag alloy films 1-1 to 1-3, an etching rate of about 100 nm / min was obtained, and a good patterning shape was obtained. It was found that the film is excellent in alkali resistance and organic solvent resistance because it can be applied to a resist process.
[0026]
(Example 2)
In place of the additive gas of Example 1, H 2 O (H 2 O gas partial pressure 2.67 × 10 −3 Pa) was introduced, and the Ag alloy film 2-1 was manufactured by the method according to Example 1 except for the additive gas. 2-2 and 2-3 were prepared. When the physical properties of the obtained thin film were examined in the same manner as in Example 1, it was confirmed that the film was excellent in reflectivity, adhesion, corrosion resistance, specific resistance, and etching processability.
[0027]
(Example 3)
Ag alloy thin films 3-1, 3-2, and 3-3 were prepared by a method according to Example 1 except for the additive gas, using H 2 + O 2 gas instead of the additive gas of Example 1. The H 2 gas, is introduced as a 3% H 2 containing Ar gas, for O 2 gas were introduced at O 2 gas partial pressure 2.67 × 10 -3 Pa. When the physical properties of the obtained thin film were examined in the same manner as in Example 1, it was confirmed that the film was excellent in reflectivity, adhesion, corrosion resistance, specific resistance, and etching processability.
[0028]
Example 4
The ITO (In 2 O 3 +10 wt% SnO 2 ) target is mainly used as the targets 1 b and 3 b in the first sputtering chamber 1 and the third sputtering chamber 3 in FIG. 1, and Ag is mainly used as the target 2 b in the second sputtering chamber 2. Ag alloy targets to which 0.28 at% (0.5 wt%) Au and 0.46 at% (0.5 wt%) Sn were added as components were set. According to the method described in Example 1, but without using an additive gas, a laminated structure film of ITO film (15 nm) / Ag alloy film 1-3 (150 nm) / ITO film (15 nm) on the glass substrate 7 Was made. The reflectance of the obtained laminated structure film was measured in the same manner as in Example 1. The reflectance of the obtained reflective film was 235% (Si reference), and was as high as in the case of the Ag alloy film alone. Adhesion and corrosion resistance were also good as in Example 1. Further, when the surface smoothness of the obtained film was examined by AFM, it was excellent as Rmax = 7.0 nm and Ra = 0.7 nm. The reflective film obtained in this example is particularly effective when used as an anode electrode of an organic LED.
As the thin film having the laminated structure as described above, in addition to the ITO film, for example, a metal oxide selected from an Ag alloy reflective film, tin oxide doped with IZO and antimony oxide, zinc oxide-aluminum oxide, titanium oxide and the like. Some have a laminated structure with a thin film of objects. When the reflective film is used for the anode electrode of the organic LED, it is an effective means for obtaining a reflective electrode film having excellent hole injection efficiency because it is necessary for adjusting the work function with the hole transport layer. When a metal oxide thin film is used for the underlayer , an Ag alloy reflective film having excellent adhesion to the substrate can be obtained without using the O 2 , H 2 O, and H 2 + O 2 gases as the additive gas. Can be provided.
[0029]
In addition, the laminated structure film | membrane of APC film / ITO film | membrane and Ag alloy film 1-1 to 1-3 / ITO film | membrane was produced like the above, and the adhesiveness of these films | membranes was measured. The results are shown in Table 1. All films were excellent in adhesion.
In the methods described in Examples 1 to 4, the film formed on the substrate at room temperature and substrate heating (200 ° C.) has been described. However, when the film is formed by heating the substrate at other temperatures (350 ° C.), A similar highly reflective film was also obtained when after-annealing was performed after film formation at room temperature. That is, good results were obtained at room temperature to 350 ° C.
[0030]
(Comparative Example 1)
The target 1b of the first sputtering chamber 1 in FIG. 1 is mainly composed of Ag, a target added with 0.94 at% (1.7 wt%) Au, and the target 2b of the second sputtering chamber 2 is mainly Ag. As a component, a target added with 0.55 at% (1.0 wt%) Au and a target 3b of the third sputter chamber 3 are mainly composed of Ag and 0.28 at% (0.5 wt%) Au. Each of the targets to which was added was set, and film formation was performed under the same conditions as in Example 1 to produce an Ag alloy film 1500 へ on a glass substrate. However, the amount of oxygen gas introduced was changed to 0 Pa, 2.67 × 10 −3 Pa, and 6.65 × 10 −2 Pa to perform film formation.
When the characteristics of the obtained Ag alloy films were examined in the same manner as in Example 1, the reflectivity, corrosion resistance, and etching characteristics were good, but the adhesion was increased as shown in Table 3. But it was not enough.
[0031]
(Table 3)
Figure 0004671579
[0032]
(Comparative Example 2)
The target 1b of the first sputtering chamber 1 in FIG. 1 is mainly composed of Ag, a target added with 1.84 at% (2.0 wt%) Sn, and the target 2b of the second sputtering chamber 2 is mainly Ag. As a component, 1.10 at% (1.2 wt%) of Sn added target and the third sputter chamber 3 target 3 b as a main component of Ag and 0.46 at% (0.5 wt%) of Sn Each of the targets to which was added was set, and film formation was performed under the same conditions as in Example 1 to produce an Ag alloy film 1500 へ on a glass substrate. However, the amount of oxygen gas introduced was changed to 0 Pa, 2.67 × 10 −3 Pa, and 6.65 × 10 −2 Pa to perform film formation.
When the characteristics of the obtained Ag alloy films were examined in the same manner as in Example 1, the reflectance, adhesion, and etching characteristics were good, but the corrosion resistance was insufficient as shown in Table 4.
[0033]
(Table 4)
Figure 0004671579
[0034]
【The invention's effect】
According to the present invention, by using the Ag alloy target having the above specific composition, an Ag alloy film having excellent adhesion to a glass substrate or the like, excellent corrosion resistance, etching processability, and high reflectivity is obtained. Can be provided.
Since the resistance value of the Ag alloy film is sufficiently low, the reflection film can be used as an electrode film or a wiring film.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an in-line sputtering apparatus used in an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st sputter chamber 2 2nd sputter chamber 3 3rd sputter chamber 1a, 2a, 3a Cathode electrode 1b, 2b, 3b Target 1c, 2c, 3c Power supply 1d, 2d, 3d Gas introduction system 4, 5 Gate valve 6 Substrate conveyance Tray 7 substrate

Claims (5)

Agを主成分としてAuおよびSnを含有するAg合金からなり、Au含有量が0.1〜4.0at%、Sn含有量が0.1〜2.5at%であるAg合金反射膜であって、さらにスパッタリングガスとしてのArガスと添加ガスとしてのO、HOおよびH+Oから選ばれた少なくとも1つの酸素含有ガスとを用いるスパッタリングにより酸素を0.1〜3.0at%含ませてなり、これにより基板とのバインダーとなるSnO成分をAg合金反射膜中に発生せしめてなることを特徴とするフラットパネルディスプレイ用のAg合金反射膜。An Ag alloy reflecting film comprising an Ag alloy containing Au and Sn as a main component, the Au content being 0.1 to 4.0 at%, and the Sn content being 0.1 to 2.5 at%. Further, 0.1 to 3.0 at% of oxygen is contained by sputtering using Ar gas as a sputtering gas and at least one oxygen-containing gas selected from O 2 , H 2 O, and H 2 + O 2 as an additive gas. An Ag alloy reflective film for a flat panel display, characterized in that an SnO 2 component serving as a binder with the substrate is generated in the Ag alloy reflective film. 請求項1に記載のAg合金反射膜と金属酸化物膜とを積層した積層薄膜からなることを特徴とするフラットパネルディスプレイ用のAg合金反射膜。An Ag alloy reflective film for a flat panel display, comprising a laminated thin film obtained by laminating the Ag alloy reflective film according to claim 1 and a metal oxide film. 請求項2に記載の金属酸化物膜が、ITO、IZO、酸化アンチモンをドープした酸化錫、酸化亜鉛−酸化アルミニウム、酸化チタンから選ばれた金属酸化物の膜であることを特徴とするフラットパネルディスプレイ用のAg合金反射膜。3. The flat panel according to claim 2, wherein the metal oxide film is a metal oxide film selected from ITO, IZO, antimony oxide-doped tin oxide, zinc oxide-aluminum oxide, and titanium oxide. Ag alloy reflective film for display. Agを主成分としてAuおよびSnを含有するAg合金からなり、Au含有量が0.1〜4.0at%、Sn含有量が0.1〜2.5at%であるAg合金スパッタリングターゲットを用い、スパッタリングガスとしてのArガスと添加ガスとしてのO、HOおよびH+Oから選ばれた少なくとも1つの酸素含有ガスとを用いてスパッタし、Agを主成分とし、Au含有量が0.1〜4.0at%、Sn含有量が0.1〜2.5at%であり、さらに酸素含有量が0.1〜3.0at%であるAg合金反射膜であって、これにより基板とのバインダーとなるSnO成分をAg合金反射膜中に発生せしめてなるAg合金膜を製造することを特徴とするフラットパネルディスプレイ用のAg合金反射膜の製造方法。Using an Ag alloy sputtering target composed of an Ag alloy containing Au and Sn containing Ag as a main component and having an Au content of 0.1 to 4.0 at% and an Sn content of 0.1 to 2.5 at%, Sputtering is performed using Ar gas as a sputtering gas and at least one oxygen-containing gas selected from O 2 , H 2 O, and H 2 + O 2 as an additive gas. Ag is the main component and the Au content is 0. 0.1 to 4.0 at%, Sn content is 0.1 to 2.5 at%, and oxygen content is 0.1 to 3.0 at%. A method for producing an Ag alloy reflective film for a flat panel display, comprising producing an Ag alloy film in which an SnO 2 component serving as a binder is generated in an Ag alloy reflective film. 請求項4において、酸素含有ガスをスパッタによる成膜初期にのみ供給することを特徴とするAg合金反射膜の製造方法。5. The method for producing an Ag alloy reflective film according to claim 4, wherein the oxygen-containing gas is supplied only at the initial stage of film formation by sputtering.
JP2002363648A 2002-12-16 2002-12-16 Ag alloy reflective film and method for producing the same Expired - Lifetime JP4671579B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002363648A JP4671579B2 (en) 2002-12-16 2002-12-16 Ag alloy reflective film and method for producing the same
TW092135255A TW200419003A (en) 2002-12-16 2003-12-12 Method for producing silver alloy reflective film, sputtering target, and silver alloy film
KR1020030091353A KR101101732B1 (en) 2002-12-16 2003-12-15 Ag ALLOY THIN FILM, SPUTTERING TARGET, AND METHOD FOR PRODUCING Ag ALLOY THIN FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363648A JP4671579B2 (en) 2002-12-16 2002-12-16 Ag alloy reflective film and method for producing the same

Publications (3)

Publication Number Publication Date
JP2004197117A JP2004197117A (en) 2004-07-15
JP2004197117A5 JP2004197117A5 (en) 2005-04-07
JP4671579B2 true JP4671579B2 (en) 2011-04-20

Family

ID=32761736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363648A Expired - Lifetime JP4671579B2 (en) 2002-12-16 2002-12-16 Ag alloy reflective film and method for producing the same

Country Status (3)

Country Link
JP (1) JP4671579B2 (en)
KR (1) KR101101732B1 (en)
TW (1) TW200419003A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714477B2 (en) * 2004-02-19 2011-06-29 アルバック成膜株式会社 Ag alloy film and manufacturing method thereof
JP2006098856A (en) * 2004-09-30 2006-04-13 Ulvac Japan Ltd Ag REFLECTIVE FILM AND ITS MANUFACTURING METHOD
JP4918994B2 (en) * 2005-05-30 2012-04-18 住友電気工業株式会社 Method for forming metal coating and metal wiring
JP5116218B2 (en) * 2005-06-02 2013-01-09 株式会社アルバック Dispersion and method for producing dispersion
JP2007273744A (en) * 2006-03-31 2007-10-18 Stanley Electric Co Ltd Eutectic crystal substrate for led, and method for manufacturing the same
KR100841367B1 (en) * 2006-08-28 2008-06-26 삼성에스디아이 주식회사 Fabricating method of Organic Electroluminescence Display
WO2008035617A1 (en) * 2006-09-21 2008-03-27 Kabushiki Kaisha Kobe Seiko Sho Ag ALLOY THIN FILM, AND Ag ALLOY SPUTTERING TARGET FOR FORMATION OF THE Ag ALLOY THIN FILM
JP4176136B2 (en) * 2006-09-21 2008-11-05 株式会社神戸製鋼所 Ag alloy thin film
CN101449184B (en) * 2006-11-17 2012-04-04 田中贵金属工业株式会社 Thin film for reflective film or semi-reflective film, sputtering targets and optical recording media
EP2293344A4 (en) * 2008-06-17 2013-03-06 Ulvac Inc Solar cell and method for manufacturing the same
JP2013105546A (en) * 2011-11-10 2013-05-30 Ulvac Japan Ltd Organic el display device, led device, solar cell and reflective film
JP5806653B2 (en) * 2011-12-27 2015-11-10 株式会社神戸製鋼所 Ag alloy film for reflective electrode, reflective electrode, and Ag alloy sputtering target
EP2905355B1 (en) * 2012-10-01 2018-05-09 Nissan Motor Co., Ltd. In-line coating device and in-line coating method
KR20160112377A (en) 2015-03-19 2016-09-28 희성금속 주식회사 A sputtering target and method for manufacturing the sputtering target
KR101688920B1 (en) 2016-11-01 2016-12-22 희성금속 주식회사 Silver alloy composition forming conductive membrane and manufacturing method of it
KR101710196B1 (en) 2016-11-04 2017-02-24 희성금속 주식회사 Silver alloy composition forming conductive membrane and manufacturing method of it
KR101959865B1 (en) 2016-11-18 2019-03-20 엘티메탈 주식회사 Silver alloy composition forming conductive membrane and manufacturing method of it

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372738A (en) * 1991-06-21 1992-12-25 Tdk Corp Optical recording medium
JPH0843839A (en) * 1994-07-27 1996-02-16 Toppan Printing Co Ltd Reflection type liquid crystal display device and its production
JPH08146208A (en) * 1994-11-25 1996-06-07 Matsushita Electric Works Ltd Reflecting mirror and its production
JPH0930124A (en) * 1995-05-12 1997-02-04 Ricoh Co Ltd Optical data recording medium and production thereof
JPH09108654A (en) * 1995-10-16 1997-04-28 Nisshin Steel Co Ltd Activated carbon for purifying water
JP2001226765A (en) * 1999-12-07 2001-08-21 Furuya Kinzoku:Kk High heat resistant reflective coating, and laminated body using the reflective coating
JP2001357559A (en) * 2000-04-12 2001-12-26 Kobe Steel Ltd Reflection layer for optical information recording medium, optical information recording medium and sputtering target for reflection layer of optical information recording medium
JP2002015464A (en) * 2000-04-28 2002-01-18 Kobe Steel Ltd Reflecting layer or translucent reflecting layer for optical information recording medium, optical information recording medium and sputtering target for the medium
WO2002077317A1 (en) * 2001-03-16 2002-10-03 Ishifuku Metal Industry Co., Ltd. Sputtering target material
JP2004002929A (en) * 2001-08-03 2004-01-08 Furuya Kinzoku:Kk Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372738A (en) * 1991-06-21 1992-12-25 Tdk Corp Optical recording medium
JPH0843839A (en) * 1994-07-27 1996-02-16 Toppan Printing Co Ltd Reflection type liquid crystal display device and its production
JPH08146208A (en) * 1994-11-25 1996-06-07 Matsushita Electric Works Ltd Reflecting mirror and its production
JPH0930124A (en) * 1995-05-12 1997-02-04 Ricoh Co Ltd Optical data recording medium and production thereof
JPH09108654A (en) * 1995-10-16 1997-04-28 Nisshin Steel Co Ltd Activated carbon for purifying water
JP2001226765A (en) * 1999-12-07 2001-08-21 Furuya Kinzoku:Kk High heat resistant reflective coating, and laminated body using the reflective coating
JP2001357559A (en) * 2000-04-12 2001-12-26 Kobe Steel Ltd Reflection layer for optical information recording medium, optical information recording medium and sputtering target for reflection layer of optical information recording medium
JP2002015464A (en) * 2000-04-28 2002-01-18 Kobe Steel Ltd Reflecting layer or translucent reflecting layer for optical information recording medium, optical information recording medium and sputtering target for the medium
WO2002077317A1 (en) * 2001-03-16 2002-10-03 Ishifuku Metal Industry Co., Ltd. Sputtering target material
JP2004002929A (en) * 2001-08-03 2004-01-08 Furuya Kinzoku:Kk Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material

Also Published As

Publication number Publication date
JP2004197117A (en) 2004-07-15
TWI338054B (en) 2011-03-01
KR101101732B1 (en) 2012-01-05
KR20040055604A (en) 2004-06-26
TW200419003A (en) 2004-10-01

Similar Documents

Publication Publication Date Title
JP4671579B2 (en) Ag alloy reflective film and method for producing the same
US20060068227A1 (en) Ag-based reflection film and method for preparing the same
EP1956104A1 (en) Working method of a metallic material and a manufacturing method of an electronic component
JP4918231B2 (en) Method for producing Ag alloy film
JP4714477B2 (en) Ag alloy film and manufacturing method thereof
JP2013060655A (en) Laminated wiring film for electronic component and sputtering target material for forming coating layer
WO2013115002A1 (en) Ag ALLOY FILM TO BE USED AS REFLECTING FILM AND/OR TRANSMITTING FILM OR AS ELECTRICAL WIRING AND/OR ELECTRODE, Ag ALLOY SPUTTERING TARGET, AND Ag ALLOY FILLER
KR101777549B1 (en) Transparent conductive wire and method for manufacturing transparent conductive wire
JP2004197117A5 (en)
KR101700884B1 (en) Maganese tin oxide Transparent Conducting Oxide and transparent conductive film using the same and method for fabricating transparent conductive film
JP2004277780A (en) Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it
KR20050097538A (en) Method for manufacturing semi-transparent semi-reflective electrode substrate, reflective element substrate, method for manufacturing same, etching composition used for the method for manufacturing the reflective electrode substrate
JP4168689B2 (en) Thin film laminate
JP2008124450A (en) Target, film forming method, thin film transistor, panel with thin film transistor, manufacturing method for thin film transistor, and manufacturing method for panel with thin film transistor
JP4812980B2 (en) Ag alloy thin film electrode, organic EL device, and sputtering target
EP1975273A1 (en) Multilayer structure, electrode for electrical circuit using same, and method for producing same
JP2014208887A (en) Laminate wiring film for electronic component and sputtering target material for forming coating layer
JP2014185393A (en) METALLIC THIN FILM AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METALLIC THIN FILM
US4532174A (en) Layer system for opto-electronic displays
JP4001823B2 (en) Sputtering target material for thin film formation, thin film, electrode wiring layer, optical recording medium, electronic component, electro-optical component, and electronic equipment
JP2015178239A (en) laminated film
JP7428753B2 (en) A laminate having a function as a transparent conductive film, a method for producing the same, and an oxide sputtering target for producing the laminate
JP3982793B2 (en) Ag alloy reflective film for display device
JP2001001441A (en) Transparent electrically conductive laminate and manufacture thereof
JP2010248606A (en) Method for preparing thin film laminated body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4671579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term