JP4411695B2 - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device Download PDF

Info

Publication number
JP4411695B2
JP4411695B2 JP21360699A JP21360699A JP4411695B2 JP 4411695 B2 JP4411695 B2 JP 4411695B2 JP 21360699 A JP21360699 A JP 21360699A JP 21360699 A JP21360699 A JP 21360699A JP 4411695 B2 JP4411695 B2 JP 4411695B2
Authority
JP
Japan
Prior art keywords
electrode
nitride semiconductor
conductor
protective film
insulating protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21360699A
Other languages
Japanese (ja)
Other versions
JP2001044498A (en
Inventor
稔生 小牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP21360699A priority Critical patent/JP4411695B2/en
Publication of JP2001044498A publication Critical patent/JP2001044498A/en
Application granted granted Critical
Publication of JP4411695B2 publication Critical patent/JP4411695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、n型及びp型窒化物半導体層を備えた、チップタイプの窒化物半導体発光素子に関する。
【0002】
【従来の技術】
近年、窒化物化合物半導体を用いた発光素子が、青色系の発光が可能な発光素子として注目されている。この窒化物化合物半導体を用いた発光素子は、サファイヤ基板上にn型窒化物半導体層を成長させ、そのn型窒化物半導体層上に直接又は発光層を介してp型窒化物半導体層を成長させた層構造を有する。また、絶縁体であるサファイア基板を用いて構成される窒化物半導体発光素子では、導電性の半導体基板を用いて構成される他の発光素子とは異なり、正電極及び負電極が同一面側の半導体層上に形成される。すなわち、p側の正電極はp型窒化物半導体層上に形成され、n側の負電極は、所定の位置で、p型窒化窒化物半導体層(発光層を備えたものでは発光層も含む)をエッチングにより除去してn型窒化物半導体層の上面を露出させて形成される。
【0003】
このように、窒化物半導体発光素子では、通常、同一面側に正負の電極が形成されているので、正負の電極間の短絡を防止するために正負の電極の取り出し部分(実装基板の電極との接続部分)を除いて絶縁保護膜が形成され、電極面を上又は下にして実装基板に実装されて使用される。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の窒化物半導体発光素子は、電極面を下にして実装基板にフリップチップボンディングする場合、同一面側に形成された正負の電極間に例えばハンダ等の導電性接着剤がはみ出して電極間を短絡させることがあるという問題があった。そのために、製造時に正負の電極間の短絡を防止するため、導電性接着剤の量等を厳しく管理する必要があり製造コストを上昇させる原因にもなっていた。
【0005】
そこで、本発明は、製造時(フリップチップボンディング時)において電極間の短絡を効果的に防止できる構造を有する窒化物半導体発光素子を提供することを目的とする。
【0006】
【課題を解決するための手段】
以上の目的を達成するために、本発明に係る窒化物半導体発光素子は、透光性基板上に形成されたn型窒化物半導体層と、該n型窒化物半導体層上に互いに分離されて設けられたn電極とp型窒化物半導体層と、上記p型窒化物半導体層の一部に設けられたp電極と、上記n電極及びp電極の各上面の開口部分を除き上記各半導体層及び上記各電極を覆うように設けられた絶縁保護膜とを備えた窒化物半導体発光素子において、上記p電極上の上記開口部分外側の上記絶縁保護膜上に上記p電極と導通する第1導体を形成し、上記n電極上の上記開口部分外側の上記絶縁保護膜上に上記n電極と導通する第2導体を形成し、上記p電極は、上記p型窒化物半導体層上のほぼ全面に形成された全面電極と該全面電極の一部に形成されたpパッド電極とからなり、上記絶縁保護膜において上記pパッド電極上に上記開口部分が形成され、かつ上記第1導体と上記第2導体との間隔を、上記pパッド電極と上記n電極の間隔に比較して大きくしたことを特徴とする。
このように構成することにより、外側に延在した第1導体と第2導体とによって、フリップチップボンディング時に溶けたハンダを外側に誘導することができるので、p電極とn電極の間への溶けたハンダのはみ出しを抑制でき、p電極とn電極間の短絡を防止できる。
【0007】
また、本発明に係る窒化物半導体発光素子において、上記第1導体と上記第2導体を窒化物半導体素子の周辺部以外の上記絶縁保護膜上に形成し、上記絶縁保護膜を該周辺部において露出させるようにしてもよい。
【0008】
さらに、本発明に係る他の窒化物半導体発光素子は、透光性基板上に形成されたn型窒化物半導体層と、該n型窒化物半導体層上に互いに分離されて設けられたn電極とp型窒化物半導体層と、上記p型窒化物半導体層の一部に設けられたp電極と、上記n電極及びp電極の各上面の開口部分を除き上記各半導体層及び上記各電極を覆うように設けられた絶縁保護膜とを備えた窒化物半導体発光素子において、上記p電極上の上記開口部分外側の上記絶縁保護膜上に上記p電極と導通する第1導体を形成し、上記n電極上の上記開口部分外側の上記絶縁保護膜上に上記n電極と導通する第2導体を形成し、上記第1導体と上記第2導体を窒化物半導体素子の周辺部以外の上記絶縁保護膜上に形成し、上記絶縁保護膜を該周辺部において露出させたことを特徴とする。
【0009】
【発明の実施の形態】
(発明の実施の形態1)
以下、図面を参照して本発明に係る実施の形態1の窒化物半導体発光素子について説明する。
本実施の形態1の窒化物半導体発光素子は、透光性基板であるサファイア基板1を用いて構成され、そのサファイア基板1を介して光を出力するようにした、いわゆる基板側発光の発光素子であって以下のような特徴を有する。
すなわち、本実施の形態1の窒化物半導体発光素子は、図1に示すように、
(1)pパッド電極5上の第1開口部7bの外側に位置する絶縁保護膜7上に延在させてpパッド電極5と導通する第1導体10を形成し、
(2)n電極6上の第2開口部7aの外側に位置する絶縁保護膜7上に延在させてn電極6と導通する第2導体11を形成した点が従来例とは異なり、
これによって、フリップチップ実装した時のp電極とn電極との間の短絡を防止するようにしたものである。
以下、本実施の形態1の窒化物半導体発光素子について詳細に説明する。
【0010】
本実施の形態1の窒化物半導体発光素子において、n型窒化物半導体層2はサファイア基板1のほぼ全面に形成される。
また、n電極6とp型窒化物半導体層3とは互いに分離されてn型窒化物半導体層2上に形成される。
具体的には、n型窒化物半導体層2上にp型窒化物半導体層を形成した後、n電極6を形成する領域のp型窒化物半導体層をエッチング等により除去してn型窒化物半導体層2の表面の一部を露出させた後、その露出させたn型窒化物半導体層2の表面にp型窒化物半導体層3と電気的に分離されるようにn電極6を形成する。
【0011】
また、p電極8はp型窒化物半導体層3のほぼ全面に形成された全面電極4と、その全面電極4の一部の表面に形成されたpパッド電極5とによって構成される。尚、pパッド電極5は、n電極6と可能な限り離して形成することが好ましい。
絶縁保護膜7は、上述のように形成された各半導体層及び各電極を覆うように形成され、その絶縁保護膜7において、pパット電極5上に第1開口部7bが形成され、n電極6上に第2開口部7aが形成される。
【0012】
そして、本実施の形態1の窒化物半導体発光素子ではさらに、第1開口部7bでpパット電極5と導通しかつ第1開口部7bの外側に位置する絶縁保護膜7上に延在する第1導体10が形成され、第2開口部7aでn電極6と導通しかつ第2開口部7aの外側に位置する絶縁保護膜7上に延在する第2導体11が形成される。
【0013】
ここで第1導体10は、以下の条件▲1▼ないし▲4▼の条件を満足するように選定される。すなわち、▲1▼pパッド電極5及び絶縁保護膜7との接着力が強いこと、▲2▼半田または導電性ペーストとの接着力が長期間にわたり維持されること、▲3▼抵抗値が低いこと、および▲4▼本発光素子が動作中に第1の導体がイオンマイグレーション現象によって絶縁保護膜7の欠陥を貫通してn半導体に短絡することが少ないこと、である。これらを満足するために、第1導体10は1層または複数層の金属膜で構成される。成膜方法は上記特性を満足するような既存の方法を使用する。
【0014】
また第1導体10は、Ti、Cr、Al、Zr、Mo、W、Hf、又はNiを主成分とする金属又はそれらの合金をまず成膜し、その後Au、Ni、又はPtを主成分とする金属又はそれらの合金を成膜することによって作成される。実施例においては、Tiをまず成膜し、その後Pt、さらにAuを最終層として成膜している。別の実施例においては、Crをまず成膜し、その後その後Pt、さらにAuを最終層として成膜している。
【0015】
そして第2導体11は、以下の▲1▼ないし▲3▼の条件を満足するように選定される。すなわち、▲1▼nパッド電極及び絶縁保護膜7との接着力が強いこと、▲2▼半田または導電性ペーストとの接着力が長期間にわたり維持されること、および▲3▼抵抗値が低いこと、である。これらを満足するために、第2導体11は1層または複数層の金属膜で構成される。成膜方法は上記特性を満足するような既存の方法を使用する。
【0016】
また第2導体11は、Ti、Cr、Al、Zr、Mo、W、Hf、又はNiを主成分にする金属、又はそれらの合金をまず成膜し、その後Au、Ni、又はPtを主成分にする金属、又はそれらの合金を成膜することによって作成される。実施例においては、Tiをまず成膜し、その後Pt、さらにAuを最終層として成膜している。別の実施例においては、Crをまず成膜し、その後その後Pt、さらにAuを最終層として成膜している。
【0017】
尚、第1導体10および第2導体11は、同じ層構成であることが製造上望ましい。
【0018】
以上のように構成された実施の形態1の窒化物半導体発光素子は、図2に示すように、例えば、正の電極22と負の電極21とが所定の間隔を隔てて形成された実装基板20上に、正の電極22と第1導体10とが対向しかつ負の電極21と第2導体11とが対向するように載置され、対向する導体と電極間がそれぞれハンダ31,32で接合されて、いわゆるフリップチップ実装される。
【0019】
以上のようにフリップチップ実装される本実施の形態1の窒化物半導体発光素子は、第1開口部7b外側の絶縁保護膜7上に延在する第1導体10と、第2開口部7a外側の絶縁保護膜7上に延在する第2導体11が形成されているので、図2に示すようにフリップチップ実装されるときに、溶けたハンダ31,32が外側に延在する第1導体10と第2導体11によって外側に誘導されて、第1導体10(pパッド電極5)と第2導体11(n電極6)との間のハンダの量を少なくすることができる。
これによって、本実施の形態1の窒化物半導体発光素子は、pパッド電極5とn電極6との間の短絡を効果的に防止することができる。
【0020】
これに対して従来の窒化物半導体発光素子では、図3に示すように、半導体層及び電極を覆う絶縁保護膜70に形成された第1開口部7c及び第2開口部7dを介してpパッド電極5及びn電極6をそれぞれ、実装基板20に形成された正電極24及び負電極23に対向させて接続する。このように実装される従来例の窒化物半導体発光素子において、実装時に溶けたハンダ33,34はpパッド電極5及びn電極6の外側と内側(pパッド電極5とn電極6の間)の両側にほぼ均等にはみ出す。
従って、従来例の窒化物半導体発光素子では、フリップチップ実装した時に、pパッド電極5とn電極6の間にはみ出すハンダ量が比較的多くなり、pパッド電極5とn電極6とを短絡させることがある。
【0021】
また、以上の実施の形態1の窒化物半導体発光素子は、第1導体10と第2導体11の内側の側面(互いに対向する側面)がそれぞれ、pパッド電極5とn電極6の内側の側面(互いに対向する側面)より外側に位置するようにしている。
このようにすることで、pパッド電極5とn電極6の内側の側面間の間隔に比較して、第1導体10と第2導体11の内側の側面間の間隔を大きくできるので、より効果的にp側とn側の短絡を防止できる。
【0022】
以上の実施の形態の窒化物半導体発光素子では、サファイア基板1の対向する2つの辺に沿って互いに平行なpパッド電極5とn電極6を形成するようにしたが、本発明はこれに限定されるものではなく、サファイア基板1の1つの対角線の隅部にpパッド電極5とn電極6を形成するようにしてもよい。
【0023】
また、本実施の形態1の窒化物半導体発光素子では、n型窒化物半導体層2とp型窒化物半導体層3とを形成した例で示したが、本発明はこれに限られるものではなく、n型窒化物半導体層2とp型窒化物半導体層3の間にさらに活性層を形成するようにしてもよい。
さらに、n型窒化物半導体層2とp型窒化物半導体層3はそれぞれ1層の半導体層で示したが、本発明はこれに限られるものではなく、n型窒化物半導体層2とp型窒化物半導体層3をそれぞれ複数の層で構成してもよい。
【0024】
(発明の実施の形態2)
次に、第1導体10’及び第2導体11’を図4のように形成すること以外、本実施の形態1と同様の窒化物半導体発光素子を形成する。すなわち、第1導体10’及び第2導体11’がチップ周辺部において絶縁保護膜7を完全覆うのではなく、絶縁保護膜7がわずかに露出するように、第1導体10’及び第2導体11’を形成する。本発明の実施の形態1のように、第1導体10及び第2導体11がチップ周辺部において絶縁保護膜7を完全覆う場合、ダイシング又はスクライビングにより分離される前のウェハー状態にある各チップが、金属薄膜である第1導体10及び第2導体11を介して隣接チップと結合することになり、分離作業が困難となる傾向にある。これを防止すべく、本発明の実施の形態2のように、各チップを1つ1つに分離しやすくするために、第1導体10’及び第2導体11’がチップ周辺部において互いに分離して形成されることが望ましい。
【0025】
【発明の効果】
以上、詳細に説明したように、本発明に係る窒化物半導体発光素子は、上記p電極上の上記開口部分外側の上記絶縁保護膜上に上記p電極と導通する第1導体を形成し、上記n電極上の上記開口部分外側の上記絶縁保護膜上に上記n電極と導通する第2導体を形成しているので、外側に延在した第1導体と第2導体とによって、フリップチップボンディング時に溶けたハンダを外側に誘導することができ、p電極とn電極の間への溶けたハンダのはみ出しを抑制できる。
従って、本発明に係る窒化物半導体発光素子は、溶けたハンダによるp電極とn電極間の短絡を防止でき、製造時(フリップチップボンディング時)において電極間の短絡を効果的に防止できる。
【図面の簡単な説明】
【図1】 (a)は本発明に係る実施の形態1の窒化物半導体発光素子の平面図であり、(b)は(a)のA−A’線についての断面図である。
【図2】 本発明に係る実施の形態1の窒化物半導体発光素子を実装基板に実装したときの断面図である。
【図3】 従来例の窒化物半導体発光素子を実装基板に実装したときの断面図である。
【図4】 (a)は本発明に係る実施の形態2の窒化物半導体発光素子の平面図であり、(b)は(a)のA−A’線についての断面図である。
【符号の説明】
1…サファイア基板、
2…n型窒化物半導体層、
3…p型窒化物半導体層3、
5…pパッド電極、
6…n電極、
7a…第2開口部、
7b…第1開口部、
8…p電極、
10、10’…第1導体、
11、11’…第2導体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chip-type nitride semiconductor light emitting device including n-type and p-type nitride semiconductor layers.
[0002]
[Prior art]
In recent years, a light-emitting element using a nitride compound semiconductor has attracted attention as a light-emitting element capable of emitting blue light. In this light emitting device using a nitride compound semiconductor, an n-type nitride semiconductor layer is grown on a sapphire substrate, and a p-type nitride semiconductor layer is grown directly or via the light emitting layer on the n-type nitride semiconductor layer. Having a layered structure. In addition, in a nitride semiconductor light emitting device configured using a sapphire substrate that is an insulator, unlike other light emitting devices configured using a conductive semiconductor substrate, the positive electrode and the negative electrode are on the same surface side. It is formed on the semiconductor layer. That is, the p-side positive electrode is formed on the p-type nitride semiconductor layer, and the n-side negative electrode is formed at a predetermined position at the p-type nitride nitride semiconductor layer (including the light-emitting layer in the case where the light-emitting layer is provided). ) Is removed by etching to expose the upper surface of the n-type nitride semiconductor layer.
[0003]
Thus, in a nitride semiconductor light emitting device, since positive and negative electrodes are usually formed on the same surface side, in order to prevent a short circuit between the positive and negative electrodes, a portion for taking out the positive and negative electrodes (the mounting substrate electrode and the electrode) Insulating protective film is formed except for the connection portion of (2), and is mounted on a mounting substrate for use with the electrode surface facing up or down.
[0004]
[Problems to be solved by the invention]
However, when the conventional nitride semiconductor light emitting device is flip-chip bonded to the mounting substrate with the electrode surface facing down, a conductive adhesive such as solder protrudes between the positive and negative electrodes formed on the same surface side. There was a problem of short-circuiting between them. Therefore, in order to prevent a short circuit between the positive and negative electrodes at the time of manufacture, it is necessary to strictly control the amount of the conductive adhesive and the like, which has been a cause of increasing the manufacturing cost.
[0005]
Therefore, an object of the present invention is to provide a nitride semiconductor light emitting device having a structure capable of effectively preventing a short circuit between electrodes during manufacturing (during flip chip bonding).
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a nitride semiconductor light emitting device according to the present invention includes an n-type nitride semiconductor layer formed on a translucent substrate and a n-type nitride semiconductor layer separated from each other. Each of the semiconductor layers except for an n electrode and a p-type nitride semiconductor layer provided, a p-electrode provided in a part of the p-type nitride semiconductor layer, and an opening on each upper surface of the n-electrode and the p-electrode And a nitride semiconductor light emitting device comprising an insulating protective film provided so as to cover each of the electrodes, a first conductor that is electrically connected to the p electrode on the insulating protective film outside the opening on the p electrode And a second conductor that is electrically connected to the n electrode is formed on the insulating protective film outside the opening on the n electrode, and the p electrode is formed on substantially the entire surface of the p-type nitride semiconductor layer. Full-surface electrode formed and p-pad formed on part of the full-surface electrode The opening is formed on the p-pad electrode in the insulating protective film, and the distance between the first conductor and the second conductor is compared with the distance between the p-pad electrode and the n-electrode It is characterized by being enlarged .
With this configuration, the melted solder between the p electrode and the n electrode can be guided to the outside by the first conductor and the second conductor extending to the outside, so that the melted solder can be guided to the outside. In addition, it is possible to suppress the protrusion of solder and to prevent a short circuit between the p electrode and the n electrode.
[0007]
In the nitride semiconductor light emitting device according to the present invention, the first conductor and the second conductor are formed on the insulating protective film other than the peripheral portion of the nitride semiconductor element, and the insulating protective film is formed in the peripheral portion. may be so that is exposed.
[0008]
Furthermore, another nitride semiconductor light emitting device according to the present invention includes an n-type nitride semiconductor layer formed on a translucent substrate and an n-electrode provided separately on the n-type nitride semiconductor layer. And the p-type nitride semiconductor layer, the p-electrode provided in a part of the p-type nitride semiconductor layer, and the semiconductor layers and the electrodes except for the openings on the upper surfaces of the n-electrode and the p-electrode. In a nitride semiconductor light emitting device including an insulating protective film provided to cover, a first conductor that is electrically connected to the p electrode is formed on the insulating protective film outside the opening on the p electrode, A second conductor that is electrically connected to the n electrode is formed on the insulating protective film outside the opening on the n electrode, and the first conductor and the second conductor are insulated against the insulating portion other than the periphery of the nitride semiconductor element. Formed on the film, and the insulating protective film is exposed at the periphery. Characterized in that was.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 of the Invention
Hereinafter, a nitride semiconductor light emitting device according to a first embodiment of the present invention will be described with reference to the drawings.
The nitride semiconductor light emitting device of the first embodiment is configured by using a sapphire substrate 1 that is a translucent substrate, and outputs light through the sapphire substrate 1, so-called substrate side light emitting device. And it has the following characteristics.
That is, as shown in FIG. 1, the nitride semiconductor light emitting device of the first embodiment is
(1) forming a first conductor 10 extending on the insulating protective film 7 located outside the first opening 7b on the p-pad electrode 5 and conducting with the p-pad electrode 5;
(2) Unlike the conventional example, the second conductor 11 that extends on the insulating protective film 7 located outside the second opening 7a on the n electrode 6 and is electrically connected to the n electrode 6 is formed.
This prevents a short circuit between the p-electrode and the n-electrode when flip-chip mounting is performed.
Hereinafter, the nitride semiconductor light emitting device of the first embodiment will be described in detail.
[0010]
In the nitride semiconductor light emitting device of the first embodiment, the n-type nitride semiconductor layer 2 is formed on almost the entire surface of the sapphire substrate 1.
The n electrode 6 and the p-type nitride semiconductor layer 3 are separated from each other and formed on the n-type nitride semiconductor layer 2.
Specifically, after forming a p-type nitride semiconductor layer on the n-type nitride semiconductor layer 2, the p-type nitride semiconductor layer in the region where the n-electrode 6 is to be formed is removed by etching or the like to remove the n-type nitride. After a part of the surface of the semiconductor layer 2 is exposed, an n electrode 6 is formed on the exposed surface of the n-type nitride semiconductor layer 2 so as to be electrically separated from the p-type nitride semiconductor layer 3. .
[0011]
The p electrode 8 includes a full surface electrode 4 formed on almost the entire surface of the p-type nitride semiconductor layer 3 and a p pad electrode 5 formed on a part of the surface of the full surface electrode 4. The p pad electrode 5 is preferably formed as far as possible from the n electrode 6.
The insulating protective film 7 is formed so as to cover each semiconductor layer and each electrode formed as described above. In the insulating protective film 7, a first opening 7b is formed on the p-pad electrode 5, and an n-electrode A second opening 7 a is formed on 6.
[0012]
In the nitride semiconductor light emitting device of the first embodiment, the first opening 7b is further connected to the p pad electrode 5 and extends on the insulating protective film 7 located outside the first opening 7b. A first conductor 10 is formed, and a second conductor 11 is formed which is electrically connected to the n-electrode 6 through the second opening 7a and extends on the insulating protective film 7 located outside the second opening 7a.
[0013]
Here, the first conductor 10 is selected so as to satisfy the following conditions (1) to (4). That is, (1) the adhesive force between the p-pad electrode 5 and the insulating protective film 7 is strong, (2) the adhesive force with the solder or the conductive paste is maintained for a long time, and (3) the resistance value is low. And {circle around (4)} that the first conductor is less likely to short-circuit to the n-semiconductor through the defect of the insulating protective film 7 due to the ion migration phenomenon during operation of the light-emitting element. In order to satisfy these requirements, the first conductor 10 is composed of one or more layers of metal films. As a film forming method, an existing method satisfying the above-described characteristics is used.
[0014]
The first conductor 10 is formed by first depositing a metal having Ti, Cr, Al, Zr, Mo, W, Hf, or Ni as a main component or an alloy thereof, and then including Au, Ni, or Pt as the main component. It is made by depositing a metal or an alloy thereof. In the embodiment, Ti is first formed, and then Pt and Au are formed as the final layer. In another embodiment, Cr is deposited first, followed by Pt and then Au as the final layer.
[0015]
The second conductor 11 is selected so as to satisfy the following conditions (1) to (3). That is, (1) the adhesive force with the n-pad electrode and the insulating protective film 7 is strong, (2) the adhesive force with the solder or the conductive paste is maintained for a long time, and (3) the resistance value is low. That is. In order to satisfy these requirements, the second conductor 11 is composed of one or more layers of metal films. As a film forming method, an existing method satisfying the above-described characteristics is used.
[0016]
The second conductor 11 is formed by first depositing a metal having Ti, Cr, Al, Zr, Mo, W, Hf, or Ni as a main component, or an alloy thereof, and then forming Au, Ni, or Pt as a main component. It is made by depositing a metal or an alloy thereof. In the embodiment, Ti is first formed, and then Pt and Au are formed as the final layer. In another embodiment, Cr is deposited first, followed by Pt and then Au as the final layer.
[0017]
In addition, it is desirable on manufacture that the 1st conductor 10 and the 2nd conductor 11 are the same layer structures.
[0018]
As shown in FIG. 2, the nitride semiconductor light emitting device of the first embodiment configured as described above includes, for example, a mounting substrate in which a positive electrode 22 and a negative electrode 21 are formed at a predetermined interval. 20 is placed so that the positive electrode 22 and the first conductor 10 are opposed to each other and the negative electrode 21 and the second conductor 11 are opposed to each other. Joined and so-called flip chip mounting.
[0019]
As described above, the nitride semiconductor light emitting device of the first embodiment that is flip-chip mounted includes the first conductor 10 extending on the insulating protective film 7 outside the first opening 7b, and the second opening 7a outside. Since the second conductor 11 extending on the insulating protective film 7 is formed, when the flip chip mounting is performed as shown in FIG. 2, the melted solders 31 and 32 extend outward. 10 and the second conductor 11, the amount of solder between the first conductor 10 (p pad electrode 5) and the second conductor 11 (n electrode 6) can be reduced.
Thereby, the nitride semiconductor light emitting element of the first embodiment can effectively prevent a short circuit between p pad electrode 5 and n electrode 6.
[0020]
On the other hand, in the conventional nitride semiconductor light emitting device, as shown in FIG. 3, the p-pad is provided through the first opening 7c and the second opening 7d formed in the insulating protective film 70 covering the semiconductor layer and the electrode. The electrode 5 and the n electrode 6 are connected to face the positive electrode 24 and the negative electrode 23 formed on the mounting substrate 20, respectively. In the conventional nitride semiconductor light emitting device mounted in this manner, the solder 33 and 34 melted at the time of mounting are located outside and inside the p pad electrode 5 and the n electrode 6 (between the p pad electrode 5 and the n electrode 6). Projects almost evenly on both sides.
Therefore, in the conventional nitride semiconductor light emitting device, when flip chip mounting is performed, the amount of solder protruding between the p pad electrode 5 and the n electrode 6 is relatively large, and the p pad electrode 5 and the n electrode 6 are short-circuited. Sometimes.
[0021]
In the nitride semiconductor light emitting device of the first embodiment described above, the inner side surfaces (side surfaces facing each other) of the first conductor 10 and the second conductor 11 are the inner side surfaces of the p pad electrode 5 and the n electrode 6, respectively. It is located outside the (side surfaces facing each other).
By doing in this way, since the space | interval between the inner side surfaces of the 1st conductor 10 and the 2nd conductor 11 can be enlarged compared with the space | interval between the inner side surfaces of the p pad electrode 5 and the n electrode 6, it is more effective. Therefore, short circuit between the p side and the n side can be prevented.
[0022]
In the nitride semiconductor light emitting device of the above embodiment, the p pad electrode 5 and the n electrode 6 which are parallel to each other are formed along two opposing sides of the sapphire substrate 1, but the present invention is limited to this. Instead, the p-pad electrode 5 and the n-electrode 6 may be formed at one diagonal corner of the sapphire substrate 1.
[0023]
In the nitride semiconductor light emitting device of the first embodiment, an example in which the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3 are formed is shown, but the present invention is not limited to this. An active layer may be further formed between the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3.
Furthermore, although the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3 are each shown as a single semiconductor layer, the present invention is not limited to this, and the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3 are not limited thereto. Each of the nitride semiconductor layers 3 may be composed of a plurality of layers.
[0024]
(Embodiment 2 of the invention)
Next, a nitride semiconductor light emitting element similar to that of the first embodiment is formed except that the first conductor 10 ′ and the second conductor 11 ′ are formed as shown in FIG. That is, the first conductor 10 ′ and the second conductor 11 ′ do not completely cover the insulating protective film 7 in the peripheral portion of the chip, but the first protective conductor 10 ′ and the second conductor are exposed slightly. 11 'is formed. When the first conductor 10 and the second conductor 11 completely cover the insulating protective film 7 at the chip periphery as in the first embodiment of the present invention, each chip in the wafer state before being separated by dicing or scribing is used. Then, it is coupled with the adjacent chip via the first conductor 10 and the second conductor 11 which are metal thin films, and the separation work tends to be difficult. In order to prevent this, as in the second embodiment of the present invention, the first conductor 10 ′ and the second conductor 11 ′ are separated from each other at the chip peripheral portion in order to facilitate separation of the chips one by one. It is desirable to form.
[0025]
【The invention's effect】
As described above in detail, the nitride semiconductor light emitting device according to the present invention forms the first conductor that is electrically connected to the p electrode on the insulating protective film outside the opening on the p electrode. Since the second conductor that is electrically connected to the n electrode is formed on the insulating protective film outside the opening portion on the n electrode, the first conductor and the second conductor extending to the outside are used for flip chip bonding. The melted solder can be guided to the outside, and the protrusion of the melted solder between the p electrode and the n electrode can be suppressed.
Therefore, the nitride semiconductor light emitting device according to the present invention can prevent a short circuit between the p-electrode and the n-electrode due to molten solder, and can effectively prevent a short-circuit between the electrodes at the time of manufacture (during flip chip bonding).
[Brief description of the drawings]
1A is a plan view of a nitride semiconductor light-emitting element according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along the line AA ′ in FIG.
FIG. 2 is a cross-sectional view when the nitride semiconductor light-emitting element according to the first embodiment of the present invention is mounted on a mounting substrate.
FIG. 3 is a cross-sectional view of a conventional nitride semiconductor light emitting device mounted on a mounting substrate.
4A is a plan view of a nitride semiconductor light-emitting element according to Embodiment 2 of the present invention, and FIG. 4B is a cross-sectional view taken along line AA ′ in FIG. 4A.
[Explanation of symbols]
1 ... sapphire substrate,
2 ... n-type nitride semiconductor layer,
3 ... p-type nitride semiconductor layer 3,
5 ... p pad electrode,
6 ... n electrode,
7a ... second opening,
7b ... 1st opening part,
8 ... p electrode,
10, 10 '... first conductor,
11, 11 '... 2nd conductor.

Claims (3)

透光性基板上に形成されたn型窒化物半導体層と、該n型窒化物半導体層上に互いに分離されて設けられたn電極とp型窒化物半導体層と、上記p型窒化物半導体層の一部に設けられたp電極と、上記n電極及びp電極の各上面の開口部分を除き上記各半導体層及び上記各電極を覆うように設けられた絶縁保護膜とを備えた窒化物半導体発光素子において、
上記p電極上の上記開口部分外側の上記絶縁保護膜上に上記p電極と導通する第1導体を形成し、
上記n電極上の上記開口部分外側の上記絶縁保護膜上に上記n電極と導通する第2導体を形成し
上記p電極は、上記p型窒化物半導体層上のほぼ全面に形成された全面電極と該全面電極の一部に形成されたpパッド電極とからなり、上記絶縁保護膜において上記pパッド電極上に上記開口部分が形成され、かつ
上記第1導体と上記第2導体との間隔を、上記pパッド電極と上記n電極の間隔に比較して大きくしたことを特徴とする窒化物半導体発光素子。
An n-type nitride semiconductor layer formed on a light-transmitting substrate, an n-electrode and a p-type nitride semiconductor layer provided on the n-type nitride semiconductor layer separately from each other, and the p-type nitride semiconductor A nitride comprising a p-electrode provided in a part of the layer, and an insulating protective film provided so as to cover each of the semiconductor layers and each of the electrodes excluding openings on the upper surfaces of the n-electrode and the p-electrode In a semiconductor light emitting device,
Forming a first conductor electrically connected to the p-electrode on the insulating protective film outside the opening on the p-electrode;
Forming a second conductor electrically connected to the n electrode on the opening portion outside of the insulating protective film on the n-electrode,
The p-electrode includes a full-surface electrode formed on substantially the entire surface of the p-type nitride semiconductor layer and a p-pad electrode formed on a part of the full-surface electrode. The opening is formed, and
A nitride semiconductor light emitting device, wherein a distance between the first conductor and the second conductor is set larger than a distance between the p pad electrode and the n electrode .
上記第1導体と上記第2導体を窒化物半導体素子の周辺部以外の上記絶縁保護膜上に形成し、上記絶縁保護膜を該周辺部において露出させた請求項1記載の窒化物半導体発光素子。 2. The nitride semiconductor light emitting device according to claim 1 , wherein the first conductor and the second conductor are formed on the insulating protective film other than a peripheral portion of the nitride semiconductor element, and the insulating protective film is exposed at the peripheral portion. . 透光性基板上に形成されたn型窒化物半導体層と、該n型窒化物半導体層上に互いに分離されて設けられたn電極とp型窒化物半導体層と、上記p型窒化物半導体層の一部に設けられたp電極と、上記n電極及びp電極の各上面の開口部分を除き上記各半導体層及び上記各電極を覆うように設けられた絶縁保護膜とを備えた窒化物半導体発光素子において、
上記p電極上の上記開口部分外側の上記絶縁保護膜上に上記p電極と導通する第1導体を形成し、
上記n電極上の上記開口部分外側の上記絶縁保護膜上に上記n電極と導通する第2導体を形成し、
上記第1導体と上記第2導体を窒化物半導体素子の周辺部以外の上記絶縁保護膜上に形成し、上記絶縁保護膜を該周辺部において露出させたことを特徴とする窒化物半導体発光素子。
An n-type nitride semiconductor layer formed on a light-transmitting substrate, an n-electrode and a p-type nitride semiconductor layer provided on the n-type nitride semiconductor layer separately from each other, and the p-type nitride semiconductor A nitride comprising a p-electrode provided in a part of the layer, and an insulating protective film provided so as to cover each of the semiconductor layers and each of the electrodes excluding openings on the upper surfaces of the n-electrode and the p-electrode In a semiconductor light emitting device,
Forming a first conductor electrically connected to the p-electrode on the insulating protective film outside the opening on the p-electrode;
Forming a second conductor electrically connected to the n electrode on the insulating protective film outside the opening on the n electrode;
It said first conductor and said second conductor is formed on the nitride semiconductor device of the peripheral portion other than the insulating protective film, the nitride semiconductor light-emitting device of the insulating protective film, characterized in that exposed in the peripheral portion .
JP21360699A 1999-07-28 1999-07-28 Nitride semiconductor light emitting device Expired - Lifetime JP4411695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21360699A JP4411695B2 (en) 1999-07-28 1999-07-28 Nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21360699A JP4411695B2 (en) 1999-07-28 1999-07-28 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2001044498A JP2001044498A (en) 2001-02-16
JP4411695B2 true JP4411695B2 (en) 2010-02-10

Family

ID=16641975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21360699A Expired - Lifetime JP4411695B2 (en) 1999-07-28 1999-07-28 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4411695B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022216A (en) * 2013-02-28 2014-09-03 日亚化学工业株式会社 Light emitting device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568269B1 (en) * 2003-06-23 2006-04-05 삼성전기주식회사 GaN LED for flip-chip bonding and manufacturing method therefor
JP4535698B2 (en) * 2003-07-17 2010-09-01 三洋電機株式会社 Two-wavelength semiconductor laser device
KR100601143B1 (en) * 2003-07-30 2006-07-19 에피밸리 주식회사 Semiconductor Light Emitting Device
DE10353679A1 (en) 2003-11-17 2005-06-02 Siemens Ag Cost-effective, miniaturized assembly and connection technology for LEDs and other optoelectronic modules
US7329905B2 (en) * 2004-06-30 2008-02-12 Cree, Inc. Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
JP2007049045A (en) * 2005-08-11 2007-02-22 Rohm Co Ltd Semiconductor light emitting device and semiconductor device using the same
KR100875128B1 (en) 2007-01-16 2008-12-22 한국광기술원 Light emitting diode having high withstand voltage and manufacturing method thereof
JP5426124B2 (en) 2008-08-28 2014-02-26 株式会社東芝 Semiconductor light emitting device manufacturing method and semiconductor light emitting device
JP2010067868A (en) * 2008-09-12 2010-03-25 Sanyo Electric Co Ltd Semiconductor laser apparatus and method of manufacturing the same
US7977132B2 (en) * 2009-05-06 2011-07-12 Koninklijke Philips Electronics N.V. Extension of contact pads to the die edge via electrical isolation
JP4686643B2 (en) * 2009-07-03 2011-05-25 シャープ株式会社 Semiconductor light emitting element mounting substrate, backlight chassis, display device, and television receiver
CN103367591B (en) * 2012-04-09 2016-02-10 展晶科技(深圳)有限公司 Light-emitting diode chip for backlight unit
JP6032414B2 (en) * 2012-11-16 2016-11-30 東芝ライテック株式会社 Light emitting module
JP5433798B2 (en) * 2013-01-10 2014-03-05 株式会社東芝 Semiconductor light emitting device and semiconductor light emitting device
JP6306308B2 (en) * 2013-09-19 2018-04-04 株式会社東芝 Semiconductor light emitting device
JP6413460B2 (en) * 2014-08-08 2018-10-31 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
DE102016205308A1 (en) * 2016-03-31 2017-10-05 Osram Opto Semiconductors Gmbh METHOD FOR PRODUCING A VARIETY OF SEMICONDUCTOR CHIPS, SEMICONDUCTOR CHIP AND MODULE WITH A SEMICONDUCTOR CHIP
US11233176B2 (en) 2017-03-08 2022-01-25 Suzhou Lekin Semiconductor Co., Ltd. Semiconductor device and semiconductor device package
KR102331570B1 (en) * 2017-03-08 2021-11-26 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Semiconductor device and semiconductor device package
KR102237158B1 (en) * 2017-03-08 2021-04-07 엘지이노텍 주식회사 Semiconductor device and semiconductor device package

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856017A (en) * 1994-08-09 1996-02-27 Omron Corp Semiconductor device, manufacture thereof, and mask for manufacturing semiconductor device
JP3164478B2 (en) * 1994-08-31 2001-05-08 京セラ株式会社 Semiconductor device and method of manufacturing the same
JPH10294493A (en) * 1997-02-21 1998-11-04 Toshiba Corp Semiconductor light-emitting device
JP3503439B2 (en) * 1997-09-11 2004-03-08 日亜化学工業株式会社 Nitride semiconductor device
JPH1197742A (en) * 1997-09-22 1999-04-09 Nichia Chem Ind Ltd Nitride semiconductor element
JP3556080B2 (en) * 1997-11-14 2004-08-18 日亜化学工業株式会社 Nitride semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022216A (en) * 2013-02-28 2014-09-03 日亚化学工业株式会社 Light emitting device
CN104022216B (en) * 2013-02-28 2019-07-12 日亚化学工业株式会社 Light emitting device

Also Published As

Publication number Publication date
JP2001044498A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
JP4411695B2 (en) Nitride semiconductor light emitting device
US6255129B1 (en) Light-emitting diode device and method of manufacturing the same
US9640719B2 (en) Light emitting diode, method of fabricating the same and LED module having the same
JP4045767B2 (en) Semiconductor light emitting device
US8350276B2 (en) Alternating current light emitting device
KR20140130618A (en) Led module with a light emitting diode attached via solder paste and light emitting diode
CN111223973A (en) Light emitting diode array
US9966332B2 (en) Solid-state device including a conductive bump connected to a metal pattern and method of manufacturing the same
JP3068914U (en) Flip-chip light emitting device
WO2015102225A1 (en) Light emitting device having improved reliability
KR20150014353A (en) Light emitting diode
JP2007049045A (en) Semiconductor light emitting device and semiconductor device using the same
KR20220154641A (en) Light emitting device
JP2770717B2 (en) Gallium nitride based compound semiconductor light emitting device
JP4120493B2 (en) Light emitting diode and light emitting device
KR20160094922A (en) Led module with a light emitting diode attached via solder paste and light emitting diode
JP4146527B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR20150014136A (en) Light emitting diode and method of fabricating the same
JP5515685B2 (en) LIGHT EMITTING ELEMENT AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE USING THE SAME
CN214280006U (en) Flip LED chip easy to weld
JP2000049376A (en) Light emitting element
JP4284722B2 (en) Manufacturing method of semiconductor light emitting device
KR102002618B1 (en) Light emitting diode
JP3917619B2 (en) Manufacturing method of semiconductor light emitting device
KR102002617B1 (en) Light emitting diode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4411695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term