JP4535698B2 - Two-wavelength semiconductor laser device - Google Patents

Two-wavelength semiconductor laser device Download PDF

Info

Publication number
JP4535698B2
JP4535698B2 JP2003275802A JP2003275802A JP4535698B2 JP 4535698 B2 JP4535698 B2 JP 4535698B2 JP 2003275802 A JP2003275802 A JP 2003275802A JP 2003275802 A JP2003275802 A JP 2003275802A JP 4535698 B2 JP4535698 B2 JP 4535698B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
electrode
heat sink
laser device
wavelength side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003275802A
Other languages
Japanese (ja)
Other versions
JP2005039105A (en
Inventor
靖之 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003275802A priority Critical patent/JP4535698B2/en
Publication of JP2005039105A publication Critical patent/JP2005039105A/en
Application granted granted Critical
Publication of JP4535698B2 publication Critical patent/JP4535698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、2波長半導体レーザ装置に関し、特に、半導体レーザ素子をヒートシンクに半田付けにより実装する際に半田流れ等による端子間の短絡が防止され、実装効率が向上された2波長半導体レーザ装置に関する。   The present invention relates to a two-wavelength semiconductor laser device, and more particularly to a two-wavelength semiconductor laser device in which a short circuit between terminals due to a solder flow or the like is prevented when a semiconductor laser element is mounted on a heat sink by soldering and mounting efficiency is improved. .

現在、光記録媒体として、コンパクトディスク(CD)、レコーダブルコンパクトディスク(CD−R)、ミニディスク(MD)や、更に高密度なデジタルビデオディスク(DVD)等が知られており、これらの記録媒体ピックアップにおいて少なくともDVDおよびCD/CD−Rを再生するためには、光源にDVD用の発振波長650nmレーザと、CD用の780nmレーザが必要となる。さらに、光ピックアップの簡素化、小型化等を実現するためには、1つのパッケージから650nmおよび780nm両方の波長を出すことのできる2波長レーザ装置が有効である。   Currently, compact discs (CD), recordable compact discs (CD-R), minidiscs (MD), higher-density digital video discs (DVDs), etc. are known as optical recording media. In order to reproduce at least a DVD and a CD / CD-R in the medium pickup, a light source needs an oscillation wavelength 650 nm laser for DVD and a 780 nm laser for CD. Furthermore, in order to realize simplification and miniaturization of the optical pickup, a two-wavelength laser device that can emit both wavelengths of 650 nm and 780 nm from one package is effective.

2波長半導体レーザ装置は、既にいくつかの形式のものが開発されているが、ここで、本発明の理解のために、その一具体例を図5を参照して説明する。なお、図5(a)は従来例の2波長半導体レーザ装置の正面図であり、図5(b)は斜視図である。   Several types of two-wavelength semiconductor laser devices have already been developed. One specific example of the two-wavelength semiconductor laser device will be described with reference to FIG. 5 in order to understand the present invention. 5A is a front view of a conventional two-wavelength semiconductor laser device, and FIG. 5B is a perspective view.

この2波長半導体レーザ装置50は、例えば同一のn型GaAs基板11上に、発光波長が650nmのAlGaInP系第1半導体レーザ素子LD1と発光波長が780nmのAlGaAs系第2半導体レーザ素子LD2とが互いに分離した状態で集積化されているレーザチップLDCを備えている。   In the two-wavelength semiconductor laser device 50, for example, an AlGaInP-based first semiconductor laser element LD1 having an emission wavelength of 650 nm and an AlGaAs-based second semiconductor laser element LD2 having an emission wavelength of 780 nm are mutually formed on the same n-type GaAs substrate 11. A laser chip LDC integrated in a separated state is provided.

これらAlGaInP系第1半導体レーザ素子LD1及びAlGaAs系第2半導体レーザ素子LD2の具体的な微細構造はともに本願出願前に周知(下記特許文献1及び2参照)であるので、以下では簡略化して本発明の理解のために必要な部分のみを説明することとする。   The specific microstructures of the AlGaInP-based first semiconductor laser element LD1 and the AlGaAs-based second semiconductor laser element LD2 are well known before the application of the present application (see Patent Documents 1 and 2 below). Only the parts necessary for understanding the invention will be described.

すなわち、レーザチップLDCのAlGaInP系第1半導体レーザ素子LD1においては、n型GaAs基板11上に、n型AlGaInP半導体層12及びp型AlGaInP半導体層13の間に単一量子井戸(SQW)構造ないしは多重量子井戸(MQW)構造を含む第1接合層14が形成され、この第1接合層の一部に第1発光部15が形成されている。同様に、AlGaAs系第2半導体レーザ素子LD2においては、n型GaAs基板11上にn型AlGaAs半導体層16及びp型AlGaAs半導体層17の間に前記第1接合層14と同様の構成の第2接合層18が形成され、この第2接合層18の一部に第2発光部19が形成されている。   That is, in the AlGaInP-based first semiconductor laser element LD1 of the laser chip LDC, a single quantum well (SQW) structure or an n-type AlGaInP semiconductor layer 12 and a p-type AlGaInP semiconductor layer 13 are formed on the n-type GaAs substrate 11. A first junction layer 14 including a multiple quantum well (MQW) structure is formed, and a first light emitting unit 15 is formed in a part of the first junction layer. Similarly, in the AlGaAs-based second semiconductor laser element LD2, a second structure having the same configuration as that of the first bonding layer 14 is provided between the n-type AlGaAs semiconductor layer 16 and the p-type AlGaAs semiconductor layer 17 on the n-type GaAs substrate 11. A bonding layer 18 is formed, and a second light emitting unit 19 is formed in a part of the second bonding layer 18.

そして、このレーザチップLDCのn型GaAs基板11の裏面にはn側共通電極20が、第1半導体レーザ素子LD1の上面には第1p側電極21が、また、第2半導体レーザ素子LD2の上面には第2p側電極22がそれぞれ設けられている。   The n-side common electrode 20 is formed on the back surface of the n-type GaAs substrate 11 of the laser chip LDC, the first p-side electrode 21 is formed on the top surface of the first semiconductor laser element LD1, and the top surface of the second semiconductor laser element LD2. Are each provided with a second p-side electrode 22.

このような構成の2波長半導体レーザ装置50においては、第1p側電極21とn側共通電極20との間に電流を流すことによりAlGaInP系第1半導体レーザ素子LD1を、また、第2p側電極22とn側共通電極20との間に電流を流すことによりAlGaAs系第2半導体レーザ素子LD2を、それぞれ独立して駆動することができ、第1半導体レーザ素子LD1を駆動することにより波長650nmのレーザ光を、第2半導体レーザ素子LD2を駆動することにより波長780nmのレーザ光を、それぞれ取り出すことができる。   In the two-wavelength semiconductor laser device 50 having such a configuration, an AlGaInP-based first semiconductor laser element LD1 is formed by passing a current between the first p-side electrode 21 and the n-side common electrode 20, and the second p-side electrode. The AlGaAs-based second semiconductor laser element LD2 can be driven independently by passing a current between 22 and the n-side common electrode 20, and the wavelength of 650 nm can be driven by driving the first semiconductor laser element LD1. A laser beam having a wavelength of 780 nm can be extracted by driving the second semiconductor laser element LD2 with the laser beam.

一方、半導体レーザ素子は発光波長の安定化及び高出力化のためにヒートシンクないしは冷却手段が必要とされるが、上述のレーザチップLDCにおいては、それぞれの第1半導体レーザ素子LD1及び第2半導体レーザ素子LD2の放熱性を良好にするために、ヒートシンク23に第1接合層14及び第2接合層18を近づけて固着するいわゆるジャンクションダウン構造がとられており、これらの2つの半導体レーザ素子LD1及びLD2を独立して駆動するために、ヒートシンク23のレーザチップLDC固着面には電流通路となるパターンニングされた第1電極24及び第2電極25が形成されている。   On the other hand, the semiconductor laser element requires a heat sink or cooling means for stabilizing the emission wavelength and increasing the output. In the above laser chip LDC, the first semiconductor laser element LD1 and the second semiconductor laser are used. In order to improve the heat dissipation of the element LD2, a so-called junction down structure is adopted in which the first bonding layer 14 and the second bonding layer 18 are fixed close to the heat sink 23. These two semiconductor laser elements LD1 and LD2 In order to drive the LD 2 independently, a patterned first electrode 24 and second electrode 25 serving as current paths are formed on the laser chip LDC fixing surface of the heat sink 23.

そして、一般的にレーザチップLDCの固着に際しては、レーザチップLDCの接合側の第1p側電極21及び第2p側電極22とヒートシンク23の第1電極24及び第2電極25を合わせるようにして組立が行なわれる。なお、その際、レーザチップLDCの発光部15、19となる導波路の下部の第1p側電極21及び第2p側電極22の表面には、熱伝導率を上げるために、両者とも全面にわたって第1半田層26ないしは第2半田層27が接触するようにボンディングが行われている。
特開平11−186651号公報(特許請求の範囲、段落[0017]〜[0023]、図1) 特開2002−329934号公報(特許請求の範囲、図1、図4)
In general, when the laser chip LDC is fixed, the first p-side electrode 21 and the second p-side electrode 22 on the bonding side of the laser chip LDC and the first electrode 24 and the second electrode 25 of the heat sink 23 are assembled together. Is done. At that time, both surfaces of the first p-side electrode 21 and the second p-side electrode 22 below the waveguides that become the light emitting portions 15 and 19 of the laser chip LDC are formed over the entire surface in order to increase the thermal conductivity. Bonding is performed so that the first solder layer 26 or the second solder layer 27 contacts.
JP-A-11-186651 (Claims, paragraphs [0017] to [0023], FIG. 1) JP 2002-329934 A (Claims, FIGS. 1 and 4)

ところで、2波長半導体レーザ装置は、レンズ等の光学部材を共用するために、それぞれのレーザ素子が近接されていることが望ましく、その素子(発光部)間の距離は、一般的に100〜120μmとされることが多い。そのため、上述の従来の構造の2波長半導体レーザ装置50では、ヒートシンク23のパターンニングされた第1電極24及び第2電極25の間隔は、前記発光部15、19間の距離より狭くなるので、数十μmとなってしまう。その結果、半導体レーザ装置50をヒートシンク23へボンディングする際には、位置ずれを起こすと直ちに短絡を起こしてしまうために、非常に高いチップボンド精度が要求されると共に、図6に示すように、場合によっては第1半田層26及び第2半田層27が溶融して短絡部28を形成してしまうという問題点が存在しており、組立歩留りを上げることが困難であった。   By the way, in the two-wavelength semiconductor laser device, in order to share an optical member such as a lens, it is desirable that the laser elements are close to each other, and the distance between the elements (light emitting portions) is generally 100 to 120 μm. It is often said. Therefore, in the two-wavelength semiconductor laser device 50 having the conventional structure described above, the distance between the patterned first electrode 24 and second electrode 25 of the heat sink 23 is narrower than the distance between the light emitting units 15 and 19. It will be several tens of μm. As a result, when bonding the semiconductor laser device 50 to the heat sink 23, a short circuit occurs immediately if a positional shift occurs, so a very high chip bond accuracy is required, and as shown in FIG. In some cases, there is a problem that the first solder layer 26 and the second solder layer 27 are melted to form the short-circuit portion 28, and it is difficult to increase the assembly yield.

そこで本発明は、上述の従来の2波長半導体レーザ装置の有する問題点を解決して、組立歩留りが向上した2波長半導体レーザ装置を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a two-wavelength semiconductor laser device in which the assembly yield is improved by solving the problems of the conventional two-wavelength semiconductor laser device described above.

本発明の上記目的は以下の構成により達成することができる。すなわち、本願の請求項1に係る発明は、
一つの半導体レーザチップに独立して駆動可能でそれぞれ異なる波長のレーザ光を出射し得る二つの半導体レーザ素子が形成され、前記半導体レーザチップがヒートシンクに搭載されている2波長半導体レーザ装置において、
前記半導体レーザチップは、発光部となる接合層をヒートシンクに近づけて固着したジャンクションダウン構造を有し、
前記異なる波長を出射する2つの半導体レーザ素子のうち、
前記短波長側の半導体レーザ素子の下部のヒートシンク固着面には、前記短波長側の半導体レーザ素子の一方の電極の全面に接するように半田層を介して第1の電極が設けられ、
前記長波長側の半導体レーザ素子の下部のヒートシンク固着面には、前記長波長側の半導体レーザ素子の一方の電極の発光部となる導波路の下部を除いた部分に部分的に接触するように半田層を介して第2の電極が設けられていることを特徴とする。
The above object of the present invention can be achieved by the following constitution. That is, the invention according to claim 1 of the present application is
In a two-wavelength semiconductor laser device in which two semiconductor laser elements that can be independently driven on a single semiconductor laser chip and can emit laser beams of different wavelengths are formed, and the semiconductor laser chip is mounted on a heat sink,
The semiconductor laser chip has a junction-down structure in which a bonding layer serving as a light emitting portion is fixed close to a heat sink,
Of the two semiconductor laser elements emitting different wavelengths,
A first electrode is provided on the heat sink fixing surface below the semiconductor laser element on the short wavelength side via a solder layer so as to be in contact with the entire surface of one electrode of the semiconductor laser element on the short wavelength side,
The heat sink fixing surface on the lower side of the semiconductor laser device on the long wavelength side is partially in contact with the portion other than the lower portion of the waveguide that becomes the light emitting portion of one electrode of the semiconductor laser device on the long wavelength side. A second electrode is provided through a solder layer.

また、本願の請求項2に係る発明は、前記2波長半導体レーザ装置において、前記短波長側の半導体レーザ素子のヒートシンク上に占める面積は、長波長側の半導体レーザ素子の占める面積よりも広くなっていることを特徴とする。   In the invention according to claim 2 of the present application, in the two-wavelength semiconductor laser device, an area of the semiconductor laser element on the short wavelength side on the heat sink is larger than an area occupied by the semiconductor laser element on the long wavelength side. It is characterized by.

また、本願の請求項3に係る発明は、前記2波長半導体レーザ装置において、前記ヒートシンク上に更に光検出素子が形成されていること特徴とする。   The invention according to claim 3 of the present application is characterized in that, in the two-wavelength semiconductor laser device, a light detection element is further formed on the heat sink.

本発明は、上述の構成を備えることにより以下のような優れた効果を奏する。すなわち、本願の請求項1に係る2波長半導体レーザ装置によれば、長波長側の半導体レーザ素子の下部のヒートシンク固着面には、前記長波長側の半導体レーザ素子の一方の電極の発光部となる導波路の下部を除いた部分に部分的に接触するように半田層を介して第2の電極が設けられているので、短波長側の半導体レーザ素子の下部のヒートシンク固着面に設けられている第1の電極及び半田層との距離を長くすることができるようになるため、半導体レーザ素子をヒートシンクへボンディングする際の位置ずれの許容度が大きくなり、また、前記第1半田層及び第2半田層が互いに溶融して短絡部を形成する機会を大きく減らすことができ、2波長半導体レーザ装置の組立歩留りを従来例のものに比して大幅に向上させることができるようになる。   The present invention has the following excellent effects by having the above-described configuration. That is, according to the two-wavelength semiconductor laser device according to claim 1 of the present application, the light-emitting portion of one electrode of the semiconductor laser element on the long wavelength side is formed on the heat sink fixing surface below the semiconductor laser element on the long wavelength side Since the second electrode is provided through the solder layer so as to be in partial contact with the portion other than the lower portion of the waveguide, it is provided on the heat sink fixing surface below the semiconductor laser element on the short wavelength side. Since it is possible to increase the distance between the first electrode and the solder layer, the tolerance of misalignment when the semiconductor laser element is bonded to the heat sink is increased. The opportunity for the two solder layers to melt together to form a short-circuit portion can be greatly reduced, and the assembly yield of the two-wavelength semiconductor laser device can be greatly improved as compared with the conventional one. Uninaru.

また、本願の請求項2に係る2波長半導体レーザ装置によれば、短波長側の半導体レーザ素子は、長波長側の半導体レーザ素子よりも発光効率が低いために発熱量が多いにもかかわらず、放熱効率が向上するので、レーザ光の周波数安定度が向上する。   Further, according to the two-wavelength semiconductor laser device according to claim 2 of the present application, the semiconductor laser element on the short wavelength side has lower emission efficiency than the semiconductor laser element on the long wavelength side, and thus generates a large amount of heat. Since the heat radiation efficiency is improved, the frequency stability of the laser light is improved.

更に、本願の請求項3に係る2波長半導体レーザ装置によれば、別個にモニタ用のフォトダイオード等の光検出器を設ける必要がなくなるので、小型化された2波長半導体レーザ装置を得ることができる。   Furthermore, according to the two-wavelength semiconductor laser device according to claim 3 of the present application, it is not necessary to separately provide a photodetector such as a monitoring photodiode, so that a miniaturized two-wavelength semiconductor laser device can be obtained. it can.

以下、本発明の実施例について、図面を参照して説明するが、図5及び図6に示した従来例と同一構成の部分には同一の符号を付与することとし、その詳細な説明は省略する。ただし、以下に示す実施例は本発明の技術思想を具体化するための2波長半導体レーザ装置を例示するものであって、本発明をこの実施例の2波長半導体レーザ装置に特定することを意図するものではなく、特許請求範囲に記載された技術的範囲に含まれるものに等しく適用し得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same components as those of the conventional example shown in FIGS. 5 and 6 and detailed description thereof will be omitted. To do. However, the embodiment shown below exemplifies a two-wavelength semiconductor laser device for embodying the technical idea of the present invention, and the present invention is intended to be specified as the two-wavelength semiconductor laser device of this embodiment. However, the present invention is equally applicable to those included in the technical scope described in the claims.

図1は、実施例1に係る波長650nmおよび780nmの2波長半導体レーザ装置を示す図であり、図1(a)は正面図、図1(b)は斜視図である。   1A and 1B are diagrams illustrating a two-wavelength semiconductor laser device having wavelengths of 650 nm and 780 nm according to a first embodiment, in which FIG. 1A is a front view and FIG. 1B is a perspective view.

この2波長半導体レーザ装置10は、半導体レーザチップLDCとして発光部となる接合部をヒートシンク23に近づけて固着したジャンクションダウン構造を有しており、ここでは図1の正面から見て左側の半導体レーザ素子がDVD用の650nmの波長のレーザ光を出射する第1半導体レーザ素子LD1であり、右側の半導体レーザ素子がCD/CD−R用の780nmの波長の光を出射する第2半導体レーザ素子LD2となっており、分離溝は両半導体レーザ素子間の中間に設けられている。ここで、両半導体レーザ素子の発光部15及び19の間隔は約110μmである。   The two-wavelength semiconductor laser device 10 has a junction-down structure in which a junction portion serving as a light emitting portion is fixed close to the heat sink 23 as a semiconductor laser chip LDC. Here, the semiconductor laser on the left side when viewed from the front of FIG. The first semiconductor laser element LD1 whose element emits laser light having a wavelength of 650 nm for DVD and the second semiconductor laser element LD2 whose right semiconductor laser element emits light having a wavelength of 780 nm for CD / CD-R is used. The separation groove is provided between the two semiconductor laser elements. Here, the interval between the light emitting portions 15 and 19 of both semiconductor laser elements is approximately 110 μm.

また、ヒートシンク23の表面には、パターンニングされたTi−Pt−Auからなる第1電極24及び第2電極25が形成されている。この実施例1においては、第1半導体レーザ素子LD1の発光部(導波路)15の直下部の第1p側電極21の表面には、上記従来例のものと同様に、第1半田層(例えば、Au−Sn)26が全面にわたって接触しており、第1半導体レーザ素子LD1で発生した熱は、第1p側電極21、第1半田層26及び第1電極24を経て効率良くヒートシンク23に伝熱され、放熱されるようになっている。   A first electrode 24 and a second electrode 25 made of patterned Ti—Pt—Au are formed on the surface of the heat sink 23. In the first embodiment, on the surface of the first p-side electrode 21 immediately below the light emitting portion (waveguide) 15 of the first semiconductor laser element LD1, the first solder layer (for example, , Au-Sn) 26 is in contact with the entire surface, and the heat generated in the first semiconductor laser element LD1 is efficiently transmitted to the heat sink 23 via the first p-side electrode 21, the first solder layer 26, and the first electrode 24. It is heated and dissipated.

一方、780nmのレーザ光を出射する第2半導体レーザ素子LD2の発光部19の直下部30には、半田層及び電極が設けられておらず、発光部19から離れた部分のみに第2半田層(例えば、Au−Sn)27及び第2電極25が設けられている。そうすると、第2半導体レーザ素子LD2は、その出射レーザ光の波長が長いために、650nmのレーザ光を出射する第1半導体レーザ素子LD1に比べて発光効率及び温度特性が非常に優れているので、第2発光部の直下部30に半田層及び電極がなくてもほとんど影響はない。   On the other hand, the solder layer and the electrode are not provided immediately below the light emitting portion 19 of the second semiconductor laser element LD2 that emits a laser beam of 780 nm, and the second solder layer is provided only in a portion away from the light emitting portion 19. (For example, Au—Sn) 27 and the second electrode 25 are provided. Then, since the second semiconductor laser element LD2 has a long wavelength of emitted laser light, the light emission efficiency and temperature characteristics are very excellent compared to the first semiconductor laser element LD1 that emits laser light of 650 nm. Even if there is no solder layer or electrode in the lower part 30 of the second light emitting part, there is almost no influence.

この実施例1の半導体レーザ装置10において、第1及び第2半田層26、27が溶融して流れた場合の状態を図2に示す。この図2及び従来例の半田が流れた状態を示す図6の記載を対比すると明確に理解できるように、実施例1の2波長半導体レーザ装置10においては従来例の2波長半導体レーザ装置50と比するとそれぞれの半田層26及び27の間隔が長くなっているために、従来例のような半田流れに起因する短絡が起こる可能性は極めて小さくなり、また、第1及び第2半田層26及び27の間隔のみならず、第1電極24及び第2電極25の間の間隔も従来例のものと比すると長くなっているので、レーザチップLDCをヒートシンク23の表面にボンディングする際の位置ずれに対する許容度が大きくなるために、組立歩留りが向上する。   FIG. 2 shows a state where the first and second solder layers 26 and 27 are melted and flowed in the semiconductor laser device 10 of the first embodiment. As can be clearly understood by comparing FIG. 2 and the description of FIG. 6 showing the state in which the solder of the conventional example flows, the two-wavelength semiconductor laser device 10 of the first embodiment is different from the two-wavelength semiconductor laser device 50 of the conventional example. In comparison, since the distance between the solder layers 26 and 27 is long, the possibility of a short circuit due to the solder flow as in the conventional example is extremely small, and the first and second solder layers 26 and Since not only the distance 27 but also the distance between the first electrode 24 and the second electrode 25 is longer than that of the conventional example, the displacement due to the bonding of the laser chip LDC to the surface of the heat sink 23 is prevented. Since the tolerance is increased, the assembly yield is improved.

実施例2としては、図3に示したように、ヒートシンク材料にSiを用い、ヒートシンク23の表面にレーザ出力のモニタ用としてフォトダイオード31を形成した以外は実施例1と同様に形成して、2波長半導体レーザ装置10'を得た。   As shown in FIG. 3, the second embodiment is formed in the same manner as in the first embodiment except that Si is used as the heat sink material and the photodiode 31 is formed on the surface of the heat sink 23 for monitoring the laser output. A two-wavelength semiconductor laser device 10 ′ was obtained.

このような構成となすと、フォトダイオード31が形成されている部分においては第1電極24及び第2電極25の各パターンは細くなるが、レーザチップLDCをヒートシンク上へボンディングする際の従来例の有する問題点は実施例1の場合と同様に有効に解決することができた。   With such a configuration, the patterns of the first electrode 24 and the second electrode 25 become thin in the portion where the photodiode 31 is formed, but the conventional example when bonding the laser chip LDC onto the heat sink is used. The problems that were present could be solved effectively as in the case of Example 1.

実施例3としては、図4に示したように、正面から見て左側の650nmの波長のレーザ光を出射する第1半導体レーザ素子LD1の幅、すなわち第1半導体レーザ素子LD1の占める面積を、右側の780nmの波長の光を出射する第2半導体レーザ素子LD2の占める面積よりも大きくし、分離溝を両半導体レーザ素子間の中間よりも第2半導体レーザ素子LD2側に設け、それ以外の構成は実施例1のものと同様にして、2波長半導体レーザ装置10"を作成した。   As Example 3, as shown in FIG. 4, the width of the first semiconductor laser element LD1 that emits a laser beam having a wavelength of 650 nm on the left side when viewed from the front, that is, the area occupied by the first semiconductor laser element LD1, The area occupied by the second semiconductor laser element LD2 that emits light having a wavelength of 780 nm on the right side is made larger, the separation groove is provided on the second semiconductor laser element LD2 side than the middle between the two semiconductor laser elements, and other configurations A two-wavelength semiconductor laser device 10 ″ was prepared in the same manner as in Example 1.

このような構成となすことにより、第1半導体レーザ素子LD1の第1p側電極21の表面に形成されている第1半田層26とヒートシンク23の表面に設けられている第1電極24との間の接触面積を大きくすることができたので、実施例1に係る2波長半導体レーザ装置10よりも第1半導体レーザ素子LD1側の放熱効果が向上し、レーザ光の周波数安定度が向上した。   With such a configuration, between the first solder layer 26 formed on the surface of the first p-side electrode 21 of the first semiconductor laser element LD1 and the first electrode 24 provided on the surface of the heat sink 23. Therefore, the heat radiation effect on the first semiconductor laser element LD1 side with respect to the two-wavelength semiconductor laser device 10 according to Example 1 was improved, and the frequency stability of the laser beam was improved.

一方、第2半導体レーザ素子LD2の第2p側電極22とその一部表面に形成されている第2半田層27との間の接触面積、及び、第2半田層27と第2電極25との間の接触面積は減少したため、放熱効率は低下すると予測されたが、第2半導体レーザ素子LD2の波長安定度にほとんど変化は見られなかった。このことは、第2半導体レーザ素子LD2が出射するレーザ光の波長が長いので、第2半導体レーザ素子LD2は、第1半導体レーザ素子LD1よりも発光効率が良好であるため、発熱の影響が小さいためと予測される。   On the other hand, the contact area between the second p-side electrode 22 of the second semiconductor laser element LD2 and the second solder layer 27 formed on a part of the surface, and the contact between the second solder layer 27 and the second electrode 25 Since the contact area between them decreased, it was predicted that the heat dissipation efficiency would decrease, but the wavelength stability of the second semiconductor laser element LD2 hardly changed. This is because the wavelength of the laser beam emitted from the second semiconductor laser element LD2 is long, and therefore the second semiconductor laser element LD2 has better light emission efficiency than the first semiconductor laser element LD1, and therefore the influence of heat generation is small. This is expected.

この実施例3においても、レーザチップLDCをヒートシンク上へボンディングする際の従来例の有する問題点は実施例1の場合と同様に有効に解決することができた。   Also in the third embodiment, the problems of the conventional example when bonding the laser chip LDC onto the heat sink can be effectively solved as in the first embodiment.

なお、本発明においては、ヒートシンクとしてAlN、SiN、Si、ダイヤモンド等熱伝導に優れ、絶縁性の材料を使用することができる。また、導電性材料を使用する場合でも、その表面に絶縁性膜を形成し、その上に電極をパターンニングして使用することができる。   In the present invention, an insulating material having excellent heat conduction such as AlN, SiN, Si, and diamond can be used as the heat sink. Even when a conductive material is used, an insulating film can be formed on the surface, and an electrode can be patterned thereon for use.

また、2波長半導体レーザ装置のパッケージについては具体的に例示しなかったが、周知の金属製のキャンパッケージ、樹脂製のフレームパッケージ等様々なものを使用することができる。   Although the package of the two-wavelength semiconductor laser device is not specifically illustrated, various packages such as a well-known metal can package and a resin frame package can be used.

本発明の実施例1による2波長半導体レーザ装置の構造を示す図であり、図1(a)は正面図、図1(b)は斜視図である。1A and 1B are diagrams showing the structure of a two-wavelength semiconductor laser device according to a first embodiment of the present invention, in which FIG. 1A is a front view and FIG. 1B is a perspective view. 本発明の実施例1による半田が流れた場合の状態を示す図である。It is a figure which shows the state when the solder by Example 1 of this invention flows. 本発明の実施例2の2波長半導体レーザ装置を示す図である。It is a figure which shows the 2 wavelength semiconductor laser apparatus of Example 2 of this invention. 本発明の実施例3の2波長半導体レーザ装置を示す図である。It is a figure which shows the 2 wavelength semiconductor laser apparatus of Example 3 of this invention. 従来例による2波長半導体レーザ装置を示す図であり、図5(a)は正面図、図5(b)は斜視図である。It is a figure which shows the 2 wavelength semiconductor laser apparatus by a prior art example, FIG. 5 (a) is a front view, FIG.5 (b) is a perspective view. 従来例による半田が流れた場合の状態を示す図であるIt is a figure which shows the state when the solder by a prior art example flows.

符号の説明Explanation of symbols

LD1 第1半導体レーザ素子
LD2 第2半導体レーザ素子
LDC レーザチップ
10、10'、10" 2波長半導体レーザ装置
11 n型GaAs基板
12 n型AlGaInP半導体層
13 p型AlGaInP半導体層
14 第1接合層
15 第1発光部
16 n型AlGaAs半導体層
17 p型AlGaAs半導体層
18 第2接合層
19 第2発光部
20 n側共通電極
21 第1p側電極
22 第2p側電極
23 ヒートシンク
24 第1電極
25 第2電極
26 第1半田層
27 第2半田層
50 従来例の2波長半導体レーザ装置
LD1 First semiconductor laser element LD2 Second semiconductor laser element LDC Laser chip 10, 10 ', 10 "Two-wavelength semiconductor laser device 11 n-type GaAs substrate 12 n-type AlGaInP semiconductor layer 13 p-type AlGaInP semiconductor layer 14 first bonding layer 15 First light-emitting portion 16 n-type AlGaAs semiconductor layer 17 p-type AlGaAs semiconductor layer 18 second bonding layer 19 second light-emitting portion 20 n-side common electrode 21 first p-side electrode 22 second p-side electrode 23 heat sink 24 first electrode 25 second Electrode 26 First solder layer 27 Second solder layer 50 Conventional two-wavelength semiconductor laser device

Claims (3)

一つの半導体レーザチップに独立して駆動可能でそれぞれ異なる波長のレーザ光を出射し得る二つの半導体レーザ素子が形成され、前記半導体レーザチップがヒートシンクに搭載されている2波長半導体レーザ装置において、
前記半導体レーザチップは、発光部となる接合層をヒートシンクに近づけて固着したジャンクションダウン構造を有し、
前記異なる波長を出射する2つの半導体レーザ素子のうち、
前記短波長側の半導体レーザ素子の下部のヒートシンク固着面には、前記短波長側の半導体レーザ素子の一方の電極の全面に接するように半田層を介して第1の電極が設けられ、
前記長波長側の半導体レーザ素子の下部のヒートシンク固着面には、前記長波長側の半導体レーザ素子の一方の電極の発光部となる導波路の下部を除いた部分に部分的に接触するように半田層を介して第2の電極が設けられていることを特徴とする2波長半導体レーザ装置。
In a two-wavelength semiconductor laser device in which two semiconductor laser elements that can be independently driven on a single semiconductor laser chip and can emit laser beams of different wavelengths are formed, and the semiconductor laser chip is mounted on a heat sink,
The semiconductor laser chip has a junction-down structure in which a bonding layer serving as a light emitting portion is fixed close to a heat sink,
Of the two semiconductor laser elements emitting different wavelengths,
A first electrode is provided on the heat sink fixing surface below the semiconductor laser element on the short wavelength side via a solder layer so as to be in contact with the entire surface of one electrode of the semiconductor laser element on the short wavelength side,
The heat sink fixing surface on the lower side of the semiconductor laser device on the long wavelength side is partially in contact with the portion other than the lower portion of the waveguide serving as the light emitting portion of one electrode of the semiconductor laser device on the long wavelength side. A two-wavelength semiconductor laser device, wherein a second electrode is provided via a solder layer.
一つの半導体レーザチップに独立して駆動可能でそれぞれ異なる波長のレーザ光を出射し得る二つの半導体レーザ素子が形成され、前記半導体レーザチップがヒートシンクに搭載されている2波長半導体レーザ装置において、
前記半導体レーザチップは、発光部となる接合層をヒートシンクに近づけて固着したジャンクションダウン構造を有し、
前記異なる波長を出射する2つの半導体レーザ素子のうち、
前記短波長側の半導体レーザ素子の下部のヒートシンク固着面には、前記短波長側の半導体レーザ素子の一方の電極の全面に接するように半田層を介して第1の電極が設けられ、
前記長波長側の半導体レーザ素子の下部のヒートシンク固着面には、前記長波長側の半導体レーザ素子の一方の電極の発光部となる導波路の下部を除いた部分に部分的に接触するように半田層を介して第2の電極が設けられ、
前記短波長側の半導体レーザ素子のヒートシンク上に占める面積は、前記長波長側の半導体レーザ素子の占める面積よりも広くなっていることを特徴とする2波長半導体レーザ装置。
In a two-wavelength semiconductor laser device in which two semiconductor laser elements that can be independently driven on a single semiconductor laser chip and can emit laser beams of different wavelengths are formed, and the semiconductor laser chip is mounted on a heat sink,
The semiconductor laser chip has a junction-down structure in which a bonding layer serving as a light emitting portion is fixed close to a heat sink,
Of the two semiconductor laser elements emitting different wavelengths,
A first electrode is provided on a heat sink fixing surface below the semiconductor laser element on the short wavelength side via a solder layer so as to be in contact with the entire surface of one electrode of the semiconductor laser element on the short wavelength side,
The heat sink fixing surface on the lower side of the semiconductor laser device on the long wavelength side is partially in contact with the portion other than the lower portion of the waveguide that becomes the light emitting portion of one electrode of the semiconductor laser device on the long wavelength side. A second electrode is provided via the solder layer;
2. The two-wavelength semiconductor laser device according to claim 1, wherein an area occupied by the semiconductor laser element on the short wavelength side is larger than an area occupied by the semiconductor laser element on the long wavelength side.
一つの半導体レーザチップに独立して駆動可能でそれぞれ異なる波長のレーザ光を出射し得る二つの半導体レーザ素子が形成され、前記半導体レーザチップがヒートシンクに搭載されている2波長半導体レーザ装置において、
前記半導体レーザチップは、発光部となる接合層をヒートシンクに近づけて固着したジャンクションダウン構造を有し、
前記異なる波長を出射する2つの半導体レーザ素子のうち、
前記短波長側の半導体レーザ素子の下部のヒートシンク固着面には、前記短波長側の半導体レーザ素子の一方の電極の全面に接するように半田層を介して第1の電極が設けられ、
前記長波長側の半導体レーザ素子の下部のヒートシンク固着面には、前記長波長側の半導体レーザ素子の一方の電極の発光部となる導波路の下部を除いた部分に部分的に接触するように半田層を介して第2の電極が設けられ、
前記ヒートシンク上に更に光検出素子が形成されていることを特徴とする2波長半導体レーザ装置。

In a two-wavelength semiconductor laser device in which two semiconductor laser elements that can be independently driven on a single semiconductor laser chip and can emit laser beams of different wavelengths are formed, and the semiconductor laser chip is mounted on a heat sink,
The semiconductor laser chip has a junction-down structure in which a bonding layer serving as a light emitting portion is fixed close to a heat sink,
Of the two semiconductor laser elements emitting different wavelengths,
A first electrode is provided on the heat sink fixing surface below the semiconductor laser element on the short wavelength side via a solder layer so as to be in contact with the entire surface of one electrode of the semiconductor laser element on the short wavelength side,
The heat sink fixing surface on the lower side of the semiconductor laser device on the long wavelength side is partially in contact with the portion other than the lower portion of the waveguide serving as the light emitting portion of one electrode of the semiconductor laser device on the long wavelength side. A second electrode is provided via the solder layer;
A two-wavelength semiconductor laser device, wherein a light detection element is further formed on the heat sink.

JP2003275802A 2003-07-17 2003-07-17 Two-wavelength semiconductor laser device Expired - Fee Related JP4535698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003275802A JP4535698B2 (en) 2003-07-17 2003-07-17 Two-wavelength semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275802A JP4535698B2 (en) 2003-07-17 2003-07-17 Two-wavelength semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2005039105A JP2005039105A (en) 2005-02-10
JP4535698B2 true JP4535698B2 (en) 2010-09-01

Family

ID=34212338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275802A Expired - Fee Related JP4535698B2 (en) 2003-07-17 2003-07-17 Two-wavelength semiconductor laser device

Country Status (1)

Country Link
JP (1) JP4535698B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313875A (en) 2005-04-08 2006-11-16 Mitsubishi Electric Corp Semiconductor laser device
JP2011216770A (en) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp Optical semiconductor package
JP5487002B2 (en) * 2010-04-27 2014-05-07 シャープ株式会社 Semiconductor laser device
CN112886381B (en) * 2020-08-28 2022-07-12 山东华光光电子股份有限公司 Device for welding high-power semiconductor laser and using method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044498A (en) * 1999-07-28 2001-02-16 Nichia Chem Ind Ltd Nitride semiconductor light-emitting device
JP2001135891A (en) * 1999-11-02 2001-05-18 Matsushita Electronics Industry Corp Semiconductor device
JP2002057411A (en) * 2000-08-09 2002-02-22 Ricoh Co Ltd Semiconductor laser and optical pickup
JP2002314184A (en) * 2001-04-11 2002-10-25 Nec Corp Optical semiconductor module
JP2003347659A (en) * 2002-05-29 2003-12-05 Sony Corp Submount for nitride semiconductor laser and method for manufacturing nitride semiconductor laser using same
JP2007095736A (en) * 2005-09-27 2007-04-12 Sanyo Electric Co Ltd Semiconductor laser equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262885A (en) * 1987-04-21 1988-10-31 Mitsubishi Electric Corp Semiconductor laser device
JP3139423B2 (en) * 1997-09-02 2001-02-26 日本電気株式会社 Optical device mounting structure
US6136623A (en) * 1998-05-06 2000-10-24 Xerox Corporation Multiple wavelength laser arrays by flip-chip bonding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044498A (en) * 1999-07-28 2001-02-16 Nichia Chem Ind Ltd Nitride semiconductor light-emitting device
JP2001135891A (en) * 1999-11-02 2001-05-18 Matsushita Electronics Industry Corp Semiconductor device
JP2002057411A (en) * 2000-08-09 2002-02-22 Ricoh Co Ltd Semiconductor laser and optical pickup
JP2002314184A (en) * 2001-04-11 2002-10-25 Nec Corp Optical semiconductor module
JP2003347659A (en) * 2002-05-29 2003-12-05 Sony Corp Submount for nitride semiconductor laser and method for manufacturing nitride semiconductor laser using same
JP2007095736A (en) * 2005-09-27 2007-04-12 Sanyo Electric Co Ltd Semiconductor laser equipment

Also Published As

Publication number Publication date
JP2005039105A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
US8619825B2 (en) Light-emitting device having a thermal conductive member with wiring function and method of manufacturing the same
US8126026B2 (en) Two-beam semiconductor laser device
US8494020B2 (en) Semiconductor light emitting device, optical pickup unit and information recording/reproduction apparatus
JP5522977B2 (en) Multi-wavelength semiconductor laser device
JP5521611B2 (en) Optical device and optical device
JP2007095736A (en) Semiconductor laser equipment
JP4583128B2 (en) Semiconductor laser device
KR101679852B1 (en) Light-emitting device and method of manufacturing the same
JP3759081B2 (en) Semiconductor laser device
US8138663B2 (en) Light emitting device and method of manufacturing the same
JP4535698B2 (en) Two-wavelength semiconductor laser device
JP2002190649A (en) Semiconductor laser and method of manufacturing it
US8509278B2 (en) Light emitting device and optical apparatus using the same
JP6928199B1 (en) Semiconductor laser device
JP2009277934A (en) Semiconductor laser device
JP4617600B2 (en) Two-wavelength semiconductor laser device
JP4530116B2 (en) Semiconductor device
JP2008053483A (en) 2-wavelength semiconductor laser device and its manufacturing method
JP2002232063A (en) Semiconductor laser device and light pickup device
JP2004071808A (en) Semiconductor laser equipment
JP2002299750A (en) Semiconductor laser device and manufacturing method therefor
JP2011029677A (en) Semiconductor laser apparatus
JP2008153713A (en) Semiconductor laser device
JP2010272721A (en) Two-wavelength semiconductor laser device
JP2013084791A (en) Multiwavelength semiconductor laser device and optical pickup device having the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees