JP4395974B2 - DC motor with brush - Google Patents

DC motor with brush Download PDF

Info

Publication number
JP4395974B2
JP4395974B2 JP2000088581A JP2000088581A JP4395974B2 JP 4395974 B2 JP4395974 B2 JP 4395974B2 JP 2000088581 A JP2000088581 A JP 2000088581A JP 2000088581 A JP2000088581 A JP 2000088581A JP 4395974 B2 JP4395974 B2 JP 4395974B2
Authority
JP
Japan
Prior art keywords
brush
commutator
commutator segment
coil
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000088581A
Other languages
Japanese (ja)
Other versions
JP2001275327A (en
Inventor
克彦 草谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000088581A priority Critical patent/JP4395974B2/en
Publication of JP2001275327A publication Critical patent/JP2001275327A/en
Application granted granted Critical
Publication of JP4395974B2 publication Critical patent/JP4395974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Dc Machiner (AREA)
  • Windings For Motors And Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電機子鉄心にコイルを集中巻きしたブラシ付き直流モータに関するものである。
【0002】
【従来の技術】
従来の集中巻き方式のブラシ付き直流モータの一例として、特公昭61−47062公報に示す8極9スロットの直流モータがある。この直流モータは、スロット数(コイル数)が奇数であるため、電機子(回転子)に働く力が偶力とならない。このため、電機子に対して回転方向の力以外に径方向の力が働き、この径方向の力が電機子の回転に伴って向きを変えるため、回転中の電機子が振れ回り状態となり、振動が発生するという欠点がある。
【0003】
そこで、特開平11−69747号公報に示すように、4極6スロットの直流モータが提案されている。この4極6スロットの直流モータは、スロット数が偶数であるため、電機子に働く力が偶力となり、電機子が振れ回りを起こさずに滑らかに回転するという利点がある。
【0004】
【発明が解決しようとする課題】
しかし、特開平11−69747号公報に示された4極6スロットの直流モータは、インダクタンスが大きいために、ブラシの寿命が低下するという欠点がある。つまり、この公報の4極6スロットの直流モータは、図5に示すように、ブラシ1(+B)とブラシ2(GND)との間に流れる電流が、矢印で示すように2個のコイル3を直列に接続したコイル直列回路を流れる。このように、電流がコイル直列回路を流れる場合には、該回路のインダクタンスが大きくなるため、該回路に誘起されるリアクタンス電圧が大きくなって、隣接する整流子セグメント4間に火花が発生しやすくなり、その火花によってブラシが摩耗しやすくなる。一般に、インダクタンス(リアクタンス電圧)が大きくなるほど、ブラシ1,2の寿命が低下するため、ブラシ1,2の寿命を延ばすには、インダクタンスを低減する必要がある。
【0005】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、ブラシ付き直流モータのインダクタンスを低減してブラシの寿命を延ばすことができると共に、振動の少ない滑らかな回転を実現することができるブラシ付き直流モータを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1のブラシ付き直流モータは、マグネットの磁極数mを偶数個とし、電機子鉄心のスロット数nを磁極数mより2個多くし(n=m+2)、該電機子鉄心にコイルを集中巻きすると共に、整流子セグメント数sを、s=(m/2)×n=(m/2)×(m+2)とし、且つブラシ幅を整流子セグメントの2セグメント分とすると共に、ブラシ間隔を整流子セグメントの1セグメント分とし、且つ、ブラシ間で通電されるコイルが全て並列回路となるような整流子セグメントへの結線及びブラシ構成を持つことを特徴とするものである。本発明を例えば4極6スロットの直流モータに適用すると、図4に示すように、ブラシ(+B)とブラシ(GND)との間に流れる電流が4個のコイルに流れるが、これら4個の通電コイルはブラシ(+B)とブラシ(GND)との間に全て並列に配列され、ブラシ(+B)とブラシ(GND)との間には、複数の通電コイルが直列に配列されることはない。このため、直流モータのインダクタンス(リアクタンス電圧)が小さくなり、ブラシの寿命を延ばすことができる。しかも、電機子鉄心のスロット数が偶数であるため、電機子に働く力が偶力となり、回転中の電機子が振れ回りを起こさず、振動の少ない滑らかな回転を実現することができる。
【0007】
この場合、請求項2のように、電機子鉄心にコイルを集中巻きする際に、1本のマグネットワイヤを整流子セグメントに接続されたライザに結線しながら電機子鉄心の各突極に所定順序で一筆書きで巻線し、全ての巻線を終了した後に、所定のライザ間を直結するマグネットワイヤを切断すると良い。このように、1本のマグネットワイヤで一筆書きでコイルを集中巻きすれば、巻線作業を極めて能率良く行うことができ、量産性を向上できてコストダウンの要求も満たすことができる。
【0008】
【発明の実施の形態】
以下、本発明を4極6スロットの直流モータに適用した一実施形態を図1乃至図4に基づいて説明する。モータハウジングを兼ねる円筒状のヨーク11の内周部にN極とS極のマグネット12が交互に合計4個取り付けられ、4極の界磁が構成されている。このマグネット12の内周側には、電機子13が回転軸14を中心にして回転可能に設けられている。電機子13の電機子鉄心15に放射状に形成された6個の突極A〜Fにコイル16が後述するように一筆書きで集中巻きされている。この場合、電機子13のスロット17の数nは6個であり、マグネット12の磁極数m(=4)より2個多くなっている。
【0009】
電機子鉄心15の軸方向端面には、整流子セグメントS1〜S12(図2参照)が回転軸14の周囲に放射状に設けられている。この場合、整流子セグメントS1〜S12の数sは、次式から12個に設定されている。
s=(m/2)×n=(4/2)×6=12
m:マグネット12の磁極数
n:スロット17の数
【0010】
12個の整流子セグメントS1〜S12のうちの奇数番目の整流子セグメントS1,S3,S5,S7,S9,S11には、それぞれコイル16を結線するためのライザ18が設けられている。ライザ18が設けられた奇数番目の整流子セグメントS1,S3,S5,S7,S9,S11には、コイル16が結線されているが、ライザ18が設けられていない偶数番目の整流子セグメントS2,S4,S6,S8,S10,S12には、コイル16が結線されておらず、オープン状態となっている。
【0011】
この場合、電機子鉄心15にコイル16を集中巻きする際に、図2又は図3に示す巻線順序で、1本のマグネットワイヤ19を各整流子セグメントS1,S3,…に接続されたライザ18に結線しながら電機子鉄心15の各突極A〜Fに所定順序で一筆書きで巻線し、全ての巻線を終了した後に、所定のライザ16間を直結するマグネットワイヤ19を切断する。
【0012】
例えば、図2に示す巻線方法(その1)では、1番目の整流子セグメントS1のライザ結線から巻線作業を開始し、突極Bの巻線→5番目の整流子セグメントS5のライザ結線→突極Dの巻線→9番目の整流子セグメントS9のライザ結線→突極Fの巻線→1番目の整流子セグメントS1のライザ結線→7番目の整流子セグメントS7のライザ結線→突極Cの巻線→3番目の整流子セグメントS3のライザ結線→突極Aの巻線→11番目の整流子セグメントS11のライザ結線→突極Eの巻線→7番目の整流子セグメントS7のライザ結線→9番目の整流子セグメントS9のライザ結線→3番目の整流子セグメントS3のライザ結線→5番目の整流子セグメントS5のライザ結線→11番目の整流子セグメントS11のライザ結線の順序で、1本のマグネットワイヤ19を各突極A〜Fに順番に巻線していく。そして、全ての巻線作業を終了した後に、整流子セグメントS3,S5のライザ18間を直結するマグネットワイヤ19を切断し、且つ整流子セグメントS7,S9のライザ18間を直結するマグネットワイヤ19を切断する。
【0013】
一方、図3に示す巻線方法(その2)では、5番目の整流子セグメントS5のライザ結線から巻線作業を開始し、11番目の整流子セグメントS11のライザ結線→突極Aの巻線→3番目の整流子セグメントS3のライザ結線→突極Cの巻線→7番目の整流子セグメントS7のライザ結線→1番目の整流子セグメントS1のライザ結線→突極Fの巻線→9番目の整流子セグメントS9のライザ結線→突極Dの巻線→5番目の整流子セグメントS5のライザ結線→突極Bの巻線→1番目の整流子セグメントS1のライザ結線→7番目の整流子セグメントS7のライザ結線→突極Eの巻線→11番目の整流子セグメントS11のライザ結線→9番目の整流子セグメントS9のライザ結線→3番目の整流子セグメントS3のライザ結線の順序で、1本のマグネットワイヤ19を各突極A〜Fに順番に巻線していく。そして、全ての巻線作業を終了した後に、整流子セグメントS9,S11のライザ18間を直結するマグネットワイヤ19を切断する。
【0014】
整流子セグメントS1〜S12のいずれかに摺接する2個のブラシ20,21(+B,GND)の幅は、それぞれ整流子セグメントの2セグメント分に形成され、且つ、2つのブラシ20,21(+B,GND)の間隔は、整流子セグメントの1セグメント分に設定されている。
【0015】
以上のように構成した本実施形態のブラシ付き直流モータの各突極A〜Fに巻回された6個のコイル16は、図4に示すように、ライザ18が設けられた奇数番目の整流子セグメントS1,S3,S5,S7,S9,S11の間に1個ずつ接続されている。つまり、整流子セグメントS11,S3間に突極Aのコイル16(以下「コイルA」と表記する)が接続され、整流子セグメントS3,S7間に突極Cのコイル16(以下「コイルC」と表記する)が接続され、整流子セグメントS5,S9間に突極Dのコイル16(以下「コイルD」と表記する)が接続され、整流子セグメントS9,S1間に突極Fのコイル16(以下「コイルF」と表記する)が接続され、整流子セグメントS11,S7間に突極Eのコイル16(以下「コイルE」と表記する)が接続され、整流子セグメントS5,S1間に突極Bのコイル16(以下「コイルB」と表記する)が接続されている。
【0016】
2つのブラシ20,21(+B,GND)と整流子セグメントS1〜S12の位置関係が図2、図3に示す状態になっている時は、一方のブラシ20(+B)が3個の整流子セグメントS10,S11,S12に摺接するが、そのうち、両側の整流子セグメントS10,S12はコイル16に結線されていないため、ブラシ20(+B)は、中間の整流子セグメントS11のみによってコイル16に通電する。また、他方のブラシ21(GND)は、3個の整流子セグメントS7,S8,S9に摺接するが、そのうち、中間の整流子セグメントS8はコイル16に結線されていないため、ブラシ21(GND)は、両側の整流子セグメントS7,S9を介してコイル16をGND(グランド)に導通させる。
【0017】
これにより、図4に矢印で示すように、ブラシ20(+B)とブラシ21(GND)との間に流れる電流が6個のコイルA〜Fのうち4個のコイルE,A,D,Bに流れるが、これら4個の通電コイルE,A,D,Bはブラシ20(+B)とブラシ21(GND)との間に全て並列に配列され、ブラシ20(+B)とブラシ21(GND)との間には、複数の通電コイルが直列に配列されることはない。このため、直流モータのインダクタンス(リアクタンス電圧)が小さくなり、隣接する整流子セグメント間に火花が発生しにくくなって、ブラシ20,21の寿命を延ばすことができる。しかも、電機子鉄心15のスロット17の数が偶数であるため、電機子13に働く力が偶力となり、回転中の電機子13が振れ回りを起こさず、振動の少ない滑らかな回転を実現することができる。
【0018】
しかも、本実施形態では、電機子鉄心15にコイル16を集中巻きする際に、図2又は図3に示す順序又は逆の順序で、1本のマグネットワイヤ19を各整流子セグメントS1,S3,…に接続されたライザ18に結線しながら電機子鉄心15の各突極A〜Fに所定順序で一筆書きで巻線し、全ての巻線を終了した後に、所定のライザ16間を直結するマグネットワイヤ19を切断するようにしたので、巻線作業を極めて能率良く行うことができ、量産性を向上できてコストダウンの要求も満たすことができる。但し、本発明は、1本のマグネットワイヤ19で一筆書きで集中巻きする構成に限定されず、一筆書き以外の方法で集中巻きするようにしても良く、この場合でも、本発明の所期の目的を十分に達成することができる。
【0019】
以上説明した本実施形態は、本発明を4極6スロットの直流モータに適用した実施形態であるが、マグネットの磁極数mやスロット数nは適宜変更しても良く、要は、磁極数mを偶数個とし、スロット数nを磁極数mより2個多くし(n=m+2)、電機子鉄心にコイルを集中巻きすると共に、整流子セグメント数sを、s=(m/2)×n=(m/2)×(m+2)とし、且つブラシ幅を整流子セグメントの2セグメント分とすると共に、ブラシ間隔を整流子セグメントの1セグメント分とすれば良い。例えば、本発明を6極8スロットの直流モータに適用しても良く、この場合は、整流子セグメント数sを、s=(m/2)×n=(6/2)×8=24とすれば良い。
【0020】
尚、図1の構成例では、整流子セグメントS1〜S12を回転軸14の周囲に放射状に平面的に配列したが、整流子セグメントS1〜S12を回転軸14の周囲に円筒状に配列して、その外周囲にブラシを配置するようにしても良い。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す直流モータの主要部の側面図
【図2】巻線方法(その1)を説明する展開巻線図
【図3】巻線方法(その2)を説明する展開巻線図
【図4】直流モータの電気回路図
【図5】従来の直流モータの電気回路図
【符号の説明】
11…ヨーク、12…マグネット、13…電機子、14…回転軸、15…電機子鉄心、16…コイル、17…スロット、18…ライザ、19…マグネットワイヤ、20,21…ブラシ、A〜F…突極、S1〜S12…整流子セグメント。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a brushed DC motor in which a coil is concentratedly wound around an armature core.
[0002]
[Prior art]
As an example of a conventional concentrated winding brushed DC motor, there is an 8-pole 9-slot DC motor disclosed in Japanese Patent Publication No. 61-47062. Since this DC motor has an odd number of slots (number of coils), the force acting on the armature (rotor) does not become a couple. For this reason, a radial force acts on the armature in addition to the rotational force, and the radial force changes direction with the rotation of the armature, so that the rotating armature is in a swinging state, There is a drawback that vibration occurs.
[0003]
Therefore, as shown in JP-A-11-69747, a 4-pole 6-slot DC motor has been proposed. Since this 4-pole 6-slot DC motor has an even number of slots, the force acting on the armature becomes a couple, and there is an advantage that the armature rotates smoothly without causing a swing.
[0004]
[Problems to be solved by the invention]
However, the 4-pole 6-slot DC motor disclosed in Japanese Patent Application Laid-Open No. 11-69747 has a drawback that the life of the brush is reduced due to its large inductance. That is, in the 4-pole 6-slot DC motor of this publication, as shown in FIG. 5, the current flowing between the brush 1 (+ B) and the brush 2 (GND) has two coils 3 as shown by arrows. Flows through a series circuit of coils connected in series. As described above, when the current flows through the coil series circuit, the inductance of the circuit increases, so that the reactance voltage induced in the circuit increases, and a spark is easily generated between the adjacent commutator segments 4. Therefore, the brush is easily worn by the spark. In general, as the inductance (reactance voltage) increases, the life of the brushes 1 and 2 decreases. Therefore, in order to extend the life of the brushes 1 and 2, it is necessary to reduce the inductance.
[0005]
The present invention has been made in consideration of such circumstances. Therefore, the object of the present invention is to reduce the inductance of the brushed DC motor and extend the life of the brush, and realize smooth rotation with less vibration. It is an object of the present invention to provide a brushed direct current motor.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the brushed DC motor according to claim 1 of the present invention, the number of magnetic poles m of the magnet is an even number, and the number of slots n of the armature core is two more than the number of magnetic poles m (n = m + 2), the coil is concentrated on the armature core, the number of commutator segments s is s = (m / 2) × n = (m / 2) × (m + 2), and the brush width is the commutator segment. And the brush interval is one segment of the commutator segment , and all the coils energized between the brushes are connected to the commutator segment and have a brush configuration. It is a feature . When the present invention is applied to a 4-pole 6-slot DC motor, for example, as shown in FIG. 4, the current flowing between the brush (+ B) and the brush (GND) flows through four coils. The energizing coils are all arranged in parallel between the brush (+ B) and the brush (GND), and a plurality of energizing coils are not arranged in series between the brush (+ B) and the brush (GND). . For this reason, the inductance (reactance voltage) of the DC motor is reduced, and the life of the brush can be extended. Moreover, since the number of slots in the armature core is an even number, the force acting on the armature becomes a couple, and the rotating armature does not sway, and smooth rotation with less vibration can be realized.
[0007]
In this case, as described in claim 2, when the coil is concentratedly wound around the armature core, one magnet wire is connected to the riser connected to the commutator segment, and each salient pole of the armature core is in a predetermined order. After winding all the windings with a single stroke, the magnet wire that directly connects the predetermined risers may be cut. Thus, if the coil is concentratedly wound with a single stroke with one magnet wire, the winding work can be performed very efficiently, the mass productivity can be improved, and the demand for cost reduction can be satisfied.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment in which the present invention is applied to a 4-pole 6-slot DC motor will be described below with reference to FIGS. A total of four N-pole and S-pole magnets 12 are alternately attached to the inner peripheral portion of a cylindrical yoke 11 that also serves as a motor housing to form a four-pole field. An armature 13 is provided on the inner peripheral side of the magnet 12 so as to be rotatable about a rotation shaft 14. As will be described later, the coil 16 is concentrated and wound around six salient poles A to F formed radially on the armature core 15 of the armature 13 with a single stroke. In this case, the number n of the slots 17 of the armature 13 is six, which is two more than the number of magnetic poles m (= 4) of the magnet 12.
[0009]
Commutator segments S <b> 1 to S <b> 12 (see FIG. 2) are provided radially around the rotating shaft 14 on the axial end surface of the armature core 15. In this case, the number s of commutator segments S1 to S12 is set to 12 from the following equation.
s = (m / 2) × n = (4/2) × 6 = 12
m: Number of magnetic poles of magnet 12 n: Number of slots 17
Of the twelve commutator segments S1 to S12, odd-numbered commutator segments S1, S3, S5, S7, S9, and S11 are provided with risers 18 for connecting coils 16 respectively. The odd-numbered commutator segments S1, S3, S5, S7, S9, and S11 provided with the riser 18 are connected to the coil 16, but the even-numbered commutator segment S2, not provided with the riser 18. The coils 16 are not connected to S4, S6, S8, S10, and S12, and are in an open state.
[0011]
In this case, when the coil 16 is concentratedly wound around the armature core 15, the riser in which one magnet wire 19 is connected to each commutator segment S1, S3,... In the winding sequence shown in FIG. 18 is wound around each of the salient poles A to F of the armature core 15 with a single stroke in a predetermined order. After all the windings are finished, the magnet wire 19 that directly connects between the predetermined risers 16 is cut. .
[0012]
For example, in the winding method (part 1) shown in FIG. 2, the winding operation starts from the riser connection of the first commutator segment S1, and the winding of the salient pole B → the riser connection of the fifth commutator segment S5. → winding of salient pole D → riser connection of ninth commutator segment S9 → winding of salient pole F → riser connection of first commutator segment S1 → riser connection of seventh commutator segment S7 → salient pole Winding of C → Riser connection of third commutator segment S3 → Winding of salient pole A → Riser connection of eleventh commutator segment S11 → Winding of salient pole E → Riser of seventh commutator segment S7 Connection → riser connection of the ninth commutator segment S9 → riser connection of the third commutator segment S3 → riser connection of the fifth commutator segment S5 → riser connection of the eleventh commutator segment S11 The magnet wire 19 of the present will be wound in sequentially to each salient pole to F. After all the winding operations are completed, the magnet wire 19 that directly connects the risers 18 of the commutator segments S3 and S5 is cut, and the magnet wire 19 that directly connects the risers 18 of the commutator segments S7 and S9 is removed. Disconnect.
[0013]
On the other hand, in the winding method (part 2) shown in FIG. 3, the winding work is started from the riser connection of the fifth commutator segment S5, and the riser connection of the eleventh commutator segment S11 → the winding of the salient pole A → Riser connection of third commutator segment S3 → Winding of salient pole C → Riser connection of seventh commutator segment S7 → Riser connection of first commutator segment S1 → Winding of salient pole F → 9th The riser connection of the commutator segment S9 → the winding of the salient pole D → the riser connection of the fifth commutator segment S5 → the winding of the salient pole B → the riser connection of the first commutator segment S1 → the seventh commutator Riser connection of segment S7 → winding of salient pole E → riser connection of eleventh commutator segment S11 → riser connection of ninth commutator segment S9 → riser connection of third commutator segment S3 in order of 1 Going to winding the magnet wire 19 in order to each salient pole A~F. Then, after all the winding operations are completed, the magnet wire 19 that directly connects the risers 18 of the commutator segments S9 and S11 is cut.
[0014]
The widths of the two brushes 20 and 21 (+ B, GND) that are in sliding contact with any one of the commutator segments S1 to S12 are respectively formed in two segments of the commutator segment, and the two brushes 20, 21 (+ B , GND) is set to one commutator segment.
[0015]
The six coils 16 wound around the salient poles A to F of the brushed DC motor of the present embodiment configured as described above are odd-numbered rectifiers provided with risers 18 as shown in FIG. One each is connected between the child segments S1, S3, S5, S7, S9, S11. That is, the salient pole A coil 16 (hereinafter referred to as “coil A”) is connected between the commutator segments S11 and S3, and the salient pole C coil 16 (hereinafter referred to as “coil C”) between the commutator segments S3 and S7. And a coil 16 of salient pole D (hereinafter referred to as “coil D”) is connected between commutator segments S5 and S9, and coil 16 of salient pole F is connected between commutator segments S9 and S1. (Hereinafter referred to as “coil F”) is connected, coil 16 of salient pole E (hereinafter referred to as “coil E”) is connected between commutator segments S11 and S7, and between commutator segments S5 and S1. The coil 16 of the salient pole B (hereinafter referred to as “coil B”) is connected.
[0016]
When the positional relationship between the two brushes 20, 21 (+ B, GND) and the commutator segments S1 to S12 is as shown in FIGS. 2 and 3, one brush 20 (+ B) has three commutators. The segments 20 slidably contact the segments S 10, S 11, and S 12, but the commutator segments S 10 and S 12 on both sides are not connected to the coil 16, so the brush 20 (+ B) is energized to the coil 16 only by the intermediate commutator segment S 11. To do. The other brush 21 (GND) is in sliding contact with the three commutator segments S7, S8, and S9. Of these, the intermediate commutator segment S8 is not connected to the coil 16, so the brush 21 (GND) Conducts the coil 16 to GND (ground) via the commutator segments S7, S9 on both sides.
[0017]
As a result, as indicated by arrows in FIG. 4, the current flowing between the brush 20 (+ B) and the brush 21 (GND) is four coils E, A, D, B out of the six coils A to F. The four energizing coils E, A, D, and B are all arranged in parallel between the brush 20 (+ B) and the brush 21 (GND), and the brush 20 (+ B) and the brush 21 (GND). A plurality of current-carrying coils are not arranged in series. For this reason, the inductance (reactance voltage) of the DC motor is reduced, it is difficult for sparks to occur between adjacent commutator segments, and the life of the brushes 20 and 21 can be extended. Moreover, since the number of the slots 17 in the armature core 15 is an even number, the force acting on the armature 13 becomes a couple, and the rotating armature 13 does not run around and realizes smooth rotation with little vibration. be able to.
[0018]
Moreover, in the present embodiment, when the coil 16 is concentratedly wound around the armature core 15, one magnet wire 19 is connected to each commutator segment S1, S3 in the order shown in FIG. .. Are wound around the salient poles A to F of the armature core 15 in a predetermined order while being connected to the riser 18 connected to..., And after all the windings are finished, the predetermined risers 16 are directly connected. Since the magnet wire 19 is cut, the winding work can be performed very efficiently, the mass productivity can be improved, and the demand for cost reduction can be satisfied. However, the present invention is not limited to the configuration in which concentrated winding is performed by one stroke with one magnet wire 19, and concentrated winding may be performed by a method other than one stroke writing. The objective can be fully achieved.
[0019]
The present embodiment described above is an embodiment in which the present invention is applied to a 4-pole 6-slot DC motor, but the number of magnetic poles m and the number of slots n may be changed as appropriate. , The number of slots n is increased by 2 from the number of magnetic poles (n = m + 2), the coil is concentratedly wound around the armature core, and the number of commutator segments s is set to s = (m / 2) × n = (M / 2) × (m + 2), the brush width may be two segments of the commutator segment, and the brush interval may be one segment of the commutator segment. For example, the present invention may be applied to a 6-pole 8-slot DC motor. In this case, the number of commutator segments s is s = (m / 2) × n = (6/2) × 8 = 24. Just do it.
[0020]
In the configuration example of FIG. 1, the commutator segments S <b> 1 to S <b> 12 are arranged in a radial plane around the rotating shaft 14, but the commutator segments S <b> 1 to S <b> 12 are arranged in a cylindrical shape around the rotating shaft 14. A brush may be arranged around the outside.
[Brief description of the drawings]
FIG. 1 is a side view of a main part of a DC motor showing an embodiment of the present invention. FIG. 2 is a developed winding diagram illustrating a winding method (part 1). FIG. 3 is a winding method (part 2). Developed winding diagram to explain [Fig. 4] Electric circuit diagram of DC motor [Fig. 5] Electric circuit diagram of conventional DC motor [Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Yoke, 12 ... Magnet, 13 ... Armature, 14 ... Rotating shaft, 15 ... Armature core, 16 ... Coil, 17 ... Slot, 18 ... Riser, 19 ... Magnet wire, 20, 21 ... Brush, AF ... salient poles, S1-S12 ... commutator segments.

Claims (2)

マグネットの磁極数mを偶数個とし、電機子鉄心のスロット数nを磁極数mより2個多くし(n=m+2)、該電機子鉄心にコイルを集中巻きすると共に、整流子セグメント数sを、s=(m/2)×nとし、且つブラシ幅を整流子セグメントの2セグメント分とすると共に、ブラシ間隔を整流子セグメントの1セグメント分とし、且つ、ブラシ間で通電されるコイルが全て並列回路となるような前記整流子セグメントへの結線及びブラシ構成を持つことを特徴とするブラシ付き直流モータ。The number m of magnetic poles of the magnet is an even number, the number of slots n of the armature core is increased by 2 from the number of magnetic poles m (n = m + 2), the coil is concentratedly wound around the armature core, and the number of commutator segments s is set. S = (m / 2) × n, the brush width is two segments of the commutator segment, the brush interval is one segment of the commutator segment , and all the coils that are energized between the brushes A brushed DC motor having a connection to the commutator segment and a brush configuration to form a parallel circuit . 前記コイルは、1本のマグネットワイヤを前記整流子セグメントに接続されたライザに結線しながら前記電機子鉄心の各突極に所定順序で一筆書きで巻線し、全ての巻線を終了した後に、所定のライザ間を直結するマグネットワイヤを切断して形成したことを特徴とする請求項1に記載のブラシ付き直流モータ。  The coil is wound in a predetermined order on each salient pole of the armature core while connecting one magnet wire to a riser connected to the commutator segment, and after all the windings are finished 2. The brushed DC motor according to claim 1, wherein a magnet wire directly connecting between predetermined risers is cut and formed.
JP2000088581A 2000-03-24 2000-03-24 DC motor with brush Expired - Lifetime JP4395974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000088581A JP4395974B2 (en) 2000-03-24 2000-03-24 DC motor with brush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000088581A JP4395974B2 (en) 2000-03-24 2000-03-24 DC motor with brush

Publications (2)

Publication Number Publication Date
JP2001275327A JP2001275327A (en) 2001-10-05
JP4395974B2 true JP4395974B2 (en) 2010-01-13

Family

ID=18604441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000088581A Expired - Lifetime JP4395974B2 (en) 2000-03-24 2000-03-24 DC motor with brush

Country Status (1)

Country Link
JP (1) JP4395974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3961881A1 (en) * 2020-08-28 2022-03-02 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Coburg Rotor of an electric motor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819025B2 (en) 2001-03-02 2004-11-16 Asmo Co., Ltd. Core of rotation apparatus, method for manufacturing core, and rotation apparatus
JP4069760B2 (en) 2002-04-30 2008-04-02 株式会社デンソー Fuel pump
US6756717B2 (en) 2002-06-28 2004-06-29 Asmo Co. Ltd. Motor
US6903483B2 (en) 2002-08-27 2005-06-07 Asmo, Co., Ltd. Motor
DE10317594A1 (en) * 2003-04-16 2004-10-28 Siemens Ag Fuel pump with electric motor, e.g. for motor vehicle, has several segments of commutator covered by one carbon brush in each rotary position of commutator
JP4768246B2 (en) * 2004-09-24 2011-09-07 ヤマハモーターエレクトロニクス株式会社 Inner magnet motor with brush
JP2007006633A (en) * 2005-06-24 2007-01-11 Denso Corp Motor and fuel pump using same
JP4984570B2 (en) * 2006-02-27 2012-07-25 ミツミ電機株式会社 Wiring structure and wiring method of small DC motor
JP5044315B2 (en) * 2007-05-10 2012-10-10 株式会社ミツバ Armature for electric motor and electric motor
JP5113442B2 (en) * 2007-07-19 2013-01-09 株式会社ミツバ Electric motor and coil winding method of electric motor
JP5044360B2 (en) * 2007-10-23 2012-10-10 株式会社ミツバ Electric motor
JP5058753B2 (en) * 2007-11-02 2012-10-24 株式会社ミツバ Electric motor
JP5460081B2 (en) * 2009-03-11 2014-04-02 株式会社ミツバ Commutator and 3-phase DC motor
JP4949495B2 (en) * 2009-05-15 2012-06-06 株式会社日本自動車部品総合研究所 Rotation detector
US9472988B2 (en) 2011-08-29 2016-10-18 Mitsubishi Electric Corporation Rotary electric machine and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3961881A1 (en) * 2020-08-28 2022-03-02 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Coburg Rotor of an electric motor
WO2022043275A1 (en) * 2020-08-28 2022-03-03 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Rotor for an electric motor

Also Published As

Publication number Publication date
JP2001275327A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP4395974B2 (en) DC motor with brush
JP5743409B2 (en) Electric motor
JP4886469B2 (en) DC motor armature, DC motor and DC motor armature winding method
JP5097555B2 (en) Armature in rotating electrical machine and method for manufacturing the same
JP3730869B2 (en) Rotating electric machine
JP2004304928A (en) Brushless motor
JP5523318B2 (en) 3-phase DC motor
JP4685516B2 (en) Rotating electric machine armature
JPH10146030A (en) Dynamo electric machine having concentratedly-wound stator
JP2008136343A (en) Dc motor armature, dc motor, and winding method of dc motor armature
JP2008099416A (en) Armature for motor, motor, and winding method of armature for motor
JP5399091B2 (en) DC motor
JP5225624B2 (en) Electric motor
JP4961197B2 (en) DC motor armature and DC motor
JP6579967B2 (en) motor
JP2011041389A (en) Three-phase direct-current motor
JP2008306913A (en) Armature for electric motor and electric motor
JP7074557B2 (en) Electric motor
CN113746277A (en) Electric machine
JP2012196043A (en) Method for winding coil of dc motor and dc motor
JP4685391B2 (en) Rotating electrical machine armature and manufacturing method thereof
JP5491588B2 (en) Motor with brush
JP2010011565A (en) Armature of electric motor and its manufacturing method
JP5300339B2 (en) Motor with brush
JP2003189572A (en) Dc motor with concentrated winding type brush

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4395974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term