JP4386282B2 - 水中通信システム - Google Patents

水中通信システム Download PDF

Info

Publication number
JP4386282B2
JP4386282B2 JP2005027890A JP2005027890A JP4386282B2 JP 4386282 B2 JP4386282 B2 JP 4386282B2 JP 2005027890 A JP2005027890 A JP 2005027890A JP 2005027890 A JP2005027890 A JP 2005027890A JP 4386282 B2 JP4386282 B2 JP 4386282B2
Authority
JP
Japan
Prior art keywords
signal
frequency
information
reference signal
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005027890A
Other languages
English (en)
Other versions
JP2006217267A (ja
Inventor
哲 奥西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2005027890A priority Critical patent/JP4386282B2/ja
Publication of JP2006217267A publication Critical patent/JP2006217267A/ja
Application granted granted Critical
Publication of JP4386282B2 publication Critical patent/JP4386282B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、魚網深度計などで行われる水中通信がドップラー効果の影響を受けないようにする技術に関する。
旋網漁では魚網の深度を知るために魚網深度計が用いられている(例えば、特許文献1)。魚網深度計は、魚網の底部に取り付けられる送信器、漁船の底部に取り付けられる受波器および漁船内に装備される受信器から構成される。送信器は、超音波信号である同期用パルスと周波数変調パルスとを繰返し送信する。同期用パルスは送信器・受信器間で通信の同期をとるための信号である。周波数変調パルスは、送信器で検出された水圧の大小に応じて周波数が変化する信号である。受信器は、受波器で受信された同期用パルスによって同期をとり、さらに周波数変調超音波パルスの周波数を検出することにより、上記水圧から送信器の位置する深度を求める。また、魚網は必ずしも均一に沈降しないので、一般に、複数組の送信器と受波器とが用いられる。
ところが、魚網を沈めたり引き上げたりするときに、または潮流の影響を受けて魚網が上昇したり下降したりするので送信器も同様の動きをする。漁船も波によってピッチングやローリングをするので、受波器も揺動する。その結果、送信器と受波器との間に相対速度が生じるので、すなわち、送信器から送信された超音波信号がドップラー効果の影響を受けるので、受信信号の周波数が送信器から送信される周波数からシフトし、受信器で正確な深度を得ることができなくなる。そこで、以下のようにしてドップラーシフト(ドップラー効果によって周波数が変化すること)を補正して深度を求めることが提案されている(例えば、特許文献1)。
図6は魚網深度計での波形を示す図である。(a)は受波器の受信信号を示す。(b)は同期用パルスの拡大波形を示す。(c)は受信器で生成されるゲート信号を示す。ゲート信号の時間幅は同期用パルスの1周期分である。(d)は受信器で生成されるクロックパルスを示す。クロックパルスは、同期用パルスの周波数よりも遥かに高い周波数の信号である。まず、ゲート信号がハイである期間におけるクロックパルスのパルス数がカウントされ、カウント値から同期用パルスの周波数が算出される。周波数変調パルスの周波数も、クロックパルスをカウントすることによって算出される。次に、算出された同期用パルスの周波数、同期用パルスの既知の周波数および水中音速に基づいて、上記の相対速度が相対速度算出手段によって算出される。さらに、水中音速および相対速度に基づいて、算出された周波数変調パルスの周波数が補正演算手段によって補正される。このようにして、ドップラーシフトを補正して深度を求めている。
また、水圧の値を1/0のビット列に変換して送信する方法も用いられる。下記の特許文献2には、このビット列をMSK(ミニマム・シフト・キーイング)変調するための回路が示されている。この方法では水圧のデジタル値を送信するので、ドップラーシフトの補正は不要である。しかし、海面や海底で生じる間接波の影響を低減するためには、比較的長い通信時間を要する。下記の特許文献3には、受信信号から生成された位相情報を表すデジタル信号と矩形波の基準信号との比較による相関処理を行い、両信号の相関度に基づいて当該受信信号が正規の受信信号であるか否かを判定することが示されている。
特開平6−341838号公報(段落0001〜0024) 特開平5−268276号公報(段落0001〜0011) 特開2003−194921号公報(段落0022〜0035、図4〜図9)
ところで、特許文献1に示されるものにおいては、同期用パルスは、通信の同期をとる機能と、上記の相対速度を算出するための参照信号としての機能とを兼ね備える。一方、周波数変調パルスは水圧の大小に応じて周波数が変化する。従って、繰返し受信される同期用パルスと周波数変調パルスとを識別するためには、同期用パルスの周波数を周波数変調パルスの可変範囲外に割り当てなければならない。しかも、ドップラーシフトを考慮して、ある程度の余裕をもって割り当てなければならない。このため、受信信号の周波数帯域が広くなるので、近くで操業している他の漁船のスキャニングソナーから送信された超音波による干渉波や、波浪やプロペラによって発生するノイズ(以下、これらを総称して単に「ノイズ」という)に起因する伝送誤りが生じやすくなる。
また、同期用パルスと周波数変調パルスとの1周期分のクロックパルスの個数に基づいて、同期用パルスの周波数と周波数変調パルスの周波数とを算出しているので、両パルスのゲート信号に対応する部分の波形がノイズによって歪むと、周波数が正しく算出されないという周波数算出誤りが生じる。このような伝送誤りや周波数算出誤りが生じると、送信器から受信器へ水圧値を正確に伝送できなくなる。
本発明の課題とするところは、ドップラー効果やノイズの影響下でも、超音波による水中通信を正確に行えるようにすることにある。
第1の発明にかかる水中通信システムでは、超音波信号を水中に送信する送信器と、当該超音波信号を受信する受波器と、受波器で受信された受信信号に対して信号処理を施す受信器とを備えた水中通信システムにおいて、送信器は、後続する参照信号および情報信号と識別可能に所定の変調がされた同期信号、周波数が既知の参照信号、および送信情報に応じて変調された情報信号を超音波信号として水中に送信する。
ここで、送信情報に応じて変調された情報信号とは、送信信号で周波数変調された信号などである。
上記のように、送信信号においては、通信の同期をとるための同期信号と周波数が既知の参照信号とが別々の信号であり、しかも同期信号が参照信号および情報信号と識別可能に所定の変調がされた信号であるので、受信器が、例えば受信した参照信号の周波数を推定し、推定した周波数と参照信号の既知の周波数とからドップラーシフト量を求め、さらにドップラーシフト量を用いて情報信号からドップラーシフトの影響を除去することにより、受信した情報信号から情報を取り出すことができる。また、同期信号と参照信号と情報信号との関係が上記のようになっているので、同期信号、参照信号および情報信号で共通の周波数帯域を使用することが可能となる。このようにすれば、特許文献1に示されるものよりも受信信号の周波数帯域を狭くすることができ、上述の伝送誤りを低減することができる。つまり、ドップラー効果やノイズの影響下でも、受信した情報信号から情報を取り出すことが可能となる。すなわち、超音波による水中通信を正確に行うことが可能となる。さらに、同期信号に基づいて複数の情報信号を受信器が検出すれば、複数の情報(例えば、実施形態に示す水圧や水温など)を伝送することが可能となる。
第2の発明にかかる水中通信システムでは、超音波信号を水中に送信する送信器と、当該超音波信号を受信する受波器と、受波器で受信された受信信号に対して信号処理を施す受信器とを備えた水中通信システムにおいて、送信器は、後続する参照信号および情報信号と識別可能に所定の変調がされた同期信号、周波数が既知の正弦波信号である参照信号、および送信情報の値に応じた周波数の正弦波信号である情報信号を超音波信号として水中に送信する。受信器は、受信した同期信号に基づいて受信した参照信号と情報信号とを検出し、検出した参照信号の周波数と検出した情報信号の周波数とを推定し、参照信号の既知の周波数と推定した参照信号の周波数とに基づいて推定した情報信号の周波数を補正する。
このようにすることで、ドップラー効果やノイズの影響下でも、情報信号の正確な周波数を得ることができる。すなわち、超音波による水中通信を正確に行うことができる。詳しくは、通信の同期をとるための同期信号と周波数が既知の参照信号とを別々の信号とし、同期信号を参照信号および情報信号と識別可能な所定の変調がされた信号としているので、参照信号の既知の周波数と推定した周波数とに基づいて推定した情報信号の周波数を補正することにより、ドップラー効果の影響が除去された情報信号の周波数を得ることができる。また、同期信号と参照信号と情報信号との関係が上記のようになっているので、同期信号、参照信号および情報信号で共通の周波数帯域を使用することが可能となる。このようにすれば、特許文献1に示されるものよりも受信信号の周波数帯域を狭くすることができ、上述の伝送誤りを低減することができる。さらに、同期信号に基づいて複数の情報信号を検出して複数の情報信号の周波数を推定することにより、複数の情報(例えば、実施形態に示す水圧や水温など)を伝送することが可能となる。
第3の発明にかかる水中通信システムでは、超音波信号を水中に送信する送信器と、当該超音波信号を受信する受波器と、受波器で受信された受信信号に対して信号処理を施す受信器とを備えた水中通信システムにおいて、送信器は、後続する参照信号および情報信号と識別可能に所定の変調がされた同期信号、周波数が既知の正弦波信号である参照信号、および送信情報の値に応じた周波数の正弦波信号である情報信号を超音波信号として水中に送信する。受信器は、受信信号の波形と同期信号の想定される波形との相関処理を行う相関処理手段と、相関処理によって得られた相関度を表す相関出力信号に基づいて同期信号を検出し、検出した同期信号の受信時刻に基づいて参照信号および情報信号のゲートを生成するゲート生成手段と、ゲート生成手段で生成されたゲート内の参照信号および情報信号に基づいて、参照信号の周波数および情報信号の周波数を推定する周波数推定手段と、参照信号の既知の周波数と周波数推定手段で推定された参照信号の周波数とに基づいて、周波数推定手段で推定された情報信号の周波数を補正する周波数補正手段と、を備える。
ここで、上記の相関処理手段は実施形態に示すマッチドフィルタ部に相当するものであり、ゲート生成手段は実施形態に示すゲート生成部に相当するものであり、周波数推定手段は実施形態に示す周波数推定部に相当するものであり、周波数補正手段は実施形態に示す周波数補正部に相当するものである。また、同期信号の想定される波形とは、受波器で受信された同期信号の波形ではなく、送信器から送信される同期信号の波形に相当するものである。
このようにすることで、ドップラー効果やノイズの影響下でも、情報信号の正確な周波数を得ることができる。すなわち、超音波による水中通信を正確に行うことができる。詳しくは、通信の同期をとるための同期信号と周波数が既知の参照信号とを別々の信号とし、同期信号を参照信号および情報信号と識別可能な所定の変調がされた信号としているので、参照信号の既知の周波数と推定した周波数とに基づいて推定した情報信号の周波数を補正することにより、ドップラー効果の影響が除去された情報信号の周波数を得ることができる。また、同期信号と参照信号と情報信号との関係が上記のようになっているので、同期信号、参照信号および情報信号で共通の周波数帯域を使用することが可能となる。このようにすれば、特許文献1に示されるものよりも受信信号の周波数帯域を狭くすることができ、上述の伝送誤りを低減することができる。また、特許文献1のように同期信号を周波数によって検出するのではなく、受信信号の波形と同期信号の想定される波形との相関度に基づいて同期信号を検出するので、受信した同期信号の一部がノイズの影響を受けていても同期信号を検出することができる。さらに、同期信号受信時刻に基づいて参照信号および情報信号のゲートを生成し、ゲート内の参照信号および情報信号に基づいて参照信号の周波数および情報信号の周波数を推定するので、例えば、参照信号の先頭部分を周波数推定の対象信号から除外することができる。これにより、海底あるいは海面で反射したしたのち到来した同期信号と送信器から直接到来した参照信号とが混在した信号を用いて周波数を推定しないようにできるので、参照信号の周波数を正確に推定することができる。この点については、情報信号の周波数の推定についても同様である。また、情報信号ごとにゲートを生成することにより、複数の情報信号の周波数を推定できるので、複数の情報(例えば、実施形態に示す水圧や水温など)を伝送することが可能となる。
第3の発明の実施形態においては、相関処理手段は、マッチドフィルタを用いて相関処理を行うことにより相関出力信号を生成し、ゲート生成手段は、相関出力信号の最大値が生じる時刻を同期信号の受信時刻とする。このようにすることで、最大値が生じる時刻を求めるのに最適な相関出力信号が生成されるので、時間ずれのない同期信号の受信時刻、すなわち上記のゲートの基準時刻が得られ、参照信号および情報信号の周波数の推定に用いる最適なゲートを生成することができる。
また、第3の発明の実施形態においては、参照信号の既知の周波数と周波数推定手段で推定された参照信号の周波数との差に基づいて、マッチドフィルタのフィルタ係数を更新するフィルタ係数更新手段を備える。ここで、フィルタ係数更新手段は実施形態に示すフィルタ係数計算部に相当するものである。このようにすることで、フィルタ係数にドップラーシフトの影響が反映され、ドップラー歪みに適応した最適なマッチドフィルタ処理が行われるので、ドップラー効果の影響下でも同期信号を確実に検出することができる。
さらに、請求項としては記載されていないが、第3の発明の実施形態においては、周波数推定手段は、参照信号および情報信号の周波数スペクトルの最大値に対応する周波数をそれぞれ参照信号および情報信号の周波数と推定する。このようにすることで、参照信号または情報信号の一部がノイズの影響を受けても周波数スペクトルへの影響は微小であるので、上述の周波数算出誤りを防止することができる。また、送信器から直接到来した参照信号と海底あるいは海面で反射したしたのち到来した参照信号とが混在していても周波数スペクトルは影響を受けないので、信号の混在による周波数推定(算出)誤りが生じない。この点については情報信号でも同様である。
さらに、第3の発明の実施形態においては、周波数推定手段は、デジタル化された参照信号および情報信号に離散フーリエ変換を施すことにより周波数スペクトルを得る。この場合、周波数スペクトルの最大値に対応する離散周波数を推定周波数としてもよいし、当該離散周波数と前後の離散周波数とに対して補間処理を施すことによって得られた周波数を推定周波数としてもよい。補間処理を行えば、周波数をより正確に推定できる。
さらに、第3の発明の実施形態においては、同期信号の周波数帯域と情報信号の周波数可変範囲とは重複しており、参照信号の既知の周波数は周波数帯域内または周波数可変範囲内に含まれる。このようにすることで、特許文献1に示されるものよりも受信信号の周波数帯域が狭くなるので、上述の伝送誤りを低減することができる。
本発明によれば、ドップラー効果やノイズの影響下でも、超音波による水中通信を正確に行うことができる。
以下、図面を参照して本発明の実施形態を説明する。図1は水中通信システムの一例である魚網深度計の構成を示す。図2は送信器から送信される送信信号を示す。図3は受信器の構成を示す。送信器3は魚網の底部に取り付けられており、水圧などの情報を超音波信号に変換して送信する。この超音波信号は漁船の底部に取り付けられた受波器2で受信され、電気信号に変換される。そして、受信信号が漁船内に装備された受信器1で処理されることにより、魚網深度などの情報が受信器1の表示部30に表示される。
次に、送信器3の構成および動作について説明する。図1において、送信器3は、水温計12、水圧計13、海底に向けて超音波を送信すると共にエコーを受信する送受波器14、超音波信号を受波器2に向けて送信する送波器15、送信器3の電源である電池17、電池17の電圧を検出する電圧検出回路16、および超音波信号の生成などを行う制御部11を備える。上記の超音波を送信してからエコーを受信するまでの時間を計測することにより魚網から海底までの距離である離底距離が求められる。水圧計13などから得られる水圧や、水温、離底距離、電池電圧などの情報が超音波信号に変換されて送波器15から送信される。
図2に示す送信信号は、同期信号、参照信号および2つの情報信号から構成され、周期的に送信される。同期信号が先頭に配置され、参照信号と情報信号とが後続する。ここでは参照信号の後に情報信号が続くが、順序を逆にしてもよい。また、情報信号の個数を2つとしているが、個数は1つでも、3つ以上でもよい。情報信号は、上記の水圧などの情報(以下、送信情報という)の値に応じた周波数の正弦波信号である。すなわち、送信情報で周波数変調された信号である。ここでは、周波数の可変範囲を72kHz〜74kHzとし、時間幅を100msとする。また、情報信号の周波数(finfで表す)と送信情報の値とは、例えば、下記の式(1)で対応付けられる。
finf=72kHz+(Iv−Imin)/(Imax−Imin)・(74kHz−72kHz) (1)
ここで、Ivは送信情報の値、Iminは送信情報の最小値、Imaxは送信情報の最大値である。
同期信号は、送信器3と受信器1との間で通信の同期をとるための信号であり、瞬時周波数が連続的に変化するリニアFM信号(LFM信号)である。ここでは、同期信号の時間幅(Tkpで表す)を50msとし、時間幅Tkp内で瞬時周波数が72kHzから74kHzまで連続的に変化するものとする。この周波数掃引幅(2kHz)をBkpで表す。参照信号は、上述の相対速度による影響を除去する際に周波数が参照される信号であり、周波数が既知の正弦波信号である。ここでは周波数(fpltで表す)を73kHzとし、時間幅を100msとする。以上のことから、送信信号の周波数帯域(送信帯域ともいう)は72kHz〜74kHzとなる。送信帯域の中心周波数(73kHz)をfcで表す。尚、上記の72kHz〜74kHzなどは、送信帯域などの数値の一例である。
上記のように、通信の同期をとるための同期信号と周波数が既知の参照信号とを別々の信号とし、同期信号を参照信号および情報信号と識別可能な所定の変調がされた信号(リニアFM信号)としているので、同期信号、参照信号および情報信号で共通の周波数帯域を使用することができる。これにより、特許文献1に示されるものよりも受信信号の周波数帯域を狭くすることができるので、上述の伝送誤りを低減することができる。伝送誤りを低減する上では、上記のように情報信号の周波数の可変範囲と同期信号の周波数帯域とを一致させることが望ましいが、両者が重複していれば(例えば、情報信号の周波数の可変範囲が72.2kHz〜74.2kHzであり、同期信号であるリニアFM信号の周波数掃引範囲が71.8kHz〜73.8kHzであれば)、同様の効果が得られる。
次に、受信器1の構成および動作について説明する。図3において、周波数変換部21は、受波器2から出力される受信信号の中心周波数を周知の方法でfc(73kHz)から中間周波数(f0で表す)の10.24kHzに変換する。また、受波器2の有効帯域外の信号成分の除去や受信信号の増幅も行う。A/D変換器22は、周波数変換部21から出力される受信信号を一定のサンプリングレート(fsで表す)でサンプリングしてデジタル信号に変換する。ここではサンプリングレートfsを中間周波数f0の4倍の40.96kHzとしている。尚、上述のように複数組の送信器3と受波器2とが用いられ、各組で中心周波数が互いに異なる超音波信号が使用される場合に、受信器1での信号処理を共通化するために周波数変換が行われるが、周波数変換を行わずに受信信号そのものをサンプリングするようにしてもよい。
直交検波部23は、A/D変換器22の出力信号から受信信号の複素包絡線系列を生成し、生成された複素包絡線系列のサンプリングレート(データレート)を所定の割合(間引き比)で低減して出力する。出力される複素包絡線系列の実部をI[n」で表し、虚部をQ[n]で表す。また、間引き比をrdecで表し、間引き後のサンプリングレートをfsdecで表す。ここではrdecを8とするので、fsdecは5.12kHz(fs/rdec=40.96kHz/8)となる。このようにサンプリングレートが低減するので、以降の信号処理の負荷が軽減される。また、上記の処理は周波数変換を含み、以降の処理は0Hzを中心周波数とする周波数範囲で行われる。以下、直交検波部23の各部の動作について説明する。
実部符号変換部23aは、A/D変換器22の出力系列x[n](n=0,1,2,・・・)に対して、「無変換、0に置換、符号反転、0に置換」という操作を周期的に施す。従って、実部符号変換部23aの出力系列は、{x[0],0,−x[2],0,x[4],0,−x[6],0,・・・}となる。虚部符号変換部23bは、上記の出力系列x[n]に対して、「0に置換、符号反転、0に置換、無変換」という操作を周期的に施す。従って、虚部符号変換部23bの出力系列は、{0,−x[1],0,x[3],0,−x[5],0,x[7],・・・}となる。上述のように、サンプリングレートfsを中間周波数f0の4倍に選んでいるので、x[n]と周波数f0のコサイン系列との乗算、およびx[n]と周波数f0のサイン系列との乗算を上記の簡単な操作で行うことにより、受信信号の複素包絡線系列が得られる。
間引きフィルタ23c、23dは、それぞれ実部符号変換部23aおよび虚部符号変換部23bの出力系列に対して、ローパスフィルタとリサンプル(間引き)の操作を施す。間引きフィルタ23c、23dの入力系列と出力系列とをそれぞれp[n],q[n]で表すと、間引きフィルタ23c、23dの操作は下記の式(2)で表される。
Figure 0004386282
ここで、Mdecは間引きフィルタ23c、23dのフィルタ長、hdec(m=0,1,2,・・・,Mdec−1)は間引きフィルタ23c、23dのフィルタ係数、rdecは上記の間引き比である。
この間引きフィルタ23c、23dの振幅応答の例を以下に示す。±1.25kHz(1kHz+250Hz)の周波数範囲内での振幅応答は、0Hzでの振幅応答より1dB低下するだけである。ここで、0Hzは処理信号の中心周波数であり、送信帯域の中心周波数fc(73kHz)に相当する。±1kHzは送信帯域の上限/下限周波数に相当する。また、250Hzは、送信器3と受波器2との相対速度が10ノットであるときに73kHzの信号に生じるドップラーシフト量である。また、リサンプルに起因する折り返し歪みの周波数成分(2.56kHz以上または−2.56kHz以下の周波数成分)での振幅応答は、0Hzでの振幅応答よりも40dB以上低下する。つまり、上記の間引きフィルタ23c、23dを用いることにより、10ノットの相対速度に相当するドップラーシフトを見込んだ受信信号の通過帯域幅を確保できると共に、リサンプルに起因する折り返し歪みを抑制できる。
マッチドフィルタ部24は、直交検波部23から出力される複素包絡線系列(I[n],Q[n」)に対して、上述の同期信号に対応する複素マッチドフィルタ処理を施し、処理結果の絶対値を計算し、計算された絶対値系列D[n]を出力する。ここで、実部系列生成部24aと虚部系列生成部24bとは複素マッチドフィルタを構成する。実部系列生成部24aは複素マッチドフィルタの出力の実部系列Imf[n]を生成し、虚部系列生成部24bは複素マッチドフィルタの出力の虚部系列Qmf[n]を生成する。絶対値計算部24cは、実部系列Imf[n]と虚部系列Qmf[n]とから絶対値系列D[n]を生成する。これらの生成操作は、それぞれ下記の式(3)〜(5)で表される。
Figure 0004386282
Figure 0004386282
Figure 0004386282
ここで、Mmfはマッチドフィルタのフィルタ長であり、fsdec・Tkpで定義される。すなわち、同期信号にかかる複素包絡線系列(I[n],Q[n」)のデータ数と等しくなるように、マッチドフィルタのフィルタ長Mmfが決められており、Mmfは256(5.12kHz×50ms)となる。
また、hc[m]およびhs[m]は、後述するフィルタ係数計算部26から供給されるフィルタ係数である。このhc[m]、hs[m]は、同期信号を検出するためのフィルタ係数であり、マッチドフィルタ内に同期信号にかかる全ての(256個の)複素包絡線系列(I[n],Q[n」)が揃ったときに、絶対値系列D[n]の値が最大となるように決められたフィルタ係数である。つまり、マッチドフィルタ部24は、受信信号の波形と同期信号の想定される波形との相関処理を行い、相関度を示す相関出力信号である絶対値系列D[n]を出力する。ここで、フィルタ係数hc[m]、hs[m]が同期信号の想定される波形の相当物といえる。
上述のように、マッチドフィルタを用いて相関処理を行うので、最大値が生じる時刻を求めるのに最適な相関出力信号(絶対値系列D[n])が生成される。この絶対値系列D[n]の最大値が生じる時刻が後述するゲート生成部25で検出され、当該時刻が同期信号の受信時刻とされる。尚、絶対値系列D[n]の最大値を含むピークの幅は同期信号の掃引周波数幅Bkpに反比例し、D[n]のS/N比は同期信号の時間幅Tkpに比例する。従って、同期信号を検出するためには、BkpとTkpとを大きくすることが望ましいが、このようにすると送信信号の帯域幅が大きくなったり、通信時間が長くなるという問題が生じるので、これらの点を総合的に判断して、BkpとTkpとの最適値が決められる。
ゲート生成部25は、マッチドフィルタ部24から出力される絶対値系列D[n]に基づいて同期信号を検出し、さらに、同期信号の受信時刻に基づいて後述する周波数推定部27が参照信号および情報信号の周波数を推定するときに使用する両信号(正確には、両信号にかかる複素包絡線系列(I[n],Q[n」))の時間範囲を決定する。以下では、この時間範囲をゲートとよぶ。
バッファメモリ25aは、上記の絶対値系列D[n]の一部分を一時的に記憶する。最大値検出部25bは、バッファメモリ25aの所定範囲内における絶対値系列D[n]の最大値を探し、最大値が所定値以上であるときは、最大値が生じる離散時刻(1/fsdecを単位とする時刻の値)を出力する。この離散時刻を以下では同期信号受信時刻とよぶ。同期信号受信時刻は、上述のマッチドフィルタ部24の特性から、同期信号と参照信号の境界に相当する時刻となる(図4参照)。そして、ゲート計算部25cが、同期信号受信時刻を基準として、参照信号のゲートおよび情報信号のゲートの開始時刻と終了時刻とを算出し、算出した値を出力する。
図4は、受信信号とゲートとの時間関係の一例を示す。ここでは、同期信号受信時刻から50msだけ経過したときを参照信号のゲートの開始時刻とし、開始時刻から50msだけ経過したときをゲートの終了時刻としているが、同期信号受信時刻から40msだけ経過したときを開始時刻とし、開始時刻から50msだけ経過したときを終了時刻としてもよい。このようにゲートの終了時刻側にも余裕を持たせれば、同期信号がノイズの影響を受け、決定された同期信号受信時刻が正確ではない場合であっても、参照信号のゲートは参照信号の受信時間帯内に位置するので、後述する参照信号の推定に対して悪影響を与えない。
また、参照信号の先頭部分(前半部分)には海底あるいは海面で反射したしたのち到来した同期信号が混在するので、先頭部分をゲートの範囲外としている。一方、先頭部分以外の部分には、送信器3から直接到来した参照信号と海底などで反射したしたのち到来した参照信号とが混在するが、このことは後述する参照信号の周波数スペクトルに影響を与えない。上記の点については、情報信号についても同様である。
上述のように、特許文献1のごとく同期信号を周波数によって検出するのではなく、受信信号の波形と同期信号の想定される波形との相関度に基づいて、具体的には相関度の最大値を検出することにより同期信号を検出している。従って、受信した同期信号の一部がノイズの影響を受けていても同期信号を検出できる。但し、ノイズの影響を受けた場合に同期信号受信時刻に多少の時間ずれが生じることがあるが、上述のようにゲートの開始時刻(前端)と終了時刻(後端)とに時間ずれに対する余裕を持たせることで、時間ずれに起因する不都合を回避できる。
周波数推定部27は、ゲート生成部25が出力する参照信号および情報信号のゲート内の複素包絡線系列(I[n],Q[n」)に対して、DFT(離散フーリエ変換)とスペクトル補間とを施すことにより、参照信号および情報信号の周波数を推定する。この推定される周波数は、ドップラーシフトした周波数、すなわち受信周波数である。以下、周波数推定部27の各部の動作について説明する。
図5に周波数推定部27の構成例を示す。バッファメモリ27a,27bは、それぞれ複素包絡線系列の実部系列I[n]および虚部系列Q[n」の一部分を一時的に記憶する。データ選択部27cは、バッファメモリ27a,27b内の信号の内、上記の参照信号のゲートまたは情報信号のゲートに対応する部分を選択する。窓係数メモリ27dは、下記の式(6)で表されるハニング窓の係数系列w[m]を記憶するメモリである。
w[m]={1-cos(2π・m/Mdft)}/2 (m=0,1,2,・・・,Mdft-1) (6)
ここで、MdftはDFTのデータ点数であり、fsdec・Tgate(ゲート幅)で定義される。従って、Mdftは256(5.12kHz×50ms)となる。
乗算器27eは、ゲートで選択されたMdft個の実部系列I[n]と窓係数系列w[m]との積である実部系列を出力する。乗算器27fは、ゲートで選択されたMdft個の虚部系列Q[n]と窓係数系列w[m]との積である虚部系列を出力する。DFT計算部27gは、乗算器27e,27fから出力されるMdft個の実部系列と虚部系列とをそれぞれ実部、虚部とする複素系列に対して、高速フーリエ変換アルゴリズムを用いてDFTを施す。このDFTでMdft個の実部系列と虚部系列とからなるDFT系列G[k](k=0,1,2,・・・,Mdft−1)が算出される。そして、絶対値計算部27hが、各G[k]の絶対値|G[k]|(G[k]の実部の2乗と虚部の2乗との和の平方根)を計算する。この|G[k]|は、Mdft個の離散周波数に対する周波数スペクトル(振幅スペクトル)である。
上記周波数の中心周波数が0Hzで、周波数分解能がfsdec/Mdft(5.12kHz/256=20Hz)であるので、|G[k]|は、0Hz±2.56kHzの周波数範囲における20Hz刻みの周波数スペクトルとなる。この周波数範囲は、送信信号の帯域幅(2kHz)よりも十分に広いので、情報信号にドップラーシフトが生じても、例えば、74kHzの情報信号の受信周波数が74.25kHzになっても、情報信号の周波数を推定することができる。送信帯域の中心周波数fc(73kHz)と同じ周波数の参照信号の周波数を推定できるのは勿論である。
スペクトルシフト部27iは、|G[k]|の系列を右方向(kが大きくなる方向)にMdft/2だけ巡回的にシフトする。シフト後の系列をGshift[k]で表すと、|G[0]|がGshift[Mdft/2]となり、|G[Mdft−1]|がGshift[0]となる。巡回的にシフトするのは、周波数スペクトルである|G[k]|が周波数の昇順になっていないからであり、この巡回的シフトによって周波数が昇順のGshift[k]が得られる。つまり、Gshift[0]が最も低い周波数に対する周波数スペクトルであり、Gshift[Mdft−1]が最も高い周波数に対する周波数スペクトルである。
スペクトル補間部27jは、下記の手順で参照信号および情報信号の受信周波数の周波数推定値(festで表す)を計算する。第1ステップでは、Gshift[k]の最大値に対応するk(このkをkmaxで表す)を求める。第2ステップでは、比r(Gshift[kmax−1]/Gshift[kmax])と比s(Gshift[kmax+1]/Gshift[kmax])とを計算する。第3ステップでは、r≧sの場合は、下記の式(7)によって周波数推定値festを算出する。r<sの場合は、下記の式(8)によって算出する。
fest=fc+Δf・{kmax−(2r−1)/(1+r)−Mdft/2} (7)
fest=fc+Δf・{kmax+(2s−1)/(1+s)−Mdft/2} (8)
上述のとおり、fcは送信帯域の中心周波数、ΔfはDFTの周波数の分解能である。また、 (2r−1)/(1+r)の減算および (2s−1)/(1+s)の加算によって離散周波数の補間処理が行われ、Mdft/2の減算によって中心周波数(0Hz)に対する補間後の離散周波数の変位量が補正される。
補間処理を行うのは、kmaxで周波数スペクトルが最大となる確率よりも、kmaxとkmax−1との間、またはkmaxとkmax+1との間で周波数スペクトルが最大となる確率の方が高いからである。この補間処理により周波数推定値festがより正確に推定される。上述の処理を参照信号のゲートおよび情報信号のゲートで選択された複素包絡線系列(I[n],Q[n」)に施すことにより、参照信号の周波数推定値(fplt_estで表す)と情報信号の周波数推定値(finf_estで表す)とが算出され、周波数推定部27から出力される。
上記のように、参照信号および情報信号の周波数スペクトルの最大値に対応する周波数をそれぞれ参照信号および情報信号の周波数と推定するので、参照信号または情報信号の一部がノイズの影響を受けても周波数スペクトルへの影響は微小である。すなわち、上述の周波数算出誤りを防止することができる。また、上述のように、送信器から直接到来した参照信号(または情報信号)と海底あるいは海面で反射したしたのち到来した参照信号(または情報信号)とが混在する場合でも、周波数スペクトルは影響を受けないので、参照信号(または情報信号)を推定することができる。
周波数補正部28は、参照信号の既知の周波数fpltと周波数推定値fplt_estとに基づいて、情報信号の周波数推定値finf_estを補正する。この補正された周波数をfinf_corrで表すと、finf_corrは下記の式(9)で定義される。
finf_corr=finf_est・fplt/fplt_est (9)
この周波数finf_corrは、ドップラー効果の影響が除去された情報信号の周波数であり、理想的には、情報信号の送信周波数finfと等しくなる。このようにして、特許文献1に示される相対速度検出手段で検出された相対速度と水中音速とを用いることなく、finf_corrが求められる。
数値変換部29は、補正された情報信号の周波数finf_corrを送信情報の値に変換する。この変換は、上記の式(1)の逆変換によって行われる。そして、この送信情報の値(水圧や水温など)が表示部30に表示される。実際には、水圧から換算された魚網深度が表示部30に表示される。
フィルタ係数計算部26は、参照信号の既知の周波数fpltと周波数推定値fplt_estとに基づいて、上述のマッチドフィルタのフィルタ係数hc[m]、hs[m]を以下に定義される計算式(10)、(11)で計算する。
hc[m]=cos(ω・m+μ・m) (m=0,1,2,・・・Mmf−1) (10)
hs[m]=sin(ω・m+μ・m) (m=0,1,2,・・・Mmf−1) (11)
ここで、ω、μは、それぞれ下記の式(12)、(13)で定義される。
ω=(2π/fsdec)・{(fplt_est−fplt)−Bkp/2} (12)
μ=(π/fsdec)・(Bkp/Tkp) (13)
上述の通り、Mmfはマッチドフィルタのフィルタ長(fsdec・Tkp=256)、Bkpは同期信号の周波数掃引幅(2kHz)、Tkpは同期信号の時間幅(50ms)である。
式(10)、(11)によって計算されたフィルタ係数hc[m]、hs[m]は、フィルタ係数計算部26内のメモリに保存され、マッチドフィルタ部24に供給される。初回の受信時のマッチドフィルタ処理では、fplt_estが未知であるので、fplt_estにfpltの値を用いて計算された係数が使用され、2回目以降の受信時のマッチドフィルタ処理では、前回の受信時に得られたfplt_estを用いて計算された係数が使用される。このように、ドップラーシフト量に相当するfplt_estとfpltとの差に基づいてフィルタ係数hc[m]、hs[m]が更新され、ドップラー歪みに適応した最適なマッチドフィルタ処理が行われるので、ドップラー効果の影響下でも同期信号を確実に検出することができる。
以上述べた実施形態においては、瞬時周波数が連続的に増加するリニアFM信号を同期信号として用いる場合について説明したが、参照信号および情報信号と識別可能な他の信号を同期信号として用いることができる。例えば、瞬時周波数が連続的に減少するリニアFM信号や、周波数が一定の正弦波であって、位相が経時的に変化する、例えば位相が180°ずつ変化する位相変調信号なども同期信号として用いることができる。
また、上記実施形態では、同期信号を検出するためにマッチドフィルタ処理を用いたが、受信信号の波形と同期信号の想定される波形との相関処理を行うものであれば、他の方法、例えば、上記の特許文献3に示される方法などを用いても本発明を実施することができる。さらに、上記実施形態では、DFT(離散フーリエ変換)を用いて参照信号および情報信号の周波数を推定するようにしたが、各信号の周波数スペクトルを求めることができるものであれば、他の方法を用いて周波数を推定するようにしても本発明を実施することができる。
さらに、上記実施形態では、直交検波部23から出力される複素包絡線系列(I[n],Q[n])を用いて同期信号の検出や周波数の推定を行うようにしたが、 受信信号を実部系列として処理するようにしても本発明を実施することができる。さらに、上記実施形態では、水中通信システムが魚網深度計である場合について説明したが、本発明は魚網深度計以外の水中通信システムにも適用することができる。
さらに、上記実施形態では、2つの情報信号の時間幅を同じとしたが、高精度が要求される送信情報にかかる第1の情報信号の時間幅を200msとし、高精度が要求されない送信情報にかかる第2の情報信号の時間幅を100msとするようにしてもよい。さらに、上記実施形態では、同期信号と参照信号と情報信号とを連続して送るようにしたが、各信号間に無送信区間を設けるようにしてもよい。
水中通信システムの一例である魚網深度計の構成を示す図である。 送信器から送信される送信信号を示す図である。 受信器の構成を示す図である。 受信信号とゲートとの時間関係の一例を示す図である。 周波数推定部の構成例を示す図である。 従来の魚網深度計での波形を示す図である。
符号の説明
1 受信器
2 受波器
3 送信器
23 直交検波部
24 マッチドフィルタ部(相関処理手段)
24a 実部系列生成部(マッチドフィルタ)
24b 虚部系列生成部(マッチドフィルタ)
25 ゲート生成部(ゲート生成手段)
26 フィルタ係数計算部(フィルタ係数更新手段)
27 周波数推定部(周波数推定手段)
27g DFT計算部
27j スペクトル補間部
fest 周波数推定値
finf 情報信号の周波数
finf_est 情報信号の周波数推定値
finf_corr 情報信号の補正された周波数推定値
fplt 参照信号の周波数
fplt_est 参照信号の周波数推定値
hc[m]、hs[m] マッチドフィルタのフィルタ係数
Mdft 離散フーリエ変換のデータ数
Mmf マッチドフィルタのフィルタ長

Claims (5)

  1. 超音波信号を水中に送信する送信器と、当該超音波信号を受信する受波器と、受波器で受信された受信信号に対して信号処理を施す受信器とを備えた水中通信システムにおいて、
    前記送信器は、後続する参照信号および情報信号と識別可能に所定の変調がされた同期信号、周波数が既知の参照信号、および送信情報に応じて変調された情報信号を前記超音波信号として水中に送信することを特徴とする水中通信システム。
  2. 超音波信号を水中に送信する送信器と、当該超音波信号を受信する受波器と、受波器で受信された受信信号に対して信号処理を施す受信器とを備えた水中通信システムにおいて、
    前記送信器は、後続する参照信号および情報信号と識別可能に所定の変調がされた同期信号、周波数が既知の正弦波信号である参照信号、および送信情報の値に応じた周波数の正弦波信号である情報信号を前記超音波信号として水中に送信し、
    前記受信器は、受信した同期信号に基づいて受信した参照信号と情報信号とを検出し、検出した参照信号の周波数と検出した情報信号の周波数とを推定し、参照信号の既知の周波数と前記推定した参照信号の周波数とに基づいて前記推定した情報信号の周波数を補正することを特徴とする水中通信システム。
  3. 超音波信号を水中に送信する送信器と、当該超音波信号を受信する受波器と、受波器で受信された受信信号に対して信号処理を施す受信器とを備えた水中通信システムにおいて、
    前記送信器は、後続する参照信号および情報信号と識別可能に所定の変調がされた同期信号、周波数が既知の正弦波信号である参照信号、および送信情報の値に応じた周波数の正弦波信号である情報信号を前記超音波信号として水中に送信し、
    前記受信器は、
    受信信号の波形と同期信号の想定される波形との相関処理を行う相関処理手段と、
    前記相関処理によって得られた相関度を表す相関出力信号に基づいて同期信号を検出し、検出した同期信号の受信時刻に基づいて参照信号および情報信号のゲートを生成するゲート生成手段と、
    前記ゲート生成手段で生成されたゲート内の参照信号および情報信号に基づいて、参照信号の周波数および情報信号の周波数を推定する周波数推定手段と、
    参照信号の既知の周波数と前記周波数推定手段で推定された参照信号の周波数とに基づいて、前記周波数推定手段で推定された情報信号の周波数を補正する周波数補正手段と、を備えることを特徴とする水中通信システム。
  4. 請求項3に記載の水中通信システムにおいて、
    前記相関処理手段は、マッチドフィルタを用いて前記相関処理を行うことにより前記相関出力信号を生成し、
    前記ゲート生成手段は、前記相関出力信号の最大値が生じる時刻を同期信号の受信時刻とすることを特徴とする水中通信システム。
  5. 請求項4に記載の水中通信システムにおいて、
    前記参照信号の既知の周波数と前記周波数推定手段で推定された参照信号の周波数との差に基づいて、前記マッチドフィルタのフィルタ係数を更新するフィルタ係数更新手段を備えることを特徴とする水中通信システム。
JP2005027890A 2005-02-03 2005-02-03 水中通信システム Active JP4386282B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027890A JP4386282B2 (ja) 2005-02-03 2005-02-03 水中通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027890A JP4386282B2 (ja) 2005-02-03 2005-02-03 水中通信システム

Publications (2)

Publication Number Publication Date
JP2006217267A JP2006217267A (ja) 2006-08-17
JP4386282B2 true JP4386282B2 (ja) 2009-12-16

Family

ID=36980101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027890A Active JP4386282B2 (ja) 2005-02-03 2005-02-03 水中通信システム

Country Status (1)

Country Link
JP (1) JP4386282B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6888780B2 (ja) * 2017-04-21 2021-06-16 三菱電機特機システム株式会社 水中受信装置
JP7216520B2 (ja) * 2018-10-26 2023-02-01 古野電気株式会社 水中通信システムおよび水中通信方法
JP7454834B2 (ja) 2019-12-27 2024-03-25 海洋電子株式会社 水中通信システム
CN117242717A (zh) * 2021-05-19 2023-12-15 日本电信电话株式会社 通信装置和估计方法
CN116400337B (zh) * 2023-06-08 2023-08-18 中国人民解放军国防科技大学 基于线段检测的舰船噪声调制线谱提取与轴频估计方法

Also Published As

Publication number Publication date
JP2006217267A (ja) 2006-08-17

Similar Documents

Publication Publication Date Title
JP4783481B1 (ja) 超音波測定方法および超音波測定装置
JP4828295B2 (ja) ドップラー計測器および潮流計
US11243105B2 (en) Flow meter configuration and calibration
JP5670836B2 (ja) フーリエ変換でのサンプル数を削減した、短時間信号のピークパワースペクトルを検出する方法及び装置
JP2859514B2 (ja) ドップラーシフト補正パルス式漁網深度計
JP4386282B2 (ja) 水中通信システム
US11125857B2 (en) Moving object detection system and moving object detection method
JP2009139321A (ja) レーダ信号処理装置および方法
JP2010127771A (ja) 合成開口ソーナー、合成開口ソーナーの位相誤差補正方法及びプログラム
JP4787298B2 (ja) 超音波式物体方位検出装置
JP2012247304A (ja) 短時間信号のピークパワースペクトルを検出する方法及び装置
JP2016169968A (ja) 表層潮流推定装置、レーダ装置、表層潮流推定方法、及び表層潮流推定プログラム
KR100739506B1 (ko) 정합필터의 간략한 계산을 사용한 초음파 거리 정밀측정방법
JP4077092B2 (ja) ドップラ周波数測定方法およびドップラソナー
KR101091645B1 (ko) 도플러 편이 추정장치 및 도플러 편이 추정방법
JP3881078B2 (ja) 周波数推定方法、周波数推定装置、ドップラソナーおよび潮流計
JP4964344B2 (ja) ドップラー計測器および潮流計
JP4249332B2 (ja) 周波数測定方法およびドップラソナー
JP4356530B2 (ja) パルス音の到来時間差推定方法及びその装置
JP7216520B2 (ja) 水中通信システムおよび水中通信方法
KR20150139377A (ko) 주기신호 추정 장치 및 추정 방법
JP6610224B2 (ja) バイスタティックアクティブソーナー装置およびその受信器
JP7454834B2 (ja) 水中通信システム
JP3964095B2 (ja) 大気温度測定方法および装置
JP2019143978A (ja) 物体検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

R150 Certificate of patent or registration of utility model

Ref document number: 4386282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141009

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250