JP4384348B2 - Package for storing semiconductor elements - Google Patents

Package for storing semiconductor elements Download PDF

Info

Publication number
JP4384348B2
JP4384348B2 JP2000357991A JP2000357991A JP4384348B2 JP 4384348 B2 JP4384348 B2 JP 4384348B2 JP 2000357991 A JP2000357991 A JP 2000357991A JP 2000357991 A JP2000357991 A JP 2000357991A JP 4384348 B2 JP4384348 B2 JP 4384348B2
Authority
JP
Japan
Prior art keywords
lid
semiconductor element
package
housing
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000357991A
Other languages
Japanese (ja)
Other versions
JP2002164455A (en
Inventor
洋二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000357991A priority Critical patent/JP4384348B2/en
Publication of JP2002164455A publication Critical patent/JP2002164455A/en
Application granted granted Critical
Publication of JP4384348B2 publication Critical patent/JP4384348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Description

【0001】
【発明の属する技術分野】
本発明は、外部からの機械的衝撃あるいは水分の浸入から半導体素子を保護するための半導体素子収納用パッケージに関するものであり、特に高周波用半導体素子を搭載した携帯電話に代表される移動体通信機器に使用される半導体素子収納用パッケージに関するものである。
【0002】
【従来の技術】
近年、移動体通信機器は軽薄短小化が急激に進展し、これに伴って搭載される半導体素子を気密に封止する半導体素子収納用パッケージも軽薄短小化が進んでいる。
【0003】
このような半導体素子収納用パッケージは、一般に酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・窒化珪素質焼結体等の電気絶縁材料から成り、上面に半導体素子の搭載部を有する絶縁基体と、絶縁基体の上面に搭載部を取り囲むように接合された枠体と、枠体の上面に半田やろう材等により接合される略平板状の蓋体とから構成されている。なお、蓋体の材料としては、半導体素子収納用パッケージの軽薄短小化に併せ、薄型加工が可能な鉄−ニッケル−コバルト合金等の金属が用いられている。
【0004】
しかしながら、このような半導体素子収納用パッケージは、熱膨張係数の異なる枠体と金属製蓋体とを、弾性率が高く歪み等の応力を緩和しにくい半田やろう材等の金属により接合しているために、半導体素子が作動する際に発生する熱によって枠体と金属製蓋体との間に大きな応力が発生するとともにこの応力が枠体に作用して枠体にクラックが入ってしまい、その結果、容器の気密封止が破れ、内部に収容する半導体素子を長期間にわたり正常、かつ安定に作動させることができないという問題点を有していた。
【0005】
他方、枠体と金属製蓋体との接合を、弾性率の低い樹脂接着剤により行なう方法が提案されている。この提案によれば、例えば熱硬化性のエポキシ系樹脂をスクリーン印刷法やディスペンサ法を用いて枠体と金属製蓋体との接合部分に塗布し、枠体と金属製蓋体との接合部分を重ね合わせ加圧・加熱して枠体と金属製蓋体とを接合することにより、半導体素子が作動する際に発生する熱によって熱膨張係数の異なる枠体と金属製蓋体との間に大きな応力が発生したとしても、弾性率の低い樹脂接着剤が応力を緩和して枠体にクラックが入るのを有効に防止できるというものである。
【0006】
【発明が解決しようとする課題】
しかしながら、このような樹脂接着剤による接合では金属性蓋体と樹脂接着剤との接合が表面の微細な凹凸による投錨効果のみであることから、昨今の半導体装置の小型化に合わせて枠体と金属製蓋体との接合面積が小面積化する封止設計では十分な接合強度を得られず、特に圧延加工法により形成した金属板を蓋体として用いた場合、金属材料の圧延工程において残存した歪み応力が半導体素子の作動する際に発生する熱あるいは2次実装次のリフロー炉の熱等によって開放され、蓋体が大きく反って、その結果、蓋体と樹脂接着剤との接合が破壊され、容器の気密信頼性が低下してしまうという問題点を有していた。
【0007】
本発明は、かかる従来技術の問題点に鑑み案出されたものであり、その目的は、加熱時の金属製蓋体の変形による接合破壊を有効に防止でき、かつ気密信頼性の高い半導体素子収納用パッケージを提供することにある。
【0008】
【課題を解決するための手段】
本発明の半導体素子収納用パッケージは、上面に半導体素子が搭載される凹部を有する絶縁基体と、この絶縁基体の上面に凹部を覆うように封止剤を介して接合される略平板状の蓋体とから成る半導体素子収納用パッケージであって、蓋体は、圧延加工法による金属板から成り、凹部の開口に対向する部位に、圧延方向と略平行に、長さが圧延方向における蓋体の長さの3/5以上かつ凹部の開口の長さ以下で、高さが平板部の厚みの0.2〜1.5倍の突起部を形成してあることを特徴とするものである。
【0009】
本発明の半導体素子収納用パッケージによれば、圧延加工法により形成した金属板から成る蓋体の、絶縁基体の凹部の開口に対向する部位に、圧延方向と略平行に、長さが圧延方向における蓋体の長さの3/5以上かつ凹部の開口の長さ以下で、高さが平板部の厚みの0.2〜1.5倍の突起部を形成したことから、半導体素子の作動する際に発生する熱あるいは2次実装次のリフロー炉の熱等によって金属材料の圧延工程において残存した歪み応力が開放されたとしても、蓋体の突起部が蓋体の変形を抑制し、蓋体が大きく反ることはなく、その結果、蓋体と樹脂接着剤との接合が破壊され、パッケージの気密信頼性が低下してしまうことはない。
【0010】
【発明の実施の形態】
以下、本発明の半導体素子収納用パッケージを図面に基づき詳細に説明する。
【0011】
図1・図2は本発明の半導体素子収納用パッケージの実施の形態の一例を示す断面図であり、図1は金属性蓋体の突起部の幅方向の断面図そして図2は突起部の長さ方向の断面図である。これらの図において、1は絶縁基体、2は蓋体、2aは突起部、4は封止剤であり、主にこれらで本発明の半導体素子収納用パッケージが構成される。
【0012】
絶縁基体1は、その上面の略中央部に半導体素子3を搭載するための凹状の搭載部1aが設けてあり、この搭載部1aの底面には半導体素子3がガラス・樹脂・ろう材等から成る接着剤を介して接着固定される。
【0013】
このような絶縁基体1は、酸化アルミニウム質焼結体やムライト質焼結体・窒化アルミニウム質焼結体・窒化珪素質焼結体・炭化珪素質焼結体等の電気絶縁材料から成り、例えば、酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等の原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿物を作り、この泥漿物を従来周知のドクターブレード法やカレンダーロール法等のシート成形法を採用しシート状にしてセラミックグリーンシート(セラミック生シート)を得、しかる後、それらセラミックグリーンシートに適当な打抜き加工を施すとともにこれを複数枚積層し、約1600℃の高温で焼成することによって製作される。
【0014】
また、絶縁基体1には、搭載部1aの底面から下面にかけて複数の配線導体層5が被着形成されており、この配線導体層5の搭載部1aの底面部には半導体素子3の各電極がボンディングワイヤ7を介して電気的に接続され、また、絶縁基体1の下面に導出された部位には外部電気回路(図示せず)が半田等の接続部材を介して電気的に接続される。
【0015】
配線導体層5は、半導体素子3の各電極を外部電気回路に電気的に接続する際の導電路として作用し、例えばタングステン・モリブデン・マンガン等の高融点金属粉末に適当な有機溶剤・溶媒・可塑剤等を添加混合して得た金属ペーストを従来周知のスクリーン印刷法等の厚膜手法を採用して絶縁基体1となるセラミックグリーンシートにあらかじめ印刷塗布しておき、これをセラミックグリーンシートと同時に焼成することによって絶縁基体1の搭載部1aの近傍から下面にかけて所定パターンに被着形成される。
【0016】
なお、配線導体層5はその表面にニッケル・金等の良導電性で耐蝕性およびろう材との濡れ性が良好な金属をめっき法により1〜20μmの厚みに被着させておくと、配線導体層5の酸化腐蝕を有効に防止することができるとともに配線導体層5とボンディングワイヤ7との接続および配線導体層5と外部電気回路の配線導体との半田付けを強固となすことができる。従って、配線導体層5の酸化腐蝕を防止し、配線導体層5とボンディングワイヤ7との接続および配線導体層5と外部電気回路の配線導体との半田付けを強固となすためには、配線導体層5の表面にニッケル・金等をめっき法により1〜20μmの厚みに被着させておくことが好ましい。
【0017】
また、絶縁基体1の上面には、蓋体2が封止剤4を介して接合されている。蓋体2は、半導体素子3をパッケージ内部に気密に封止する作用を成すとともに外部からの衝撃により半導体素子3が破壊されることを防止する機能を有し、鉄・アルミニウム・銅・タングステン・鉄−ニッケル合金・鉄−コバルト合金・鉄−ニッケル−コバルト合金等の金属材料を圧延加工することにより形成されている。
【0018】
本発明の半導体素子収納用パッケージにおいては、図3に平面図で示すように、圧延加工法による金属板から成る蓋体2の、絶縁基体1の凹部の開口に対向する部位に、圧延方向(A−B)と略平行に、長さXが圧延方向における蓋体2の長さの3/5以上かつ凹部の開口の長さ以下で、高さが平板部の厚みの0.2〜1.5倍の突起部2aを形成することが重要である。
【0019】
本発明の半導体素子収納用パッケージによれば、圧延加工法による金属板から成る蓋体2の、絶縁基体1の凹部の開口に対向する部位に、圧延方向(A−B)と略平行に、長さXが圧延方向(A−B)における蓋体の長さの3/5以上かつ凹部の開口の長さ以下で、高さが平板部の厚みの0.2〜1.5倍の突起部2aを形成したことから、半導体素子3の作動する際に発生する熱あるいは2次実装次のリフロー炉の熱等によって金属材料の圧延工程において残存した歪み応力が開放されたとしても、蓋体2の突起部2aが蓋体2の変形を抑制し、蓋体2が大きく反ることはなく、その結果、蓋体2と封止剤4との接合が破壊され、容器の気密信頼性が低下してしまうことはない。
【0020】
なお、突起部2aの長さXが圧延方向(A−B)における蓋体2の長さの3/5未満の場合、蓋体2の圧延方向(A−B)の変形を抑える強度が不足し、絶縁基体1と蓋体2との間に蓋体2が反ることによる剥離の力が働き、絶縁基体1と蓋体2との接合が破壊されやすくなる傾向がある。また、突起部2aの長さXが凹部の開口の長さを超えた場合、突起部2aが絶縁基体1と蓋体2との接合部に位置してしまい、後述する封止剤4の厚みを適正な厚みにすることが困難となり、封止剤4の透湿量が増加して、半導体素子3が水分により劣化しやすくなる傾向がある。従って、突起部2aの長さXを圧延方向(A−B)における蓋体2の長さの3/5以上かつ凹部の開口の長さ以下の範囲とすることが好ましい。
【0021】
また、突起部2aの高さが蓋体2の平板部の厚みの0.2倍未満の場合、蓋体2の圧延方向(A−B)の変形を抑える強度が不足し、蓋体2が反ることによる剥離の力が絶縁基体1と蓋体2との間に働き、絶縁基体1と蓋体2との接合が破壊されやすくなる傾向があり、さらに、1.5倍を超えると突起部2aの成形の際に圧延方向(A−B)に直交する方向の歪みが残る、あるいは反りが発生し易くなり、その結果、2次実装等の加熱工程での接合信頼性を低下させてしまう傾向がある。従って、突起部2aの高さを蓋体2の平板部の厚みの0.2〜1.5倍の範囲とすることが好ましい。
【0022】
さらに、突起部2aの幅Yは、圧延方向(A−B)に直交する方向における蓋体2の幅の1/10〜1/4であることが好ましい。突起部2aの幅Yが圧延方向(A−B)に直交する方向における蓋体2の幅の1/10未満であると、蓋体2の圧延方向(A−B)の変形を抑える強度が不足し、蓋体2が反ることによる剥離の力が絶縁基体1と蓋体2との間に働き、絶縁基体1と蓋体2との接合が破壊されやすくなる傾向がある。また、1/4を超えると一般的な薄型半導体装置においては、容器内部の空間が狭いものとなりボンディングワイヤ7が蓋体2と接触してショートしてしまう危険性がある。従って、突起部2aの幅Yは、圧延方向(A−B)に直交する方向における蓋体2の幅の1/10〜1/4であることが好ましい。
【0023】
なお、突起部2aは、図1〜図3に示すような1本の線状の他に複数本の線状あるいは枠状等の他の形状でも良い。突起部2aを枠状あるいは複数本の線状とする場合には、それらの突起部2aの幅Yの合計を圧延方向(A−B)に直交する方向における蓋体2の幅の1/10〜1/4とすることが好ましい。
【0024】
また、突起部2aの断面形状は、三角形・台形等種々の形状が用いられ、さらに、図4・図5に蓋体2の要部断面図で示すように、突起部2aの反対側に凹部を有する台形状・円弧状であってもよい。
【0025】
このような蓋体2は、例えば鉄−ニッケル合金から成る場合であれば、鉄−ニッケル合金のインゴット(塊)を圧延加工法により圧延し板状にしたものを、所定の突起形状に対応して製作したプレス金型により圧縮プレス成形するとともに、従来周知の打抜き加工法により所定の寸法に形成される。または、ケミカルエッチングにより突起部2aの形成および所定の外寸への成形も可能である。
【0026】
なお、蓋体2が鉄−ニッケル合金・鉄−コバルト合金・鉄−ニッケル−コバルト合金等の鉄合金から成る場合は、蓋体2の腐蝕防止のために、その表面をニッケルや金・半田等の各種金属めっきにより被覆することが好ましい。
【0027】
また、封止剤4は、絶縁基体1と蓋体2とを接合する機能を有し、ガラス・樹脂接着剤・ろう材等からなる。
【0028】
封止剤4は、応力緩和の観点からは、低弾性である樹脂接着剤が好ましく、絶縁基体1あるいは蓋体2の接合部に従来周知のスクリーン印刷法等を採用して印刷・塗布した後、加熱・乾燥するとともに両者の接合部分を重ねあわせて加圧・加熱することにより、絶縁基体1と蓋体2とを強固に接合することができる。
【0029】
封止剤4は、硬化後の厚みが1〜50μmの範囲であることが好ましく、1μm未満であると応力緩和が有効に働かなくなる傾向があり、また、50μmを超えると封止剤4の透湿量が増加し、半導体素子3が水分により劣化しやすくなる傾向がある。従って、封止剤4は、硬化後の厚みが1〜50μmの範囲であることが好ましい。
【0030】
このような封止剤4としては、耐湿性あるいは接合強度の観点からは緻密な3次元網目構造を有する熱硬化性のエポキシ系樹脂接着剤が特に好ましく、ビスフェノールA型エポキシ樹脂やビスフェノールA変性エポキシ樹脂・ビスフェノールF型エポキシ樹脂・フェノールノボラック型エポキシ樹脂・クレゾールノボラック型エポキシ樹脂・特殊ノボラック型エポキシ樹脂・フェノール誘導体エポキシ樹脂・ビフェノール骨格型エポキシ樹脂等のエポキシ樹脂にイミダゾール系・アミン系・リン系・ヒドラジン系・イミダゾールアダクト系・アミンアダクト系・カチオン重合系・ジシアンジアミド系等の硬化剤を添加したものが用いられる。
【0031】
なお、2種類以上のエポキシ樹脂を混合して用いてもよく、さらに軟質微粒子を添加することにより、さらにエポキシ系樹脂接着剤の弾性率を低下させることが可能となる。このような軟質微粒子としては、例えばシリコンゴムやシリコンレジン・LDPE・HDPE・PMMA・架橋PMMA・ポリスチレン・架橋ポリスチレン・エチレン−アクリル共重合・ポリメタクリル酸エチル・ブチルアクリレート・ウレタン等のプラスチック粉末が用いられる。
【0032】
また、封止剤4に導電性の充填剤を含有させるとともに、図6に断面図で示すように絶縁基体1の上面に、搭載部1aを取り囲み絶縁基体1に被着形成された配線導体層5と電気的に接続する枠状導体層6を被着形成することにより、蓋体2と配線導体層5とが電気的に接続され、外部への電磁波の放射を防ぐシールド効果や外部からの電磁波の侵入を防止するイミュニティ効果が良好に得られる半導体素子収納用パッケージとすることができる。
【0033】
枠状導体層6は、タングステン・モリブデン・マンガン等の高融点金属粉末に適当な有機溶剤・溶媒・可塑剤等を添加混合して得た金属ペーストを従来周知のスクリーン印刷法等の厚膜手法を採用して絶縁基体1となるセラミックグリーンシートにあらかじめ印刷塗布しておき、これをセラミックグリーンシートと同時に焼成することによって絶縁基体1の上面に所定パターンに被着形成される。
【0034】
また、封止剤4に含有される導電性の充填剤としては、例えばアクリル系樹脂やフェノール系樹脂・ウレタン系樹脂・ベンゾグアナミン樹脂・メラミン系樹脂・ポリジビニルベンゼン・ポリスチレン樹脂等の各種有機系樹脂材料を核にもち、表層にニッケル・金・銀・銅等の導電性材料を被覆した粒子やカーボン粉末あるいはニッケル・金・銀・銅・半田等の金属粉末等が用いられる。
【0035】
なお、導電性の充填剤としては、平均粒径が0.1〜30μmの充填剤を0.5〜200重量%含有させることが好ましく、平均粒径が 0.1μm未満では封止剤4の導通抵抗高くなり、蓋体2と枠状導体層6との電気的接続が困難となる傾向があり、また、30μmを超えると加圧しながら加熱硬化する際の加重で導電性粒子が大きく変形して金属被膜が破損し、良好な導電性を得られなくなる傾向がある。したがって、導電性の充填剤の平均粒径は0.1〜30μmの範囲が好ましい。
【0036】
さらに、導電性の充填剤の含有量が0.5重量%未満では、封止剤4の導電性が低下する傾向があり、また、200重量%を超えると封止剤4の濡れ性が低下する傾向がある。従って、導電性の充填剤の含有量は0.5〜200重量%の範囲が好ましい。
【0037】
かくして本発明の半導体素子収納用パッケージによれば、絶縁基体1の搭載部1aの底面に半導体素子3をガラス・樹脂・ろう材等から成る接着剤を介して接着固定するとともに半導体素子3の各電極をボンディングワイヤ7により配線導体層5に接続させ、しかる後、絶縁基体1と蓋体2とを封止剤4を介して接続して絶縁基体1と蓋体2とから成る容器の内部に半導体素子3を気密に収容することによって最終製品としての半導体装置が完成する。
【0038】
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、半導体素子3と配線導体5との電気的接続を半田バンプ等の導電性接続部材で行なっても良い。
【0039】
【発明の効果】
本発明の半導体素子収納用パッケージによれば、圧延加工法により形成した金属板から成る蓋体の、絶縁基体の凹部の開口に対向する部位に、圧延方向と略平行に、長さが圧延方向における蓋体の長さの3/5以上かつ凹部の開口の長さ以下で、高さが平板部の厚みの0.2〜1.5倍の突起部を形成したことから、半導体素子の作動する際に発生する熱あるいは2次実装次のリフロー加熱等によって金属材料の圧延工程において残存した歪み応力が開放されたとしても、蓋体の突起部が蓋体の変形を抑制し、蓋体が大きく変形することはなく、その結果、蓋体と樹脂接着剤との接合が破壊され、パッケージの気密信頼性が低下してしまうことはない。
【図面の簡単な説明】
【図1】本発明の半導体素子収納用パッケージの実施の形態の一例を示す、突起部の幅方向の断面図である。
【図2】本発明の半導体素子収納用パッケージの実施の形態の一例を示す、突起部の長さ方向の断面図である。
【図3】図1・図2に示した半導体素子収納用パッケージにおける蓋体の平面図である。
【図4】本発明の半導体素子収納用パッケージにおける蓋体の他の例における要部断面図である。
【図5】本発明の半導体素子収納用パッケージにおける蓋体のさらに他の例における要部断面図である。
【図6】本発明の半導体素子収納用パッケージの他の実施例を示す断面図である。
【符号の説明】
1・・・・・・絶縁基体
1a・・・・・・搭載部
2・・・・・・蓋体
2a・・・・・・突起部
3・・・・・・半導体素子
4・・・・・・封止剤
5・・・・・・配線導体層
X・・・・・・突起部の長さ
Y・・・・・・突起部の幅
A−B・・・・圧延方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a package for housing a semiconductor element for protecting the semiconductor element from external mechanical shock or moisture ingress, and in particular, a mobile communication device represented by a mobile phone equipped with a high-frequency semiconductor element. The present invention relates to a package for housing a semiconductor element used in the above.
[0002]
[Prior art]
2. Description of the Related Art In recent years, mobile communication devices have been rapidly becoming lighter, thinner, and smaller, and along with this, semiconductor element housing packages that hermetically seal semiconductor elements to be mounted are also becoming lighter, thinner, and smaller.
[0003]
Such a package for housing a semiconductor element is generally made of an electrically insulating material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, or a silicon nitride sintered body, and has a semiconductor element on the upper surface. An insulating base having a mounting portion, a frame body joined to the upper surface of the insulating base so as to surround the mounting portion, and a substantially flat lid body joined to the upper surface of the frame body by solder, brazing material or the like. ing. As a material for the lid, a metal such as an iron-nickel-cobalt alloy that can be thinned is used in accordance with the reduction in the thickness and size of the semiconductor element housing package.
[0004]
However, such a package for housing a semiconductor element is formed by joining a frame body and a metal lid body having different thermal expansion coefficients with a metal such as solder or brazing material that has a high elastic modulus and is difficult to relieve stress such as strain. Therefore, a large stress is generated between the frame body and the metal lid body due to the heat generated when the semiconductor element is operated, and this stress acts on the frame body, and the frame body cracks. As a result, the hermetic sealing of the container is broken, and there is a problem that the semiconductor element accommodated in the container cannot be operated normally and stably over a long period of time.
[0005]
On the other hand, a method has been proposed in which the frame body and the metal lid body are joined with a resin adhesive having a low elastic modulus. According to this proposal, for example, a thermosetting epoxy resin is applied to a joint portion between the frame body and the metal lid body using a screen printing method or a dispenser method, and the joint portion between the frame body and the metal lid body is applied. By joining and pressing and heating the frame body and the metal lid body, between the frame body and the metal lid body having different thermal expansion coefficients due to the heat generated when the semiconductor element operates Even if a large stress is generated, the resin adhesive having a low elastic modulus can relieve the stress and effectively prevent the frame from cracking.
[0006]
[Problems to be solved by the invention]
However, in such a bonding with a resin adhesive, the bonding between the metallic lid and the resin adhesive is only a throwing effect due to fine irregularities on the surface. Sealing design that reduces the joint area with the metal lid does not provide sufficient joint strength, especially when a metal plate formed by a rolling process is used as the lid, and remains in the metal material rolling process. The strain stress is released by the heat generated when the semiconductor element is activated or the heat of the secondary reflow furnace, etc., and the lid body is greatly warped. As a result, the joint between the lid body and the resin adhesive is broken. However, the airtight reliability of the container is lowered.
[0007]
The present invention has been devised in view of the problems of the prior art, and an object of the present invention is to effectively prevent the destruction of the junction due to the deformation of the metal lid during heating and to provide a highly airtight and reliable semiconductor device. It is to provide a storage package.
[0008]
[Means for Solving the Problems]
The package for housing a semiconductor element according to the present invention includes an insulating base having a recess on which an upper surface of the semiconductor element is mounted, and a substantially flat lid that is bonded to the upper surface of the insulating base via a sealant so as to cover the recess. A lid for a semiconductor element containing a body, wherein the lid is made of a metal plate formed by a rolling method, and is substantially parallel to the rolling direction and has a length in the rolling direction at a portion facing the opening of the recess. And a height of 0.2 to 1.5 times the thickness of the flat plate portion, which is 3/5 or more and the length of the opening of the recess.
[0009]
According to the package for housing a semiconductor element of the present invention, the length of the lid made of a metal plate formed by a rolling method is substantially parallel to the rolling direction at a portion facing the opening of the concave portion of the insulating base. Occurs when the semiconductor element is operated because the protrusion is formed to be not less than 3/5 of the length of the lid and not more than the length of the opening of the recess, and the height is 0.2 to 1.5 times the thickness of the flat plate portion. Even if the strain stress remaining in the rolling process of the metal material is released by the heat of the reflow furnace following the secondary mounting or the heat of the secondary mounting, the projection of the lid suppresses the deformation of the lid, and the lid is greatly deformed. As a result, the joint between the lid and the resin adhesive is not broken, and the hermetic reliability of the package is not lowered.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a semiconductor element storage package of the present invention will be described in detail with reference to the drawings.
[0011]
1 and 2 are cross-sectional views showing an example of an embodiment of a package for housing a semiconductor element of the present invention. FIG. 1 is a cross-sectional view in the width direction of a protrusion of a metallic lid, and FIG. It is sectional drawing of a length direction. In these figures, 1 is an insulating substrate, 2 is a lid, 2a is a protrusion, and 4 is a sealant, and these mainly constitute the package for housing a semiconductor element of the present invention.
[0012]
The insulating base 1 is provided with a concave mounting portion 1a for mounting the semiconductor element 3 at a substantially central portion of the upper surface, and the semiconductor element 3 is made of glass, resin, brazing material, or the like on the bottom surface of the mounting portion 1a. The adhesive is fixed through an adhesive.
[0013]
Such an insulating substrate 1 is made of an electrically insulating material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a silicon carbide sintered body. In the case of an aluminum oxide sintered body, an appropriate organic binder, solvent, plasticizer, and dispersant are added to and mixed with the raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. The slurry is made into a sheet by using a sheet forming method such as a doctor blade method or a calender roll method, which has been conventionally known, to obtain a ceramic green sheet (ceramic green sheet), and thereafter, the ceramic green sheet is appropriately punched. It is manufactured by processing and laminating a plurality of sheets and firing them at a high temperature of about 1600 ° C.
[0014]
A plurality of wiring conductor layers 5 are deposited on the insulating base 1 from the bottom surface to the bottom surface of the mounting portion 1 a, and each electrode of the semiconductor element 3 is formed on the bottom surface portion of the mounting portion 1 a of the wiring conductor layer 5. Are electrically connected via bonding wires 7, and an external electric circuit (not shown) is electrically connected via a connecting member such as solder to a portion led out to the lower surface of the insulating substrate 1. .
[0015]
The wiring conductor layer 5 acts as a conductive path when each electrode of the semiconductor element 3 is electrically connected to an external electric circuit. For example, a suitable organic solvent, solvent, A metal paste obtained by adding and mixing a plasticizer or the like is preliminarily printed and applied to a ceramic green sheet to be an insulating substrate 1 by employing a known thick film method such as a screen printing method. By firing at the same time, a predetermined pattern is deposited from the vicinity of the mounting portion 1a of the insulating substrate 1 to the lower surface.
[0016]
The wiring conductor layer 5 is coated with a metal having good conductivity, corrosion resistance and wettability with a brazing material, such as nickel and gold, to a thickness of 1 to 20 μm by plating. The oxidative corrosion of the conductor layer 5 can be effectively prevented, and the connection between the wiring conductor layer 5 and the bonding wire 7 and the soldering between the wiring conductor layer 5 and the wiring conductor of the external electric circuit can be strengthened. Therefore, in order to prevent oxidative corrosion of the wiring conductor layer 5 and to strengthen the connection between the wiring conductor layer 5 and the bonding wire 7 and the soldering between the wiring conductor layer 5 and the wiring conductor of the external electric circuit, It is preferable to deposit nickel, gold, or the like on the surface of the layer 5 to a thickness of 1 to 20 μm by plating.
[0017]
A lid 2 is bonded to the upper surface of the insulating substrate 1 via a sealant 4. The lid 2 functions to hermetically seal the semiconductor element 3 inside the package and has a function of preventing the semiconductor element 3 from being destroyed by an external impact, and includes iron, aluminum, copper, tungsten, It is formed by rolling a metal material such as an iron-nickel alloy, an iron-cobalt alloy, or an iron-nickel-cobalt alloy.
[0018]
In the package for housing a semiconductor element of the present invention, as shown in a plan view in FIG. 3, a rolling direction ( Substantially parallel to AB), the length X is not less than 3/5 of the length of the lid 2 in the rolling direction and not more than the length of the opening of the recess, and the height is 0.2 to 1.5 times the thickness of the flat plate portion. It is important to form the protrusion 2a.
[0019]
According to the package for housing semiconductor elements of the present invention, the lid 2 made of a metal plate formed by a rolling process has a portion facing the opening of the concave portion of the insulating base 1 substantially parallel to the rolling direction (A-B). Protrusions 2a having a length X of 3/5 or more of the length of the lid body in the rolling direction (A-B) and less than or equal to the length of the opening of the recess and having a height of 0.2 to 1.5 times the thickness of the flat plate portion are formed. Therefore, even if the strain stress remaining in the rolling process of the metal material is released by the heat generated when the semiconductor element 3 is operated or the heat of the reflow furnace subsequent to the secondary mounting, the protruding portion of the lid 2 2a suppresses deformation of the lid 2 and the lid 2 is not greatly warped. As a result, the joint between the lid 2 and the sealant 4 is broken, and the hermetic reliability of the container is lowered. There is nothing.
[0020]
In addition, when the length X of the protrusion 2a is less than 3/5 of the length of the lid 2 in the rolling direction (AB), the strength for suppressing deformation of the lid 2 in the rolling direction (AB) is insufficient. However, a peeling force due to the warping of the lid body 2 between the insulating base body 1 and the lid body 2 acts, and the joint between the insulating base body 1 and the lid body 2 tends to be easily broken. In addition, when the length X of the protrusion 2a exceeds the length of the opening of the recess, the protrusion 2a is located at the joint between the insulating base 1 and the lid 2, and the thickness of the sealant 4 to be described later Therefore, it becomes difficult to make the thickness of the semiconductor device 3 appropriate, the moisture permeation amount of the sealing agent 4 increases, and the semiconductor element 3 tends to be easily deteriorated by moisture. Therefore, it is preferable that the length X of the protrusion 2a is in a range of 3/5 or more of the length of the lid 2 in the rolling direction (AB) and not more than the length of the opening of the recess.
[0021]
Moreover, when the height of the protrusion 2a is less than 0.2 times the thickness of the flat plate portion of the lid 2, the strength for suppressing deformation in the rolling direction (AB) of the lid 2 is insufficient, and the lid 2 is warped. The peeling force due to this acts between the insulating base 1 and the lid 2, and the joint between the insulating base 1 and the lid 2 tends to be broken, and when the ratio exceeds 1.5 times, the projection 2 a is formed. In this case, distortion in the direction orthogonal to the rolling direction (A-B) remains or warpage is likely to occur, and as a result, the bonding reliability in the heating process such as secondary mounting tends to be reduced. . Therefore, it is preferable that the height of the projecting portion 2 a is in the range of 0.2 to 1.5 times the thickness of the flat plate portion of the lid 2.
[0022]
Furthermore, the width Y of the protrusion 2a is preferably 1/10 to 1/4 of the width of the lid 2 in the direction orthogonal to the rolling direction (AB). The intensity | strength which suppresses the deformation | transformation of the rolling direction (AB) of the cover body 2 as the width Y of the protrusion part 2a is less than 1/10 of the width | variety of the cover body 2 in the direction orthogonal to a rolling direction (AB). There is a shortage and the peeling force due to the warping of the lid 2 acts between the insulating base 1 and the lid 2, and the joint between the insulating base 1 and the lid 2 tends to be easily broken. On the other hand, if it exceeds 1/4, in a general thin semiconductor device, the space inside the container becomes narrow, and there is a risk that the bonding wire 7 contacts the lid 2 and short-circuits. Therefore, the width Y of the protrusion 2a is preferably 1/10 to 1/4 of the width of the lid 2 in the direction orthogonal to the rolling direction (AB).
[0023]
In addition, the protrusion 2a may have other shapes such as a plurality of lines or a frame in addition to a single line as shown in FIGS. When the protrusion 2a has a frame shape or a plurality of lines, the sum of the widths Y of the protrusions 2a is 1/10 of the width of the lid 2 in the direction orthogonal to the rolling direction (AB). It is preferable to set to ¼.
[0024]
Further, the cross-sectional shape of the protrusion 2a may be various shapes such as a triangle and a trapezoid. Further, as shown in the cross-sectional views of the main part of the lid 2 in FIGS. 4 and 5, a recess is formed on the opposite side of the protrusion 2a. It may be trapezoidal or arcuate.
[0025]
If such a lid 2 is made of, for example, an iron-nickel alloy, an ingot of the iron-nickel alloy is rolled into a plate shape by a rolling method so as to correspond to a predetermined projection shape. In addition to compression press molding using a press die manufactured in this manner, the die is formed to a predetermined size by a conventionally known punching method. Alternatively, the protrusion 2a can be formed by chemical etching and molded to a predetermined outer dimension.
[0026]
When the lid 2 is made of an iron alloy such as iron-nickel alloy, iron-cobalt alloy, iron-nickel-cobalt alloy, the surface of the lid 2 is nickel, gold, solder, etc. to prevent corrosion. It is preferable to coat by various metal plating.
[0027]
The sealant 4 has a function of joining the insulating base 1 and the lid 2 and is made of glass, a resin adhesive, a brazing material, or the like.
[0028]
The sealing agent 4 is preferably a low-elasticity resin adhesive from the viewpoint of stress relaxation, and is printed and applied to the joint portion of the insulating base 1 or the lid 2 by employing a conventionally known screen printing method or the like. The insulating substrate 1 and the lid body 2 can be firmly bonded by heating and drying and by applying pressure and heating while overlapping the bonding portions of the two.
[0029]
The sealant 4 preferably has a thickness after curing of 1 to 50 μm, and if it is less than 1 μm, there is a tendency that stress relaxation does not work effectively. The amount of moisture increases and the semiconductor element 3 tends to be easily deteriorated by moisture. Therefore, the sealant 4 preferably has a thickness after curing in the range of 1 to 50 μm.
[0030]
As such a sealant 4, a thermosetting epoxy resin adhesive having a dense three-dimensional network structure is particularly preferable from the viewpoint of moisture resistance or bonding strength, and bisphenol A type epoxy resin or bisphenol A modified epoxy is preferable. Resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, special novolac type epoxy resin, phenol derivative epoxy resin, biphenol skeleton type epoxy resin, imidazole, amine, phosphorus, A hydrazine type, imidazole adduct type, amine adduct type, cationic polymerization type, dicyandiamide type or the like is used.
[0031]
Two or more types of epoxy resins may be mixed and used, and by adding soft fine particles, the elastic modulus of the epoxy resin adhesive can be further reduced. As such soft fine particles, for example, plastic powders such as silicone rubber, silicone resin, LDPE, HDPE, PMMA, crosslinked PMMA, polystyrene, crosslinked polystyrene, ethylene-acrylic copolymer, polyethyl methacrylate, butyl acrylate, and urethane are used. It is done.
[0032]
In addition, the sealing agent 4 contains a conductive filler, and the wiring conductor layer is formed on the upper surface of the insulating substrate 1 so as to surround the mounting portion 1a and to be attached to the insulating substrate 1, as shown in a sectional view in FIG. By forming the frame-like conductor layer 6 that is electrically connected to the cover 5, the lid 2 and the wiring conductor layer 5 are electrically connected to each other, and a shielding effect that prevents the radiation of electromagnetic waves to the outside and It can be set as the package for housing | casing a semiconductor element from which the immunity effect which prevents the penetration | invasion of electromagnetic waves is acquired favorably.
[0033]
The frame-like conductor layer 6 is a thick film technique such as a conventionally known screen printing method using a metal paste obtained by adding and mixing an appropriate organic solvent, solvent, plasticizer, etc. to a high melting point metal powder such as tungsten, molybdenum, manganese, etc. Is applied in advance to a ceramic green sheet to be the insulating substrate 1 and is fired simultaneously with the ceramic green sheet to form a predetermined pattern on the upper surface of the insulating substrate 1.
[0034]
Examples of the conductive filler contained in the sealant 4 include various organic resins such as acrylic resins, phenol resins, urethane resins, benzoguanamine resins, melamine resins, polydivinylbenzene, and polystyrene resins. Particles having carbon as a core and coated with a conductive material such as nickel, gold, silver, and copper on the surface, carbon powder, or metal powder such as nickel, gold, silver, copper, and solder are used.
[0035]
The conductive filler preferably contains 0.5 to 200% by weight of a filler having an average particle size of 0.1 to 30 μm. If the average particle size is less than 0.1 μm, the conduction resistance of the sealant 4 is increased. Electrical connection between the lid 2 and the frame-like conductor layer 6 tends to be difficult, and when the thickness exceeds 30 μm, the conductive particles are greatly deformed by the load applied when heat-curing while applying pressure and the metal coating is damaged. However, there is a tendency that good conductivity cannot be obtained. Therefore, the average particle size of the conductive filler is preferably in the range of 0.1 to 30 μm.
[0036]
Furthermore, if the content of the conductive filler is less than 0.5% by weight, the conductivity of the sealant 4 tends to decrease, and if it exceeds 200% by weight, the wettability of the sealant 4 tends to decrease. There is. Therefore, the content of the conductive filler is preferably in the range of 0.5 to 200% by weight.
[0037]
Thus, according to the package for housing a semiconductor element of the present invention, the semiconductor element 3 is bonded and fixed to the bottom surface of the mounting portion 1a of the insulating base 1 via an adhesive made of glass, resin, brazing material, etc. The electrode is connected to the wiring conductor layer 5 by the bonding wire 7, and then the insulating base 1 and the lid 2 are connected via the sealant 4 to the inside of the container composed of the insulating base 1 and the lid 2. A semiconductor device as a final product is completed by housing the semiconductor element 3 in an airtight manner.
[0038]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, the electrical connection between the semiconductor element 3 and the wiring conductor 5 is possible. The connection may be made with a conductive connection member such as a solder bump.
[0039]
【The invention's effect】
According to the package for housing a semiconductor element of the present invention, the length of the lid made of a metal plate formed by a rolling method is substantially parallel to the rolling direction at a portion facing the opening of the concave portion of the insulating base. Occurs when the semiconductor element is operated because the protrusion is formed to be not less than 3/5 of the length of the lid and not more than the length of the opening of the recess, and the height is 0.2 to 1.5 times the thickness of the flat plate portion. Even if the strain stress remaining in the rolling process of the metal material is released by heat to be performed or reflow heating subsequent to the secondary mounting, the protrusion of the lid suppresses the deformation of the lid, and the lid is greatly deformed. As a result, the joint between the lid and the resin adhesive is not broken, and the hermetic reliability of the package is not lowered.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view in the width direction of a protrusion showing an example of an embodiment of a package for housing a semiconductor element of the present invention.
FIG. 2 is a cross-sectional view in the length direction of a protrusion showing an example of an embodiment of a package for housing a semiconductor element of the present invention.
3 is a plan view of a lid in the package for housing a semiconductor element shown in FIGS. 1 and 2. FIG.
FIG. 4 is a cross-sectional view of an essential part in another example of a lid in a package for housing a semiconductor element of the present invention.
FIG. 5 is a cross-sectional view of a main part in still another example of a lid in a package for housing semiconductor elements according to the present invention.
FIG. 6 is a cross-sectional view showing another embodiment of the package for housing a semiconductor element of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulation base | substrate 1a ... Mounting part 2 ... Lid 2a ... Projection part 3 ... Semiconductor element 4 ... .... Sealant 5 ... Wiring conductor layer X ... Projection length Y ... Projection width AB ... Rolling direction

Claims (4)

上面に半導体素子が搭載される凹部を有する絶縁基体と、該絶縁基体の上面に前記凹部を覆うように封止剤を介して接合される略平板状の蓋体とから成る半導体素子収納用パッケージであって、前記蓋体は、圧延加工法による金属板から成り、前記凹部の開口に対向する部位に、圧延方向と略平行に、長さが前記圧延方向における前記蓋体の長さの3/5以上かつ前記凹部の開口の長さ以下で、高さが平板部の厚みの0.2〜1.5倍の突起部を形成してあることを特徴とする半導体素子収納用パッケージ。A package for housing a semiconductor element, comprising: an insulating base having a recess on which an upper surface of a semiconductor element is mounted; and a substantially flat lid that is joined to the upper surface of the insulating base via a sealing agent so as to cover the recess. And the said cover body consists of a metal plate by a rolling process method, and the length is 3 of the length of the said cover body in the said rolling direction in the site | part facing the opening of the said recessed part, substantially parallel to a rolling direction. A package for housing semiconductor elements, characterized in that a protrusion is formed at a height not less than / 5 and not more than the length of the opening of the recess and having a height of 0.2 to 1.5 times the thickness of the flat plate portion. 前記突起部の幅を前記圧延方向に直交する方向における前記蓋体の幅の1/10〜1/4としたことを特徴とする請求項1記載の半導体素子収納用パッケージ。2. The package for housing a semiconductor element according to claim 1, wherein the width of the protrusion is set to 1/10 to 1/4 of the width of the lid in a direction orthogonal to the rolling direction. 前記封止剤がエポキシ系樹脂接着剤であることを特徴とする請求項1または請求項2記載の半導体素子収納用パッケージ。3. The package for housing a semiconductor element according to claim 1, wherein the sealant is an epoxy resin adhesive. 前記エポキシ系樹脂接着剤が導電性の充填材を含有することを特徴とする請求項3記載の半導体素子収納用パッケージ。4. The package for housing a semiconductor element according to claim 3, wherein the epoxy resin adhesive contains a conductive filler.
JP2000357991A 2000-11-24 2000-11-24 Package for storing semiconductor elements Expired - Fee Related JP4384348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000357991A JP4384348B2 (en) 2000-11-24 2000-11-24 Package for storing semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000357991A JP4384348B2 (en) 2000-11-24 2000-11-24 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JP2002164455A JP2002164455A (en) 2002-06-07
JP4384348B2 true JP4384348B2 (en) 2009-12-16

Family

ID=18829974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000357991A Expired - Fee Related JP4384348B2 (en) 2000-11-24 2000-11-24 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP4384348B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353350A (en) * 2001-05-28 2002-12-06 Kyocera Corp Package for storing electronic part
JP2008131152A (en) * 2006-11-17 2008-06-05 Fujitsu Media Device Kk Surface acoustic wave device
JP2008193581A (en) * 2007-02-07 2008-08-21 Epson Toyocom Corp Piezoelectric vibrator, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002164455A (en) 2002-06-07

Similar Documents

Publication Publication Date Title
TWI745372B (en) Semiconductor device and manufacturing method thereof
WO2013081156A1 (en) Image pickup element housing package, and image pickup device
JP4384348B2 (en) Package for storing semiconductor elements
JPH07273243A (en) Semiconductor package
JP2002151614A (en) Package for accommodating semiconductor element
JP2001308217A (en) Semiconductor device
JP2002151613A (en) Package for accommodating semiconductor element
JP4614594B2 (en) Electronic component storage package
JP2002261178A (en) Package for encapsulating semiconductor device
JP2002289721A (en) Package for storing semiconductor element
JP3850313B2 (en) Semiconductor device
JP3935054B2 (en) Wiring board
JP4693676B2 (en) Manufacturing method of electronic component mounting board
JP5383151B2 (en) Electronic component mounting board
JP2002009185A (en) Semiconductor, device
JP3292623B2 (en) Wiring board and method of manufacturing the same
WO2021149637A1 (en) Electronic device and method for manufacturing electronic device
JP3784345B2 (en) Wiring board
JP3305574B2 (en) Wiring board
JP3471595B2 (en) Bare IC mounting method and sealing material
JP2003218256A (en) Package for accommodating electronic component
JP3605235B2 (en) Manufacturing method of wiring board
JP3935833B2 (en) Electronic equipment
JP3659304B2 (en) Package for storing semiconductor elements
EP4158686A1 (en) Substrate comprising a lid structure, package substrate comprising the same and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees