JP2001308217A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2001308217A
JP2001308217A JP2000126839A JP2000126839A JP2001308217A JP 2001308217 A JP2001308217 A JP 2001308217A JP 2000126839 A JP2000126839 A JP 2000126839A JP 2000126839 A JP2000126839 A JP 2000126839A JP 2001308217 A JP2001308217 A JP 2001308217A
Authority
JP
Japan
Prior art keywords
conductive
insulating base
layer
semiconductor element
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000126839A
Other languages
Japanese (ja)
Inventor
Takahiro Nakao
貴博 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000126839A priority Critical patent/JP2001308217A/en
Publication of JP2001308217A publication Critical patent/JP2001308217A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve the problem of deterioration of conductivity between the conductor layer on the upper surface of an insulating board and a metal cover having different heat expansion coefficients, caused by the stress which is generated by the heat generated when a semiconductor element operates. SOLUTION: This semiconductor device is composed of the insulating board 1 having a loading part 1a of the semiconductor element 2 on the upper surface and the grounding conductor 5 on the side surface, the semiconductor element 2 loaded on the loading part 1a, the conductor layer 4 formed to surround the loading part 1a on the upper surface of the insulating substrate 1 and connected to the grounding conductor 5 electrically, and the conductive cover 3 interposing the conductor layer 4 and being connected through the conductive sealing material 6 in the upper surface of the insulating substrate 1. The conductive sealing material 6 contains a thermosetting resin as a main component and contains the conductive particles whose surface of the core which is composed of organic materials which are 5-30 μm in average particle diameter and 1-50 MPa in compressive strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外部への電磁波の
放射を防ぐシールド効果や外部からの電磁波の侵入を防
止するイミュニティ効果を有する半導体装置に関するも
のであり、特に高周波用半導体素子を搭載した携帯電話
に代表される移動体通信分野等の半導体装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a shielding effect for preventing radiation of electromagnetic waves to the outside and an immunity effect for preventing invasion of electromagnetic waves from the outside, and more particularly to a semiconductor device having a high frequency semiconductor element mounted thereon. The present invention relates to a semiconductor device in a mobile communication field represented by a mobile phone.

【0002】[0002]

【従来の技術】近年、移動体通信機器は高性能化が急激
に進展し、これに伴って半導体素子も高速駆動が行なわ
れノイズの影響を極めて受け易いものとなってきてい
る。また同時に、半導体素子の発生するノイズが他の電
子機器に大きな影響を与えるようになってきている。
2. Description of the Related Art In recent years, the performance of mobile communication devices has been rapidly improved, and accordingly, semiconductor devices have been driven at a high speed, making them extremely susceptible to noise. At the same time, the noise generated by the semiconductor element has been greatly affecting other electronic devices.

【0003】このような半導体素子を収容する半導体素
子収納用パッケージは、一般に酸化アルミニウム質焼結
体や窒化アルミニウム質焼結体・ムライト質焼結体・窒
化珪素質焼結体等の電気絶縁材料から成り、その上面中
央部に半導体素子を搭載するための凹状の搭載部を有す
る絶縁基体と、絶縁基体上面に搭載部を取り囲むように
形成されるとともに絶縁基体側面に形成された接地導体
と電気的に接続された導体層と、鉄−ニッケル−コバル
ト合金等から成り、絶縁基体上面の導体層に半田やろう
材等により接合され電磁波の侵入や放射を防止する金属
蓋体とから構成されている。
A package for accommodating a semiconductor element for accommodating such a semiconductor element is generally made of an electrically insulating material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, and a silicon nitride sintered body. An insulating base having a concave mounting portion for mounting a semiconductor element on a central portion of the upper surface thereof; and a ground conductor formed on the upper surface of the insulating base so as to surround the mounting portion and formed on a side surface of the insulating base. And a metal cover made of iron-nickel-cobalt alloy or the like, which is joined to the conductor layer on the upper surface of the insulating base by solder, brazing material, or the like to prevent intrusion and radiation of electromagnetic waves. I have.

【0004】しかしながら上記の半導体素子収納用パッ
ケージでは、熱膨張係数の異なる絶縁基体と金属蓋体と
を、弾性率が高く歪み等の応力を緩和しにくい半田やろ
う材等の金属により接合しているために、半導体素子が
作動する際に発生する熱によって熱膨張係数の異なる絶
縁基体と金属蓋体との間に大きな応力が発生するととも
にこの応力が絶縁基体に作用して絶縁基体にクラックが
入ってしまい、その結果、半導体素子収納用パッケージ
の気密封止が破れ、内部に収容する半導体素子を長期間
にわたり正常、かつ安定に作動させることができないと
いう欠点を有していた。
However, in the above-mentioned package for housing a semiconductor element, an insulating base having a different coefficient of thermal expansion and a metal lid are joined by a metal such as solder or brazing material having a high elastic modulus and hardly relaxing stress such as distortion. Therefore, heat generated when the semiconductor element operates causes a large stress between the insulating base and the metal lid having different thermal expansion coefficients, and this stress acts on the insulating base to cause cracks in the insulating base. As a result, the hermetic sealing of the semiconductor element housing package is broken, and the semiconductor element housed inside cannot be normally and stably operated for a long period of time.

【0005】他方、絶縁基体と金属蓋体との接合を、弾
性率の低い導電性接着剤により行なう方法が提案されて
いる。この提案によれば、例えば微粉のカーボン粉末や
金属粉末等の導電性粉末を熱硬化性樹脂等の樹脂に50〜
200重量%添加混合した導電性接着剤を、スクリーン印
刷法やディスペンサ法を用いて絶縁基体と金属蓋体との
接合部分に塗布し、絶縁基体と金属蓋体との接合部分を
重ね合わせ加圧しながら加熱することにより絶縁基体と
金属蓋体とを接合するものであり、半導体素子が作動す
る際に発生する熱によって熱膨張係数の異なる絶縁基体
と金属蓋体との間に大きな応力が発生したとしても、弾
性率の低い導電性接着剤が応力を緩和して絶縁基体にク
ラックが入るのを有効に防止できるというものである。
[0005] On the other hand, there has been proposed a method of joining an insulating base and a metal lid with a conductive adhesive having a low elastic modulus. According to this proposal, for example, a conductive powder such as fine carbon powder or metal powder is added to a resin such as a thermosetting resin by 50 to 50%.
A conductive adhesive mixed with 200% by weight is applied to the joint between the insulating base and the metal lid using a screen printing method or a dispenser method, and the joint between the insulating base and the metal lid is overlapped and pressed. While heating, the insulating base and the metal lid are joined to each other, and heat generated when the semiconductor element operates causes a large stress between the insulating base and the metal lid having different thermal expansion coefficients. Even so, the conductive adhesive having a low elastic modulus can relieve the stress and effectively prevent the insulating base from cracking.

【0006】しかしながら、このような導電性接着剤は
導電性粉末が熱硬化性樹脂等の樹脂に対して50〜200重
量%と高密度に充填されているために、接着剤中の樹脂
の濡れ性が劣化して導電性接着剤と絶縁基体や金属蓋体
との密着性が悪くなり、絶縁基体と金属蓋体とから成る
容器の気密封止の信頼性が低下したり、また、導電性接
着剤と金属蓋体および絶縁基体上面の導体層との接触抵
抗値が増加してしまい、電磁波の放射を防ぐシールド効
果や外部からの電磁波の侵入を防止するイミュニティ効
果が低下してしまうという問題点を有していた。
However, such a conductive adhesive has a high density of 50 to 200% by weight of a conductive powder in a resin such as a thermosetting resin. And the adhesion between the conductive adhesive and the insulating base or the metal lid is deteriorated, and the reliability of hermetic sealing of the container composed of the insulating base and the metal lid is reduced. The contact resistance between the adhesive and the metal layer and the conductor layer on the upper surface of the insulating base increases, and the shielding effect that prevents electromagnetic wave radiation and the immunity effect that prevents intrusion of electromagnetic waves from the outside decrease. Had a point.

【0007】このような問題点を解決するために、絶縁
基体と金属蓋体とを接合する接着剤として、熱硬化性樹
脂等の樹脂に平均粒子径が0.01〜5μm、圧縮強さが0.
6〜5GPa程度の導電性粒子を0.5〜50重量%添加混合
した異方性導電接着剤を用いることが提案されている。
In order to solve such problems, as an adhesive for joining the insulating base and the metal lid, a resin such as a thermosetting resin has an average particle diameter of 0.01 to 5 μm and a compressive strength of 0.1 to 0.5 μm.
It has been proposed to use an anisotropic conductive adhesive obtained by adding and mixing 0.5 to 50% by weight of conductive particles of about 6 to 5 GPa.

【0008】この接着剤によれば、樹脂に対する導電性
粒子の添加量を0.5〜50重量%とすることにより接着剤
の濡れ性の悪化を防止できるとともに、樹脂に添加され
た個々の導電性粒子が金属蓋体および絶縁基体上面の導
体層の両者と直接接触するために良好な導電性が得られ
るというものである。
According to this adhesive, by setting the amount of the conductive particles to the resin to be 0.5 to 50% by weight, it is possible to prevent the wettability of the adhesive from being deteriorated, and to make the individual conductive particles added to the resin. Is in direct contact with both the metal lid and the conductor layer on the upper surface of the insulating base, so that good conductivity can be obtained.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
異方性導電接着剤は、含有する導電性粒子の圧縮強さが
0.6〜5GPa程度と高いことから、異方性導電接着剤
を絶縁基体と金属蓋体との接合部分に塗布し両者の接合
部分を重ね合わせ加圧しながら加熱硬化する際、導電性
粒子が大きく変形することがなく導電性粒子と絶縁基体
上面の導体層や金属蓋体との接触が点接触となってしま
い、その結果、半導体素子が作動する際に発生する熱に
よって熱膨張係数の異なる絶縁基体と金属蓋体との間に
発生する大きな応力によって導電性粒子と絶縁基体上面
の導体層や金属蓋体との点接触部分が離れてしまい、導
電性が低下してしまうという問題点を有していた。
However, the above-described anisotropic conductive adhesive has a low compressive strength of the conductive particles contained therein.
Because the anisotropic conductive adhesive is applied to the joint between the insulating base and the metal lid, and the two joints are superposed and pressurized and heat-cured, the conductive particles are greatly deformed because they are as high as about 0.6 to 5 GPa. The contact between the conductive particles and the conductive layer on the upper surface of the insulating substrate or the metal lid becomes a point contact, and as a result, the insulating substrate having a different thermal expansion coefficient due to heat generated when the semiconductor element operates. The large stress generated between the metal and the metal lid causes the conductive particles to separate from the point of contact between the conductive layer on the upper surface of the insulating substrate and the metal lid, resulting in a decrease in conductivity. I was

【0010】また、絶縁基体と金属蓋体とを熱硬化性樹
脂等の樹脂で接合する場合、その気密封止を完全とし信
頼性のあるものとするためには樹脂の厚みを5μm以上
とすることが好ましいが、樹脂の厚みを5μm以上とし
た場合、導電性粒子の平均粒子径が0.01〜5μmである
ことから絶縁基体上面の導体層および金属蓋体の両者と
直接接触する導電性粒子の数が少なくなってしまい、さ
らに、樹脂の厚みが厚くなる程、直接接触する導電性粒
子の数が極端に減少してしまい導電性が低下してしまう
という問題点を有していた。
When the insulating base and the metal lid are joined with a resin such as a thermosetting resin, the thickness of the resin is set to 5 μm or more in order to complete the hermetic sealing completely and to ensure reliability. Preferably, when the thickness of the resin is 5 μm or more, since the average particle diameter of the conductive particles is 0.01 to 5 μm, the conductive particles in direct contact with both the conductive layer and the metal lid on the upper surface of the insulating substrate There has been a problem that the number of conductive particles in direct contact with the resin decreases extremely as the number of conductive particles decreases and the thickness of the resin increases, and the conductivity decreases.

【0011】本発明は、かかる従来技術の問題点に鑑み
案出されたものであり、その目的は、外部への電磁波の
放射および外部からの電磁波の侵入を有効に防止でき、
かつ気密信頼性の高い半導体装置を提供することにあ
る。
The present invention has been devised in view of the above-mentioned problems of the prior art, and its object is to effectively prevent radiation of electromagnetic waves to the outside and penetration of electromagnetic waves from the outside,
Another object of the present invention is to provide a semiconductor device with high hermetic reliability.

【0012】[0012]

【課題を解決するための手段】本発明の半導体装置は、
上面に半導体素子の搭載部を有するとともに側面に接地
導体が被着形成された絶縁基体と、搭載部に搭載された
半導体素子と、絶縁基体の上面に搭載部を取り囲むよう
に被着形成され、接地導体と電気的に接続された導体層
と、絶縁基体の上面に間に導体層を挟んで導電性封止材
を介して接合された導電性蓋体とから成る半導体装置で
あって、導電性封止材は熱硬化性樹脂を主成分とすると
ともに平均粒子径が5〜30μm、圧縮強さが1〜50MP
aの有機系樹脂材料から成る粒子の表面に金属層を被覆
して成る導電性粒子を含有することを特徴とするもので
ある。
According to the present invention, there is provided a semiconductor device comprising:
An insulating base having a mounting portion of the semiconductor element on the upper surface and a ground conductor adhered to the side surface, a semiconductor element mounted on the mounting portion, and an insulating substrate formed on the upper surface of the insulating substrate so as to surround the mounting portion; A semiconductor device comprising: a conductive layer electrically connected to a ground conductor; and a conductive lid joined to a top surface of an insulating base with a conductive layer interposed therebetween through a conductive sealing material. The thermosetting resin is mainly composed of a thermosetting resin and has an average particle size of 5 to 30 μm and a compressive strength of 1 to 50 MP.
a) Conductive particles formed by coating a metal layer on the surface of the particles made of the organic resin material of a).

【0013】本発明の半導体装置によれば、絶縁基体と
導電性蓋体とを熱硬化性樹脂を主成分とする導電性封止
材を用いて封止したことから、半導体素子が作動する際
に発生する熱によって熱膨張係数の異なる絶縁基体と導
電性蓋体との間に大きな応力が発生したとしても、熱硬
化性樹脂を主成分とする弾性率の低い導電性封止材が応
力を緩和して絶縁基体にクラックが入るのを有効に防止
することができる。
According to the semiconductor device of the present invention, since the insulating base and the conductive lid are sealed with the conductive sealing material containing a thermosetting resin as a main component, the semiconductor element can be operated when the semiconductor element is operated. Even if a large stress is generated between the insulating base having a different coefficient of thermal expansion and the conductive lid due to the heat generated, the conductive sealing material having a low elastic modulus mainly composed of a thermosetting resin can reduce the stress. It is possible to relax and effectively prevent cracks from entering the insulating base.

【0014】また、本発明の半導体装置によれば、導電
性封止材に含有される導電性粒子を構成する有機系樹脂
材料から成る粒子の圧縮強さが1〜50MPaと低いこと
から、導電性封止材を絶縁基体の導体層と導電性蓋体と
の接合部分に塗布し両者の接合部分を重ね合わせ加圧し
ながら加熱硬化する際、導電性粒子が大きく変形し導電
性粒子と絶縁基体上面の導体層や導電性蓋体との接触が
面接触となり良好な電気的接続が可能となり、その結
果、半導体素子が作動する際に発生する熱によって熱膨
張係数の異なる絶縁基体と導電性蓋体との間に大きな応
力が発生したとしても、この応力によって導電性粒子と
絶縁基体上面の導体層や導電性蓋体との接触部分が離れ
て導電性が低下してしまうということもない。
Further, according to the semiconductor device of the present invention, since the compressive strength of the particles made of the organic resin material constituting the conductive particles contained in the conductive encapsulant is as low as 1 to 50 MPa, the conductive property is low. When the conductive sealing material is applied to the joint between the conductor layer of the insulating substrate and the conductive lid, and the two joints are overlapped and heated and cured while pressing, the conductive particles are greatly deformed and the conductive particles and the insulating substrate are deformed. The contact between the conductive layer on the upper surface and the conductive lid is a surface contact, and good electrical connection is possible. As a result, the insulating base and the conductive lid having different thermal expansion coefficients due to heat generated when the semiconductor element operates. Even if a large stress is generated between the conductive particles and the body, the stress does not cause the contact between the conductive particles and the conductive layer or the conductive lid on the upper surface of the insulating substrate to be separated, and the conductivity is not reduced.

【0015】さらに、本発明の半導体装置によれば、導
電性粒子の平均粒子径を5〜30μmとしたことから、絶
縁基体と導電性蓋体とを封止する導電性封止材の厚みを
5μm以上とすることができ、気密封止を信頼性のある
完全なものすることができる。
Further, according to the semiconductor device of the present invention, since the average particle diameter of the conductive particles is 5 to 30 μm, the thickness of the conductive sealing material for sealing the insulating base and the conductive lid is reduced. The thickness can be 5 μm or more, and the hermetic sealing can be made completely reliable.

【0016】[0016]

【発明の実施の形態】以下、本発明の半導体装置を図面
に基づき詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a semiconductor device according to the present invention will be described in detail with reference to the drawings.

【0017】図1は本発明の半導体装置の実施の形態の
一例を示す断面図であり、1は絶縁基体、2は半導体素
子、3は導電性蓋体、4は導体層、5は接地導体、6は
導電性封止材である。
FIG. 1 is a sectional view showing an embodiment of a semiconductor device according to the present invention, wherein 1 is an insulating base, 2 is a semiconductor element, 3 is a conductive lid, 4 is a conductor layer, and 5 is a ground conductor. , 6 are conductive sealing materials.

【0018】絶縁基体1は、その上面の略中央部に半導
体素子2を搭載するための凹状の搭載部1aが設けてあ
り、この搭載部1aには半導体素子2がガラス、樹脂、
ろう材等から成る接着剤を介して接着固定される。
The insulating substrate 1 is provided with a concave mounting portion 1a for mounting the semiconductor element 2 at a substantially central portion of the upper surface thereof, and the semiconductor element 2 is made of glass, resin,
It is bonded and fixed via an adhesive made of brazing material or the like.

【0019】絶縁基体1は、酸化アルミニウム質焼結体
やムライト質焼結体・窒化アルミニウム質焼結体・窒化
珪素質焼結体・炭化珪素質焼結体等の電気絶縁材料から
成り、例えば、酸化アルミニウム質焼結体から成る場合
であれば、酸化アルミニウム、酸化珪素、酸化マグネシ
ウム、酸化カルシウム等の原料粉末に適当な有機バイン
ダ、溶剤、可塑剤、分散剤を添加混合して泥漿物を作
り、この泥漿物を従来周知のドクターブレード法やカレ
ンダーロール法等のシート成形法を採用しシート状にし
てセラミックグリーンシート(セラミック生シート)を
得、しかる後、それらセラミックグリーンシートに適当
な打抜き加工を施すとともにこれを複数枚積層し、約16
00℃の高温で焼成することによって製作される。
The insulating substrate 1 is made of an electrically insulating material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, and a silicon carbide sintered body. If it is made of an aluminum oxide sintered body, a suitable organic binder, a solvent, a plasticizer, and a dispersant are added to and mixed with raw material powders of aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. The slurry is made into a sheet by using a sheet forming method such as a doctor blade method or a calender roll method, which is well known, to obtain a ceramic green sheet (ceramic green sheet). Thereafter, the ceramic green sheet is appropriately punched. Processing and stacking multiple pieces of this, about 16
It is manufactured by firing at a high temperature of 00 ° C.

【0020】また、絶縁基体1は、搭載部1a底面から
下面にかけて複数個の配線導体層7が被着形成されてお
り、この配線導体層7の搭載部1a底面部には半導体素
子2の各電極がボンディングワイヤ8を介して電気的に
接続され、また、絶縁基体1の下面に導出された部位に
は外部電気回路(図示せず)が半田等の接続部材を介し
て電気的に接続される。
A plurality of wiring conductor layers 7 are formed on the insulating base 1 from the bottom surface to the lower surface of the mounting portion 1a. Each of the semiconductor elements 2 is provided on the bottom surface of the mounting portion 1a of the wiring conductor layer 7. The electrodes are electrically connected via bonding wires 8, and an external electric circuit (not shown) is electrically connected to a portion led out to the lower surface of insulating base 1 via a connecting member such as solder. You.

【0021】配線導体層7は、半導体素子2の各電極を
外部電気回路に電気的に接続する際の導電路として作用
し、タングステン、モリブデン、マンガン等の高融点金
属により形成され、例えばタングステン、モリブデン、
マンガン等の高融点金属粉末に適当な有機溶剤、溶媒、
可塑剤等を添加混合して得た金属ペーストを従来周知の
スクリーン印刷法等の厚膜手法を採用して絶縁基体1と
なるセラミックグリーンシートにあらかじめ印刷塗布・
穴埋めしておき、これをセラミックグリーンシートと同
時に焼成することによって絶縁基体1の搭載部1a底面
部から下面にかけて所定パターンに被着形成される。
The wiring conductor layer 7 functions as a conductive path when each electrode of the semiconductor element 2 is electrically connected to an external electric circuit, and is formed of a high melting point metal such as tungsten, molybdenum, and manganese. molybdenum,
Organic solvents and solvents suitable for refractory metal powders such as manganese,
A metal paste obtained by adding and mixing a plasticizer and the like is applied in advance to a ceramic green sheet serving as the insulating substrate 1 by applying a thick film method such as a conventionally known screen printing method.
By filling the hole and firing it simultaneously with the ceramic green sheet, the insulating substrate 1 is formed in a predetermined pattern from the bottom surface to the lower surface of the mounting portion 1a.

【0022】なお、配線導体層7はその表面にニッケ
ル、金等の良導電性で耐蝕性およびろう材との濡れ性が
良好な金属をめっき法により1〜20μmの厚みに被着さ
せておくと、配線導体層7の酸化腐蝕を有効に防止する
ことができるとともに配線導体層7とボンディングワイ
ヤ8との接続および配線導体層7と外部電気回路の配線
導体との半田付けを強固となすことができる。したがっ
て、配線導体層7の酸化腐蝕を防止し、配線導体層7と
ボンディングワイヤ8との接続および配線導体層7と外
部電気回路の配線導体との半田付けを強固となすには、
配線導体層7の表面にニッケル、金等をめっき法により
1〜20μmの厚みに被着させておくことが好ましい。
The surface of the wiring conductor layer 7 is coated with a metal such as nickel or gold having good conductivity, good corrosion resistance and good wettability with a brazing material to a thickness of 1 to 20 μm by plating. In addition, it is possible to effectively prevent the oxidative corrosion of the wiring conductor layer 7 and to strengthen the connection between the wiring conductor layer 7 and the bonding wires 8 and the soldering between the wiring conductor layer 7 and the wiring conductor of the external electric circuit. Can be. Therefore, in order to prevent the oxidative corrosion of the wiring conductor layer 7 and to strengthen the connection between the wiring conductor layer 7 and the bonding wires 8 and the soldering between the wiring conductor layer 7 and the wiring conductor of the external electric circuit,
It is preferable that nickel, gold, or the like is applied to the surface of the wiring conductor layer 7 by plating so as to have a thickness of 1 to 20 μm.

【0023】また、絶縁基体1の上面には、搭載部1a
を取り囲むとともに絶縁基体1の側面に被着形成された
接地導体5と電気的に接続された導体層4が被着形成さ
れている。
The mounting portion 1a is provided on the upper surface of the insulating base 1.
And a conductor layer 4 that is electrically connected to a ground conductor 5 formed on the side surface of the insulating base 1.

【0024】導体層4・接地導体5は、導電性蓋体3を
外部の接地導体(図示せず)に電気的に接続する際の導
電路として作用するとともに電磁波のパッケージ内部か
ら外部への放射やパッケージ外部から内部への侵入を防
止する機能を有し、タングステン、モリブデン、マンガ
ン等の高融点金属により形成されている。
The conductor layer 4 and the ground conductor 5 function as a conductive path when electrically connecting the conductive lid 3 to an external ground conductor (not shown), and radiate electromagnetic waves from inside the package to the outside. And a function of preventing intrusion from the outside of the package into the inside, and is formed of a high melting point metal such as tungsten, molybdenum, and manganese.

【0025】導体層4・接地導体5は、タングステン、
モリブデン、マンガン等の高融点金属粉末に適当な有機
溶剤、溶媒、可塑剤等を添加混合して得た金属ペースト
を従来周知のスクリーン印刷法等の厚膜手法を採用して
絶縁基体1となるセラミックグリーンシートにあらかじ
め印刷塗布しておき、これをセラミックグリーンシート
と同時に焼成することによって絶縁基体1の上面および
側面に所定パターンに被着形成される。
The conductor layer 4 and the ground conductor 5 are made of tungsten,
A metal paste obtained by adding a suitable organic solvent, a solvent, a plasticizer, and the like to a high melting point metal powder such as molybdenum, manganese or the like is used as the insulating substrate 1 by employing a conventionally known thick film method such as a screen printing method. The ceramic green sheet is printed and applied in advance, and is fired at the same time as the ceramic green sheet, so that a predetermined pattern is formed on the upper surface and side surfaces of the insulating substrate 1.

【0026】なお、接地導体5は、絶縁基体1の側面に
全面的にあるいはスリット状に形成され、使用周波数に
合わせてその面積や配置を変更することにより、電磁波
の放射や侵入を効果的に防止することができる。また、
接地導体5を絶縁基体1の下面まで導出することによ
り、より効果的に電磁波の放射や侵入を防止することが
できる。
The grounding conductor 5 is formed on the entire side surface of the insulating base 1 or in a slit shape. By changing the area and arrangement of the grounding conductor 5 in accordance with the frequency used, radiation and penetration of electromagnetic waves can be effectively prevented. Can be prevented. Also,
By leading the ground conductor 5 to the lower surface of the insulating base 1, radiation and intrusion of electromagnetic waves can be more effectively prevented.

【0027】また、導体層4・接地導体5はその表面に
配線導体層7と同様な理由によりニッケル、金等の良導
電性で耐蝕性およびろう材との濡れ性が良好な金属をめ
っき法により1〜20μmの厚みに被着させておくことが
好ましい。
The conductor layer 4 and the ground conductor 5 are plated with a metal having good conductivity, good corrosion resistance and good wettability with a brazing material, such as nickel or gold, on the surface thereof for the same reason as the wiring conductor layer 7. Is preferably applied to a thickness of 1 to 20 μm.

【0028】絶縁基体1の上面には、導電性蓋体3が間
に導体層4を挟んで導電性封止材6を介して接合されて
いる。
A conductive lid 3 is joined to the upper surface of the insulating base 1 via a conductive sealing material 6 with a conductive layer 4 interposed therebetween.

【0029】導電性蓋体3は、半導体素子2をパッケー
ジ内部に気密に封止する作用を成すとともに電磁波のパ
ッケージ内部から外部への放射やパッケージ外部から内
部への侵入を防止する機能を有し、鉄・アルミニウム・
銅・タングステン・鉄−ニッケル合金・鉄−コバルト合
金・鉄−ニッケル−コバルト合金等の金属材料や、酸化
アルミニウム質焼結体・窒化アルミニウム質焼結体等の
セラミックス材料やABS樹脂・フェノール樹脂・ポリ
エステル樹脂等の樹脂材料の表面を金属被膜で覆った導
電性材料により形成されている。
The conductive lid 3 functions to hermetically seal the semiconductor element 2 inside the package and has a function of preventing radiation of electromagnetic waves from inside the package to the outside and prevention of intrusion into the inside from the outside of the package. , Iron, aluminum,
Metal materials such as copper, tungsten, iron-nickel alloy, iron-cobalt alloy, iron-nickel-cobalt alloy, ceramic materials such as aluminum oxide sintered body and aluminum nitride sintered body, ABS resin, phenolic resin, etc. It is formed of a conductive material in which the surface of a resin material such as a polyester resin is covered with a metal film.

【0030】導電性蓋体3が金属材料から成る場合は、
鉄−ニッケル合金・鉄−コバルト合金・鉄−ニッケル−
コバルト合金等の鉄合金を使用することにより、導電性
蓋体3と絶縁基体1との熱膨張係数を近似させることが
でき、導電性蓋体3と絶縁基体1との良好な接合信頼性
を得ることができる。
When the conductive lid 3 is made of a metal material,
Iron-nickel alloy / iron-cobalt alloy / iron-nickel-
By using an iron alloy such as a cobalt alloy, the coefficient of thermal expansion between the conductive lid 3 and the insulating base 1 can be approximated, and good joint reliability between the conductive lid 3 and the insulating base 1 can be improved. Obtainable.

【0031】このような金属材料から成る導電性蓋体3
は、鉄−ニッケル合金・鉄−コバルト合金・鉄−ニッケ
ル−コバルト合金等のインゴット(塊)を従来周知の打
抜き加工法等を採用し、所定の形状に形成することによ
り形成される。
The conductive lid 3 made of such a metal material
Is formed by forming an ingot (lump) of an iron-nickel alloy, an iron-cobalt alloy, an iron-nickel-cobalt alloy or the like into a predetermined shape by using a conventionally known punching method or the like.

【0032】なお、導電性蓋体3が鉄−ニッケル合金・
鉄−コバルト合金・鉄−ニッケル−コバルト合金等の鉄
合金から成る場合は、導電性蓋体3の腐蝕防止のため
に、その表面をニッケルや金・半田等の各種金属めっき
により被覆することが好ましい。
The conductive lid 3 is made of an iron-nickel alloy.
When made of an iron alloy such as an iron-cobalt alloy or an iron-nickel-cobalt alloy, the surface of the conductive lid 3 may be coated with various metal platings such as nickel, gold, and solder to prevent corrosion. preferable.

【0033】また、導電性蓋体3は、導電性蓋体3が例
えば酸化アルミニウム質焼結体や窒化アルミニウム質焼
結体等のセラミックス材料の表面を金属被膜で覆った導
電性材料から成る場合、酸化アルミニウム・窒化アルミ
ニウム等の原料粉末に適当な有機溶剤・溶媒を添加混合
して原料粉末を調整するとともにこの原料粉末をプレス
成形によって所定形状に成形し、しかる後、この成形体
を約1600℃の温度で焼成し、さらに、この焼成体の表面
全体に無電解めっき法によりニッケルや金・半田等の各
種金属被膜を被着させることにより製作される。
The conductive lid 3 is made of a conductive material in which the surface of a ceramic material such as an aluminum oxide sintered body or an aluminum nitride sintered body is covered with a metal film, for example. A raw material powder such as aluminum oxide / aluminum nitride is mixed with a suitable organic solvent / solvent to prepare the raw material powder, and the raw material powder is formed into a predetermined shape by press molding. It is manufactured by firing at a temperature of ° C., and further applying various metal coatings such as nickel, gold and solder on the entire surface of the fired body by an electroless plating method.

【0034】さらに、導電性蓋体3は、それが例えばA
BS樹脂やフェノール樹脂等の樹脂材料の表面を金属被
膜で覆った導電性材料から成る場合、ABS樹脂やフェ
ノール樹脂等の樹脂材料等から成る薄板を、従来周知の
打抜き加工法等を採用して所定の形状に形成し、しかる
後、表面全体に無電解めっき法によりニッケルや金・半
田等の各種金属被膜を被着させることにより製作され
る。あるいは、ABS樹脂やフェノール樹脂等の樹脂材
料から成る薄板の表面にニッケルや金・銅等から成る金
属箔をあらかじめ被着させておき、しかる後、従来周知
の打抜き加工法等を採用して所定の形状に製作してもよ
い。
Further, the conductive lid 3 is made of, for example, A
In the case of a conductive material in which the surface of a resin material such as a BS resin or a phenol resin is covered with a metal coating, a thin plate made of a resin material such as an ABS resin or a phenol resin is formed by a conventionally known punching method or the like. It is manufactured by forming it into a predetermined shape and then applying various metal films such as nickel, gold and solder by electroless plating over the entire surface. Alternatively, a metal foil made of nickel, gold, copper, or the like is previously adhered to the surface of a thin plate made of a resin material such as an ABS resin or a phenol resin, and thereafter, a predetermined method is adopted by using a conventionally known punching method or the like. May be manufactured.

【0035】導電性封止材6は、絶縁基体1と導電性蓋
体3とを接合する作用を成すとともに絶縁基体1上面の
導体層4と導電性蓋体3とを電気的に接続する機能を有
し、熱硬化性樹脂を主成分とするとともに平均粒子径が
5〜30μm、圧縮強さが1〜50MPaの有機系樹脂材料
から成る粒子の表面に金属層を被覆して成る導電性粒子
を含有している。
The conductive sealing material 6 has a function of joining the insulating base 1 and the conductive lid 3 and a function of electrically connecting the conductive layer 4 on the upper surface of the insulating base 1 to the conductive lid 3. A conductive particle comprising a thermosetting resin as a main component, an average particle diameter of 5 to 30 μm, and a particle of an organic resin material having a compressive strength of 1 to 50 MPa. It contains.

【0036】本発明によれば、絶縁基体1と導電性蓋体
3とを熱硬化性樹脂を主成分とする導電性封止材6を用
いて封止したことから、半導体素子2が作動する際に発
生する熱によって熱膨張係数の異なる絶縁基体1と導電
性蓋体3との間に大きな応力が発生したとしても、熱硬
化性樹脂を主成分とする弾性率の低い導電性封止材6が
応力を緩和して絶縁基体1にクラックが入るのを有効に
防止することができる。
According to the present invention, since the insulating base 1 and the conductive lid 3 are sealed with the conductive sealing material 6 containing a thermosetting resin as a main component, the semiconductor element 2 operates. Even if a large stress is generated between the insulating base 1 and the conductive lid 3 having different thermal expansion coefficients due to the heat generated at the time, the conductive sealing material having a low elastic modulus and mainly composed of a thermosetting resin. 6 can effectively prevent the insulating substrate 1 from cracking by cracking the stress.

【0037】このような熱硬化性樹脂としては、耐湿性
あるいは接合強度の観点から緻密な3次元網目構造を有
するエポキシ樹脂を主成分とする熱硬化性樹脂が好まし
く、ビスフェノールA型エポキシ樹脂やビスフェノール
A変性エポキシ樹脂・ビスフェノールF型エポキシ樹脂
・フェノールノボラック型エポキシ樹脂・クレゾールノ
ボラック型エポキシ樹脂・特殊ノボラック型エポキシ樹
脂・フェノール誘導体エポキシ樹脂・ビフェノール骨格
型エポキシ樹脂等のエポキシ樹脂にイミダゾール系・ア
ミン系・リン系・ヒドラジン系・イミダゾールアダクト
系・アミンアダクト系・カチオン重合系・ジシアンジア
ミド系等の硬化剤を添加したもので形成されている。
As such a thermosetting resin, a thermosetting resin mainly composed of an epoxy resin having a dense three-dimensional network structure is preferable from the viewpoint of moisture resistance or bonding strength, and bisphenol A type epoxy resin and bisphenol A-modified epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, special novolak type epoxy resin, phenol derivative epoxy resin, biphenol skeleton type epoxy resin, etc. It is formed by adding a curing agent such as phosphorus, hydrazine, imidazole adduct, amine adduct, cationic polymerization, or dicyandiamide.

【0038】なお、2種類以上のエポキシ樹脂を混合し
て用いてもよく、さらにシリコンゴムやシリコンレジン
・LDPE・HDPE・PMMA・架橋PMMA・ポリ
スチレン・架橋ポリスチレン・エチレン−アクリル共重
合・ポリメタクリル酸エチル・ブチルアクリレート・ウ
レタン等の軟質微粒子から成る充填材を添加してもよ
い。
It is to be noted that two or more epoxy resins may be mixed and used, and furthermore, silicone rubber, silicone resin, LDPE, HDPE, PMMA, cross-linked PMMA, polystyrene, cross-linked polystyrene, ethylene-acryl copolymer, polymethacrylic acid A filler composed of soft fine particles such as ethyl / butyl acrylate / urethane may be added.

【0039】また、本発明によれば、導電性封止材6に
含有される導電性粒子を構成する有機系樹脂材料から成
る粒子の圧縮強さが1〜50MPaと低いことから、導電
性封止材6を絶縁基体1上面の導体層4と導電性蓋体3
との接合部分に塗布し両者の接合部分を重ね合わせ加圧
しながら加熱硬化する際、導電性粒子が大きく変形し導
電性粒子と絶縁基体1上面の導体層4や導電性蓋体3と
の接触が面接触となり良好な電気的接続が可能となり、
その結果、半導体素子2が作動する際に発生する熱によ
って熱膨張係数の異なる絶縁基体1と導電性蓋体3との
間に大きな応力が発生したとしても、この応力によって
導電性粒子と絶縁基体1上面の導体層4や導電性蓋体3
との接触部分が離れて導電性が低下してしまうというこ
ともない。
Further, according to the present invention, since the compressive strength of the organic resin material constituting the conductive particles contained in the conductive sealing material 6 is as low as 1 to 50 MPa, the conductive sealing material 6 can be used. The stopper 6 is made of the conductive layer 4 on the upper surface of the insulating base 1 and the conductive lid 3.
The conductive particles are greatly deformed when applied to the joint portion of the substrate and heated and cured while the two joint portions are overlapped and pressurized, and the conductive particles contact with the conductive layer 4 or the conductive lid 3 on the upper surface of the insulating base 1. Becomes surface contact, and good electrical connection becomes possible.
As a result, even if a large stress is generated between the insulating base 1 and the conductive lid 3 having different thermal expansion coefficients due to the heat generated when the semiconductor element 2 operates, the conductive particles and the insulating base are caused by this stress. 1. Conductive layer 4 and conductive lid 3 on the upper surface
There is no possibility that the contact portion is separated and the conductivity is reduced.

【0040】さらに、導電性封止材6は、導電性粒子の
含有量が0.5〜50重量%であることから、導電性封止材
6中の樹脂の濡れ性が劣化して導電性封止材6と絶縁基
体1や導電性蓋体3との密着性が悪くなることはない。
Further, since the conductive sealing material 6 has a content of the conductive particles of 0.5 to 50% by weight, the wettability of the resin in the conductive sealing material 6 is deteriorated and The adhesion between the material 6 and the insulating base 1 or the conductive lid 3 does not deteriorate.

【0041】なお、導電性封止材6は、導電性粒子の含
有量が0.5重量%未満であると導電性が低下する傾向が
あり、また、50重量%を超えると樹脂の濡れ性が低下す
る傾向がある。したがって、導電性粒子の含有量は0.5
〜50重量%の範囲が好ましい。
When the content of the conductive particles in the conductive sealing material 6 is less than 0.5% by weight, the conductivity tends to decrease, and when it exceeds 50% by weight, the wettability of the resin decreases. Tend to. Therefore, the content of conductive particles is 0.5
A range of 5050% by weight is preferred.

【0042】導電性粒子を構成する有機系樹脂材料の粒
子としては、例えばアクリル系樹脂やフェノール系樹脂
・ウレタン系樹脂・ベンゾグアナミン樹脂・メラミン系
樹脂・ポリジビニルベンゼン・ポリスチレン樹脂等の各
種有機系樹脂材料から成る粒子が用いられる。
Examples of the particles of the organic resin material constituting the conductive particles include various organic resins such as acrylic resin, phenol resin, urethane resin, benzoguanamine resin, melamine resin, polydivinylbenzene, polystyrene resin and the like. Particles of a material are used.

【0043】有機系樹脂材料の粒子の圧縮強さが1MP
a未満では、有機系樹脂材料の粒子の弾性率が低すぎて
加圧しながら加熱硬化する際の加重で導電性粒子がつぶ
れてしまい、導電性粒子と導体層4および導電性蓋体3
との密着性が低下して良好な導電性が得られなくなる傾
向があり、また、圧縮強さが50MPaを超えると弾性率
が高くなり過ぎ、加圧しながら加熱硬化する際の加重で
導電性粒子が十分に変形することが困難となり、導電性
粒子と導体層4および導電性蓋体3との接触が点接触と
成ってしまい、その結果、半導体素子2が作動する際に
発生する熱によって熱膨張係数の異なる絶縁基体1と導
電性蓋体3との間に発生する大きな応力によって導電性
粒子と絶縁基体1上面の導体層4や導電性蓋体3との点
接触部分が離れてしまい、導電性が低下してしまう傾向
がある。したがって、有機系樹脂材料の粒子の圧縮強さ
は1〜50MPaの範囲であることが好ましい。
The compressive strength of the particles of the organic resin material is 1MP.
If it is less than a, the elastic modulus of the particles of the organic resin material is too low, and the conductive particles are crushed by the load when heated and cured while applying pressure, and the conductive particles and the conductive layer 4 and the conductive lid 3 are crushed.
When the compressive strength exceeds 50 MPa, the modulus of elasticity is too high, and the conductive particles are subjected to a load when heated and cured while applying pressure. Is difficult to deform sufficiently, and the contact between the conductive particles and the conductive layer 4 and the conductive lid 3 becomes a point contact. As a result, heat generated when the semiconductor element 2 operates is generated. Due to the large stress generated between the insulating base 1 and the conductive lid 3 having different expansion coefficients, the point of contact between the conductive particles and the conductive layer 4 or the conductive lid 3 on the upper surface of the insulating base 1 is separated. The conductivity tends to decrease. Therefore, the compressive strength of the particles of the organic resin material is preferably in the range of 1 to 50 MPa.

【0044】また、導電性粒子は、有機系樹脂材料の粒
子の表面に、下地層としての膜厚10〜500nmのニッケ
ル層とこの表面の膜厚10〜100nmの金層とから成る金
属層を被覆して形成されている。金属層の表面を形成す
る金は化学的に安定で導電性粒子の酸化腐蝕を有効に防
止する作用なし、また、下地層を形成するニッケルは有
機系樹脂材料の粒子の表面に金を強固に接合させる作用
を成す。
The conductive particles include a metal layer comprising a nickel layer having a thickness of 10 to 500 nm as a base layer and a gold layer having a thickness of 10 to 100 nm on the surface of the particles of the organic resin material. It is formed by coating. The gold that forms the surface of the metal layer is chemically stable and has no action to effectively prevent the oxidative corrosion of the conductive particles, and the nickel that forms the base layer firmly attaches gold to the surface of the particles of the organic resin material. It acts to join.

【0045】ニッケル層の膜厚が10nm未満であると、
有機系樹脂材料から成る粒子の表面に金層を強固に接合
することが困難となる傾向があり、また、500nmを超
えるとニッケル層が有機系樹脂材料から成る粒子の表面
から剥離し易くなる傾向がある。したがって、ニッケル
層の膜厚は10〜500nmの範囲が好ましい。さらに、金
層の膜厚が10nm未満であると、導電性封止材6の抵抗
値が増加する傾向があり、また、100nmを超えるとニ
ッケル層と金層とから成る金属層が有機系樹脂材料から
成る粒子の表面から剥離し易くなる傾向がある。したが
って、金層の膜厚は10〜100nmの範囲が好ましい。
When the thickness of the nickel layer is less than 10 nm,
There is a tendency that it is difficult to firmly bond the gold layer to the surface of the particles made of the organic resin material, and if it exceeds 500 nm, the nickel layer tends to peel off from the surface of the particles made of the organic resin material There is. Therefore, the thickness of the nickel layer is preferably in the range of 10 to 500 nm. Further, when the thickness of the gold layer is less than 10 nm, the resistance value of the conductive sealing material 6 tends to increase, and when the thickness exceeds 100 nm, the metal layer composed of the nickel layer and the gold layer becomes an organic resin. There is a tendency that the particles made of the material are easily separated from the surface. Therefore, the thickness of the gold layer is preferably in the range of 10 to 100 nm.

【0046】このような有機系樹脂材料から成る粒子の
表面に金属層を形成した導電性粒子は、例えば平均粒子
径が5〜30μmのアクリル系樹脂表面に無電解めっきに
より、まずニッケルめっき層を膜厚10〜500nmとなる
ように被着形成し、その後、金めっき層を膜厚10〜100
nmと成るように被着形成することによって形成され
る。
The conductive particles in which a metal layer is formed on the surface of the particles made of such an organic resin material have a nickel plating layer formed on the surface of an acrylic resin having an average particle diameter of 5 to 30 μm by electroless plating. It is deposited so as to have a film thickness of 10 to 500 nm, and then a gold plating layer is formed with a film thickness of 10 to 100 nm.
nm.

【0047】また、導電性粒子の平均粒子径が5μm未
満の場合、良好な導電性を得るために導電性封止材6の
厚みを5μm未満とする必要があるが、導電性封止材6
の厚みが5μm未満では絶縁基体1と導電性蓋体3との
気密封止を完全なものとすることが困難となる傾向があ
り、また、30μmを超えると加圧しながら加熱硬化する
際の加重で導電性粒子が大きく変形して金属被膜が破損
し、良好な導電性を得られなくなる傾向がある。したが
って、導電性粒子の平均粒子径は5〜30μmの範囲とす
ることが好ましい。
When the average particle diameter of the conductive particles is less than 5 μm, the thickness of the conductive sealing material 6 needs to be less than 5 μm in order to obtain good conductivity.
When the thickness is less than 5 μm, it tends to be difficult to complete the hermetic sealing between the insulating base 1 and the conductive lid 3. In this case, the conductive particles are greatly deformed, the metal coating is broken, and good conductivity tends not to be obtained. Therefore, the average particle size of the conductive particles is preferably in the range of 5 to 30 μm.

【0048】さらに、導電性封止材6の厚みは5〜25μ
mの範囲が好ましく、導電性封止材6の厚みが5μm未
満では絶縁基体1と導電性蓋体3との気密封止を完全な
ものとすることが困難となる傾向があり、また、25μm
を超えると導電性封止材6の耐湿性が低下してしまう傾
向がある。したがって、導電性封止材6の厚みは5〜25
μmの範囲であることが好ましい。
Further, the thickness of the conductive sealing material 6 is 5 to 25 μm.
m is preferable, and when the thickness of the conductive sealing material 6 is less than 5 μm, it tends to be difficult to complete the hermetic sealing between the insulating base 1 and the conductive lid 3.
If it exceeds 3, the moisture resistance of the conductive sealing material 6 tends to decrease. Therefore, the thickness of the conductive sealing material 6 is 5 to 25.
It is preferably in the range of μm.

【0049】かくして上述の半導体装置によれば、絶縁
基体1の搭載部1a底面に半導体素子2をガラス、樹
脂、ろう材等から成る接着材を介して接着固定するとと
もに半導体素子2の各電極をボンディングワイヤ8によ
り配線導体層7に接続させ、しかる後、絶縁基体1と導
電性蓋体3とを間に導体層4を挟んで導電性封止材6を
介して接続することにより、絶縁基体1と導電性蓋体3
とから成る容器の内部に半導体素子2を気密に収容する
ことによって最終製品としての半導体装置が完成する。
Thus, according to the above-described semiconductor device, the semiconductor element 2 is bonded and fixed to the bottom surface of the mounting portion 1a of the insulating base 1 via an adhesive made of glass, resin, brazing material or the like, and each electrode of the semiconductor element 2 is connected. By connecting to the wiring conductor layer 7 by the bonding wire 8 and then connecting the insulating base 1 and the conductive lid 3 via the conductive sealing material 6 with the conductive layer 4 interposed therebetween, 1 and conductive lid 3
The semiconductor device 2 as a final product is completed by housing the semiconductor element 2 in an airtight manner in a container consisting of

【0050】なお、本発明は上述の実施の形態に限定さ
れるものではなく、本発明の要旨を逸脱しない範囲であ
れば種々の変更は可能であり、例えば図2に断面図で示
すように、接地導体を絶縁基体1の側面ではなく、絶縁
基体1の内部に貫通した貫通接地導体9としてもよい。
また、半導体素子2の各電極と配線導体層7との電気的
接続を半田バンプ10等の導電性接続部材で接続してもよ
い。
It should be noted that the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention. For example, as shown in a sectional view in FIG. Alternatively, the ground conductor may be a through ground conductor 9 penetrating inside the insulating base 1 instead of the side surface of the insulating base 1.
Further, the electrical connection between each electrode of the semiconductor element 2 and the wiring conductor layer 7 may be connected by a conductive connection member such as a solder bump 10.

【0051】[0051]

【発明の効果】本発明の半導体装置によれば、絶縁基体
と導電性蓋体とを熱硬化性樹脂を主成分とする導電性封
止材を用いて封止したことから、半導体素子が作動する
際に発生する熱によって熱膨張係数の異なる絶縁基体と
導電性蓋体との間に大きな応力が発生したとしても、熱
硬化性樹脂を主成分とする弾性率の低い導電性封止材が
応力を緩和して絶縁基体にクラックが入るのを有効に防
止することができる。
According to the semiconductor device of the present invention, since the insulating base and the conductive lid are sealed with the conductive sealing material containing a thermosetting resin as a main component, the semiconductor element operates. Even if a large stress is generated between the insulating base having a different coefficient of thermal expansion and the conductive lid due to the heat generated at the time of the heat treatment, the conductive sealing material having a low elastic modulus containing a thermosetting resin as a main component can be used. Cracking can be effectively prevented by relaxing stress.

【0052】また、本発明の半導体装置によれば、導電
性封止材に含有される導電性粒子の圧縮強さが1〜50M
Paと低いことから、導電性封止材を絶縁基体の導体層
と導電性蓋体との接合部分に塗布し両者の接合部分を重
ね合わせ加圧しながら加熱硬化する際、導電性粒子が大
きく変形し導電性粒子と絶縁基体上面の導体層や導電性
蓋体との接触が面接触となり良好な電気的接続が可能と
なり、その結果、半導体素子が作動する際に発生する熱
によって熱膨張係数の異なる絶縁基体と導電性蓋体との
間に大きな応力が発生したとしても、この応力によって
導電性粒子と絶縁基体上面の導体層や導電性蓋体との接
触部分が離れて導電性が低下してしまうということもな
い。
According to the semiconductor device of the present invention, the conductive particles contained in the conductive sealing material have a compressive strength of 1 to 50M.
Because of the low Pa, the conductive particles are greatly deformed when the conductive sealing material is applied to the joint between the conductor layer of the insulating base and the conductive lid, and the joints are superposed and heated and cured while pressing. The contact between the conductive particles and the conductive layer or the conductive lid on the upper surface of the insulating base is in surface contact, and good electrical connection is possible. As a result, the heat generated when the semiconductor element operates causes the thermal expansion coefficient to decrease. Even if a large stress is generated between different insulating bases and the conductive lid, the stress separates the conductive particles from the conductive layer on the upper surface of the insulating base or the conductive lid, thereby lowering the conductivity. There is no such thing as.

【0053】さらに、本発明の半導体装置によれば、導
電性粒子の平均粒子径を5〜30μmとしたことから、絶
縁基体と導電性蓋体とを封止する導電性封止材の厚みを
5μm以上とすることができ、気密封止を信頼性のある
完全なものすることができる。
Further, according to the semiconductor device of the present invention, since the average particle diameter of the conductive particles is 5 to 30 μm, the thickness of the conductive sealing material for sealing the insulating base and the conductive lid is reduced. The thickness can be 5 μm or more, and the hermetic sealing can be made completely reliable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の一実施例を示す断面図で
ある。
FIG. 1 is a sectional view showing one embodiment of a semiconductor device of the present invention.

【図2】本発明の半導体装置の他の実施例を示す断面図
である。
FIG. 2 is a sectional view showing another embodiment of the semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・・絶縁基体 1a・・・・・・搭載部 2・・・・・・・半導体素子 3・・・・・・・導電性蓋体 4・・・・・・・導体層 5・・・・・・・接地導体 6・・・・・・・導電性封止材 7・・・・・・・配線導体層 DESCRIPTION OF SYMBOLS 1 ... Insulating base 1a ... Mounting part 2 ... Semiconductor element 3 ... Conductive lid 4 ... Conductor Layer 5: ground conductor 6: conductive sealing material 7: wiring conductor layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上面に半導体素子の搭載部を有するとと
もに側面に接地導体が被着形成された絶縁基体と、前記
搭載部に搭載された半導体素子と、前記絶縁基体の上面
に前記搭載部を取り囲むように被着形成され、前記接地
導体と電気的に接続された導体層と、前記絶縁基体の上
面に間に前記導体層を挟んで導電性封止材を介して接合
された導電性蓋体とから成る半導体装置であって、前記
導電性封止材は熱硬化性樹脂を主成分とするとともに平
均粒子径が5〜30μm、圧縮強さが1〜50MPaの
有機系樹脂材料から成る粒子の表面に金属層を被覆して
成る導電性粒子を含有することを特徴とする半導体装
置。
An insulating base having a mounting portion for a semiconductor element on an upper surface and a ground conductor adhered to a side surface; a semiconductor element mounted on the mounting portion; and the mounting portion on an upper surface of the insulating base. A conductive layer adhered and formed so as to surround and electrically connected to the ground conductor; and a conductive lid joined to the upper surface of the insulating base via a conductive sealing material with the conductive layer interposed therebetween. Wherein the conductive sealing material is mainly composed of a thermosetting resin, and has an average particle diameter of 5 to 30 μm and a compressive strength of 1 to 50 MPa. A semiconductor device comprising conductive particles formed by coating a metal layer on the surface of a semiconductor device.
【請求項2】 前記導電性封止材中の前記導電性粒子の
含有量が0.5〜50重量%であることを特徴とする請
求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the content of the conductive particles in the conductive sealing material is 0.5 to 50% by weight.
【請求項3】 前記金属層は、膜厚10〜500nmの
ニッケル層を下地とし、該ニッケル層上に膜厚10〜1
00nmの金層を被覆して成ることを特徴とする請求項
1または請求項2記載の半導体装置。
3. The metal layer has a nickel layer having a thickness of 10 to 500 nm as an underlayer, and has a thickness of 10 to 1 nm on the nickel layer.
3. The semiconductor device according to claim 1, wherein the semiconductor device is formed by coating a gold layer having a thickness of 00 nm.
JP2000126839A 2000-04-27 2000-04-27 Semiconductor device Pending JP2001308217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000126839A JP2001308217A (en) 2000-04-27 2000-04-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000126839A JP2001308217A (en) 2000-04-27 2000-04-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2001308217A true JP2001308217A (en) 2001-11-02

Family

ID=18636533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000126839A Pending JP2001308217A (en) 2000-04-27 2000-04-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2001308217A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191033A (en) * 2011-03-11 2012-10-04 Nec Corp Structure of circuit module and manufacturing method of the same
US8617934B1 (en) 2000-11-28 2013-12-31 Knowles Electronics, Llc Methods of manufacture of top port multi-part surface mount silicon condenser microphone packages
US8624387B1 (en) 2000-11-28 2014-01-07 Knowles Electronics, Llc Top port multi-part surface mount silicon condenser microphone package
US9078063B2 (en) 2012-08-10 2015-07-07 Knowles Electronics, Llc Microphone assembly with barrier to prevent contaminant infiltration
US9374643B2 (en) 2011-11-04 2016-06-21 Knowles Electronics, Llc Embedded dielectric as a barrier in an acoustic device and method of manufacture
US9794661B2 (en) 2015-08-07 2017-10-17 Knowles Electronics, Llc Ingress protection for reducing particle infiltration into acoustic chamber of a MEMS microphone package
WO2022004069A1 (en) * 2020-07-02 2022-01-06 株式会社村田製作所 Piezoelectric oscillator

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024432B1 (en) 2000-11-28 2015-05-05 Knowles Electronics, Llc Bottom port multi-part surface mount MEMS microphone
US8623710B1 (en) 2000-11-28 2014-01-07 Knowles Electronics, Llc Methods of manufacture of bottom port multi-part surface mount silicon condenser microphone packages
US8624387B1 (en) 2000-11-28 2014-01-07 Knowles Electronics, Llc Top port multi-part surface mount silicon condenser microphone package
US9023689B1 (en) 2000-11-28 2015-05-05 Knowles Electronics, Llc Top port multi-part surface mount MEMS microphone
US8624384B1 (en) 2000-11-28 2014-01-07 Knowles Electronics, Llc Bottom port surface mount silicon condenser microphone package
US9040360B1 (en) 2000-11-28 2015-05-26 Knowles Electronics, Llc Methods of manufacture of bottom port multi-part surface mount MEMS microphones
US8623709B1 (en) 2000-11-28 2014-01-07 Knowles Electronics, Llc Methods of manufacture of top port surface mount silicon condenser microphone packages
US8624385B1 (en) 2000-11-28 2014-01-07 Knowles Electronics, Llc Top port surface mount silicon condenser microphone package
US8629005B1 (en) 2000-11-28 2014-01-14 Knowles Electronics, Llc Methods of manufacture of bottom port surface mount silicon condenser microphone packages
US8629551B1 (en) 2000-11-28 2014-01-14 Knowles Electronics, Llc Bottom port surface mount silicon condenser microphone package
US8629552B1 (en) 2000-11-28 2014-01-14 Knowles Electronics, Llc Top port multi-part surface mount silicon condenser microphone package
US8633064B1 (en) 2000-11-28 2014-01-21 Knowles Electronics, Llc Methods of manufacture of top port multipart surface mount silicon condenser microphone package
US8652883B1 (en) 2000-11-28 2014-02-18 Knowles Electronics, Llc Methods of manufacture of bottom port surface mount silicon condenser microphone packages
US8704360B1 (en) 2000-11-28 2014-04-22 Knowles Electronics, Llc Top port surface mount silicon condenser microphone package
US8765530B1 (en) 2000-11-28 2014-07-01 Knowles Electronics, Llc Methods of manufacture of top port surface mount silicon condenser microphone packages
US9006880B1 (en) 2000-11-28 2015-04-14 Knowles Electronics, Llc Top port multi-part surface mount silicon condenser microphone
US9338560B1 (en) 2000-11-28 2016-05-10 Knowles Electronics, Llc Top port multi-part surface mount silicon condenser microphone
US8617934B1 (en) 2000-11-28 2013-12-31 Knowles Electronics, Llc Methods of manufacture of top port multi-part surface mount silicon condenser microphone packages
US8624386B1 (en) 2000-11-28 2014-01-07 Knowles Electronics, Llc Bottom port multi-part surface mount silicon condenser microphone package
US9051171B1 (en) 2000-11-28 2015-06-09 Knowles Electronics, Llc Bottom port surface mount MEMS microphone
US9061893B1 (en) 2000-11-28 2015-06-23 Knowles Electronics, Llc Methods of manufacture of top port multi-part surface mount silicon condenser microphones
US9067780B1 (en) 2000-11-28 2015-06-30 Knowles Electronics, Llc Methods of manufacture of top port surface mount MEMS microphones
US9156684B1 (en) 2000-11-28 2015-10-13 Knowles Electronics, Llc Methods of manufacture of top port surface mount MEMS microphones
US9096423B1 (en) 2000-11-28 2015-08-04 Knowles Electronics, Llc Methods of manufacture of top port multi-part surface mount MEMS microphones
US9133020B1 (en) 2000-11-28 2015-09-15 Knowles Electronics, Llc Methods of manufacture of bottom port surface mount MEMS microphones
US9139421B1 (en) 2000-11-28 2015-09-22 Knowles Electronics, Llc Top port surface mount MEMS microphone
US9139422B1 (en) 2000-11-28 2015-09-22 Knowles Electronics, Llc Bottom port surface mount MEMS microphone
US9148731B1 (en) 2000-11-28 2015-09-29 Knowles Electronics, Llc Top port surface mount MEMS microphone
US9150409B1 (en) 2000-11-28 2015-10-06 Knowles Electronics, Llc Methods of manufacture of bottom port surface mount MEMS microphones
JP2012191033A (en) * 2011-03-11 2012-10-04 Nec Corp Structure of circuit module and manufacturing method of the same
US9374643B2 (en) 2011-11-04 2016-06-21 Knowles Electronics, Llc Embedded dielectric as a barrier in an acoustic device and method of manufacture
US9078063B2 (en) 2012-08-10 2015-07-07 Knowles Electronics, Llc Microphone assembly with barrier to prevent contaminant infiltration
US9794661B2 (en) 2015-08-07 2017-10-17 Knowles Electronics, Llc Ingress protection for reducing particle infiltration into acoustic chamber of a MEMS microphone package
WO2022004069A1 (en) * 2020-07-02 2022-01-06 株式会社村田製作所 Piezoelectric oscillator
JP7465458B2 (en) 2020-07-02 2024-04-11 株式会社村田製作所 Piezoelectric transducer

Similar Documents

Publication Publication Date Title
JP2001015551A (en) Semiconductor device and its manufacture
JP2001308217A (en) Semiconductor device
JP2005101580A (en) Module with built-in circuit components, and its manufacturing method
JP2002151614A (en) Package for accommodating semiconductor element
JP2002151613A (en) Package for accommodating semiconductor element
JPH1074858A (en) Wiring board and production thereof
JP3152852B2 (en) Wiring board and manufacturing method thereof
JP4384348B2 (en) Package for storing semiconductor elements
JP2002009185A (en) Semiconductor, device
JP3305574B2 (en) Wiring board
JP3398316B2 (en) Wiring board and method of manufacturing the same
JP2002261178A (en) Package for encapsulating semiconductor device
JPH09289261A (en) Package containing electronic component
JP3292623B2 (en) Wiring board and method of manufacturing the same
JP2005019729A (en) Package for storing semiconductor element and semiconductor device employing it
JP3605235B2 (en) Manufacturing method of wiring board
JP3393768B2 (en) Wiring board and method of manufacturing the same
JP3398291B2 (en) Wiring board
JP3393760B2 (en) Wiring board and method of manufacturing the same
JP2002289721A (en) Package for storing semiconductor element
JP2001185675A (en) Semiconductor device
JPH10209324A (en) Wiring board
JPH1174649A (en) Wiring board and its manufacture
JPH11102995A (en) Manufacture of wiring board
JPH10322033A (en) Wiring board