JP4376531B2 - グレーティングの形成方法 - Google Patents
グレーティングの形成方法 Download PDFInfo
- Publication number
- JP4376531B2 JP4376531B2 JP2003067139A JP2003067139A JP4376531B2 JP 4376531 B2 JP4376531 B2 JP 4376531B2 JP 2003067139 A JP2003067139 A JP 2003067139A JP 2003067139 A JP2003067139 A JP 2003067139A JP 4376531 B2 JP4376531 B2 JP 4376531B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- grating
- phase mask
- reflected
- diffraction grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Description
【発明の属する技術分野】
本発明は、位相マスク法によって基板や光ファイバなどにグレーティングを形成する方法に関し、特に量産性に優れたグレーティングの形成方法に関する。
【0002】
【従来の技術】
露光技術を利用して、基板や光ファイバなどにグレーティングなどのような周期的な屈折率の変調構造を形成する方法として、位相マスク法が広く用いられている。
図11は、位相マスク法によるグレーティングの形成方法の工程の一例を示す概略図である。位相マスク法では、回折格子12が形成された位相マスク11に、露光用の光13を入射させて回折させ、回折光14とする。この回折光14は互いに干渉し合い、周期的な光強度分布をもって伝播する。この周期的な光強度分布をもった光の伝播領域(以下、干渉領域15と言う。)に、基板や光ファイバなどの周期的な変調構造を形成しようとする光導波路部品(図示省略)を設置し、露光技術などにより、グレーティングなどの屈折率の周期的な変調構造を形成する(特許文献1〜3参照。)。
【0003】
前述した位相マスク法では、位相マスク11と大気との屈折率の差によって位相マスク11の表面にて光の一部が反射される。
図12は、位相マスク21の回折格子22にて入射光23の一部が反射された状態を示す概略図である。この回折格子22にて反射された光26は、入射方向とは逆方向に位相マスク21内を伝搬し、回折格子22が形成された一方の主面21aに対して対向配置した他方の主面21bにて反射光26の一部は反射され、再び回折格子22に向かって伝搬する。
前記したように回折格子22にて反射された光26は、再度回折格子22に到達することになるが、このとき回折格子22にて回折されると、回折光(以下、反射回折光27と言う。)として位相マスク22から出射される。この反射回折光27の伝播経路が、前記干渉領域25と重なると、この干渉領域25の周期的な光強度分布を乱してしまい、所望の屈折率の変調構造を光ファイバのコアに形成できない問題が生じる。
【0004】
そこで、図13に示されたように、回折格子32が形成された一方の主面31aに対して対向配置した他方の主面31bに反射防止膜8を設ける方法が提案されている(特許文献4参照。)。反射防止膜8は、誘電体膜から構成され、特定の波長の光の反射を抑制できるものであり、例えば基板上に異なる屈折率を有する誘電体膜が多層に成膜されたものなどが挙げられる。
前記したように反射防止膜8を設けることによって、例えば4%程度の反射量を0.5%以下に低減することができ、反射光36が再び回折格子32に到達し反射回折光となって干渉領域35の周期的な光強度分布を乱すことがない。
【0005】
しかし、位相マスク31に入射する光33は240nm付近の紫外光であり、この紫外光を長時間又は高強度で反射防止膜8に照射すると、反射防止膜8が変質し、反射抑制機能が低下してしまう。このため、量産レベルでグレーティングを形成する際、紫外光の照射時間と共に、この反射防止膜8は劣化して反射量が増加することとなり、安定して光導波路部品にグレーティングを形成することが難しい。
この問題点を解決するためには、反射防止膜8が劣化する前に、この反射防止膜8を取り除き、新たなものに交換する必要がある。
【0006】
更に、位相マスク31は、定期的に酸やアルカリなどの溶液を用いて化学洗浄を行い、表面に付着した汚れなど除去する必要がある。反射防止膜8は、この化学洗浄においても変質劣化してしまうため、洗浄を行う毎に、反射防止膜8を交換する必要がある。
以上のように、反射防止膜8を使用する場合、反射防止膜8の点検や交換にかかる作業が必要となり、作業工程が増えてしまい、光ファイバグレーティングの量産の妨げとなる。また、反射防止膜8を使用するために製造コストが高くなってしまう。
【0007】
【特許文献1】
特開2001−116934号公報
【特許文献2】
特開2001−141943号公報
【特許文献3】
特開2002−048927号公報
【特許文献4】
特開平11−133220号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、上記した事情に鑑みなされたものである。すなわち反射防止膜などを使用せずに反射光による影響を無くし、これにより安定して所望のグレーティングを形成でき、かつ量産性に優れたグレーティングの形成方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1に係る発明は、回折格子が形成された透光性の基板から構成された位相マスクに、露光用の光を透過させて回折光とし、該回折光が互いに干渉し合い周期的な光強度分布となる領域に、光感受性をもった光導波路部品を配することによって、該光導波路部品を露光しグレーティングを形成するグレーティングの形成方法であって、以下の式(1)を満たす位相マスクを使用することを特徴とするグレーティングの形成方法である。
【数2】
(但し、t,n,Λは、それぞれ位相マスクの厚さ,屈折率,位相マスクに形成された回折格子の周期を示し、λ,wは、それぞれ露光用の光の波長,ビーム幅を示す。)
請求項2に係る発明は、前記露光用の光のビーム幅が、1mm以上であることを特徴とする請求項1に記載のグレーティングの形成方法である。
請求項3に係る発明は、前記位相マスクへの露光用の光の照射点を移動させながら、前記光導波路部品にグレーティングを形成することを特徴とする請求項1又は2に記載のグレーティングの形成方法である。
請求項4に係る発明は、前記光導波路部品が光ファイバであることを特徴とする請求項1乃至3のいずれかに記載のグレーティングの形成方法である。
【0010】
【発明の実施の形態】
以下に本発明の実施の形態について、図を参照して説明する。
図1は、グレーティングを形成するために用いる装置の要部の一例を示す概略図である。符号1は、位相マスクであり、この位相マスク1は、石英ガラスなどの透光性の基板から構成され、その一方の主面1aに回折格子2が形成されたものである。位相マスク1に光3が照射されると、回折格子2にて光3が回折し、回折光4となって位相マスク1から出射されるようになっている。
特に、回折格子2は、0次回折光の発生を抑えて−1次回折光4a及び+1次回折光4bの光強度が強く現れるように、格子の周期などの回折格子2の大きさや形状が調整されている。前記回折格子2としては、例えば位相マスク1に入射した光3の0次回折光への回折を1〜3%程度、−1次回折光4a及び+1次回折光4bへの回折をそれぞれ35%程度とすることができるものなどが形成される。
【0011】
前記位相マスク1の他方の主面1bの上方には、露光用の光源(図示省略)が設けられており、位相マスク1の他方の主面1bに向かって露光用の光3を照射できるようになっている。露光用の光3としては、例えば250nm付近の紫外線レーザなどが挙げられる。
【0012】
次に前記した装置を用いて光導波路部品にグレーティングを形成する方法について説明する。まず位相マスク1の他方の主面1bに光源から光3を照射する。光3は位相マスク1内部を透過し、位相マスク1に形成された回折格子2にて回折され、−1次回折光4a及び+1次回折光4bとして位相マスク1の一方の主面1aから出射される。前記−1次回折光4a及び+1次回折光4bは、伝播経路の重なった空間にて合波され、周期的な光強度分布をもつことになる。この−1次回折光4a及び+1次回折光4bの伝播経路の重なった領域を以下、干渉領域5と言う。
前記した干渉領域5に、光感受性をもった光導波路部品(図示省略)を配置することによって、干渉領域5の光が光導波路部品にあたり、この干渉領域5の光強度分布に応じて光導波路部品の屈折率が変化し、グレーティングが形成される。
前記光感受性をもった光導波路部品とは、光が照射されると屈折率が増加又は減少する性質をもったものである。例えば紫外光などの光が照射されるとコアの屈折率が上昇する性質(以下、光誘起屈折率変化とも言う。)をもったものなどが挙げられる。このような性質をもった光導波路部品としては、光ファイバや石英基板に酸化ゲルマニウムなどが添加されたものなどが挙げられる。
【0013】
前記したように位相マスク1に入射した光3が回折格子2にて回折される際、同時に入射光3の一部は回折格子2にて反射され、反射光6となる。この反射光6は、従来の技術でも述べたように、位相マスク1の他方の主面1bに向かって伝搬し、この他方の主面1bにて反射されて再び回折格子2に向かって伝搬し、そして回折格子2にて回折されて回折光(以下、反射回折光7と言う。)となり、干渉領域5の周期的な光強度分布を乱す原因となる。
以下に、本実施形態にて用いる位相マスク1に形成された回折格子2について更に詳細に説明するとともに、この回折格子2にて反射された反射光6について説明する。
【0014】
本実施形態では、位相マスク1として以下の式(1)を満たす回折格子2が形成されたものを使用する。ここで、式(1)中及び本明細書中、t,n,Λは、それぞれ位相マスク1の厚さ,屈折率,位相マスク1に形成された回折格子2の周期を示し、λ,wは、それぞれ露光用の光3の波長,スポット径を示す。
【0015】
【数3】
【0016】
図2は、前記位相マスク1の回折格子2周辺を示す拡大図である。位相マスク1に入射した光3は、前述したように回折格子2にて回折され、位相マスク1の一方の主面1aより出射される。このとき、入射光3の一部は回折格子2にて反射され、反射光6として、位相マスク1の他方の主面1bに向かって伝搬する。
入射光3の波長における1次回折角をθとすると、このθは以下の式(2)を満たす。
sinθ=λ/(nΛ) (2)
【0017】
前記反射光6の一部は、位相マスク1の他方の主面1bにて反射され、再度、位相マスク1の回折格子2に到達する。入射光3が回折格子2にて反射される地点と、入射光3が回折格子2にて反射され反射光6となって再度、回折格子2へ到達する地点との距離xは、以下の式(3)によって表される。
更に、前記式(2)をこの式(3)に代入して式変形すると、tは以下の式(4)で表される。
【0018】
【数4】
【0019】
【数5】
【0020】
前記式(4)がx≧wを満たすとき、回折格子2は前述した式(1)を満たすことになる。すなわち、入射光3が回折格子2にて反射される地点と、入射光3が回折格子2にて反射され反射光6となって再度、回折格子2へ到達する地点との距離xが、入射光3のビーム幅w以上となる。このとき、図1に示されたように、1次回折光4a及び+1次回折光4bの伝播経路が重なってできた干渉領域5と反射回折光7の伝播経路とが重ならず、干渉領域5の光強度分布が反射回折光7によって乱されることがない。
このため、安定して所望のグレーティングを製造できる。更に、反射回折光7による影響がないため、従来のように反射防止膜を使用する必要がなく、紫外光を長時間又は高強度で照射しても、反射抑制機能が低下してしまうことがなく安定してグレーティングを製造できる。また従来のように、反射防止膜の反射抑制機能が低下したときや位相マスク1の洗浄を行う毎に、反射防止膜を交換する必要がない。このように、反射防止膜の点検や交換にかかる作業がないため、作業性に優れ、優れた量産性が実現できる。
【0021】
以下に、本発明を具体的に説明する。
[具体例1]
位相マスク1の厚さ(t)が10mm、回折格子2の中心周期(Λ)が1.074μm、回折格子2の周期チャープ率が0.137nm/mm、主面の幅が120mmの位相マスク1を用意する。
また、露光用の光3として、波長(λ)が244nm、ビーム幅(w)が2mmのアルゴンイオンレーザの第2高調波を用いる。ここで、ビーム幅とは、ビームの光強度スペクトルにおいて光強度が最大値の半分となる地点でのスペクトル幅として求めたものである。
【0022】
前述した式(1)の右辺に、前記した各パラメータを代入すると、式(1)はt≧6.5mmとなる。本具体例で使用する位相マスク1の厚さは10mmであるため、この位相マスク1は、式(1)を満たしているものであることがわかる。
図3は、前記位相マスク1上のレーザ光3の照射位置を走査しながらレーザ光3を位相マスク1に照射したとき、レーザ光3が回折されてできた1次回折光4の光強度とレーザ光3の照射位置との関係を示す図である。位相マスク1上のレーザ光3の照射位置が変化しても1次回折光4の光強度はほとんど変化せず、ほぼ一定の光強度であることがわかる。このことから反射回折光7の伝播経路が1次回折光4の伝播経路と重なっておらず、反射回折光7によって1次回折光4の光強度が乱されていないことが分かる。
【0023】
次に、光感受性をもった光導波路として、コアのうち中心から直径10μmの領域に酸化ゲルマニウムが3.5重量%添加されたシングルモード光ファイバを用意する。この光ファイバは、予め10MPaの水素雰囲気中にて5日間、光感受性を増加させるための処理を行ったものである。
図1に示されたように、回折格子2が形成された一方の主面1aを下方に向けて前記位相マスク1を設置し、更にこの位相マスク1の他方の主面1bの上方にレーザ装置を設ける。そして、位相マスク1にレーザ光3を照射したとき、このレーザ光3が回折格子2にて回折されて+1次回折光4a及び−1次回折光4bとなり、位相マスク1の一方の主面1aから下方に向かって出射され、これらの伝播経路が重なることで干渉領域5が得られるようにする。
【0024】
コアのうちグレーティングを形成する部分が、前記干渉領域5ができる位置にくるように光ファイバを設置する。
そして、光ファイバが露光される範囲(以下、グレーテング露光長)を100mmとする。また、レーザ3を照射する際、前記100mmの両側から10mmの範囲には、露光時間を短くして露光による屈折率変化がtanhの関数で表されるようにアポダイズする。これにより、透過反射特性においてサイドローブが抑制できるグレーティング構造が光ファイバに形成されるようにする。また、露光量は、形成されたグレーティングの透過損失が約10dBとなる量とする。
【0025】
以上の露光条件にて、レーザ光3を位相マスク1に照射し、−1次回折光4a及び+1次回折光4bが合波されてできた干渉領域5をつくる。この干渉領域5が形成される位置には、前記したように予め光感受性をもった光ファイバが設けられているため、この干渉領域5の周期的な光強度分布に応じて光ファイバのコアの屈折率が上昇し、グレーティングが形成される。そして、位相マスク1上のレーザ光3の照射位置を走査して、光ファイバのコアのうちグレーテング露光長の範囲にグレーティングを形成する。
【0026】
図4及び図5は、前記した方法により製造された光ファイバグレーティングの光学特性を示し、図4は透過スペクトルであり、図5は反射スペクトルである。図中、縦軸の透過特性及び反射特性とは、製造された光ファイバグレーティングに光を入射させたときの透過光又は反射光と、入射光との比をデシベルで表示したものであり、絶対値が大きいほど損失が大きいことを意味する。
透過スペクトルには、1554.3nm〜1555.8nmの波長帯においてほぼ一定の透過損失が得られている。前記1554.3nm〜1555.8nmの波長帯以外の波長範囲では、透過損失はほぼ0であり、ほぼ完全に透過できることがわかる。そして反射スペクトルでは、1554.3nm〜1555.8nmの波長帯において反射損失はほぼ0であり、ほぼ完全に光を反射できていることがわかる。また、前記1554.3nm〜1555.8nmの波長帯以外の波長範囲では、反射損失は−40dB以下であり、反射することなくほぼ完全に透過されることがわかる。
【0027】
更に、この光ファイバグレーティングの光学特性を評価するために、以下に示されたようにシミュレーションにより光学特性を算出し、光学特性の比較を行う。
図6及び図7は、グレーティング周期が0.537μm、グレーティング周期のチャープ率が0.0685nm/cm、グレーティング長が100mmの光ファイバグレーティングの光学特性をシミュレーションにより計算した結果を示す。ここで、シミュレーションの際、具体例1と同様に、グレーティングの両側の10mmの領域にはそれぞれtanhの関数で屈折率変化をアポダイズされているとして光学特性を算出した。
具体例1にて製造された光ファイバグレーティングの光学特性は、前記シミュレーションによって得られた計算結果とほぼ同一であり、目的の光学特性が得られていることがわかる。
【0028】
[具体例2]
位相マスクの厚さ(t)が2.3mmであり、式(1)を満たしていない位相マスクを使用する以外は、具体例1と同様にして光ファイバグレーティングを製造する。
図8は、位相マスク上のレーザ光の照射位置を走査しながらレーザ光を位相マスクに照射したとき、出射された1次回折光の光強度とレーザ光の照射位置との関係を示す図である。位相マスク上のレーザ光の照射位置が変化するに従い、1次回折光の光強度が変化しており、反射回折光の伝播経路が1次回折光の伝播経路と重なり、この反射回折光によって1次回折光の光強度が乱されていることが分かる。
【0029】
図9及び図10は、具体例2にて製造された光ファイバグレーティングの光学特性を示し、図9は透過スペクトルであり、図10は反射スペクトルである。
透過スペクトルには、1554.3nm〜1555.8nmの波長帯において周期的な変動がみられ、一定の透過損失が得られていない。そして反射スペクトルでは、1554.3nm〜1555.8nmの波長帯以外の波長範囲のうち、特に1556nm以上の長波長帯域では、反射損失が−26dB〜−30dBあり、完全に透過できておらず、一部が反射していることがわかる。
このように、式(1)を満たしていない位相マスクを用いた場合、反射回折光によって1次回折光の光強度が乱されてしまい、所望のグレーティングが形成できず、優れた透過特性や反射特性が得られない。
【0030】
以上のように具体例1の光ファイバグレーティングは、具体例2の光ファイバグレーティングとは異なり、1554.3nm〜1555.8nmの波長帯の透過損失に変動がみられずほぼ一定であり、光をほぼ完全に反射できる。更に、この波長帯以外では反射損失は−40dB以下であり、具体例2のように1556nm以上の長波長帯域にて光の一部が反射することなくほぼ完全に透過できる。
このように、前述した式(1)を満たした位相マスク1を用いることによって、具体例2のように反射回折光の影響を受けることなく、目的とするグレーティングが形成でき、優れた透過特性及び反射特性が得られる。
このため、製造された光ファイバグレーティングは、例えば特定の波長の光を選択的に取り出す光部品として光通信機器や光センサなどに利用できる。
【0031】
また位相マスク1へのレーザ光3の照射点を移動させながら、光導波路部品にグレーティングを形成することによって、所望のグレーテング露光長にグレーティングを形成できる。また、レーザ光3の照射点を移動させながら、露光時間やレーザ光3の光強度を調整することによって、例えば具体例のように、グレーティング露光長の両側にて、露光による屈折率変化がtanhの関数で表されるようにアポダイズすることができ、透過反射特性においてサイドローブが抑制できるグレーティング構造などが形成できる。
【0032】
更に、具体例のように、ビーム幅が1mm以上のレーザ光3を使用することによって、レーザ光3の等位相面が乱れることがなく位相マスク1による干渉の乱れを抑えることができる。また、干渉領域5も広くなるため、光導波路部品を露光する際広い範囲を露光できる。
ビーム幅が1mm未満のとき、レーザ光3のパワー密度が大きくなり、レーザ光3により光導波路部品へ損傷が生じやすくなるため、好ましくない。
【0033】
【発明の効果】
以上詳細に説明したように、本発明のグレーティングの形成方法によれば、前述した式(1)を満たす位相マスクを使用することによって、1次回折光によってできた干渉領域と反射回折光の伝播経路とが重ならず、干渉領域の光強度分布が反射回折光によって乱されることがない。これにより、安定して所望のグレーティングを製造できる。
また、前記したように反射回折光による影響がないため、従来のように反射防止膜を使用する必要がなく、紫外光を長時間又は高強度で照射しても、反射抑制機能が低下してしまうことがなく安定してグレーティングを製造できる。また従来のように、反射防止膜の反射抑制機能が低下したときや位相マスクの洗浄を行う毎に、反射防止膜を交換する必要がない。このように、反射防止膜の点検や交換にかかる作業がないため、作業性に優れ、優れた量産性が実現できる。
【図面の簡単な説明】
【図1】 グレーティングを形成するために用いる装置の要部の一例を示す概略図である。
【図2】 位相マスクの回折格子周辺を示す拡大図である。
【図3】 具体例1の位相マスクから出射された1次回折光の光強度とレーザ光の照射位置との関係を示す図である。
【図4】 具体例1にて製造された光ファイバグレーティングの透過スペクトルである。
【図5】 具体例1にて製造された光ファイバグレーティングの反射スペクトルである。
【図6】 シミュレーションにより算出された光ファイバグレーティングの透過スペクトルである。
【図7】 シミュレーションにより算出された光ファイバグレーティングの反射スペクトルである。
【図8】 具体例2の位相マスクから出射された1次回折光の光強度とレーザ光の照射位置との関係を示す図である。
【図9】 具体例2にて製造された光ファイバグレーティングの透過スペクトルである。
【図10】 具体例2にて製造された光ファイバグレーティングの反射スペクトルである。
【図11】 位相マスク法によるグレーティングの形成方法の工程の一例を示す概略図である。
【図12】 位相マスクの回折格子にて入射光の一部が反射された状態を示す概略図である。
【図13】 反射防止膜が設けられた位相マスクを用いたグレーティングの形成方法の工程の一例を示す概略図である。
【符号の説明】
1‥‥位相マスク、2‥‥回折格子、3‥‥露光用の光、4,4a,4b‥‥回折光、5‥‥周期的な光強度分布となる領域
Claims (4)
- 前記露光用の光のビーム幅が、1mm以上であることを特徴とする請求項1に記載のグレーティングの形成方法。
- 前記位相マスクへの露光用の光の照射点を移動させながら、前記光導波路部品にグレーティングを形成することを特徴とする請求項1又は2に記載のグレーティングの形成方法。
- 前記光導波路部品が光ファイバであることを特徴とする請求項1乃至3のいずれかに記載のグレーティングの形成方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003067139A JP4376531B2 (ja) | 2003-03-12 | 2003-03-12 | グレーティングの形成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003067139A JP4376531B2 (ja) | 2003-03-12 | 2003-03-12 | グレーティングの形成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004279477A JP2004279477A (ja) | 2004-10-07 |
JP4376531B2 true JP4376531B2 (ja) | 2009-12-02 |
Family
ID=33284841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003067139A Expired - Lifetime JP4376531B2 (ja) | 2003-03-12 | 2003-03-12 | グレーティングの形成方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4376531B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006235195A (ja) * | 2005-02-24 | 2006-09-07 | Matsushita Electric Ind Co Ltd | 反射防止構造体を有する部材の製造方法 |
EP2555027B1 (en) | 2010-03-30 | 2017-01-18 | Fujikura Ltd. | Method for manufacturing optical fiber grating, optical fiber grating, and fiber laser |
US9360618B2 (en) * | 2013-02-21 | 2016-06-07 | Ofs Fitel, Llc | Index matched grating inscription |
-
2003
- 2003-03-12 JP JP2003067139A patent/JP4376531B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004279477A (ja) | 2004-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU731744B2 (en) | Phase mask with spatially variable diffraction efficiency | |
JP3330858B2 (ja) | 連続的にチャープした位相マスクの製造方法 | |
JP4376531B2 (ja) | グレーティングの形成方法 | |
US6483965B1 (en) | Method of writing a bragg diffraction grating | |
JP4820917B2 (ja) | グレーティング構造を有する基板型光導波路デバイスの製造方法 | |
JPH1082919A (ja) | ファイバグレーティングの作成方法及び光ファイバ | |
WO2003091774A1 (fr) | Reseau de fibre et procede de fabrication correspondant | |
TW569041B (en) | Reflection-grid optical waveguide-path type and its production method | |
JP3955703B2 (ja) | ファイバグレーティングの作製方法 | |
JP3564215B2 (ja) | 干渉露光装置およびそれを用いた干渉露光方法 | |
JP2001242313A (ja) | 光ファイバー加工用位相マスクの製造方法及びその光ファイバー加工用位相マスクを使用して作製されたブラッグ回折格子付き光ファイバー | |
JP2830819B2 (ja) | 低反射グレーティングが形成された光デバイス及び低反射グレーティングの製造方法 | |
JP2889062B2 (ja) | X線マスクおよびその製造方法 | |
JPH08101322A (ja) | 透過型ファイバグレーティングフィルタの製造方法及びその装置 | |
JP2004170476A (ja) | ファイバ・ブラッグ・グレーティングの形成方法 | |
JPH11295541A (ja) | 導波路型回折格子の製造方法及び導波路型回折格子製造装置 | |
JP2004021220A (ja) | 平面導波路型回折格子素子の製造方法 | |
JP5887833B2 (ja) | 光ファイバー加工用位相マスクおよびその製造方法 | |
JP5340197B2 (ja) | 光フィルタ、その製造方法及びその設計方法 | |
JP2006243400A (ja) | ファイバグレーティングの製造方法及び製造装置 | |
CA2281787C (en) | Phase mask with spatially variable diffraction efficiency | |
TW558658B (en) | Apparatus and method for fabricating a light waveguide grating with index of refraction having symmetric distribution | |
JP2011209587A (ja) | 光導波路の形成方法、光導波路、及び露光マスク | |
JP3716533B2 (ja) | 回折格子の形成方法 | |
JPH10133039A (ja) | 屈折率分布の形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090901 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090909 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4376531 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130918 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |