JP4363675B2 - Manufacturing method of liquid crystal diffraction element and optical head device using this element - Google Patents

Manufacturing method of liquid crystal diffraction element and optical head device using this element Download PDF

Info

Publication number
JP4363675B2
JP4363675B2 JP26219997A JP26219997A JP4363675B2 JP 4363675 B2 JP4363675 B2 JP 4363675B2 JP 26219997 A JP26219997 A JP 26219997A JP 26219997 A JP26219997 A JP 26219997A JP 4363675 B2 JP4363675 B2 JP 4363675B2
Authority
JP
Japan
Prior art keywords
liquid crystal
light
diffraction element
photomask
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26219997A
Other languages
Japanese (ja)
Other versions
JPH1166597A (en
Inventor
譲 田辺
弘昌 佐藤
友紀 郡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP26219997A priority Critical patent/JP4363675B2/en
Publication of JPH1166597A publication Critical patent/JPH1166597A/en
Application granted granted Critical
Publication of JP4363675B2 publication Critical patent/JP4363675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CD、CD−ROM等の光ディスク、光磁気ディスク等の光記録媒体に、情報の読み取り及び記録をするための光ヘッド装置に関する。
【0002】
【従来の技術】
従来、光ヘッド装置に用いられる回折素子として、等方性格子が使用されている。この等方性格子は、ガラス、プラスチック上に矩形格子(レリーフ型)をドライエッチング又は射出成形等によって形成し、この格子によって光を回折し、ビームスプリッタとしての機能を持たせている。
しかし、この等方性格子を光ヘッド装置に使用した場合、光の利用効率が低かった。具体的には往路がせいぜい50%、復路がせいぜい20%で、往復で10%程度が限界であった。
【0003】
この効率を改善するために、異方性格子を形成した液晶回折素子が用いられる。この液晶回折素子として、対向する基板の1つの内面に格子状の凹凸を設けておき両基板の間に液晶を封入したものや、格子状で平面的に周期的な透明電極を基板に設けこの透明電極に電圧を印加することにより、透明電極のある部分と透明電極のない部分で液晶の配向方向を変えて回折格子を形成するものが知られている。
【0004】
また本発明者等は、液晶性を示す構造と光重合しうる構造を併有する、光重合性の液晶を用いた液晶回折素子の製造方法として、液晶回折素子を構成している対向する透明な基板間に未重合で液体状の液晶を挟持し、両基板に設けた平面的に周期的な透明電極に電圧を印加しながら、液晶に紫外線等の光照射をすることを提案している(特願平8−100329)。
【0005】
この提案の液晶回折素子の製造方法を図3に示す。すなわち、対向する基板31A、31Bが液晶33に接する面にポリイミド等によって水平配向用の配向膜34A、34Bを形成し、また対向する基板に設けた平面的に周期的な透明電極32A、32Bの設置位置は、それぞれの透明電極32Aと32Bが向き合う位置である。電圧発生器35による透明電極32Aと32Bへの電圧印加によって液晶33は基板31A及び31Bの面に垂直に配向し、平面的に周期的な透明電極の設置されていない領域では、液晶33は基板の面に平行に揃うので、液晶33の全体を紫外線の照射光37によって光重合し、平面的に周期的に配向方向が変化する硬化した液晶の配向状態を作り出し、液晶回折素子を作成していた。
【0006】
他方、従来の光ヘッド装置は、光源、光源からの発散光を平行化するコリメートレンズ、このレンズにより平行化されたコリメート光を微小スポットに形成する集光手段、微小スポット光の状態で光ディスクからの信号を含んだ反射光が集光部を逆戻りした後、その進行方向を変更する光束分離手段、この光束分離手段によって偏向・分離・集光された後、分離させた光を信号光として受け取る受光素子等の構成要素からなる。通常は、光源と光束分離手段と受光素子は、最も近い位置に設置されている。
【0007】
【発明が解決しようとする課題】
基板内面に凹凸を形成する異方性格子はこの凹凸の形成工程や液晶注入工程が必要であり生産性が低い問題があった。
平面的に周期的な透明電極を形成する液晶回折素子は電圧発生器を付加するため体積が大きくなり、また構成が複雑となり、さらに透明電極の電圧印加の液晶領域のみならず透明電極の周辺部に電界の漏れが発生し回折格子の境界がボケる問題もあった。
【0008】
また、前記提案の方法の場合も、平面的に周期的な透明電極を使用しているため、透明電極の周辺部の液晶への電界漏れ等の原因によって、作成された液晶回折素子が有する格子ピッチの微細さが不十分であった。
【0009】
【課題を解決するための手段】
本発明は、前述の問題点を解決すべくなされたものであり、光重合性の液晶を用いた液晶回折素子の製造方法において、光重合開始剤と光重合禁止剤とを液晶に添加し、光重合禁止剤を含まない液晶と比べ、弱い光の照射に対して硬化の速さが小さくなるようにした液晶を挟持して対向する透明基板の少なくとも一方の基板の液晶に接する面に配向膜を設け、両基板の片面の全面に透明電極を設け、さらに平面的に周期的な遮光パターンを有するフォトマスクを基板面上に配置して、両基板の透明電極間に電圧を印加しつつ又は電圧を印加せずに、フォトマスクを介して液晶に平行光の照射を行い平面的に周期的な光の当たった部分の液晶のみを硬化させ、次いで透明電極間の電圧の印加状態を変えさらに液晶に光の照射を行うことによって、硬化していない残りの部分の液晶を硬化させて、硬化した液晶の配向方向が平面的に周期的に変化した回折格子を形成することを特徴とする液晶回折素子の製造方法を提供する。
【0010】
らに、上記のいずれかの製造方法で作成した液晶回折素子を用いた光ヘッド装置を提供する。
【0011】
【発明の実施の形態】
以下の記載において、「平面的に周期的」を単に「周期的」と表現する。また、「平行」又は「垂直」は、特記ないかぎり「基板面に平行」又は「基板面に垂直」を意味する。
【0012】
本発明では、対向する基板に形成する透明電極は、基板の片面のみに設けるベタのものとする。また、液晶回折素子の製造方法は2つに大別され、それぞれの方法において、前記電極間に電圧を印加しながら光の照射によって行う、液晶の周期的な配向形成の過程を2つの工程に分ける。ここで用いる液晶は、光重合開始剤と光重合禁止剤とを液晶に添加し、光重合禁止剤を含まない液晶と比べ、弱い光の照射に対して硬化の速さが小さくなるようにした液晶である。
【0013】
第1の製造方法として、第1の工程では、電極間に電圧を印加せず、液晶全体を平行に配向させながら、周期的な遮光パターンを有するフォトマスクを介して光が当たった液晶の部分をまず水平方向に硬化し、次の第2の工程では、この硬化した部分を含む液晶全体に垂直な電圧を印加しつつ硬化していない液晶の部分を垂直に配向させながら、硬化した部分を含む液晶全体に光の照射を行ってさらに硬化させる。
【0014】
第2の製造方法として、第1の工程では、基板面に垂直な電圧を印加しつつ液晶全体を垂直に配向させながら、周期的な遮光パターンを有するフォトマスクを介して光が当たった液晶の部分をまず垂直方向に硬化し、次の第2の工程では、電極間に電圧を印加せず硬化していない液晶の部分を水平に配向させながら、硬化した部分を含む液晶全体に光の照射を行ってさらに硬化させる。
【0015】
上記のいずれの製造方法でも同じ効果を有し、これらはともに硬化した液晶の配向方向が周期的に変化する液晶回折素子が得られる。
ここで使用するフォトマスクとしては、周期的な一方向の格子状の遮光パターンを有するものを使用すればよく、液晶を硬化させるための照射光としては紫外線や可視光線等を使用すればよい。
【0016】
配向膜は水平方向に配向処理することが好ましい。基板に対する水平方向の配向処理法としては、ラビング法やシリカ等の斜方蒸着法等を使用すればよい。
基板に対する水平方向のラビングによる配向処理は、フォトマスク面内で格子方向に垂直に行ってもよく平行に行ってもよいが、透過率の高さを考慮すると、格子方向に垂直に行う方が好ましい。いずれの場合も、液晶の配向方向の周期構造を作成すると、ラビング方向に平行な偏光を入射すると回折格子として機能し、垂直な偏光を入射すると回折格子としては機能せず単なる透明板となる。
【0017】
また、基板の表面での入射光による多重反射を低減するために基板の外側面に反射防止膜を形成することが好ましく、さらには液晶に面する基板の内側面にも形成すると、より好ましい。
【0018】
また、電圧印加用の透明電極は基板の片側全面に設けたベタの電極であるので、切れ目が存在しないため電極間の液晶の領域への電界の漏れの問題はない。したがって、漏れ電界によって水平方向に配向した液晶が垂直方向に引きずられることはない。また、電極は透明な導電性膜であり、金属薄膜やITO膜等を使用すればよい。
ここで、液晶回折素子を構成する基板はガラス、プラスチック等の透明基板が使用できる。
【0019】
フォトマスクの周期的な遮光パターンは遮光部と開口部とを合わせて一つの単位をなし、この単位の長さすなわち遮光パターンのピッチはどこでも同じである。また、開口部幅と前記パターンのピッチの比率が20%以上40%以下である遮光パターンを使用することによって、遮光パターンの開口部である透明部を通過した光線束同士の重なりを回避でき、また不要である高次の回折光の強度を低減できて好ましい。
また、フォトマスクと基板とが離れておりかつこれらの間にフォトマスクの開口部を通過した光線束をさらに平行化するための光学系を配置する方が好ましい。ここで、フォトマスクの遮光パターンのピッチは5〜50μmの範囲で適宜選択して使用すればよい。
【0020】
使用する液晶としては、アクリル酸又はメタクリル酸等のエステル類から選ぶのが好ましい。エステルを形成するアルコール残基にフェニル基が1個以上、特に2個又は3個含まれていることが好ましい。さらにエステルを形成するアルコール残基にシクロヘキシル基が1個含まれていてもよい。液晶として存在できる温度を広げるために、2成分以上混合して用いうる。
【0021】
また、参考として、第1の工程の光の照射をするときに、光の照射によって透明化する光重合開始剤を使用することによって、硬化する液晶の領域を限定できる。すなわち、この光重合開始剤の使用によって、フォトマスクを介して基板面から光が入射したとき、最初に光が入射した液晶の領域から徐々に透明化が進み、光の拡散を防止しながら透明化した領域に光が導かれ、液晶の領域を限定しながら光の照射をすることができる。
【0022】
光の照射によって透明化する効果があると考えられる光重合開始剤としては、ベンゾインイソプロピルエーテル、カンファキノン、2−メチル−1−[4−(メチルチオ)フェニル] −2−モルホリノプロパン−1−オン、o−クロルヘキサアミノビイミダゾル等がある。この光重合開始剤は液晶中に0.1〜3wt%添加することが好ましい。
【0023】
本発明においては、光重合開始剤とともに、弱い光で液晶の硬化の速さを低減するように光重合禁止剤を液晶に混入することにより、第1の工程の液晶の硬化過程において、フォトマスクを介した光の照射時に光の当たった液晶の部分と当たらなかった部分の境界領域における弱い漏れ光に対しては、光重合を禁止することによって光重合開始剤の機能を低下させ、液晶の特定部分での硬化を起こさせることができる。すなわち、強い光の照射部分では、光重合開始剤が作用して光重合が進行し、光の弱い部分では光重合禁止剤が作用して光重合が妨げられる。光重合禁止剤としては、2,4,6−トリ−tert−ブチルフェノール、ヒドロキノン等を使用できる。この光重合禁止剤は液晶中に0.5〜3wt%添加することが好ましい。
【0024】
本発明の光照射を行う場合、照射光を縮める縮小光学系を利用してフォトマスクを介して行うこともできるが焦点深度が浅くなるため、照射光を縮めない平行光を使用してフォトマスクを介する方が好ましい。また、フォトマスクを使用せず2つのレーザ光の干渉によって生ずる干渉縞のピッチを自由に変えた明暗の格子状パターンを利用する方法も適応できるが、これは生産性に問題があってフォトマスクを使用する方が好ましい。
【0025】
光ヘッド装置の光束分離素子として、本発明による液晶回折素子を使用することにより、光の利用効率の高い光ヘッド装置を得ることができる。この液晶回折素子の設置場所は、光ディスクからの戻り光を偏向させて、検出器に入射可能な場所であればどこでもよい。
【0026】
また、本発明による液晶回折素子を、光源である半導体レーザや検出器であるフォトダイオードを少なくとも有するホログラムレーザユニットに組み込むことができる。これによって、光利用効率の高いホログラムレーザユニットを提供できるとともに、光源、検出器、光束分離素子などが一体化できて、光ヘッド装置のコンパクト化を図れる。
【0027】
【実施例】
「例1」(参考例)
例1の液晶回折素子の製造方法を図1に示す。a)は第1の工程の光の照射、b)は第2の工程の光の照射の様子を表わす。
厚さ0.5mmのガラスを用いた基板11Aに、厚さ50nmのITO膜を用いた透明導電膜をスパッタ法により成膜した。ITO膜を用いたベタの透明電極12Aを基板11A上に設け、また対向する基板11BにもITO膜を用いたベタの透明電極12Bを形成し、両基板の対向する面(ITO膜の透明電極の形成面)に厚さ60nmのポリイミドの配向膜14A、14Bを形成し、基板面に水平でかつフォトマスク16の格子方向と垂直な方向にラビング布によってラビングを施した。
【0028】
2枚の基板11A、11B間でラビング方向を180°の反対方向として、両方の基板を対向させ、粒径3μmのスペーサを混合したシール材を周辺に配置して熱圧着し、両基板のギャップが約3μmのセル構造を作製した。その2枚の基板11A、11Bの間に4’−{ω−アクリロイルオキシ)アルキルオキシ}シアノビフェニルと、p−[4−{ω−(アクリロイルオキシ)アルキルオキシ}]安息香酸p’−n−アルキルオキシフェニルエステルとを主成分とする液状の液晶13を注入した。さらに、液晶13には光重合開始剤としてベンゾインイソプロピルエーテルを1wt%添加して紫外線による硬化性の液晶の組成物とした。
【0029】
第1の工程の光照射では、電圧発生器15を使用して透明電極12Aと12B間に10Vrms、100Hzの電圧を印加し全ての液晶を垂直に配向させながら、フォトマスク16を介して基板11Aに向けて約80mJの紫外線である照射光17を当てた。ここで光の照射に使用したフォトマスク16の遮光パターンは格子状であり、その開口部幅は3μm、周期ピッチは8μmであった。
フォトマスク16と基板11Aとの間に、フォトマスク16を通過した光束18をさらに平行化するためのプロジェクションアライナーを配置した(図示せず)。
【0030】
照射部の液晶は光重合による硬化が進み、電圧の印加を停止すると、非照射部の液晶と比べて配向方向の変化反応が低下し水平方向への戻りが見られなかった。
電圧の印加を停止した状態で、第2の工程の照射としてフォトマスクを介して、水平に配向した液晶を挟持した基板12Aの側から液晶全面に1500mJの紫外線である照射光17を当て光重合により液晶を硬化させ、液晶の配向方向が周期的に変化する構造を固定した。その後、基板の外周部を切断し外寸5.0mm角の液晶回折素子を作製した。
【0031】
作製した液晶回折素子は、波長650nmのレーザ光でありかつ基板のラビング方向と垂直な直線偏光に対しては、90%以上の透過率を示した。これに対し、ラビング方向と平行な直線偏光に対しては入射光は回折され合計約35%の1次光の回折効率が得られた。
【0032】
「例2」
例2の液晶回折素子の製造方法を図2に示す。a)は第1の工程の光の照射、b)は第2の工程の光の照射の様子を表わす。
厚さ0.5mmのガラスを用いた基板に、厚さ50nmのITO膜を用いたベタの透明電極22Aをスパッタ法により成膜した。基板21AのITO膜の成膜面とは反対の面に光学多層膜の蒸着により、液晶回折素子を使用するときの波長である650nmと光照射の波長である365nmに対して1%以下の反射率を有する反射防止膜29を形成した。2枚の基板21A、21Bの対向するITO膜の成膜面に厚さ60nmのポリイミドの配向膜24A、24Bを形成した後、例1と同じ方向に、ラビング布による水平方向のラビングを実施した。
【0033】
2枚の基板21A、21Bでラビング方向を180゜の反対方向として両方の基板21A、21Bを対向させ、粒径3μmのスペーサを混合したシール材を周辺に配置して熱圧着しギャップが約3μmのセル構造を作製した。この2枚の基板21A、21Bの間に4’−{ω−アクリロイルオキシ)アルキルオキシ}シアノビフェニルと、p−[4−{ω−(アクリロイルオキシ)アルキルオキシ}]安息香酸p’−n−アルキルオキシフェニルエステルとを主成分とする液状の液晶23を注入した。
【0034】
また、液晶23には光重合開始剤として1wt%のベンゾインイソプロピルエーテルを添加し、さらに光重合禁止剤として0.5wt%の2,4,6−トリ−tert−ブチルフェノールを添加して、紫外線による硬化性の液晶の組成物とした。上記の基板21Aの上面から紫外線である照射光27を当て、周期ピッチ8μmで開口部幅3μmの格子状の周期的な遮光パターンを有するフォトマスク26を介して発生した波長365nmの平行な紫外線の光束27を液晶23に約120mJ照射した。
この場合も例1と同様に、フォトマスク26と基板21Aとの間に、フォトマスク26を通過した光束28をさらに平行化するためのプロジェクションアライナーを配置した(図示せず)。
【0035】
第1の工程の紫外線の照射によりに照射部の液晶は硬化が進み、非照射部に比べて電圧印加による電界方向への液晶の配向反応が低下した。このとき、照射した紫外線の基板21A、21Bからの多重反射光強度が反射防止膜29により低減されているため、多重反射に基づく照射部と非照射部との境界線の顕著なボケは見られなかった。
【0036】
また、フォトマスクを介して光の当たっている液晶の照射部と当たっていない非照射部との境界部では光の回り込みは起きるが光強度が弱かったため、この境界領域では添加した光重合禁止剤が作用して液晶の光重合が進まず(本組成物は40mJ以下の弱い光では光重合が進まない)、この光強度が弱い液晶の部分を除いて、選択的に液晶を硬化させることができた。
【0037】
この状態で、電圧発生器25を用いて透明電極22A、22B間に15Vrms、100Hzの電圧を印加し、第1の工程では紫外線の非照射部であった液晶を垂直に配向させて、硬化が進んでいる照射部の液晶は平行に配向させたままとした。この電圧を印加した状態で、第2の工程の紫外線の照射として液晶を挟持した基板22Aの側から全面に1500mJの紫外線の照射光27を当て光重合により液晶を硬化させ、液晶の配向方向が周期的な硬化した液晶の構造を固定した。
【0038】
その後、基板の外周部を切断し外寸5.0mm角の液晶回折素子を作製した。作製した液晶回折素子は、波長650nmのレーザ光でありかつラビング方向と垂直な直線偏光に対しては、90%以上の透過率を示した。これに対し、ラビング方向と平行な直線偏光に対しては入射光は回折され合計約40%の1次光の回折効率が得られた。
【0039】
「例3」
例2で作成した液晶回折素子を光ヘッド装置の光検出部とコリメートレンズとの間に配置し、1/4波長板をコリメートレンズと集光レンズとの間に配置した。
【0040】
波長650nmの半導体レーザからの出射直線偏光の方向が、液晶回折素子のラビング方向と垂直となるように半導体レーザと液晶回折素子の方向関係を設定したので、半導体レーザからの出射光は液晶回折素子を通過する往路では透過率が90%であった。この光は1/4波長板を通過したのち円偏光となり光ディスクで反射され、反対方向に回転する円偏光の戻り光となり、再度1/4波長板を通過した戻り光は円偏光から直線偏光となって偏光方向が90゜回転し、液晶回折素子のラビング方向と偏光方向が平行となって液晶回折素子を通過したときの1次回折光の回折効率が40%であった。
【0041】
したがって、半導体レーザからの出射光は光記録媒体である光ディスクからの反射戻り光として、結果的に1次回折光の合計が約35%の強度の信号光として観測されて、光利用効率の高い良好な結果を得た。
【0042】
【発明の効果】
対向する透明基板に挟持された液晶を、周期的な遮光パターンを有するフォトマスクを介して光照射するとき、光照射の過程を2つの工程に分けかつ液晶への電圧の印加状態を変えて光照射を実施することにより、配向方向の異なる硬化した液晶の領域の境界線が明確でかつ微細な一方向の格子状の周期ピッチが得られ、それゆえに光の利用効率の高い液晶回折素子が容易に得られる。
【0043】
また、この液晶回折素子を光ヘッド装置に使用することにより、半導体レーザ光がこの液晶回折素子を往復するときの光の利用効率を高めることができ、低い出力のレーザ装置でも高いS/Nが得られ、また光ヘッド装置自体を小型・軽量化し、さらに光ヘッド装置の低消費電力化を実現できる。
【図面の簡単な説明】
【図1】例1の液晶回折素子の製造方法を示す断面図。a)第1の工程の光の照射、b)第2の工程の照射。
【図2】例2の液晶回折素子の製造方法を示す断面図。a)第1の工程の光の照射、b)第2の工程の光の照射。
【図3】従来の液晶回折素子の製造方法を示す断面図。
【符号の説明】
11A、11B、21A、21B:基板
12A、12B、22A、22B:透明電極
13、23:液晶
14A、14B、24A、24B:配向膜
15、25:電圧発生器
16、26:フォトマスク
17、27:照射光
18、28:光束
29:反射防止膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical head device for reading and recording information on an optical recording medium such as an optical disk such as a CD or CD-ROM, or a magneto-optical disk.
[0002]
[Prior art]
Conventionally, an isotropic grating is used as a diffraction element used in an optical head device. In this isotropic grating, a rectangular grating (relief type) is formed on glass or plastic by dry etching, injection molding, or the like, and light is diffracted by this grating to have a function as a beam splitter.
However, when this isotropic lattice is used in an optical head device, the light utilization efficiency is low. Specifically, the forward route is at most 50%, the return route is at most 20%, and the limit of about 10% is the round trip.
[0003]
In order to improve this efficiency, a liquid crystal diffraction element having an anisotropic grating is used. As this liquid crystal diffractive element, a lattice-like unevenness is provided on one inner surface of an opposing substrate and liquid crystal is sealed between both substrates, or a lattice-like planar periodic transparent electrode is provided on the substrate. It is known to form a diffraction grating by applying a voltage to a transparent electrode to change the alignment direction of the liquid crystal between a portion with the transparent electrode and a portion without the transparent electrode.
[0004]
In addition, the present inventors have developed a liquid crystal diffractive element using a photopolymerizable liquid crystal having both a structure exhibiting liquid crystallinity and a photopolymerizable structure. It has been proposed to irradiate the liquid crystal with ultraviolet light or the like while sandwiching unpolymerized liquid crystal between the substrates and applying a voltage to the planar periodic transparent electrodes provided on both substrates ( Japanese Patent Application No. 8-100369).
[0005]
FIG. 3 shows a method for manufacturing the proposed liquid crystal diffraction element. That is, the alignment films 34A and 34B for horizontal alignment are formed of polyimide or the like on the surface where the opposing substrates 31A and 31B are in contact with the liquid crystal 33, and the planar periodic transparent electrodes 32A and 32B provided on the opposing substrate are formed. The installation position is a position where the transparent electrodes 32A and 32B face each other. By applying a voltage to the transparent electrodes 32A and 32B by the voltage generator 35, the liquid crystal 33 is aligned perpendicular to the surfaces of the substrates 31A and 31B, and in a region where the planar transparent electrodes are not installed, the liquid crystal 33 is Therefore, the entire liquid crystal 33 is photopolymerized by ultraviolet irradiation light 37 to create an alignment state of the cured liquid crystal whose orientation direction periodically changes in a plane, thereby producing a liquid crystal diffraction element. It was.
[0006]
On the other hand, the conventional optical head device has a light source, a collimating lens for collimating the diverging light from the light source, a condensing means for forming collimated light collimated by this lens into a minute spot, and an optical disc in the state of minute spot light. After the reflected light containing the signal of (1) is returned to the condensing part, the light beam separating means for changing the traveling direction thereof, and after being deflected, separated and condensed by the light beam separating means, the separated light is received as signal light. Consists of components such as a light receiving element. Normally, the light source, the light beam separating means, and the light receiving element are installed at the closest positions.
[0007]
[Problems to be solved by the invention]
An anisotropic lattice for forming irregularities on the inner surface of the substrate has a problem of low productivity because the irregularity forming process and the liquid crystal injection process are necessary.
The liquid crystal diffractive element that forms a transparent electrode that is periodic in plane has a large volume due to the addition of a voltage generator, and the configuration becomes complicated. In addition, there was a problem that the electric field leaked and the boundary of the diffraction grating was blurred.
[0008]
Also, in the case of the proposed method, since the planar transparent electrode is used, the grating of the prepared liquid crystal diffraction element has a cause such as electric field leakage to the liquid crystal at the periphery of the transparent electrode. The pitch was not fine enough.
[0009]
[Means for Solving the Problems]
The present invention was made to solve the above-mentioned problems, and in the method for producing a liquid crystal diffraction element using a photopolymerizable liquid crystal, a photopolymerization initiator and a photopolymerization inhibitor are added to the liquid crystal, An alignment film on the surface of at least one of the opposing transparent substrates that is in contact with the liquid crystal, sandwiching the liquid crystal so that the curing speed is reduced with respect to weak light irradiation compared to a liquid crystal that does not contain a photopolymerization inhibitor A transparent electrode is provided on the entire surface of one side of both substrates, and a photomask having a periodic light-shielding pattern is disposed on the substrate surface while applying a voltage between the transparent electrodes of both substrates or Without applying a voltage, the liquid crystal is irradiated with parallel light through a photomask to cure only the liquid crystal in the area that is exposed to the planar periodic light, and then change the voltage application state between the transparent electrodes. By irradiating the liquid crystal with light To cure the liquid crystal of the remaining portion which is not cured, the alignment direction of the liquid crystal cured to provide a method of manufacturing a liquid crystal diffraction element and forming a dimensionally periodically varying the diffraction grating.
[0010]
Et al is to provide an optical head device using a liquid crystal diffraction element created by any of the manufacturing methods described above.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the following description, “planarly periodic” is simply expressed as “periodic”. Further, “parallel” or “perpendicular” means “parallel to the substrate surface” or “perpendicular to the substrate surface” unless otherwise specified.
[0012]
In the present invention, the transparent electrode formed on the opposing substrate is a solid electrode provided on only one side of the substrate. In addition, there are roughly two methods for manufacturing a liquid crystal diffraction element. In each method, a process for forming a periodic alignment of liquid crystals performed by light irradiation while applying a voltage between the electrodes is divided into two steps. Divide. The liquid crystal used here has a photopolymerization initiator and a photopolymerization inhibitor added to the liquid crystal so that the curing speed is reduced with respect to weak light irradiation compared to a liquid crystal not containing a photopolymerization inhibitor. It is a liquid crystal.
[0013]
As a first manufacturing method, in the first step, a portion of the liquid crystal irradiated with light through a photomask having a periodic light-shielding pattern while applying no voltage between the electrodes and aligning the entire liquid crystal in parallel Is cured in the horizontal direction, and in the next second step, the cured portion is aligned while the non-cured portion of the liquid crystal is vertically aligned while applying a vertical voltage to the entire liquid crystal including the cured portion. The entire liquid crystal is irradiated with light and further cured.
[0014]
As a second manufacturing method, in the first step, the liquid crystal is exposed to light through a photomask having a periodic light-shielding pattern while applying a voltage perpendicular to the substrate surface and aligning the entire liquid crystal vertically. The part is first cured in the vertical direction, and in the next second step, light is applied to the entire liquid crystal including the cured part while horizontally applying the uncured liquid crystal part without applying a voltage between the electrodes. To cure further.
[0015]
Any of the above manufacturing methods has the same effect, and both of them can provide a liquid crystal diffraction element in which the orientation direction of the cured liquid crystal changes periodically.
As the photomask used here, a photomask having a periodic unidirectional lattice-shaped light shielding pattern may be used, and ultraviolet light, visible light, or the like may be used as irradiation light for curing the liquid crystal.
[0016]
The alignment film is preferably subjected to an alignment treatment in the horizontal direction. As the alignment treatment method in the horizontal direction with respect to the substrate, a rubbing method, an oblique vapor deposition method such as silica, or the like may be used.
The alignment treatment by rubbing in the horizontal direction with respect to the substrate may be performed perpendicularly or parallel to the grating direction within the photomask plane, but considering the high transmittance, it is preferable to perform the alignment process perpendicularly to the grating direction. preferable. In any case, when a periodic structure in the alignment direction of the liquid crystal is created, it functions as a diffraction grating when polarized light parallel to the rubbing direction is incident, and functions as a diffraction plate when it does not function as a diffraction grating when incident perpendicularly polarized light.
[0017]
Further, in order to reduce multiple reflection due to incident light on the surface of the substrate, it is preferable to form an antireflection film on the outer surface of the substrate, and it is more preferable to form it on the inner surface of the substrate facing the liquid crystal.
[0018]
Further, since the transparent electrode for voltage application is a solid electrode provided on the entire surface of one side of the substrate, there is no problem of electric field leakage to the liquid crystal region between the electrodes because there is no break. Therefore, the liquid crystal aligned in the horizontal direction is not dragged in the vertical direction by the leakage electric field. The electrode is a transparent conductive film, and a metal thin film, an ITO film, or the like may be used.
Here, a transparent substrate such as glass or plastic can be used as the substrate constituting the liquid crystal diffraction element.
[0019]
The periodic light shielding pattern of the photomask forms one unit with the light shielding portion and the opening, and the length of this unit, that is, the pitch of the light shielding pattern is the same everywhere. Further, by using a light shielding pattern in which the ratio of the opening width and the pitch of the pattern is 20% or more and 40% or less, it is possible to avoid overlapping of light bundles that have passed through the transparent portion that is the opening of the light shielding pattern, Moreover, it is preferable because the intensity of unnecessary high-order diffracted light can be reduced.
In addition, it is preferable to dispose an optical system for further collimating the light beam that has been separated from the photomask and the substrate and passed through the opening of the photomask. Here, the pitch of the light shielding pattern of the photomask may be appropriately selected and used within a range of 5 to 50 μm.
[0020]
The liquid crystal to be used is preferably selected from esters such as acrylic acid or methacrylic acid. It is preferable that one or more, particularly 2 or 3 phenyl groups are contained in the alcohol residue forming the ester. Furthermore, one cyclohexyl group may be contained in the alcohol residue forming the ester. In order to widen the temperature at which the liquid crystal can exist, two or more components can be mixed and used.
[0021]
As a reference, the region of the liquid crystal to be cured can be limited by using a photopolymerization initiator that becomes transparent by light irradiation when light is irradiated in the first step. That is, by using this photopolymerization initiator, when light is incident from the substrate surface through the photomask, the transparency gradually proceeds from the region of the liquid crystal where light is first incident, and transparent while preventing light diffusion. Light is guided to the converted area, and light irradiation can be performed while limiting the liquid crystal area.
[0022]
Examples of photopolymerization initiators that are considered to be transparent by light irradiation include benzoin isopropyl ether, camphorquinone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one And o-chlorohexaaminobiimidazole. This photopolymerization initiator is preferably added in an amount of 0.1 to 3 wt% in the liquid crystal.
[0023]
In the present invention, in addition to the photopolymerization initiator, a photopolymerization inhibitor is mixed into the liquid crystal so as to reduce the speed of curing of the liquid crystal with weak light. For weak leaking light in the boundary region between the part of the liquid crystal that was exposed to light and the part that did not hit the light through the photopolymerization, the function of the photopolymerization initiator was reduced by prohibiting photopolymerization. Curing at a specific part can be caused. That is, the photopolymerization initiator acts to cause the photopolymerization in the portion irradiated with the strong light, and the photopolymerization inhibitor acts in the weak light portion to prevent the photopolymerization. As the photopolymerization inhibitor, 2,4,6-tri-tert-butylphenol, hydroquinone, or the like can be used. This photopolymerization inhibitor is preferably added in an amount of 0.5 to 3 wt% in the liquid crystal.
[0024]
In the case of performing the light irradiation of the present invention, it can be performed through a photomask using a reduction optical system that reduces the irradiation light, but since the depth of focus becomes shallow, a photomask using parallel light that does not reduce the irradiation light is used. Is preferred. In addition, a method using a bright and dark grid pattern in which the pitch of interference fringes generated by interference of two laser beams is freely used without using a photomask can also be applied. Is preferred.
[0025]
By using the liquid crystal diffraction element according to the present invention as the light beam separation element of the optical head device, an optical head device with high light utilization efficiency can be obtained. The liquid crystal diffractive element may be installed at any location as long as the return light from the optical disk is deflected and can enter the detector.
[0026]
Further, the liquid crystal diffraction element according to the present invention can be incorporated in a hologram laser unit having at least a semiconductor laser as a light source and a photodiode as a detector. Accordingly, a hologram laser unit with high light utilization efficiency can be provided, and a light source, a detector, a light beam separation element, and the like can be integrated, and the optical head device can be made compact.
[0027]
【Example】
"Example 1" (Reference example)
A method for producing the liquid crystal diffraction element of Example 1 is shown in FIG. a) represents light irradiation in the first step, and b) represents light irradiation in the second step.
A transparent conductive film using an ITO film having a thickness of 50 nm was formed by sputtering on a substrate 11A using glass having a thickness of 0.5 mm. A solid transparent electrode 12A using an ITO film is provided on the substrate 11A, and a solid transparent electrode 12B using an ITO film is formed on the opposing substrate 11B, and the opposing surfaces of both substrates (the transparent electrode of the ITO film) The polyimide alignment films 14A and 14B having a thickness of 60 nm were formed on the surface of the substrate, and rubbed with a rubbing cloth in a direction horizontal to the substrate surface and perpendicular to the lattice direction of the photomask 16.
[0028]
Between the two substrates 11A and 11B, the rubbing direction is opposite to 180 °, both substrates are opposed to each other, a sealing material mixed with a spacer having a particle diameter of 3 μm is arranged around the periphery, and thermocompression bonding is performed. Produced a cell structure of approximately 3 μm. Between the two substrates 11A and 11B, 4 ′-{ω-acryloyloxy) alkyloxy} cyanobiphenyl and p- [4- {ω- (acryloyloxy) alkyloxy}] benzoic acid p′-n— Liquid liquid crystal 13 mainly composed of alkyloxyphenyl ester was injected. Furthermore, 1 wt% of benzoin isopropyl ether as a photopolymerization initiator was added to the liquid crystal 13 to obtain a curable liquid crystal composition by ultraviolet rays.
[0029]
In the light irradiation of the first step, the voltage generator 15 is used to apply a voltage of 10 V rms and 100 Hz between the transparent electrodes 12A and 12B, and the liquid crystal is aligned vertically, while the substrate is interposed through the photomask 16. The irradiation light 17 which is an ultraviolet ray of about 80 mJ was applied toward 11A. Here, the light-shielding pattern of the photomask 16 used for light irradiation was in a lattice shape, the opening width was 3 μm, and the periodic pitch was 8 μm.
A projection aligner (not shown) is arranged between the photomask 16 and the substrate 11A to further collimate the light beam 18 that has passed through the photomask 16.
[0030]
The liquid crystal in the irradiated area was hardened by photopolymerization, and when the application of voltage was stopped, the change reaction in the alignment direction was lower than that in the non-irradiated area, and no return to the horizontal direction was observed.
In a state where the application of voltage is stopped, photopolymerization is performed by irradiating irradiation light 17, which is ultraviolet light of 1500 mJ, on the entire surface of the liquid crystal from the side of the substrate 12A sandwiching the horizontally aligned liquid crystal through the photomask as irradiation in the second step. Thus, the liquid crystal was cured to fix the structure in which the alignment direction of the liquid crystal changes periodically. Then, the outer peripheral part of the board | substrate was cut | disconnected and the liquid crystal diffraction element of an outer dimension 5.0 mm square was produced.
[0031]
The produced liquid crystal diffractive element was a laser beam having a wavelength of 650 nm and exhibited a transmittance of 90% or more for linearly polarized light perpendicular to the rubbing direction of the substrate. On the other hand, incident light was diffracted with respect to linearly polarized light parallel to the rubbing direction, and a diffraction efficiency of primary light of about 35% in total was obtained.
[0032]
"Example 2"
A method for producing the liquid crystal diffraction element of Example 2 is shown in FIG. a) represents light irradiation in the first step, and b) represents light irradiation in the second step.
A solid transparent electrode 22A using an ITO film having a thickness of 50 nm was formed on a substrate using glass having a thickness of 0.5 mm by sputtering. Reflection of 1% or less with respect to 650 nm which is a wavelength when using a liquid crystal diffraction element and 365 nm which is a wavelength of light irradiation by vapor-depositing an optical multilayer film on the surface opposite to the ITO film forming surface of the substrate 21A An antireflection film 29 having a refractive index was formed. After forming 60 nm-thick polyimide alignment films 24A and 24B on the opposing ITO film-forming surfaces of the two substrates 21A and 21B, horizontal rubbing with a rubbing cloth was performed in the same direction as in Example 1. .
[0033]
The two substrates 21A and 21B have the rubbing direction opposite to 180 °, both substrates 21A and 21B face each other, and a sealing material mixed with a spacer having a particle size of 3 μm is placed around the periphery and thermocompression bonded to provide a gap of about 3 μm. The cell structure was fabricated. Between these two substrates 21A and 21B, 4 ′-{ω-acryloyloxy) alkyloxy} cyanobiphenyl and p- [4- {ω- (acryloyloxy) alkyloxy}] benzoic acid p′-n— Liquid liquid crystal 23 mainly composed of alkyloxyphenyl ester was injected.
[0034]
Further, 1 wt% benzoin isopropyl ether is added to the liquid crystal 23 as a photopolymerization initiator, and 0.5 wt% 2,4,6-tri-tert-butylphenol is added as a photopolymerization inhibitor, and ultraviolet light is used. A curable liquid crystal composition was obtained. Irradiation light 27, which is ultraviolet light, is applied from the upper surface of the substrate 21A, and parallel ultraviolet light having a wavelength of 365 nm generated through a photomask 26 having a periodic light-shielding pattern in a lattice shape with a periodic pitch of 8 μm and an opening width of 3 μm. The light beam 27 was applied to the liquid crystal 23 for about 120 mJ.
Also in this case, as in Example 1, a projection aligner for further collimating the light beam 28 that passed through the photomask 26 was disposed between the photomask 26 and the substrate 21A (not shown).
[0035]
The liquid crystal in the irradiated part progressed by the ultraviolet irradiation in the first step, and the alignment reaction of the liquid crystal in the electric field direction due to voltage application was lower than that in the non-irradiated part. At this time, since the intensity of the multiple reflected light from the substrates 21A and 21B of the irradiated ultraviolet rays is reduced by the antireflection film 29, a noticeable blur of the boundary line between the irradiated part and the non-irradiated part based on the multiple reflection is seen. There wasn't.
[0036]
In addition, light wraparound occurs at the boundary between the irradiated part of the liquid crystal that is exposed to light through the photomask and the non-irradiated part that is not exposed, but the light intensity is weak, so the photopolymerization inhibitor added in this boundary region The photopolymerization of the liquid crystal does not proceed due to the action of this (this composition does not proceed with the weak light of 40 mJ or less), and the liquid crystal can be selectively cured except for the liquid crystal portion where the light intensity is weak. did it.
[0037]
In this state, a voltage generator 25 is used to apply a voltage of 15 V rms and 100 Hz between the transparent electrodes 22A and 22B, and in the first step, the liquid crystal that was not irradiated with ultraviolet rays is vertically aligned and cured. The liquid crystal in the irradiated area where the light is advanced is kept aligned in parallel. With this voltage applied, the liquid crystal is cured by photopolymerization by applying 1500 mJ ultraviolet irradiation light 27 from the side of the substrate 22A holding the liquid crystal as the ultraviolet irradiation in the second step, and the alignment direction of the liquid crystal is Fixed the structure of the periodically cured liquid crystal.
[0038]
Then, the outer peripheral part of the board | substrate was cut | disconnected and the liquid crystal diffraction element of an outer dimension 5.0 mm square was produced. The produced liquid crystal diffractive element was a laser beam having a wavelength of 650 nm and exhibited a transmittance of 90% or more for linearly polarized light perpendicular to the rubbing direction. On the other hand, incident light was diffracted with respect to linearly polarized light parallel to the rubbing direction, and a diffraction efficiency of primary light of about 40% in total was obtained.
[0039]
"Example 3"
The liquid crystal diffractive element prepared in Example 2 was disposed between the light detection unit of the optical head device and the collimating lens, and the quarter wavelength plate was disposed between the collimating lens and the condenser lens.
[0040]
Since the directional relationship between the semiconductor laser and the liquid crystal diffraction element is set so that the direction of the linearly polarized light emitted from the semiconductor laser having a wavelength of 650 nm is perpendicular to the rubbing direction of the liquid crystal diffraction element, the light emitted from the semiconductor laser is emitted from the liquid crystal diffraction element. The transmission rate was 90% in the outward path passing through. This light passes through the quarter-wave plate, becomes circularly polarized light, is reflected by the optical disc, and becomes circularly polarized return light that rotates in the opposite direction. The return light that has passed through the quarter-wave plate again changes from circularly polarized light to linearly polarized light. Thus, the polarization direction was rotated by 90 °, and the diffraction efficiency of the first-order diffracted light when passing through the liquid crystal diffraction element with the rubbing direction of the liquid crystal diffraction element parallel to the polarization direction was 40%.
[0041]
Accordingly, the light emitted from the semiconductor laser is reflected as reflected light from the optical disk, which is an optical recording medium, and as a result, the total of the first-order diffracted light is observed as signal light having an intensity of about 35%. Results were obtained.
[0042]
【The invention's effect】
When the liquid crystal sandwiched between the transparent substrates facing each other is irradiated with light through a photomask having a periodic light-shielding pattern, the light irradiation process is divided into two steps, and light is applied by changing the voltage application state to the liquid crystal. By performing irradiation, the boundary line of the hardened liquid crystal regions with different orientation directions can be clearly defined and a fine unidirectional lattice-like periodic pitch can be obtained. Therefore, a liquid crystal diffraction element with high light utilization efficiency can be easily obtained. Is obtained.
[0043]
Further, by using this liquid crystal diffractive element in an optical head device, it is possible to increase the light use efficiency when the semiconductor laser beam reciprocates through the liquid crystal diffractive element, and a high S / N can be obtained even in a low output laser device. Further, the optical head device itself can be reduced in size and weight, and the power consumption of the optical head device can be reduced.
[Brief description of the drawings]
1 is a cross-sectional view showing a method for producing a liquid crystal diffraction element of Example 1. FIG. a) Irradiation of light in the first step, b) Irradiation in the second step.
2 is a cross-sectional view showing a method for producing the liquid crystal diffraction element of Example 2. FIG. a) Light irradiation in the first step, b) Light irradiation in the second step.
FIG. 3 is a cross-sectional view showing a conventional method for manufacturing a liquid crystal diffraction element.
[Explanation of symbols]
11A, 11B, 21A, 21B: Substrates 12A, 12B, 22A, 22B: Transparent electrodes 13, 23: Liquid crystals 14A, 14B, 24A, 24B: Alignment films 15, 25: Voltage generators 16, 26: Photomasks 17, 27 : Irradiation light 18, 28: Light flux 29: Antireflection film

Claims (2)

光重合性の液晶を用いた液晶回折素子の製造方法において、光重合開始剤と光重合禁止剤とを液晶に添加し、光重合禁止剤を含まない液晶と比べ、弱い光の照射に対して硬化の速さが小さくなるようにした液晶を挟持して対向する透明基板の少なくとも一方の基板の液晶に接する面に配向膜を設け、両基板の片面の全面に透明電極を設け、さらに平面的に周期的な遮光パターンを有するフォトマスクを基板面上に配置して、両基板の透明電極間に電圧を印加しつつ又は電圧を印加せずに、フォトマスクを介して液晶に平行光の照射を行い平面的に周期的な光の当たった部分の液晶のみを硬化させ、次いで透明電極間の電圧の印加状態を変えさらに液晶に光の照射を行うことによって、硬化していない残りの部分の液晶を硬化させて、硬化した液晶の配向方向が平面的に周期的に変化した回折格子を形成することを特徴とする液晶回折素子の製造方法。In a method for producing a liquid crystal diffraction element using a photopolymerizable liquid crystal, a photopolymerization initiator and a photopolymerization inhibitor are added to the liquid crystal, and compared with a liquid crystal not containing a photopolymerization inhibitor, the light is not easily irradiated. An alignment film is provided on the surface of at least one of the opposing transparent substrates facing the liquid crystal so that the curing speed is reduced, and a transparent electrode is provided on the entire surface of one side of both substrates. A photomask having a periodic light shielding pattern is arranged on the substrate surface, and the liquid crystal is irradiated with parallel light through the photomask while applying a voltage between the transparent electrodes of both substrates or without applying a voltage. To cure only the liquid crystal in the part that has been periodically exposed to light, and then change the voltage application state between the transparent electrodes and irradiate the liquid crystal with light, so that the remaining uncured part is cured. The liquid crystal was cured and cured Method of manufacturing a liquid crystal diffraction element and forming a diffraction grating alignment direction of the crystal is changed in a plane periodically. 請求項1記載の製造方法で作成した液晶回折素子を用いた光ヘッド装置。An optical head device using a liquid crystal diffraction element created in claim 1 Symbol mounting method of manufacturing.
JP26219997A 1997-06-10 1997-09-26 Manufacturing method of liquid crystal diffraction element and optical head device using this element Expired - Fee Related JP4363675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26219997A JP4363675B2 (en) 1997-06-10 1997-09-26 Manufacturing method of liquid crystal diffraction element and optical head device using this element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15257897 1997-06-10
JP9-152578 1997-06-10
JP26219997A JP4363675B2 (en) 1997-06-10 1997-09-26 Manufacturing method of liquid crystal diffraction element and optical head device using this element

Publications (2)

Publication Number Publication Date
JPH1166597A JPH1166597A (en) 1999-03-09
JP4363675B2 true JP4363675B2 (en) 2009-11-11

Family

ID=26481446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26219997A Expired - Fee Related JP4363675B2 (en) 1997-06-10 1997-09-26 Manufacturing method of liquid crystal diffraction element and optical head device using this element

Country Status (1)

Country Link
JP (1) JP4363675B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074727A (en) * 2000-09-01 2002-03-15 Samsung Electro Mech Co Ltd Dynamic control diffraction grating as well as information recording and reproducing device and information reproducing device
KR20050117844A (en) 2004-06-11 2005-12-15 삼성전자주식회사 Pick-up device for beam

Also Published As

Publication number Publication date
JPH1166597A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
KR100642951B1 (en) Optical head device and production method thereof
KR100447017B1 (en) Optical head, Method of Manufacturing the Same, and Diffraction Element Suitable Therefor
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP4300784B2 (en) Optical head device
JP3624561B2 (en) Optical modulation element and optical head device
JP4363675B2 (en) Manufacturing method of liquid crystal diffraction element and optical head device using this element
JP3978821B2 (en) Diffraction element
JP2009025489A (en) Method for manufacturing liquid crystal optical element, and optical head device
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP3982025B2 (en) Manufacturing method of diffraction element
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3713778B2 (en) Optical head device
JP3528381B2 (en) Optical head device
JP3509399B2 (en) Optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JPH10188321A (en) Polarizing diffraction grating and optical head device using the same
JP3550873B2 (en) Optical head device
JP4179645B2 (en) Optical head device and driving method thereof
JP2005091939A (en) Polarization splitter, its manufacturing method, optical pickup, and optical recording medium driving gear
JP2005353207A (en) Polarizing hologram element, optical pickup device, and manufacturing method for them
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JPH09185837A (en) Optical head device
JPH11312329A (en) Polarizing diffraction element and optical head device
JPH09127335A (en) Manufacture of optical head device and optical head device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees