JP4327779B2 - 微細加工チップおよび使用方法 - Google Patents

微細加工チップおよび使用方法 Download PDF

Info

Publication number
JP4327779B2
JP4327779B2 JP2005255591A JP2005255591A JP4327779B2 JP 4327779 B2 JP4327779 B2 JP 4327779B2 JP 2005255591 A JP2005255591 A JP 2005255591A JP 2005255591 A JP2005255591 A JP 2005255591A JP 4327779 B2 JP4327779 B2 JP 4327779B2
Authority
JP
Japan
Prior art keywords
sample
channel
sample chamber
microfabricated chip
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005255591A
Other languages
English (en)
Other versions
JP2006071643A (ja
Inventor
エス.イェウン エドワード
パン ホ−ミン
フーティアン ハン
Original Assignee
コンビセップ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コンビセップ インコーポレーテッド filed Critical コンビセップ インコーポレーテッド
Publication of JP2006071643A publication Critical patent/JP2006071643A/ja
Application granted granted Critical
Publication of JP4327779B2 publication Critical patent/JP4327779B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/24Extraction; Separation; Purification by electrochemical means
    • C07K1/26Electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、広くはマルチプレックス吸光度式電気泳動システムに関する。具体的には本発明は、マルチプレックス吸光度式電気泳動システムで使用される微細加工チップおよびプロテオミクス研究での微細加工チップの使用方法に関するものである。
ヒトゲノムプロジェクトが完了したことで、ゲノム配列に依存した多数のポストゲノム応用が一気に登場することになった。しかしながら、DNA配列情報のみでは、遺伝子発現、共翻訳的および翻訳後修飾および表現型あるいは薬剤投与、細胞周期、腫瘍遺伝子、加齢、ストレスおよび疾患などの多重遺伝子現象を予測することはできない。恐らくは50万のヒトタンパク質およびその生理的状態もしくは疾患状態との関係が解明されるのは、かなり先のことになる。プロテオームは、最近登場した新たな基本概念であって、機能性分子レベルで複雑な多変量性疾患の生化学的および生理的機序を解明する闘いにおいて重要な役割を果たすはずである。プロテオミクスは、生理的プロセスをさらに解明するための異なる状態下でのプロテオームの定性的および定量的比較と定義することができる。プロテオミクスは、生理的状態または疾患状態における細胞系での遺伝子調節およびタンパク質プロファイルの変化を解明する努力において重要なテーマとなりつつある。まだ初期の段階ではあるが、プロテオミクスはすでに、生物学および医学における革命的な変化を約束するものである。
プロテオーム研究が発展し、それは現在でもなお、二次元ゲル電気泳動(2−DE)、そしてさらに最近では複合クロマトグラフィー法(例:LC−LC)などの多元的分離法の中心的技術に依存している。後者の方法が一般的になりつつあるにも拘わらず、二次元ゲル電気泳動は、複雑なタンパク質の混合物を分離することができ、全細胞、組織、さらには全生命体レベルでの多重遺伝子現象を追跡できることから、現在もなお最も頻繁に選択される選択法の一つとなっている。
2−DEは、2次元で互いに直角の方向に移動させることで、サンプル中のタンパク質を分離および同定する方法である。等電点電気泳動法(IEF)は第一の次元で使用され、等電点(pI)に従ってタンパク質を分離するものである。pIは、両性物質の電荷が中性となるpHである。pHがある物質のpIより高いと、それは負電荷を有し、その逆も言える。pH勾配のある媒体にタンパク質を置き、電場を加えると、タンパク質は最初に反対電荷を有する電極に向かって移動する。それが移動するに連れて、タンパク質の正味電荷と移動度が低下し、そのタンパク質の速度が低下する。最終的にタンパク質は、そのpIに等しいpH勾配の点に到達し、そこで中性となり、移動を停止する。そのタンパク質がより低い(高い)pHの領域まで拡散することが偶発的に起こったとしても、それは正電荷(負電荷)を帯びることになって、電場によって陰極(陽極)の方向に強制的に戻される。このようにしてタンパク質は、それらの個々の特徴的なpI値でpH勾配におけるシャープな帯域に集中する。SDS−PAGE(ドデシル硫酸ナトリウム−ポリアクリルアミドゲル電気泳動)は、タンパク質分離を分子量に基づいて行う第2の次元の分離方法である。SDSは全てのタンパク質に結合し、その基本的な効果は、タンパク質が均一な負電荷/質量比で移動するという点である。ポリアクリルアミドゲルの孔が、大きさ(すなわち、分子量)に応じてタンパク質を篩分けする。相対的に小さいタンパク質の方が、相対的に大きいタンパク質より、電場下でゲルを通って速く移動することから、分子篩が行われる。一次元電気泳動による分離方法と比較して、二次元の方法によって、サンプルをより広い面積で分離することが可能となり、各成分の分離能が高くなる。例えば、約100の帯域しか分離できないPAGE一次元分離とは異なり、二次元ゲルによる分離は、それよりかなり複雑なサンプルを分析することができる(例えば、一般的な二次元試験では、数千のスポットを分離することができる)。
最初に開発された時、2−DEは、第一次元のIEF分離のためのpH勾配を発生させるのにキャリア両性電解質(CA)を利用した。しかしながら、CA−IEFには多くの欠点がある。第一に、フォーカシングが長時間になるとpH勾配が陰極端方向に移動することを意味する陰極ドリフトのため、平衡CA−IEFが得られない。第二に、pH勾配の再現性も、CA調製物のバッチ間のばらつきと、CAの入手源による影響を受ける。従って、CA−IEFによって発生する二次元ゲル間の空間的な再現性の低さのために、研究室間での二次元ゲルデータの交換が大きな問題となっている。pH勾配の不安定さおよび再現性のなさという問題は、IEFにおける固定化pH勾配(IPG)の導入によって解決された。アクリルアミドのマトリクスと共重合したある種の化学物質は、かなり安定なpH勾配を形成する。IPGの利点には、陰極ドリフトの回避、再現性の向上がある。さらに、IPGを導入することで、分離能が大幅に改善され、特に狭い範囲のIPGではそれが顕著である。その進歩により、二次元ゲル電気泳動がプロテオーム分析の中核的技術となり、ペプチドフィンガープリント法、アミノ酸組成分析、ペプチド配列決定および質量分析によるスポット同定が容易になる。
しかしながら、この2−DE法にも、プロテオミクス研究でのその使用を制限し得る多くの欠点がある。二次元ゲル電気泳動の欠点には、労働集約的である点(サンプル処理、ゲル調製、染色)、時間がかかる点(通常は、一つの分析を完了するのに複数日を要する)、自動化が容易ではない点(常に人が監視する必要がある)などがある。スループットの低さが、プロテオーム分析に対する従来の手法の費用対効果に影響する別の重要な要素である。過去10年間にわたって電気泳動法では多くの改良が行われてきたが、二次元ゲル電気泳動に関連する上記の欠点はなおも存在する。その方法は、なおも冗長で、効率が低く、従来の二次元ゲルで複雑なタンパク質混合物を調製、装填、分離および目視化するのに要する時間はかなり長い。プロテオミクス研究のニーズを満足するためには、1)分離能が高くなったものでなければならない;2)感度が上がり、迅速化されたものでなければならない;3)自動化され、使用が容易でなければならない;4)高スループットの分析を行う能力がなければならない;5)より良くは、MSなどの他のいくつかの技術と組合せる可能性を持っている、という特徴を有する新たな技術を開発する必要が現在もある。
非常に多様な分子の分離において従来のゲル電気泳動に勝る多くの利点を提供するキャピラリー電気泳動(CE)を用いることで、迅速さ、感度、分離能および自動化における改善を行うことができる。並列のキャピラリー管を同時に用いるマルチプレックスキャピラリー電気泳動も、スループットを高めるものである。マイクロチップ上でのCEは、化学分析における次の革命をもたらす上で有望な最近登場した新技術である。過去10年間にわたり、分析装置の微細加工の分野は、難解な技術から、商業的に利用可能なシステムになるにつれて認知された技術へと成長してきた。それは短時間に数百個のサンプルを同時に定量する能力を有し、従来のCEよりMSとの連携が容易でもある。自然なpH勾配(Analytical Chemistry, 2000, 72, 3745-3751)または両性電解質によって形成するpH勾配(Electrophoresis, 2002, 23, 3638-3645)を用いる微細加工装置での等電点電気泳動法が報告されている。それは、従来の二次元ゲル電気泳動での第一次元分離に似ている。他方、微小流体チャネル中でタンパク質をその大きさに基づいて分離する研究が行われている(Proc. Natl. Acad. Sci. USA, 1999, 96, 5372-5377)。しかしながら、それらの利用は単一チャネル装置に基づいたものであることから、一次元分離のみを提供するものである。ホワイトサイズ(Whitesides)らは、PDMS(ポリジメチルシロキサン)によるチップ装置を構築し、それによって二次元ゲル電気泳動を行っている(Analytical Chemistry, 2002, 74, 1772-1778)。第一次元は等電点電気泳動法であり、第二次元はSDSゲル電気泳動である。しかしながら第一次元分離の後、装置を手動で分解し、再度組み立てることで、第一次元チャネルを第二次元チャネルに物理的に接続する必要があることから、その装置は部分的に自動化されていない。
これらの上記マイクロチップに基づく研究では蛍光検出を用いていたが、それにはタンパク質を色素で標識する必要があり、それによってサンプルの特性(例えば、pIおよび分子量)が変わることになる。実施が容易であり、特に有機化合物および生物学的に重要な化合物の遠紫外線(200〜220nm)検出において利用可能性が広くなることから、UV(紫外線)吸収検出がより有用である。UV検出システムでは、キャピラリー管または微細加工チャネルの断面をUV光源で照射する。光検出器が、管を通過する光を検出する。UV吸収性サンプル成分がキャピラリー管の照射部分を通過すると、光検出器が通過光の減少を検出する(吸光度を示す)。このようにして、吸光度−時間のプロットであるエレクトロフェログラムを得ることができる。多くの商業的なCEおよびHPLC(高速液体クロマトグラフィー)システムで、リアルタイムで分析物の吸収スペクトラムを得るのに、光ダイオードアレイ(PDA)が用いられている。流れにおける単一の点からの透過光が格子によって分散され、直線配列を通って記録される。PCT出願である国際公開第01/18528号パンフレットでヤン(Yeung)らは、複数のサンプルを同時に分析するためのマルチプレックス吸光度式キャピラリー電気泳動システムを開示している。UV吸光度を利用することで、従来の二次元ゲル電気泳動で用いられる長時間の主要な要因となっているタンパク質染色の必要性がなくなる。
本発明の主たる目的は、改善されたマルチプレックス吸光度式システムによってプロテオミクス研究での上記のニーズを満足することにある。
別の目的は、より高い迅速性、より高い感度、より高い分離能およびより高いスループットを提供する、自動化された、二次元ゲル電気泳動の代替法である。
さらに別の目的は、一次元で等電点電気泳動法を行うことができ、別の次元で大きさによるタンパク質分離を行うことができるチップに基づく微小流体装置である。
さらに別の目的には、分離機構、および二次元ゲル電気泳動と同様に記録される種類の情報が含まれる。さらに別の目的には、UV吸光度検出が含まれる。
上記および/または他の目的の一以上が、本明細書および特許請求の範囲から明らかになろう。
本発明の一態様によれば、微細加工チップ電気泳動システムは、複雑なタンパク質サンプルを分析することができる。そのシステムは、サンプルチャンバと、長手方向への第一のチャネル平面アレイと、前記サンプルチャンバを前記第一のチャネル平面アレイから分離する障壁とがある本体を有する微細加工チップを含む。そのシステムには、前記チャネルを通過する光を検出するための光検出器および前記光検出器に対して配置された光源がある。
本発明の別の態様によれば、微細加工チップによって複雑なタンパク質サンプルの分析が容易になる。前記微細加工チップは、サンプルの第一次元分離のためのサンプルチャンバを有する。前記微細加工チップには、前記サンプルチャンバに長手方向で隣接し、ほぼ垂直である第一のチャネル平面アレイと第一次元分離時に前記第一のチャネル平面アレイから前記サンプルチャンバを分離する障壁とを有する微細加工チップ本体がある。前記微細加工チップは、前記サンプルチャンバに隣接配置された第一の電場発生装置および分子量によってサンプルを分離するよう作製された前記第一のチャネル平面アレイに隣接する第二の電場発生装置を有する。
本発明の別の態様によれば、マルチプレックス吸光度式微細加工チップ電気泳動システムの使用方法が提供される。その方法は、サンプルチャンバに等電点電気泳動法によって処理されるべきサンプルを充填する段階、そして次に前記サンプルチャンバの周囲に障壁を設ける段階を含む。前記方法は、前記サンプル供給チャンバ内で等電点電気泳動法を行う段階、前記障壁を回避する段階、そして次に前記サンプルを第一のチャネルアレイ中に引き込む段階も有している。その方法はさらに、第一のチャネルアレイを通って光源から光を放出する段階、次に光検出器によって前記光源からの光を検出する段階を有する。
前記において説明した本発明は、マルチプレックス吸光度式電気泳動システムで用いられる微細加工チップである。本発明のシステムおよび方法は、タンパク質種の分離、検出および同定のためのものである。
本出願人らによれば、「チップ」とは、複数のサンプルに対して特化された電気的、化学的および/または機械的特性を有するように加工された個別の材料片を意味する。本出願人らによれば「微細加工」とは、約0.1μm〜約500μmの範囲の少なくとも一つの加工寸法を有する装置の構造的要素または特徴を指す。
図1および図2について説明すると、数字10は吸光度式電気泳動システムを指す。光線14が光源12で発生し、コリメータレンズ16、微細加工チップ20、フラットフィールドレンズ22、光学フィルター24を通って進み、検出器26に集まる。
光源12から光が放出される領域と微細加工チップ20との間の距離は、本発明の実施にはあまり重要ではない。しかしながら、光源12から光が放出される領域と微細加工チップ20との間の距離が短いほど、微細加工チップ20が受ける光が多くなる。微細加工チップ20が受ける光が多いほど、検出感度が高くなる。光源12から光が放出される領域と微細加工チップ20との間の距離が大きくなるほど、微細加工チップ20が受け取る光の均一性が高くなる。
好ましくは、微細加工チップ20と検出器26との間の距離は、アレイ全体を見ることができ、焦点が合うような距離である。図2には、光源12から放出される光の側面図を示してある。
図3でわかる通り、微細加工チップ20は本体30とカバー32を有する。本体とカバーは、エポキシ結合などの熱結合および/または他の結合法によって互いに貼り付けられている。本体30は、互いに対向する長手方向側面34と互いに対向する横方向側面36を有する。本体30は、上面38と底面40も有する。
微細加工チップの本体30およびカバー32に好ましい材料には、プラスチック、ポリ(ジメチルシロキサン)PDMS、石英もしくは溶融シリカ、ガラスおよび他の非導電性材料などがあるが、これらに限定されるものではない。微細加工チャネルおよびチャンバは、フォトリソグラフィー、湿式化学的エッチング、レーザアブレーション、エアアブレーション、射出成形、エンボス加工および他の方法などの各種加工方法によって、微細加工チップ本体30上に形成することができる。
PDMS−石英による方法を用いる場合、PDMSと石英の間の結合は、Oプラズマ処理を用いる。PDMSを石英に結合させる方法は、それらを接触させる前にOプラズマ中30ワットで60秒間にわたり基板を処理してから、基板間に空気が取り込まれるのを避けてそれらを注意深く接触させるというものである。次に、PDMS−石英製品を60℃の乾燥機中で10分間アニーリングすることで、PDMSと石英との間の不可逆的結合を促進する。次に、PDMSフィルムに穴を開けて、チャンバおよびチャネルへのアクセスを確保することができる。穴を覆うようにコネクタを貼り付けることで、ポンプ、バルブまたはシリンジなどの外部装置への接続を容易にすることができる。
図4でわかるように、本体30の上面38上には、個々の第一のチャネル44から構成される第一のチャネル平面アレイ42がある。第一のチャネル42は、第一のチャネル入口端46および第一のチャネル出口端48を有する。
「(複数の)チャネル」42は、複数個、好ましくは少なくとも約10個、より好ましくは少なくとも約90個、そして望ましくは、本明細書に記載のシステムが収容可能な数である。微細加工チップ20により、光源12からの光が、光源12に対向する微細加工チップ本体30を通り、チャネル42中のサンプルを通り、検出器26に対向する微細加工チップカバー32を通過することができる。そこで、微細加工本体30およびカバー32は望ましくは透明である。ただし、場合によっては、微細加工本体30およびカバー32は半透明であることができる。少なくとも一部が光の通過を可能とすることで、第一のチャネル平面アレイ42中のサンプルが光照射され、吸収性化学種およびサンプルによって吸収されない光が検出器26によって検出可能となる限りにおいて、微細加工本体30およびカバー32の全体が、上記のように光源12からの光を通過させ得ることは必要ではない。
通常、本体30によって画定されるチャネル42は、平滑な表面を有するものでなければならない。チャネル42の断面は、本発明においてはあまり重要ではない。しかしながら、個々のチャネル44の断面が小さいほど、より多くのチャネル44をより小さいスペースで用いることが可能であることから、高度に多重化された利用分野で微細加工チップ20の有用性が高まる。
本体30は、長さ4〜30cmの長手方向側面34および幅2〜10cmの横方向側面36を有することができる。本体30は、微細加工チップ20の構造的完全性を維持するだけの十分な厚さを有するべきであるが、逆に、第一のチャネル42を通る光の通過を妨げるほどの厚さであってはならない。
図5および6からわかるように、第一のチャネル42の形状は本発明においてはあまり重要ではない。第一のチャネル42は、任意の適切な形状を有することができる。しかしながら、チャネル44の大きさは50〜200μmである。望ましくは、チャネル42の形状は密に充填する上で役立つものであり、迷光の発生が最小限となるものである。第一のチャネル42は長さ約5cm〜約25cmのものである。
平面アレイにおけるチャネル44は、互いに隣接して実質的に平行であり、第一のチャネル平面アレイ42を形成している。
図3でわかるように、本体30の上面38は、第一のチャネル平面アレイ入口端46に対してほぼ横方向に配置された本体上で画定されるサンプルチャンバまたはサンプルチャネル50を有する。サンプルチャンバ50は、サンプルの等電点電気泳動用に、そして第一のチャネル平面アレイ42にサンプルを供給するために作製されたものである。サンプルチャンバ50は、対向する側辺上に配置されたサンプル供給管52、54を有する。サンプル供給管52、54は、微細加工チップ20のカバー32を通過し、サンプルチャンバ50に接触している。管52、54は、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレンまたはポリエチレンテレフタレートなどの不活性材料製であることができる。
微細加工チップ20は、第一のチャネル平面アレイ出口端48に対してほぼ横方向に位置する受液チャンバ56も有し、第一のチャネルアレイ42からサンプルを集めて受液するために作製されたものである。受液チャンバ56は、微細加工チップ20のカバー32を通り、受液チャンバ56に入る管58、60を有する。管58、60は、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレンまたポリエチレンテレフタレートなどの不活性材料製である。それらの管を用いて、第一のチャネル平面アレイ42にゲルマトリクス66を供給することができる。
個々の回収管64から構成される回収管のアレイ62が受液チャンバ56内にさらに配置されていて、第一のチャネル平面アレイ42から来るであろうサンプルを回収する。回収管は、個々のチャネル44のサンプルを回収するだけの微細なものであることができる。あるいは回収管62は、個々のチャネルより広くなっていることで、複数のチャネル44の集合したものを回収するようにすることができる。図4でわかるように、サンプルチャンバは、物理的境界98で画定および延在したサンプルチャンバ99を有することで、第一のチャネルアレイ44と位置合わせして外側へ延在することができる。
この延在チャンバの目的は、第一次元のIEF分離の分離能をさらに高めることにある。サンプルの化学的性質を最適化することで(すなわち、サンプルマトリクス中のN,N,N’,N’−テトラメチルエチレンジアミン(TEMED)濃度を変えることによって)、タンパク質を、延在サンプルチャンバ99のみに集中させることができる。この延在IEFチャネル99は画定された壁98を有していることから、タンパク質はかなり高い分離能で分離することができる。IEFが終了すると、集中したタンパク質の帯域をサンプルチャンバ50に移動する。
集中帯域の可動化(mobilization)は非常に重要である。流体力学的(hydrodynamic)可動化、EOF(電気浸透流)駆動(EOF-driving)可動化および動電的(electrokinetic)可動化などの各種可動化を用いることができる。第一の選択は、電流設定に追加的な修正が必要ないことからEOF駆動可動化である。残ったEOFは、分離されたタンパク質帯域を延在チャンバ99からサンプルチャンバ50中に移動させる一方、分離能はかなり保存される。結果から、EOFが集中タンパク質帯域の可動化を実現することができることが示された。
図8〜9および11〜12に示したゲルマトリクス66は、第一のチャネルアレイ42内にある。このゲルマトリクスは、一定の濃度での水溶性ポリマーおよびドデシル硫酸ナトリウム(SDS)から作製することができる。
第一の電場発生装置は、供給チャンバ50の対向する側面34に隣接して配置され、等電点電気泳動によってサンプルを分離するために作製された第一の端子70および第二の端子72を有する。
第二の電場発生装置は、本体30の横方向側面36上に配置された第一の端子74および第二の端子76を有する。第一の端子74および第二の端子76の組合せは、微細加工チップ20を横切る長手方向電場を発生させるために作製されている。
図4でわかるように、微細加工チップ20は、個々の第二のチャネル84から構成される第二のチャネル平面アレイ82も有することができる。第二のチャネル平面アレイ82は、第二のチャネル入口端86および第二のチャネル出口端88を有する。
緩衝液チャンバ90は、カバー32を貫通して緩衝液チャンバ90に入る緩衝液供給管92を有する。その管92を用いて、緩衝液104を緩衝液チャンバ90に供給することができる。緩衝液チャンバ中の緩衝液は第二のチャネル平面アレイ82を満たす。緩衝液は、等電点電気泳動後にタンパク質を含むサンプルにSDSを供給するためのものである。
図7〜9および10〜12に図示するため、6種類の成分から構成されるサンプルがサンプル供給チャンバ50中に分けて描かれている。成分120はpH3.4の等電点および中程度の分子量を有する。成分122は、pH3.5の等電点および大きい分子量を有する。成分124は、6.2の等電点と小さい分子量を有する。成分126は、7.6の等電点と大きい分子量を有する。成分128は、8.2の等電点と中程度の分子量を有する。成分130は、9.1の等電点と小さい分子量を有する。
図7でわかるように、微細加工チップをマルチプレックス吸光度式電気泳動システムで用いることができる。微細加工チップ20には最初に、サンプル供給チャンバ50に入れたサンプル102が供給される。
サンプル供給チャンバ50中のサンプルは、好ましくは1〜3%の両性担体とともに用いることができる。両性担体を用いると、等電点電気泳動でのpH勾配範囲はpH3〜10である。サンプル供給チャンバ50中のサンプルは、両性電解質を含まない溶液とともに用いることができる。両性電解質を含まない溶液では、等電点電気泳動におけるpH勾配範囲は、pH1〜14である。図7および12は、両性担体溶液を用いる微細加工チップを示したものであることから、等電点の範囲はpH3〜10である。
図7でわかるように、第一のチャネルアレイ42および第二のチャネルアレイ82の部分108を凍結させることで、サンプル102を孤立させる。凍結部分108により、等電点電気泳動時に側面のチャネルを通過する電流はかなり低下する。凍結部分108により、サンプルチャンバ50で分離されるサンプルに悪影響を与えるサンプルおよび緩衝種の拡散が低減される。水冷式放熱板を有する熱電気冷却器110A〜C(TEC)を用いて、緩衝液が凍結する温度に到達させることができる。3つのTEC装置を用いて、チャネルの所望の異なる部分を凍結させることができる。最初に、全てのチャネルにSDS篩緩衝液を充填する。サンプルをIEFチャネル中に充填する前に、TEC1(110A)およびTEC3(110C)を動作させて、サンプルチャンバ50の両側に配置された第二次元のチャネルを凍結させる。次に、IEFチャンバにサンプル溶液を充填し、図7でわかるようにIEF分離を開始する。電場によって、サンプルは等電点まで移動する。サンプルがその等電点になると、静止する。IEF分離終了後、TEC2(110B)を動作させて、サンプルチャンバ50で集中したタンパク質帯域を凍結させる。次に、TEC1(110A)およびTEC3(110C)を動作停止し、図8でわかるように、IEFチャネル50の凍結状態を維持しながら、第二次元チャネルを解凍する。次の段階で、高電圧電源装置をオンにし、IEFチャネル50を解凍することで、図9のように集中したタンパク質帯域は第二次元チャネル42に注入され、分離することができる。
図10でわかるように、別法として、サンプルチャンバ50内での分離を促進する手法には、物理的境界98を有するチャンバ延在部99を用いるものなどがある。サンプルの化学的性質を最適化することで(すなわちN,N,N’,N’−テトラメチルエチレンジアミン(TEMED)のサンプルマトリクス中での濃度を変えることで)、第一の端子70および第二の端子72を有する第一の電場発生装置を用いて、チャンバ延在部99でのみタンパク質を集中させることができる。IEFチャネルのこの部分は両側に画定された壁を有していることから、タンパク質をより高い分離能で分離することができる。前述のように、サンプル充填およびIEF分離を行う前に、TEC1(110A)およびTEC3(110C)を動作させて、第二次元チャネルを凍結させる。次に、集中したタンパク質帯域をサンプルチャンバ50の方へ移動させる。その移動プロセスを注意深く制御することで、分離能が保存されることが期待される。移動が終了したら、TEC2(110B)を動作させてサンプルチャンバ50で集中したタンパク質帯域を凍結させる。次に、TEC1(110A)およびTEC3(110C)を動作停止し、IEFチャネル50の凍結を維持しながら第二次元チャネルを解凍する。次の段階として、高電圧電源装置をオンにし、IEFチャネル50を解凍することで、集中したタンパク質帯域が第二次元チャネル42に注入され、分離することができる。
可動化プロセスには、流体力学的可動化、EOF(電気浸透流)可動化および動電的可動化などがある。図示のように、電気的セットアップに追加の変更が必要ないことから、EOF駆動可能化が用いられる。
緩衝液チャンバ90には、SDSを含む緩衝液104が入っている。図11でわかるように、チャンバ90からの緩衝液104で、第二のチャネル平面アレイ84を満たす。サンプル供給チャンバ50内において、緩衝液104でサンプル102を処理する。
図12でわかるように、サンプルを緩衝液で処理すると、それは電荷を持つ。その電荷によって、サンプルを電場での電気泳動により分離することができる。サンプルは、第一のチャネルアレイ内でゲルマトリクス66に触れさせると、第一のチャネルアレイ42内において分子量に応じて分離することができる。この分離は、第一の端子74および第二の端子76を有する第二の電場発生装置を用いることで行われる。
図1でわかるように、サンプルが第一のチャネルアレイに沿って移動するに連れて、光源12から放射された光線を横切る。この光が、光検出器26によって光源上を通過するサンプルを検出する手段を提供する。サンプル102が光線114を横切ったら、それは受液チャンバ56に回収することができる。
マイクロチップは再利用可能である。所望のサンプルが通過したら、第一の平面アレイ42におけるゲルマトリクスを流し出して、新たなゲルマトリクスに交換することができる。サンプルは再供給することができる。緩衝液は交換することができる。これら成分の供給および除去は、管52、54、58、60および92によって行うことができる。
等電点電気泳動および電気泳動分離に用いられる電位は、本発明においてはあまり重要ではない。代表的な電位は、5000〜30000Vの範囲である。
この方法の間、特にチャネル平面アレイ42の近傍で多量の熱が発生する場合、冷却を行って、熱を放散させる必要がある。ファンによって、微細加工チップ20を冷却することができる。
図1および2でわかるように、検出器26は、任意の適切な吸収検出手段を有することができる。検出器26は、望ましくは直線アレイで配置された複数の感光素子のような複数の吸収検出素子を有することが好ましい。ただし、二次元画像アレイ検出器を用いることができる。検出器26は望ましくは固定して搭載することで、フリッカー雑音を低減する。
光源12は好ましくは、約180nm〜約1500nmの範囲の波長の光を放出する。好適な光源12の例には、水銀(紫外(UV)光吸収用)、タングステン(可視光吸収用)、ヨウ素(UV光吸収用)、亜鉛(UV光吸収用)、カドミウム(UV光吸収用)、キセノン(UV光吸収用)または重水素(UV光吸収用)灯などがある。望ましくは光源12は、対象の化学種が吸収する波長の光を放出する。対象化学種がどの波長の光を吸収するかは、標準的な吸収スペクトル装置を用いて確認することができる。あるいは、そのような情報を提供するスペクトル測定表を当該技術分野では利用可能であり、国立科学技術研究所(National Institute of Science and Technology)によるものなどがある。望ましくは、与えられた、検出または測定を行うべき化学種について、最大吸収波長の光を選択することで、より少ない量の吸収性化学種が検出可能となる。光源12は、点光源であることができる。また好ましくは、光源12は約0.5mW〜約50mWの出力を有する。
好ましくは、生データセットから単一ダイオードエレクトロフェログラムを導出し、検出器26で収集した透過光強度を吸光度値に変換することで分析する。あるいは、5個、好ましくは3個もの隣接するダイオードをアレイの各チャネル44についてまとめて、全体的な信号/ノイズ比を高くすることができる。数学的平滑化を用いて、シグナルの歪みを起こすことなく、ノイズを大幅に低減することができる。それに関しては、できるだけ高いデータ収集率を用いて、平滑化のための多くのデータ点を提供するようにする必要がある。
チャネルが微細加工チップ本体30中に直接形成されることから、微細加工チップ20によって、キャピラリー管の使用および欠点が回避される。キャピラリー管では、光源12からの光が、光源に向いたキャピラリー管の壁、キャピラリー管中のサンプル、そして検出器に向いたキャピラリー管の壁を通過することを許容している。そこで、本体に直接チャネルを形成することにより、キャピラリー管壁を透過する光を用いることで起こる変動が排除される。通常、そのキャピラリー管は平滑な表面と均一な厚さの壁を有する。しかしながら、製造におけるばらつきにより、平滑ではない表面や厚さに変動のある壁が生じる場合がある。そこで、チャネルを本体に直接形成することで、キャピラリー管の製造で生じるばらつきが排除される。キャピラリー管は、サンプルを保持するための多様な断面を有する。しかしながら、サンプルを保持するための微細加工チャネルは、キャピラリー管の断面より小さく形成することができ、圧縮してよりコンパクトに形成することができる。サンプル保持用の断面を小さく、コンパクトに形成するほど、装置の有用性が高くなる。従って、より小さいスペースでより多くのチャネルを用いることができることから、微細加工チップは、高度に多重化された用途では、キャピラリー管のアレイより有用である。代表的には、平面アレイでのキャピラリー管は、互いに実質的に平行かつ隣接して配置される。しかしながら、キャピラリー壁の直径にわずかな不一致があると、それらが全長において接触できなくなり得る。微細加工チップは、本体30に直接微細加工されたチャネルを有することで、この問題を解決するものである。
上記の利点を全て有し、装置が縮小された微細加工チップ20は、以前のキャピラリー管デザインより効率が高い。この効率の良さにより、分析時間の短縮、可能性としてロボット工学による分析ユニットとしての微細加工チップの挿入および取り出しが可能である点、そしてより小さくコンパクトな面積で複数の試験が実施可能である点など、キャピラリー管デザインに勝る利点が得られる。
以上の図面および明細書では、本発明の好ましい実施形態について説明した。そして、具体的な用語を用いているが、それらは包括的かつ説明的な意味でのみ用いられるものであって、限定を目的とするものではない。添付の特許請求の範囲にさらに詳細に定義される本発明の精神または範囲から逸脱しない限りにおいて、状況により都合が良いことが示唆されたり必要である場合には、部品の形態および割合ならびに均等物の置換における変更が想到される。
吸光度式微細加工チップ電気泳動システムの斜視図である。 微細加工チップ上に配置された光源と検出器の側面図である。 本発明の微細加工チップの斜視図である。 サンプルチャンバが延在された微細加工チップの斜視図である。 5−5線での図3の断面図である。 6−6線での図3の断面図である。 6種類の混合された化学種を含むサンプルチャンバ内のサンプルを有する微細加工チップの斜視図である。 6種類の化学種が等電点電気泳動されたサンプルチャンバ内のサンプルを有する微細加工チップの斜視図である。 分子量によって分類された化学種を有する微細加工チップの斜視図である。 6種類の混合された化学種を含むサンプルチャンバ内のサンプルを有する延在されたサンプルチャンバがある微細加工チップの斜視図である。 6種類の化学種が等電点電気泳動されたサンプルチャンバ内のサンプルを有する延在されたサンプルチャンバがある微細加工チップの斜視図である。 分子量によって分類された化学種を有する延在されたサンプルチャンバがある微細加工チップの斜視図である。
符号の説明
10 吸光度式電気泳動システム
12 光源
14 光線
16 コリメータレンズ
20 微細加工チップ
22 フラットフィールドレンズ
24 光学フィルター
26 光検出器
42 第一のチャネル平面アレイ
50 サンプルチャンバ
56 受液チャンバ
64 回収管
66 ゲルマトリクス
82 第二のチャネル平面アレイ
90 緩衝液チャンバ
99 延在サンプルチャンバ104 緩衝液
108 障壁

Claims (8)

  1. マルチプレックス吸光度式微細加工チップ電気泳動システムであって、
    サンプルの第一次元分離のためのサンプルチャンバと、
    前記サンプルチャンバに対してほぼ垂直である、前記サンプルの第二次元分離のための第一のチャネル平面アレイと、
    第一次元分離時に前記第一のチャネル平面アレイから前記サンプルチャンバを分離する障壁と、
    を有する微細加工チップ;
    前記第一のチャネル平面アレイを通過する光を検出するための光検出器;および
    前記光検出器に対して配置された光源
    を有するシステムにおいて、
    前記微細加工チップがさらに、前記チャネルからのサンプルを集合させて受液するよう作製された、第一のチャネル平面アレイ出口端に対してほぼ横方向の受液チャンバを有し、
    前記微細加工チップがさらに、前記受液チャンバに固定され、前記チャネルからのサンプルを回収するよう作製された、前記チャネル平面アレイと一致するよう配列された回収管のアレイを有する前記システム。
  2. 複数のサンプルを分析する吸光度式電気泳動システムで用いられる微細加工チップであって、
    サンプルの第一次元分離のためのサンプルチャンバ;
    前記サンプルチャンバに対して隣接し、ほぼ垂直に配置された、前記サンプルの第二次元分離のための第一のチャネル平面アレイ;
    第一次元分離時に前記第一のチャネル平面アレイから前記サンプルチャンバを分離する障壁;
    前記サンプルチャンバに隣接配置された第一の電場発生装置;
    前記第一のチャネル平面アレイに隣接配置された第二の電場発生装置
    を有する微細加工チップにおいて、
    前記第一のチャネル平面アレイに隣接した受液チャンバをさらに有し、
    前記サンプル供給チャンバに隣接配置された第二のチャネル平面アレイをさらに有し、
    前記第二のチャネル平面アレイにほぼ隣接した緩衝液チャンバをさらに有し、
    前記第一のチャネル平面アレイ内にゲルマトリクスをさらに含み、
    等電点電気泳動後にタンパク質を含むサンプルに電荷を供給するよう作製された前記第二のチャネル平面アレイ内の緩衝液をさらに含み、
    前記チャネルからのサンプルを回収するよう作製された前記受液チャンバ内の回収管アレイをさらに有する前記微細加工チップ。
  3. 複数のサンプルを分析する吸光度式電気泳動システムで用いられる微細加工チップであって、
    サンプルの第一次元分離のためのサンプルチャンバ;
    前記サンプルチャンバに対して隣接し、ほぼ垂直に配置された、前記サンプルの第二次元分離のための第一のチャネル平面アレイ;
    第一次元分離時に前記第一のチャネル平面アレイから前記サンプルチャンバを分離する障壁;
    前記サンプルチャンバに隣接配置された第一の電場発生装置;
    前記第一のチャネル平面アレイに隣接配置された第二の電場発生装置
    を有する微細加工チップにおいて、
    前記サンプルチャンバが、前記チャネル平面アレイを超えて延在することで、前記サンプルチャンバの一部分を画定している前記微細加工チップ。
  4. 前記サンプルチャンバが、前記サンプル中のタンパク質を前記一部分に等電点電気泳動させ得るような最適化されたサンプルマトリクスを含む請求項3に記載の微細加工チップ。
  5. 前記サンプルを、前記一部分から、電気浸透流駆動可動化によって前記第一のチャネル平面アレイに対し一直線上にある前記サンプルチャンバ中に移動させることができる請求項4に記載の微細加工チップ。
  6. 前記サンプルを、前記一部分から、動電的可動化によって前記第一のチャネル平面アレイに対し一直線上にある前記サンプルチャンバ中に移動させることができる請求項4に記載の微細加工チップ。
  7. 前記サンプルを、前記一部分から、流体力学的可動化によって前記第一のチャネル平面アレイに対し一直線上にある前記サンプルチャンバ中に移動させることができる請求項4に記載の微細加工チップ。
  8. 複数のサンプルを分析する吸光度式電気泳動システムで用いられる微細加工チップであって、
    サンプルの第一次元分離のためのサンプルチャンバ;
    前記サンプルチャンバに対して隣接し、ほぼ垂直に配置された、前記サンプルの第二次元分離のための第一のチャネル平面アレイ;
    第一次元分離時に前記第一のチャネル平面アレイから前記サンプルチャンバを分離する障壁;
    前記サンプルチャンバに隣接配置された第一の電場発生装置;
    前記第一のチャネル平面アレイに隣接配置された第二の電場発生装置
    を有する微細加工チップにおいて、
    前記障壁が、等電点電気泳動時にサンプルチャンバと前記第一のチャネル平面アレイとの間の電流を低減し、かつ
    前記障壁が、前記第一のチャネル平面アレイの凍結領域である前記微細加工チップ。
JP2005255591A 2004-09-03 2005-09-02 微細加工チップおよび使用方法 Expired - Fee Related JP4327779B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/934,259 US7497937B2 (en) 2004-09-03 2004-09-03 Microfabricated chip and method of use

Publications (2)

Publication Number Publication Date
JP2006071643A JP2006071643A (ja) 2006-03-16
JP4327779B2 true JP4327779B2 (ja) 2009-09-09

Family

ID=35995102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255591A Expired - Fee Related JP4327779B2 (ja) 2004-09-03 2005-09-02 微細加工チップおよび使用方法

Country Status (2)

Country Link
US (1) US7497937B2 (ja)
JP (1) JP4327779B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359354C (zh) * 2006-04-14 2008-01-02 上海光谱仪器有限公司 一种微型全分析系统芯片高度定位方法
US8834697B2 (en) * 2007-04-25 2014-09-16 Shimadzu Corporation Electrophoresis apparatus and a method for electrophoresis
JP2008309539A (ja) * 2007-06-13 2008-12-25 Norio Okuyama 2次元電気泳動装置
JP2009042004A (ja) * 2007-08-07 2009-02-26 Norio Okuyama 電気泳動用支持体
FI120089B (fi) * 2008-01-23 2009-06-30 Kone Corp Menetelmä hissin asentamiseksi
US7901557B2 (en) * 2009-04-20 2011-03-08 Advanced Analytical Technologies, Inc. Method for multiplexed capillary electrophoresis signal cross-talk correction
US8475640B2 (en) * 2009-04-20 2013-07-02 Advanced Analytical Technologies, Inc. Method for multiplexed capillary electrophoresis signal cross-talk correction
US8357281B2 (en) * 2009-09-21 2013-01-22 Advanced Analytical Technologies, Inc. Multi-wavelength fluorescence detection system for multiplexed capillary electrophoresis
JP5061261B2 (ja) * 2012-02-02 2012-10-31 株式会社テクノフロント 電気泳動用支持体の作製方法
WO2015175906A1 (en) * 2014-05-15 2015-11-19 Brigham Young University Low-power miniature led-based uv absorption detector with low detection limits for capillary liquid chromatography
CN108027203B (zh) 2015-07-22 2020-11-03 北卡罗来纳-查佩尔山大学 具有利用冰成核剂的冻结-解冻阀的流体装置和相关的操作和分析方法
CN107219289A (zh) * 2017-05-16 2017-09-29 苏州伯楷安生物科技有限公司 一种等电聚焦电泳仪
CN108445069B (zh) * 2018-06-01 2024-01-30 上海交通大学 带有微阵列固定化pH梯度柱的等电聚焦电泳芯片及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417967A (en) * 1981-11-24 1983-11-29 Georgetown University Grooved gel
US4874490A (en) * 1988-11-04 1989-10-17 Bio-Rad Laboratories, Inc. Pre-cast gel systems for two-dimensional electrophoresis
JP2910319B2 (ja) * 1990-11-30 1999-06-23 株式会社日立製作所 細溝型電気泳動装置
US5989402A (en) * 1997-08-29 1999-11-23 Caliper Technologies Corp. Controller/detector interfaces for microfluidic systems
US5948227A (en) * 1997-12-17 1999-09-07 Caliper Technologies Corp. Methods and systems for performing electrophoretic molecular separations
US6306273B1 (en) * 1999-04-13 2001-10-23 Aclara Biosciences, Inc. Methods and compositions for conducting processes in microfluidic devices
WO2001018528A1 (en) 1999-09-09 2001-03-15 Iowa State University Research Foundation, Inc. Method of analyzing multiple samples simultaneously by detecting absorption and systems for use in such a method
DE60026363T2 (de) * 2000-10-25 2006-11-09 Xiamen University, Xiamen Elektroforetische trennungsvorrichtung und zugehöriges verwendungsverfahren
US6974526B2 (en) * 2001-05-01 2005-12-13 Calibrant Biosystems, Inc. Plastic microfluidics enabling two-dimensional protein separations in proteome analysis

Also Published As

Publication number Publication date
US7497937B2 (en) 2009-03-03
JP2006071643A (ja) 2006-03-16
US20060049051A1 (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP4327779B2 (ja) 微細加工チップおよび使用方法
EP2027250B1 (en) Apparatus and method for detecting one or more analytes
JP3896739B2 (ja) キャピラリー電気泳動装置
US7914656B2 (en) Matrixes, arrays, systems and methods
US7641780B2 (en) Two-dimensional microfluidics for protein separations and gene analysis
EP1391723B1 (en) Method and apparatus for analyzing a mixture of sample substances
JPH10160705A (ja) キャピラリー電気泳動装置
AU2002322513A1 (en) Arrays of buffers for analysing biomolecules by their isoelectric point
MacTaylor et al. Critical review of recent developments in fluorescence detection for capillary electrophoresis
US6387235B1 (en) Apparatus for the separation and fractionation of differentially expressed gene fragments
Dada et al. Capillary array isoelectric focusing with laser-induced fluorescence detection: milli-pH unit resolution and yoctomole mass detection limits in a 32-channel system
JP4613286B2 (ja) 粒子の処理方法
US6969452B2 (en) Two-dimensional protein separations using chromatofocusing and multiplexed capillary gel electrophoresis
US6833919B2 (en) Multiplexed, absorbance-based capillary electrophoresis system and method
US6833062B2 (en) Multiplexed, absorbance-based capillary electrophoresis system and method
Lee et al. Microfluidic free-flow electrophoresis: A promising tool for protein purification and analysis in proteomics
JP4282021B2 (ja) 物質移動の制御方法
Dovichi et al. DNA sequencing by capillary array electrophoresis
US7534335B2 (en) Multiplexed, absorbance-based capillary electrophoresis system and method
CN111812091A (zh) 芯片凝胶电泳及其在线uv-vis成像检测装置
Tanret et al. Detection systems for microfluidic devices with a major focus on pharmaceutical and chiral analysis
Kamahori et al. Capillary array electrophoresis analyzer
Flaherty Development and improvement of capillary electrophoresis methods and instrumentation
JP2003227813A (ja) キャピラリー電気泳動装置
Laine V2D: Virtual Two-Dimensional Capillary Electrophoresis for Protein Separation and Identification

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees