JP4319377B2 - 永久磁石電動機の駆動装置及び密閉形圧縮機及び冷凍サイクル装置及び永久磁石発電機の駆動装置 - Google Patents

永久磁石電動機の駆動装置及び密閉形圧縮機及び冷凍サイクル装置及び永久磁石発電機の駆動装置 Download PDF

Info

Publication number
JP4319377B2
JP4319377B2 JP2002160780A JP2002160780A JP4319377B2 JP 4319377 B2 JP4319377 B2 JP 4319377B2 JP 2002160780 A JP2002160780 A JP 2002160780A JP 2002160780 A JP2002160780 A JP 2002160780A JP 4319377 B2 JP4319377 B2 JP 4319377B2
Authority
JP
Japan
Prior art keywords
motor
permanent magnet
magnet motor
inverter
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002160780A
Other languages
English (en)
Other versions
JP2004007924A (ja
Inventor
洋介 篠本
守 川久保
信也 西田
正明 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002160780A priority Critical patent/JP4319377B2/ja
Publication of JP2004007924A publication Critical patent/JP2004007924A/ja
Application granted granted Critical
Publication of JP4319377B2 publication Critical patent/JP4319377B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、永久磁石電動機を駆動する駆動装置に関するもので、特に電動機の回転軸の推定方法、この推定方法により電動機定数を駆動装置自身で同定する駆動装置に関する技術である。
【0002】
【従来の技術】
図20は、例えば特開2000−341999号公報に示された従来の同期電動機の逆起電圧定数の定数同定方法に関するものである。同公報では、逆起電圧定数を誘起電圧定数と記述しているが、同一のものである。図20において、101は速度コントローラ、102はδ軸電流コントローラ、103はγ軸電流コントローラ、104はベクトル制御回路、105はインバータ回路、106は同期電動機、108はγδ軸電流、誘起電圧推定器、113は電動機定数同定器である。
【0003】
次に動作について説明する。γδ軸電流、誘起電圧推定器108にて、γδ軸上での電流推定値および誘起電圧推定値を出力する。電動機定数同定器113では、出力された電流推定値及び誘起電圧推定値に基づいてδ軸電流コントローラ102およびγ軸電流コントローラ103にて電動機106に流れる電流をコントロールし、誘起電圧推定器108にて推定される誘起電圧推定値を更に求める。これらの推定値の偏差がゼロになるよう定数同定を電動機定数同定器113にて行い、定数の同定を行うものである。
【0004】
これにより、同定された電動機定数によって高性能な電動機制御ができるとしている。
【0005】
また、図21は、例えば特開2001−69783号公報に示された従来の同期電動機のインダクタンス成分などの電動機定数の定数同定方法に関するものである。同公報では、逆起電圧定数を起電力係数と記述しているが、同一のものである。パルス印加によりインダクタンスを計測する技術が開示されている。図21において、151は永久磁石電動機、154はトランジスタインバータ、155はスイッチング素子、156はダイオードである。
【0006】
特開2001−69783号公報に示されている技術は、スイッチング素子155のu+、v−、w−とu−、v+、w−とu−、v−、w+の3種のパルス印加によって得られた電流を静止座標変換することでインダクタンスを計測できるとしている点が特徴である。
【0007】
また、図22は特開2000−245191号公報に示された従来のブラシレス直流モータの駆動装置に関するものである。これは、電動機が回転中に印加電圧を遮断し、その際の端子電圧と速度を検出することによって、逆起電圧定数を算出するものである。
【0008】
【発明が解決しようとする課題】
特開2000−341999号公報に示されている技術は、同期電動機の位置を検出しない位置センサレス方式を採用している。そのため、速度の推定や位置の推定を行うことも同時に行うような制御ブロックに図20はなっている。
【0009】
しかしながら、速度や位置を推定するために電動機定数は必要なのであるが、その電動機定数を同定する為、γδ軸上の電流の推定値と検出値とから誘起電圧を推定し、電動機定数を同定している。このように制御ブロックを構成すると、電動機定数の同定に誤差を生じると、速度や位置の推定にも誤差を生じる結果となり、位置の推定に誤差が生じると、3相電流をγδ軸上の電流に変換する部分にも誤差が発生し、推定の推定にて成り立つ制御であるため、全ての推定に対し誤差が許容されない高性能な制御が必要とされる技術である。
【0010】
さらに、γδ軸電流を定数同定のために電流制御するため、同定のために電圧を印加しており、モータの最高効率動作点となるような最適電圧印加となっていない。特開2000−341999号公報に示されている技術は、電動機の効率よりも速度応答性や安定性などいった制御性能を追求する技術である。さらに、センサレス制御方法を変更させた場合、逆起電圧定数同定ができなくなり、同公報に示されたセンサレス技術のみに適用できる技術である。
【0011】
また、特開平9−191698号公報にも同様な技術が記載されているが、位置推定を行う制御ブロック内部にて電動機定数を同定、推定をする制御ブロックを構成しており、これも制御性能を追求する技術である。
【0012】
次に特開2001−69783号公報に示されている技術についてであるが、微少時間パルスを印加するとしているが、その微少時間は永久磁石電動機151の時定数L/Rよりも充分に短い時間と記されている。定数が不明である電動機定数を計測するためのパルス時間が電動機定数の時定数L/Rよりも充分短い時間というのは矛盾がある。
【0013】
さらに、パルス時間が短すぎる場合、電流が充分に流れずに、パルス印加による残留磁束によって、電流にオフセットが発生し正確なインダクタンス計測ができなくなるといった課題がある。この課題解決のために印加パルスの微少時間を広げる必要があるが、電動機定数の時定数L/Rよりも充分短い時間程度に抑える必要があり、ある程度、インダクタンス成分の値が既知である場合、非常に有効な手段である。
【0014】
また、特開2001−69783号公報には逆起電圧定数を算出する技術についても示されている。同公報での方式は、既存のセンサレス駆動中に推定した起電力による速度誤差を調整するように起電力係数を調整するというもので、起電力推定を行うセンサレス制御でのみ適用できる技術である。
【0015】
特開2000−245191号公報に示される技術では、一時的にも印加電圧を遮断してしまうため、電動機の速度が低下し、電動機に接続されている負荷によっては、印加電圧を遮断することは不可能であることもある。また、負荷の慣性力が小さい場合、印加電圧の遮断後に素早く電動機の端子電圧および速度を検出する検出の速度応答も必要であり、そのような状態の速度の検出は、非常に高い精度が要求される。
【0016】
また、印加電圧の遮断を瞬時に解除しても電動機が停止もしくは停止状態に近い状態にまで速度が低下してしまい、再起動といった状況といった状況に陥る可能性がある。センサレス駆動の場合、100%起動が確実とは言えず、逆起電圧定数の同定のために電動機が一時的にも停止してしまう恐れがある。
【0017】
さらに、特開2000−312498号公報にも永久磁石同期電動機の電動機定数を同定する同定方法の技術が示されている。これは、永久磁石の磁束φを回転中に検出する方法であるが、位置センサレスではなく、位置センサを用いたセンサ駆動の構成であるため、特開2000−312498号公報に示される技術をセンサレス駆動に適用することは非常に難しい。
【0018】
また、特開平9−182499号公報、および特開平10−229700号公報にも電動機定数を同定する技術が示されているが、前述と同様に位置センサによって電動機定数を精度良く検出可能な技術であって、位置センサレスの場合、適用は難しい。
【0019】
この発明は上記のような問題点を解決するためになされたもので、電動機の真の回転座標軸を推定することが可能な推定器を有することで、どのような位置センサレス駆動においても逆起電圧定数検出を実現し、かつ軸推定器を利用した位置センサレス駆動も実現する永久磁石電動機の駆動装置を得ることを目的とする。
さらに、パルス印加の時間に係わらず精度良くインダクタンスを計測する永久磁石電動機の駆動装置を得ることを目的とする。
【0020】
【課題を解決するための手段】
この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の軸誤差分を、予め設定された所定の回転数での永久磁石電動機に印加される瞬時電圧と永久磁石電動機に流れる瞬時電流値から算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器を備えたことを特徴とする。
【0021】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の軸誤差分を、永久磁石電動機に印加される瞬時電圧と、永久磁石電動機に流れる瞬時電流値と、検出されたあるいは演算にて算出された回転数とから算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器を備えたことを特徴とする。
【0022】
また、この発明に係る永久磁石電動機の駆動装置は、インバータの回転座標軸は、永久磁石電動機の回転子の位置を検出して得られた位置を用いることを特徴とする。
【0023】
また、この発明に係る永久磁石電動機の駆動装置は、インバータの回転座標軸は、電動機の回転子の位置を検出せず、駆動装置内部の演算にて得られた位置を用いることを特徴とする。
【0024】
また、この発明に係る永久磁石電動機の駆動装置は、モータ軸推定器の出力に基づいて、永久磁石電動機の動作判定を行う動作判定部を備えたことを特徴とする。
【0025】
また、この発明に係る永久磁石電動機の駆動装置は、動作判定部は、起動の判別を行うことを特徴とする。
【0026】
また、この発明に係る永久磁石電動機の駆動装置は、動作判定部は、脱調による永久磁石電動機停止前に脱調を抑制するために、インバータへの電圧指令値を変化させるように指示することを特徴とする。
【0027】
また、この発明に係る永久磁石電動機の駆動装置は、動作判定部は、警報装置または表示装置を備えたことを特徴とする。
【0028】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を位置センサレスでインバータを制御する永久磁石電動機の駆動装置において、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、永久磁石電動機に印加される瞬時電圧と、永久磁石電動機に流れる瞬時電流値と、演算にて算出された回転数とから算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器を備え、このモータ軸推定器の出力に基づいて永久磁石電動機を制御することを特徴とする。
【0029】
また、この発明に係る永久磁石電動機の駆動装置は、モータ軸推定器は、インバータの回転座標軸により座標変換された電圧Vγ、δ、電流Iγ、δと、インバータの回転座標軸の回転速度ω1と、永久磁石電動機の相抵抗Rと、永久磁石電動機のq軸インダクタンスLqとを用いて、
【0030】
【数3】
Figure 0004319377
【0031】
により軸誤差Δθを演算することを特徴とする。
【0032】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、永久磁石電動機に印加される瞬時電圧と永久磁石電動機に流れる瞬時電流値と検出されたあるいは演算にて算出された回転数とから算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、電動機のインダクタンス成分とから、永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、を備えたことを特徴とする。
【0033】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、予め設定された所定の回転数での永久磁石電動機に印加される瞬時電圧と永久磁石電動機に流れる瞬時電流値から算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、電動機のインダクタンス成分とから、永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、を備えたことを特徴とする。
【0034】
また、この発明に係る永久磁石電動機の駆動装置は、逆起電圧定数同定器は、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧Vqest及び電動機に流れる電流idest、iqestと、電動機の回転角速度ω1と、電動機の抵抗成分Rと、電動機のd軸インダクタンス成分Ldとを用いて、
【0035】
【数4】
Figure 0004319377
【0036】
により、逆起電圧定数φの演算を行うことを特徴とする。
【0037】
また、この発明に係る永久磁石電動機の駆動装置は、インバータから電動機に印加される電圧および電流を検出し、電圧および電流の検出値を用いて逆起電圧定数の演算を行うことを特徴とする。
【0038】
また、この発明に係る永久磁石電動機の駆動装置は、逆起電圧定数同定器は、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機への指令電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、電動機のインダクタンス成分とから、前記永久磁石電動機における逆起電圧定数を演算し、永久磁石電動機を駆動するインバータにおいて設定される短絡防止時間による電圧歪みを補正する短絡防止時間補正機能を有することを特徴とする。
【0039】
また、この発明に係る永久磁石電動機の駆動装置は、永久磁石電動機の各相の電流のゼロ付近中の電圧、電流、回転数を逆起電圧定数の演算に使用しないことを特徴とする。
【0040】
また、この発明に係る永久磁石電動機の駆動装置は、永久磁石電動機を駆動するインバータにおいて設定される短絡防止時間による電圧歪みを補正する短絡防止時間補正機能を有すると共に、インバータから電動機に印加される電圧および電流を検出し、検出値を用いて逆起電圧定数の演算を行うことを特徴とする。
【0041】
また、この発明に係る永久磁石電動機の駆動装置は、逆起電圧定数同定器により算出した逆起電圧定数を用いて、永久磁石電動機を駆動制御することを特徴とする。
【0042】
また、この発明に係る永久磁石電動機の駆動装置は、外力で永久磁石電動機を回転させて予め計測しておいた逆起電圧定数を初期値として駆動し、この状態より逆起電圧定数を同定して駆動装置に反映させることを特徴とする。
【0043】
また、この発明に係る永久磁石電動機の駆動装置は、強制的な回転磁界によって永久磁石電動機が引きずられて回転している状態を作り、この状態で逆起電圧定数を同定し、その値を初期値として永久磁石電動機を駆動し、その後同期駆動運転に切り替えて加速し、加速後に逆起電圧定数を同定することを特徴とする。
【0044】
また、この発明に係る永久磁石電動機の駆動装置は、強制的な回転磁界によって永久磁石電動機が引きずられて回転している状態を作り、この状態で逆起電圧定数を同定し、その値を初期値として永久磁石電動機を駆動し、その後停止した場合には、停止前に同定した値を初期値として同期運転にて起動することを特徴とする。
【0045】
また、この発明に係る永久磁石電動機の駆動装置は、逆起電圧定数同定器にて同定した逆起電圧定数を用いて、永久磁石電動機を同期駆動運転することを特徴とする。
【0046】
また、この発明に係る永久磁石電動機の駆動装置は、インバータに出力する電圧指令を生成するために逆起電圧定数の値を使用することを特徴とする。
【0047】
また、この発明に係る永久磁石電動機の駆動装置は、逆起電圧定数同定器にて同定した逆起電圧定数を、ローパスフィルタを介して補正し、補正した逆起電圧定数を用いて前記永久磁石電動機を同期駆動運転することを特徴とする。
【0048】
また、この発明に係る永久磁石電動機の駆動装置は、ローパスフィルタの時定数を、永久磁石電動機の駆動の制御周期よりも大きくすることを特徴とする。
【0049】
また、この発明に係る永久磁石電動機の駆動装置は、永久磁石電動機の駆動中に逆起電圧定数を同定することで、永久磁石電動機の永久磁石の減磁を検出することを特徴とする。
【0050】
また、この発明に係る永久磁石電動機の駆動装置は、故障診断部を備え、永久磁石電動機の永久磁石が減磁したことを表示することを特徴とする。
【0051】
また、この発明に係る永久磁石電動機の駆動装置は、逆起電圧定数を同定することで、永久磁石電動機の環境温度を推定することを特徴とする。
【0052】
また、この発明に係る永久磁石電動機の駆動装置は、逆起電圧定数を同定することで、永久磁石電動機の相抵抗値を同定することを特徴とする。
【0053】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から前記永久磁石電動機のインダクタンス成分を検出し、永久磁石電動機の相数が2n+1(nは1以上の整数)の場合は、微少時間だけ印加するパルスのために動作させるインバータのスイッチは上下毎の総数を交互に入れ替えてパルスを印加することを特徴とする。
【0054】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出し、微少時間印加されるパルスは、永久磁石電動機の相数の偶数倍の回数を印加することを特徴とする。
【0055】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出し、微少時間だけ印加するパルスによる電流ピーク値を永久磁石電動機の回転子の停止位置を推定にも共用することを特徴とする。
【0056】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出し、微少時間だけパルスを印加する前に、パルス印加時間を決定するためのパルスを永久磁石電動機に印加して微少時間を設定することを特徴とする。
【0057】
また、この発明に係る永久磁石電動機の駆動装置は、検出したインダクタンス成分を、前記永久磁石電動機の駆動制御もしくはモータ軸推定器の演算の少なくとも一方に用いることを特徴とする。
【0058】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、永久磁石電動機に印加される瞬時電圧と永久磁石電動機に流れる瞬時電流値と検出されたあるいは演算にて算出された回転数とから算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出するインダクタンス同定器と、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、インダクタンス同定器で検出された電動機のインダクタンス成分とから、永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、を備えたことを特徴とする。
【0059】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、永久磁石電動機に印加される瞬時電圧と永久磁石電動機に流れる瞬時電流値と検出されたあるいは演算にて算出された回転数とから算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出し、永久磁石電動機の相数が2n+1(nは1以上の整数)の場合は、微少時間だけ印加するパルスのために動作させるインバータのスイッチは上下毎の総数を交互に入れ替えてパルスを印加するインダクタンス同定器と、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、インダクタンス同定器で検出された電動機のインダクタンス成分とから、永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、を備えたことを特徴とする。
【0060】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、永久磁石電動機に印加される瞬時電圧と永久磁石電動機に流れる瞬時電流値と検出されたあるいは演算にて算出された回転数とから算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出し、微少時間印加されるパルスは、永久磁石電動機の相数の偶数倍の回数を印加するインダクタンス同定器と、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、インダクタンス同定器で検出された電動機のインダクタンス成分とから、永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、を備えたことを特徴とする。
【0061】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、予め設定された所定の回転数での永久磁石電動機に印加される瞬時電圧と永久磁石電動機に流れる瞬時電流値から算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出するインダクタンス同定器と、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、インダクタンス同定器で検出された電動機のインダクタンス成分とから、永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、を備えたことを特徴とする。
【0062】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、予め設定された所定の回転数での永久磁石電動機に印加される瞬時電圧と永久磁石電動機に流れる瞬時電流値から算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出し、永久磁石電動機の相数が2n+1(nは1以上の整数)の場合は、微少時間だけ印加するパルスのために動作させるインバータのスイッチは上下毎の総数を交互に入れ替えてパルスを印加するインダクタンス同定器と、 モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、インダクタンス同定器で検出された電動機のインダクタンス成分とから、永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、を備えたことを特徴とする。
【0063】
また、この発明に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出しインバータを制御する永久磁石電動機の駆動装置において、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、予め設定された所定の回転数での永久磁石電動機に印加される瞬時電圧と永久磁石電動機に流れる瞬時電流値から算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出し、微少時間印加されるパルスは、永久磁石電動機の相数の偶数倍の回数を印加するインダクタンス同定器と、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、インダクタンス同定器で検出された電動機のインダクタンス成分とから、永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、を備えたことを特徴とする。
【0064】
また、この発明に係る永久磁石電動機の駆動装置は、算出された逆起電圧定数を永久磁石電動機の制御に使用される逆起電圧定数としてチューニングすることを特徴とする。
【0065】
また、この発明に係る永久磁石電動機の駆動装置は、インダクタンス同定器で検出されたインダクタンス成分を永久磁石電動機の駆動制御もしくはモータ軸推定器の演算の少なくとも一方に用いることを特徴とする。
【0066】
この発明に係る密閉形圧縮機は、請求項1〜42の何れかに記載の永久磁石電電機の駆動装置により、圧縮機用電動機を駆動することを特徴とする。
【0067】
この発明に係る冷凍サイクル装置は、請求項43に記載の密閉形圧縮機を搭載したことを特徴とする。
【0068】
この発明に係る永久磁石発電機の駆動装置は、請求項1〜42の何れかに記載の永久磁石電動機の駆動装置を発電機に適用したことを特徴とする。
【0069】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
実施の形態1.
図1〜5は実施の形態1を示す図で、図1はモータ駆動装置の回路ブロック図、図2はモータ駆動制御部を示す回路ブロック図、図3はモータの回転軸とインバータの回転軸の説明図、図4は他の形態を示す回路ブロック図、図5は更に他の形態を示す回路ブロック図である。
図1において、1は永久磁石電動機(以下、モータ)、2はモータ1を駆動するインバータ、3はモータ1の回転子位置に応じてモータ1を駆動するよう制御するモータ駆動制御部、4はモータ1に流れる電流を3相交流座標系から直交座標系へ座標変換を行う3軸2軸変換部、5はモータ駆動制御部3にて算出された2軸電圧をインバータ2から出力する為、3相交流座標系へ座標変換を行う2軸3軸変換部、6はモータ1を駆動制御する為にモータ駆動制御部3へ入力される指令値が格納されている指令値格納部、7はモータ1に流れる電流を検出する電流検出器である。
【0070】
図1において、モータ1から電流検出器7にて構成されていれば、モータ1を駆動制御することは可能であり、モータ駆動制御部3の制御ブロックの一例を図2に示す。図2において、点線内が図1に示されるモータ駆動制御部3であり、モータ駆動制御部3は電圧指令生成器3a、速度推定器3b、積分器3cにて構成されている。
【0071】
まずは、図1におけるセンサレス制御について簡単に説明する。インバータ2から電圧が出力されると、モータ1に電流が流れ、モータ1を駆動することができる。モータ1は永久磁石電動機であるため、モータ1の回転子の位置に応じて電圧をモータ1に印加しなければモータ1を駆動し続けることはできない。そこで、モータ1に流れる電流を電流検出器7にて検出し、検出した3相電流Iuvwを3軸2軸変換部4にて、直交座標系である2軸電流Iγδに変換する。
【0072】
変換された2軸電流Iγδをモータ駆動制御部3へ入力し、モータ駆動制御部3内部の電圧指令生成器3aに入力される。γ軸電流Iγとδ軸電流Iδ、γ軸電流指令Iγ *と推定速度ω1から、出力すべき2軸電圧Vγδを得る。
【0073】
また、速度推定器3bでは、速度指令ω*とδ軸電流Iδとから速度を推定し推定速度ω1を得る。3軸2軸変換部4および2軸3軸変換部5にて使用する座標変換角度θは、推定角速度ω1を積分することによって得る。これらのVγδとθ、ω1を得るために、一般的にはモータの電圧電流方程式を用いて算出するが、その場合でも、モータ1の真の回転座標軸を推定することができるモータ軸推定器10を使用することができる。
【0074】
次に、モータ軸推定器10の構成について述べる。モータ1の真の回転座標軸θrと、インバータ2において駆動制御している回転座標軸θmとの間にΔθ=θr−θmなる軸誤差Δθを定義するとすると、モータ1をインバータ2から見た場合のモータの電圧電流方程式は(1)式のように導くことができる。
【0075】
【数5】
Figure 0004319377
【0076】
ここで、dqと表された値のものはモータ1の真の回転座標軸上の値であり、γδと表された値のものは、インバータ2にて駆動されているインバータ上の回転座標軸上の値である。図3におけるdq軸がモータ1の回転座標軸であり、γδ軸がインバータ2の回転座標軸である。この2つの軸の間にはΔθの誤差があり、このΔθを算出するのがモータ軸推定器10の役割である。
【0077】
dq軸はモータ1の回転座標軸であり、モータの回転子に配置される磁石の磁束方向をd軸、回転方向に90度進んだ方向をq軸と図3に示されるように一般的に定義される。また、γδ軸はインバータ2の回転軸であるから、モータ駆動制御部3にて生成するものであり、モータ1が回転する範囲内でモータ駆動制御部3で設定されるが、モータ1の回転座標におけるd軸に対応する軸をγ軸、q軸に対応する軸をδ軸と定義する。さらに、これらの座標軸がω1の角速度で回転している。
【0078】
(1)式において、仮にモータ1による永久磁石の誘導電圧分よりもインダクタンスでの電圧降下の方が充分に小さいとして、(1)式のインダクタンスの式の軸誤差Δθについてのみ(2)式のように近似する。
【0079】
【数6】
Figure 0004319377
【0080】
(2)式のように近似すれば、電圧電流方程式は(3)式のようになり、容易になる。しかし、(3)式において、Δθを求めた場合、負荷トルクが大きな領域において、前記近似による誤差が発生するため、近似せずにΔθを求める方が望ましい。
【0081】
【数7】
Figure 0004319377
【0082】
そこで、(1)式を近似せずに解くと、軸誤差Δθは、(4)式のように求められ、真のモータ1の回転座標軸θrを算出することができる。尚、(4)式は(1)式を解法した結果であり、(3)式とは分母のLdとLqのみ異なっているがこれが近似の差である。
【0083】
【数8】
Figure 0004319377
【0084】
(4)式にて構成されたモータ軸推定器10は近似を全く行っていないので、如何なる動作条件であっても正確に軸誤差を推定することができる。軸誤差はインバータ2の回転軸とモータ1の回転軸の誤差であり、インバータ2の回転軸は既知であることから、モータ1の回転軸を推定することが可能となる。
【0085】
また、(1)式では推定速度ω1を使用しているが、モータ軸推定器10は予め決められた所定の回転速度でモータ1が動作している場合には、電圧電流のみの検出で軸推定を行うよう構成されていてもよい。
【0086】
さらに、モータ1が可変速駆動される場合は、モータ駆動制御部3にて推定した推定速度ω1でも、検出した検出速度であっても(1)式に速度のデータを用いてモータ軸推定器10は(4)式より軸誤差Δθを算出する。
【0087】
従って、モータ軸推定器10の出力として、推定したモータ1の回転軸を動作判定部15に入力する。このような構成をとると、位置推定を行わず、また位置検出も行わずに速度の時間積分値でモータを駆動するような図2に示すセンサレス制御器がモータ駆動制御部3であった場合でも、位置推定器を有することになるので、脱調やモータロックを検出できる。また、位置推定を行うセンサレス制御でも異なる演算方法を有する位置推定器を有することで、脱調やモータロックの検出の信頼性をより向上させることが可能となる。
【0088】
また、位置を検出する場合でも、位置検出に不具合が発生しても、脱調やモータロックを検出できる効果がある。
【0089】
モータ駆動制御部3とは別構成でモータ軸推定器10を有するため、位置センサを有しない位置センサレス制御時における起動の判別を動作判定部15で行うことも可能である。これにより、確実に起動したか否かの判断ができ、起動していない場合、速やかに再起動状態に移行することになり、起動の信頼性を向上できる。
【0090】
さらに、脱調し始めの状態も検出可能であるため、脱調によるモータ停止前に脱調を抑制するように、電圧指令生成器3aにおける電圧指令を変更させるよう動作判定部15より指示をモータ駆動制御部3に信号を伝達することによって、脱調抑制制御を行うことも可能となる。
【0091】
ここで、動作判定部15に警報装置、表示装置を内部に含んでいたとしてもなんら動作に影響はなく、使用者により確実に以上を伝達できる効果を創出できる。
【0092】
またさらに、軸誤差Δθをモータ駆動に使用しない場合には、(1)式および(4)式に使用している電圧、電流、インバータ回転軸、速度データの全てを同一サンプリング値を用いて算出する構成が可能なので、演算処理速度は高速処理を必要としないことは明らかである。また、電圧電流データは同一サンプリングを必要としているので平均値や実行値でないことは自明のことである。
【0093】
また、図1にて記載のモータ駆動制御部3、3軸2軸変換部4、2軸3軸変換部5、モータ軸推定器10、動作判定部15を1個の制御装置、例えば、マイクロコンピュータやデジタルシグナルプロセッサー(DSP)などの1ヶのCPUにて構成したとしても何ら図1の駆動装置の動作に影響はない。
【0094】
また、位置センサを用いて回転子の位置を検出して駆動するセンサ駆動制御部20を構成した場合を図4に示す。21はモータ1の回転子位置を検出するための位置センサ、22は位置センサの出力から速度を算出するための速度算出器である。
【0095】
図4のように構成した場合でも、モータ軸推定器10としては図1と何ら変わりがない。よって、位置センサ21があっても、モータ軸推定器10は構成可能であり、上述と同様の効果を有することは言うまでもない。
【0096】
図4の構成の場合、位置センサからの信号とモータ1の真の回転座標軸との差分がΔθとなるが、位置センサの直読値を座標変換部4及び5に直接入力せず、位相進み角を加算したり、位置センサ21の取付位置による誤差分を予め補正するように構成したとしても、座標変換部4および5に入力される角度に対する軸誤差をモータ軸推定器10で演算可能であることはいうまでもない。
【0097】
また、図5にモータ軸推定器10の軸誤差を利用したセンサレス駆動制御部23を構成したブロック図を示す。モータ軸推定器10の出力である軸誤差Δθを出力し、Δθを利用してセンサレス駆動を実現する。回転数と出力トルクとの関係が既知であれば、回転数に応じたΔθの範囲を予め数式化もしくはデータテーブル化しておき、予め設定された範囲内にΔθが入るようセンサレス駆動制御部23は作用する。これは、Δθ=0でなくともモータ1が回転することを利用したもので、ある設定された範囲外となった場合、脱調してしまうため、ある設定された範囲内にΔθを制御することでモータ1を駆動しようとするものである。
【0098】
図5のような構成でセンサレス駆動制御を実現することにより、従来より安価なCPUにてセンサレス制御が実現できる。
【0099】
実施の形態2.
図6〜12は実施の形態2を示す図で、図6はモータ駆動装置の回路ブロック図、図7は動作を示すフローチャート図、図8は逆起電圧定数同定器の一例を示す回路ブロック図、図9はインバータの構成図、図10は短絡防止時間のタイムチャート図、図11は他の形態を示す回路ブロック図、図12は更に他の形態を示す回路ブロック図である。
【0100】
図6において、11はモータ軸推定器10にて推定したモータ1上の回転座標軸θrでの電圧と電流に座標変換を行って、モータ1の逆起電圧定数を同定する逆起電圧定数同定器、12は同定した逆起電圧定数をモータ駆動制御部3の値にフィードバックするためのローパスフィルタであり、他は図1と同一の構成であるため、符号の説明を省略する。
【0101】
永久磁石電動機におけるモータ固有の定数として、相抵抗R、インダクタンスLd、Lq、逆起電圧定数φの4種が上げられることは公知の事実である。本実施の形態では、永久磁石電動機の出力トルクの発生源となる逆起電圧定数の同定について述べる。
【0102】
ここで同定という言葉を使用するが、この同定、identify、は固有の値を計測し検出することで特定する、という意味でモータ自身の持っている特性を特定する、すなわちモータ個々にばらつきはあるが1つの個体には1つの特性を持っているのでそれを特定するという意味である
【0103】
また、逆起電圧定数φは、回転子に構成された永久磁石が回転したときの固定子側の巻線に対する鎖交磁束Φの時間変化率にて発生する誘導電圧の角速度比例係数である。言い換えると、固定子側に誘導される電圧は速度と共に増加するが、その速度と電圧は1次比例の関係となっており、その比例係数が逆起電圧定数φである。また、角速度が0の場合、dΦ/dt=0となり、検出不能となる。
【0104】
従って、モータ1が微少でも動作する必要があり、モータ1を動作させて同定することとなる。モータ駆動制御部3にて逆起電圧定数φがモータ1の真値と異なる場合、モータ駆動制御部3でのモータ駆動に多少なりとも支障が発生する。
【0105】
逆起電圧定数φは、一般的に、モータ1の端子を開放状態にし、モータ1の軸を他からの外力によって回転させて、モータ1の端子間電圧を計測し、その外力の回転速度とから計測する方式が採用されている。この方法の場合、モータ1は開放状態であるため、インバータ2が接続した状態では計測できないだけでなく、モータ1を外力で回転させる必要がある。
【0106】
さらに、モータ1の固定子側で通電していないため、回転子の磁束のみで電圧が誘起され、逆起電圧定数として計測される。モータ1の固定子磁束に歪みがなければ問題ないが固定子磁束に歪みがある場合、回転子の磁石磁束も歪まされ、外力で回転させた際の誘起電圧とは異なる電圧が誘起される恐れがある。
【0107】
また、モータ1のインダクタンス成分Ld、Lqは電流依存性があり、固定子に流れる電流によって値が変化する。モータ1のLd、Lqによって固定子側の磁束が変化するため、外力で回転させて計測した逆起電圧定数φは、電流が流れていない場合の値となり、電流が流れた場合の値と異なっている恐れもある。
【0108】
本実施の形態は、モータ1の実運転中における逆起電圧定数を同定することによって、固定子側で発生する様々な歪み要素である電機子反作用をも考慮するものである。
【0109】
まず、モータ駆動制御部3でモータ1を起動し、安定状態に駆動する。この場合、例えば前述の通り、外力でモータ1を回転させて予め計測しておいた逆起電圧定数φを初期値として駆動する。通常のモータ駆動は、この状態を維持するのであるが、本実施の形態では、この状態より逆起電圧定数を同定し、モータ駆動制御部3へ反映させる。
【0110】
また、強制的な回転磁界によってモータ1が磁界に引きずられて回転している状態を作り、この状態で一旦簡易的に逆起電圧定数φを同定し、その値を初期値としてモータ1を駆動する。この場合、強制的な回転磁界でモータ1は回転している状態(これを強制駆動とする)であるため、この強制駆動状態からモータ駆動制御部3での同期駆動運転に切り替えて加速し、加速後に逆起電圧定数を同定するように構成しても問題はない。
【0111】
さらに、強制駆動状態で簡易的に逆起電圧定数を同定した後、一旦停止し、その状態より再起動するよう構成しても上記と同様の効果を有することは言うまでもない。この様子を示すフローチャートを図7に示す。
【0112】
ここで、逆起電圧定数同定部11にて逆起電圧定数φを算出する方法であるが、図8のブロック図に示されるようにモータ1に印加される電圧Vuvwと、モータ1に流れる電流Iuvwとをモータ軸推定器10にて推定したモータ1の真の位置にて座標変換を行う。そして、座標変換後の電圧Vqest、電流idest、iqestおよび回転角速度ω1を用いて、
【0113】
【数9】
Figure 0004319377
【0114】
により逆起電圧定数φを求めることができる。(5)式に基づいて、同定した逆起電圧定数であるが、モータ駆動制御部3にてモータ1を駆動制御するために使用されている。さらにはモータ駆動制御部3の内部を示す図2においては、電圧指令生成器3aにて、電圧指令を生成するために逆起電圧定数の値を使用している。
【0115】
図示はしていないが、図6における電流の3軸2軸変換部4の出力であるIγδ、電圧の2軸3軸変換部5の入力であるVγδから(5)式に使用される電圧Vqest、電流idest、iqestは、(4)式の軸誤差Δθを用いれば下式のように算出できる。
【0116】
【数10】
Figure 0004319377
【0117】
従って、上式に従えば、図8に示すようなブロックを構成しなくとも、(5)式を算出することが実現でき、図8のブロックと同等効果を有することは言うまでもない。
【0118】
この電圧指令生成器3aに使用されている逆起電圧定数をφfとすると、(5)式により同定したφに対してφfを補正するため、ローパスフィルタ12を介してモータ駆動制御部3へ入力するよう構成する。
【0119】
これは、モータ駆動制御部3はモータ1を駆動するため高速に処理されているが、急激にφfを変化させた場合、電圧指令が瞬間的に非線形となり、ハンチングする危険性があるためであり、モータ駆動制御部3によるモータ駆動の制御周期よりも、同定した結果を反映させ行うローパスフィルタ12の時定数Trを大きくすることで、ハンチングを避けることができる。
【0120】
時定数Trとしては、モータ駆動制御部3での制御周期よりも遅い周期であれば良く、例えば10倍程度の時定数の周期、または0.5秒以上などいった比較的長い時間の時定数で徐々に同定後の定数φをモータ駆動制御部3で使用する値φfに近づける。また、ローパスフィルタ12を介して徐々に同定結果を反映させるような構成でなくとも、ハンチングを避けられる方法であれば如何なる方法であっても問題はない。
【0121】
以上のようにして、逆起電圧定数φを同定しつつ、モータ1を駆動するので、モータ1の出力トルクの最適動作点で駆動することが可能となる。このように構成することによって、動作点毎に指令値格納部6に格納されていた電流指令値Iγ *が一定値にてモータを駆動することが可能になる。よって、CPUのROM容量を低減でき、低コスト化が実現できる。
【0122】
また、動作点毎にモータ1の出力トルクの最適動作点となるよう電流指令値Iγ *を格納する必要がなくなるので、格納に必要なデータを収集する手間が省け、開発における期間短縮、人件費削減による低コスト化も実現できる。
【0123】
また、固定子による電機子反作用の歪みや、電流依存性を有するインダクタンスLd、Lqの電流による変化分、回転子の磁束密度増加による磁路の変化の分も一纏めにして逆起電圧定数に反映させるため、モータ1の理想状態から外れる歪み分による性能悪化分を補正し、モータ1を最適状態にて駆動することができる。
【0124】
さらに、モータ1の仕様毎に電流指令値Iγ *の値が変化するため、CPUに固定小数点型のマイクロプロフェッサーを用いていれば、モータ1の仕様に応じて電流指令値Iγ *の1ビットあたりの分解能を設定する必要が発生し、プログラムを作り替えることも想定されるため、開発期間短縮における低コスト化は大きい。
【0125】
またさらに、モータ1の駆動中に逆起電圧定数を同定するので永久磁石の減磁も検出でき、モータ1の信頼性も向上させることができる。特に、密閉型のモータ1の場合、分解しなければ前述したとおり、外力による逆起電圧定数の計測ができないため、サービス性向上も実現できる。
【0126】
さらに、故障診断部などを図6に示すブロック図に付加し、減磁した旨を表示させるように構成しても何ら問題がないことは言うまでもないが、本実施の形態2を示すブロック図では記述していない。
【0127】
さらに、φは温度依存性があり、温度によってのみφが変化すると仮定すれば、温度は磁石材料の特性にて決まるため、φを同定することによって、概略温度が推定でき、モータ1の環境温度を推定することができる。これにより、温度データを必要とするもののためにサーミスタ等の温度検出器を使用していれば、それらの温度検出器を低減し、低コスト化に役立つ。
【0128】
また、温度依存性のあるモータの相抵抗値も同定することができる。さらには、圧縮機等に使用されている場合、冷媒ガス温度が推定でき、冷媒挙動の解析に大きな発展をもたらす可能性もある。またさらには、エンジン等の高温環境で使用されるモータに対しても温度特性が解明できる。さらには、希土類磁石等の磁石を用いたモータ1の場合、温度で磁石の磁束が変化し、温度に対し不可逆性を有するので、逆起電圧定数を同定することで磁石でのトルク低下を検出できるようになり、モータ1の特性悪化を補償することも可能になる。また、温度に対し不可逆性を有する磁石を用いたモータ1全てに適用できることは言うまでもない。
【0129】
また、図8における座標変換部11bに入力されている電圧であるが、図6のブロック図の構成ではモータ駆動制御部3にて生成された電圧指令である。しかしながら、インバータ2に入力された電圧指令と、インバータ2よりモータ1へ印加される印加電圧とには差が生じる。これは、インバータ2の短絡防止時間Tdの影響である。
【0130】
インバータ2は図9に示されるようにスイッチング素子を2ヶ直列接続し、これを1つのアームとして構成される。例えば、直列に接続されたスイッチング素子2a、2bが同時にオンするとアーム短絡となり、短絡電流が流れる。そのため、一般的にインバータ2は短絡防止時間として図10に示すように上下のスイッチング素子が同時にオンしないよう双方のスイッチング素子がオフする時間Tdが設定されている。
【0131】
Tdにより電圧指令と印加電圧とに生じる差は、図9のインバータに構成されているスイッチング素子と逆並列に接続されているダイオードによって引き起こされる。Td期間中は、上下のスイッチング素子ともオフしている。仮にTd期間に入る前にスイッチング素子2aを介してモータ1へ電流が流れていたとすると、言い換えると図8の矢印に示されるような方向の電流とすると、モータ1はL負荷なので電流が流れ続けようとする。よって、スイッチング素子2bと逆並列のダイオードに電流が流れ、モータ1に流れる電流の連続性が保たれる。
【0132】
しかしながら、スイッチング素子2bと逆並列のダイオードを介して電流が流れるため、モータ1の端子電圧、いいかえると、スイッチング素子2aとスイッチング素子2bの接続点は、コンデンサ2gの負極側よりダイオードのオン電圧分低い電圧となる。
【0133】
Td期間がなければスイッチング素子2aがオンによってコンデンサ2gの正極側からモータに電流が流れるので、コンデンサ2gの正極と同電位となるはずであるのだが、Td期間はTdによってコンデンサ2gの負極とほぼ同電位となってしまう。これがTdによる電圧の差が発生する要因であり、一般的に知られていることである。
【0134】
そこで、図6の逆起電圧定数同定器11に入力される電圧指令は2軸3軸変換部5の出力とし、この出力をインバータ2に入力する前にTd補正を行うTd補正器13を追加したような図11に示されるブロック図のような構成にすることによって、逆起電圧定数の同定の精度を向上させることができる。
【0135】
また、モータ1の各相の電流のゼロ付近中の電圧、電流、回転数を逆起電圧定数の演算に使用しないことにより、逆起電圧定数の同定の精度をさらに向上させることができる。
【0136】
さらに、図12に示されるように電圧検出器14を図6に追加したような構成により、モータ1へ印加される印加電圧を検出し、検出電圧を逆起電圧定数同定器11へ入力するような構成としても、逆起電圧定数同定器での同定精度向上に果たす効果は上述と同様であることは言うまでもない。また、本実施の形態2には図示しないが、電圧検出器14を設けた図12のような構成にTd補正器13追加したような構成にて実現したとしても何ら問題はなく、更に同定精度が向上することは言うまでもない。
【0137】
ここで、図6にて記載のモータ駆動制御部3、3軸2軸変換部4、2軸3軸変換部5、モータ軸推定器10、逆起電圧定数同定器11、ローパスフィルタ12、図示はしていない動作判定部15を1個の制御装置、例えば、マイクロコンピュータやデジタルシグナルプロセッサー(DSP)などの1ヶのCPUにて構成したとしても何ら図6の駆動装置の動作に影響はない。
【0138】
さらに、図11に記載のTd補正器13も1ヶのCPUにて構成したとしても同様の効果を有することは言うまでもない。
【0139】
実施の形態3.
図13は実施の形態3を示す図で、モータ駆動装置の回路ブロック図である。図13において、図12と同一の部分に対する符号の説明は省略する。図13において、30はモータ1に印加するγ軸電圧Vγとδ軸電圧Vδ、回転数指令ω*を格納している指令値格納部、31は回転数指令ω*からインバータの座標変換軸を得るための積分器、32は逆起電圧定数同定器11にて検出された逆起電圧定数を記憶する記憶部である。また、図12におけるモータ駆動制御部3が無い構成となっている。
【0140】
図13において、モータ駆動制御部3が無いため、この構成はオープンループの他励強制駆動と言い換えることができる。本実施の形態中では前述の通り、強制駆動と言うこととする。強制駆動の場合、印加する電圧によってはモータ1が起動しなかったり、モータ1の磁石を減磁させるような過電流となる可能性もあるが、ここでは、モータ1が起動し、且つ過電流とならないγδ軸電圧Vγδが指令値格納部30に格納され、インバータ2からモータ1に印加されている。
【0141】
強制駆動の場合、印加電圧に対し相電流が非常に大きい値となる。その為、過電流とならないようなγδ軸電圧Vγδとすると、極端に小さいγδ軸電圧Vγδとなり、前述のTdの影響を大きく受ける。しかしながら、極端に小さいγδ軸電圧Vγδであるため、Td補正器によるTdの補正は難しい。従って、電圧検出器14を用い、モータ1に印加される印加電圧を検出して、逆起電圧定数同定器11へ入力する。
【0142】
また、強制駆動は回転数指令が極低速であることから、回転数指令と同一速度にモータ1が追随して回転しているとして、積分器31の出力にてγδ軸電流Iγδやγδ軸電圧Vγδに座標変換する。
【0143】
以上のように、強制駆動にて構成したモータ軸推定器10と逆起電圧定数同定器11でも十二分に逆起電圧定数の同定ができる。また、図13では逆起電圧定数同定器11の出力がローパスフィルタ12を介して出力後に、同定する逆起電圧定数として記憶部12に記憶されているが、ローパスフィルタ12を介さなくとも構わない。
【0144】
ただし、ローパスフィルタ12を介して出力した方が定数を安定して出力できる。さらに、図13中のローパスフィルタ12の時定数がTrとなっており、前述のモータ駆動制御部3への反映に用いる時定数と同一値となっているが、別に同一値でなくとも構わず、図13におけるローパスフィルタ12の時定数Trはもっと低い周期でよい。
【0145】
図13のように構成することによって、逆起電圧定数φが起動時に未知であるモータ1に対しても、逆起電圧定数を同定することができ、図13の構成にて逆起電圧定数を同定後に、図1や図6に示されるようなモータ駆動制御部3を有する構成のブロックを適用できる。
【0146】
図7のフローチャートは、本実施の形態の一部である。図7のステップS−1にて初期値がない状態と同一なので、ステップS−2にて強制駆動により起動し、ステップS−3にて逆起電圧定数φの同定を行う。同定した逆起電圧定数を記憶部32に記憶させ、次は図6に示されるようなモータ駆動制御部3にてモータ1を駆動するように構成しなおすのである。
【0147】
よって、図示はしていないが、図6と図13、図12と図13は異なる制御ブロックの構成であるが、これを一つのCPUにて構成した場合、起動前に強制駆動にて逆起電圧定数φの初期値として同定し、モータ駆動制御部3にてモータを同期駆動しつつ、モータ1の動作状態に応じた逆起電圧定数φに同定するような構成としても構わないことは言うまでもなく、図13のみで構成されるより、モータ1を駆動する回転数範囲、トルク範囲が広がるため実用的である。
【0148】
実施の形態4.
図14〜18は実施の形態4を示す図で、図14はモータ駆動装置の回路ブロック図、図15はモータの等価回路図、図16はインダクタンスとモータ位置の関係を示す説明図、図17は印加パルスと電流の波形図、図18は動作を示すフローチャート図である。
【0149】
図14において、図1と同一部分については同一符号を付して説明は省略する。40はモータ1へ印加するパルス電圧を生成するパルス電圧生成器、41は印加したパルス電圧に応答した電流のピーク値をホールドするピークホールド、42はピークホールドされた3相電流を静止座標変換を行う3軸2軸変換器、43はインバータ2の直流母線電圧を検出する電圧検出器、44はモータ1への印加パルス時間、直流母線電圧値、2軸電流値とからモータ1のインダクタンスを同定するインダクタンス同定器である。尚、モータ1は3相モータとする。
【0150】
インダクタンス成分の同定方法について述べる。モータ1は永久磁石電動機であり、モータ1が回転した場合、回転子に構成されている永久磁石による誘導電圧がモータ1の固定子側に誘起される。その為、インダクタンス成分はモータ1を回転させずに同定する方が容易である。
【0151】
そこで、モータ1に高周波のパルス電圧を印加する。印加されるパルス電圧によりパルス電流が流れるが、パルス電圧の印加によってモータ1が回転しなければ、モータ1はLR負荷と考えることができる。印加されるパルス時間が微少時間でLRの時定数(L/R)よりも遙かに小さい場合、流れるパルス電流に抵抗成分Rの影響がでない。
【0152】
これを図15を用いて考える。図15中におけるスイッチSを微少時間オンさせるということとパルス印加とは同義である。LR直流回路における電流iを時間tの関数とすれば、iのtにおける関数は、
【0153】
【数11】
Figure 0004319377
【0154】
のようにおける。tが微少時間であるので、t=0の極限を求めると、E/Lとなり、抵抗成分Rの影響を排除できるのである。従って、パルス印加により抵抗成分Rが除去でき、モータ1が回転しないため誘導電圧の影響も無視でき、印加するパルス電圧と検出されるパルス電流からインダクタンス成分が同定できる。
【0155】
ここで、モータ1を静止2軸座標系にて考えると、抵抗成分および誘導電圧、角速度を0とおけるので、高周波パルス印加時は、
【0156】
【数12】
Figure 0004319377
【0157】
のようにインダクタンス成分Ld、Lqのみでモータ1を電圧電流方程式にて表すことができる。尚、静止2軸座標系の電圧をVα、Vβ、電流をiα、iβとし、モータ1の回転子の位置をθとする。(7)式より、電圧、電流、回転子位置がわかれば、モータ1のインダクタンス成分であるLd、Lqが算出できる。ここで、電流は電流検出器7にて検出し、電圧は電圧検出器43より検出するので、電圧電流は既知となるが、図14の構成ではモータ1に対し位置センサを付加しないブロック構成であるため、回転子位置θは既知でない。
【0158】
仮に、図示しないが位置センサをモータ1に付加した構成をとれば、電流、電圧、位置からインダクタンス同定器44にて(7)式より容易にインダクタンスを同定可能である。これは図16に示すようにインダクタンス値はロータ位置θに対し、2倍の周期で変動するパラメータ要素であるためである。
【0159】
本実施の形態では、位置センサレスの構成で(7)式よりインダクタンス成分のLd、Lqを算出する方法について述べる。そこで、インバータ2が図9に示されるような構成として、U相を2a、2bとし、V相を2c、2dとし、W相を2e、2fとおく。そして、u+の出力を2a、2d、2fがオン、u−の出力を2b、2c、2eがオンとすると、v+の出力は2b、2c、2fがオン、w+の出力は2b、2d、2eがオンとおける。
【0160】
ここで、u+、v+、w+の3種類のパルスを印加し、静止座標の基準軸をu+の出力の場合はU相に、v+の出力の場合はV相に、w+の出力の場合はW相にとると、モータ1は3相であり、各巻線は120度の間隔を持って配置されるので、三相交流理論を用いて、
【0161】
【数13】
Figure 0004319377
【0162】
から回転子位置θが不明でも、回転子が動かないようなパルスを印加しているので、(8)式から算出することから可能であるというのが特開2001−69783号公報に示されている3相モータのインダクタンスの検出技術である。
【0163】
しかしながら、特開2001−69783号公報に示されている技術では印加するパルス時間Tp、特開2001−69783号での記述は短時間Tsであるが、Tpの設定方法の記述なく、あえて言うならある特定のモータを検証した場合のパルス時間が195usと引用されているにすぎない。
【0164】
特開2001−69783号公報に示されている技術および特開2001−69783号公報に引用されている文献では、モータ1のインダクタンスを計測するためには、パルス時間をモータ1のモータ定数から起因する時定数L/Rに応じて設定する必要があると記述されてが、インダクタンスを同定するために必要なパルス時間は、インダクタンス値の概略値が分からなければならないと言った点に課題がある。
【0165】
これは、特開2001−69783号公報に示されている技術において、u+、v+、w+のパルス印加であるためである。各相に+成分のパルス電圧を印加すると、モータ1の固定子に磁束が発生し、その固定子磁束による残留磁束により電流にオフセットが発生するためである。そのため、オフセットの影響が出ない程度に印加パルスのパルス時間を長くする必要があるため、モータ1のモータ定数に応じた時定数L/Rにてパルス時間を設定しなければならない。
【0166】
または、モータ1のインダクタンスが小さい場合はパルス印加時間が比較的短くとも電流が流れ、残留磁束によるオフセットの影響は小さい。しかしながら、モータ1のインダクタンスが大きい場合、ほとんど電流が流れなくなるため、電流のオフセットによる影響が大きくなり、特にLqの同定時に実際のインダクタンスの10倍以上の値を計測したり、マイナスのインダクタンス値になることもあるため、インダクタンスの計測ができなくなる。
【0167】
本発明では、如何なるモータ定数であっても同一の印加パルス時間で精度良くインダクタンスを同定することができる駆動装置を得ることにある。
【0168】
まず、パルス印加によってインダクタンスを同定するが、そのパルスの印加方法に特徴がある。特開2001−69783号公報に示されている技術では、+側のパルス印加、言い換えると、インバータのアームを構成している上下のスイッチング素子のうち、上側のスイッチング素子を1ヶ、下側のスイッチング素子を2ヶとの組み合わせだけのパルス印加でインダクタンスを同定していた。
【0169】
このような印加方法ではなく、図17に示すようにパルス電圧生成器40では、+側のパルスと−側のパルスを交互に印加することによって、残留している磁束を打ち消しつつパルス印加によるインダクタンス同定が実現できる。例えば、u+、w−、v+、u−、w+、v−といった順序にてパルスを印加した場合、モータ1のモータ定数における時定数L/Rよりも極端に短いパルス印加時間でも残留磁束による電流オフセットは発生せず、精度良くインダクタンスを同定することが可能である。
【0170】
また、上述のごとく、+側のパルスと−側のパルスを交互に印加すればよく、上述では6回のパルス印加がなされているが、例えば、u+、w−、v+の順序による3回のパルス印加やu+、v−、w+といった順序でのパルス印加でも上述と同様に、残留磁束による電流のオフセットが発生せず、精度良くインダクタンスの同定が実現できるが、プラス側とマイナス側が平衡している場合、オフセットが完全に除去できるため、相数が奇数の場合、相数の偶数倍した回数のパルス印加の方がオフセット除去効果が高く、精度よく検出できる。
【0171】
本実施の形態では、3相モータとして考慮しているので、3相の偶数倍ということで、6回のパルス印加にてオフセットが完全に除去できることを示している。
【0172】
本実施の形態にて示した印加パルス順序に基づいてパルスを印加した場合、電流のオフセットを除去できるので、Lqが2〜4mH程度の小さなインダクタンスを有するモータ(出力大のモータ)からLqが200mHとなる大きなインダクタンスを有するモータ(出力小のモータ)まで、印加パルス時間を一定(例えば、特開2001−69783号公報にて引用されていた195us)で±10%以内の精度にてインダクタンス同定することができる。
【0173】
さらに、パルスの印加終了後に電流は減衰してしまうため、ピーク電流値をホールドするピークホールド41を追加することにより更に、精度良くインダクタンスを同定することができる。
【0174】
以上のように構成したことにより、インバータ2に接続されているモータ1のモータ定数が全くの未知の状態であってもインダクタンスを同定することができ、モータ1を駆動制御する際に、モータ1の個々のばらつきによる制御性の悪化に対しても制御性能を向上させることが可能である。
【0175】
また、前述にて説明したが、オフセットの影響が出ない程度に印加パルスのパルス時間を長くする必要があるため、モータ1のモータ定数に応じた時定数L/Rにてパルス時間を設定しなければならないが、パルス時間を設定するためのパルスをまず印加して、そのときの電流波形を観測し、応答する電流ピーク値が小さい場合に、パルス時間を大きくして、インダクタンス成分を同定するよう構成しても上記と同様効果を有することは言うまでもない。
【0176】
さらに、パルス時間を設定するためのパルスを印加して、パルス時間を設定後、相数の偶数倍のパルス印加を実施し、その電流ピーク値からインダクタンス成分を算出しても同様の効果を有することは言うまでもない。この動作を図18のフローチャートに示す。
【0177】
また、例えば、6回の印加パルスにて得られた電流ピーク値の情報を元にモータ1が停止している停止位置を推定するように構成してもよい。
【0178】
また、本実施の形態では図示していないが、図12、図13、図14の構成のブロックを1つの制御CPUを用いて実現した場合、前述までの逆起電圧定数同定器11での逆起電圧定数の同定にインダクタンスを使用しており、モータ1の個々のばらつきを許容できるので、逆起電圧定数の同定精度の向上にも起因し、結果、逆起電圧定数の同定による効果を増大させることに繋がる。
【0179】
実施の形態5.
図19は実施の形態5を示す図で、冷凍サイクルを示すブロック図である。、本実施の形態では、実施の形態1にて説明した構成を空気調和機に適用した場合について説明する。図19は、一般的な冷凍サイクルであり、50は冷媒サイクルにおいて圧縮工程を行う圧縮機、51は圧縮機を駆動するための駆動装置、52は冷媒を凝縮する凝縮器、53は冷媒を蒸発させる蒸発器、54は冷媒の流量を調整する絞り弁である。図1以降に示されているモータ1は、図19における圧縮機50に、インバータ2およびその制御手段が駆動装置51に適用されている。
【0180】
図19に示されるような冷凍サイクルでは、冷房負荷に対して必要となる冷房能力が出力できるよう冷媒の流量を制御している。流量の制御として絞り弁54が構成されるが、きめ細やかで能力範囲の広い制御には絞り弁54だけでは不適であるため、圧縮機50の回転数も制御することで、広範囲できめ細やかな冷媒流量の制御を実現し、空気調和機を制御している。
【0181】
空気調和機などに適用されたモータの場合、モータは圧縮機50内部に配置される。圧縮機50は冷媒を高温高圧のガスに圧縮するためのものであり、モータの動作環境としては非常に厳しく、冷媒ガスの状況によってモータの動作環境が変化する。また、冷媒をガス化するため、モータ1は取り出すことができないような密閉構造を圧縮機50は採用している。
【0182】
そのため、製品、本実施の形態中では圧縮機50である、に搭載した場合、永久磁石電動機のモータ定数のうち、相抵抗Rは圧縮機50からの出力端子を抵抗測定器を用いれば計測可能であるが、インダクタンス成分Ld、Lqおよび逆起電圧定数φは計測できなくなる。
【0183】
それは逆起電圧定数は、前述の通り外力による回転をさせる必要があるためであり、インダクタンス成分は、モータの真の回転軸(dq軸)上で表された位置によって変化するインダクタンス成分であるためである。
【0184】
本発明の逆起電圧定数同定器11およびインダクタンス同定器44を具備している駆動装置によれば、このように密閉された状態になっているモータにおいて、そのモータのモータ定数が未知であっても、モータ駆動制御部を用いて駆動することが可能になる。これにより、インバータ2の制御のS/Wの標準化が可能となり、インバータ2が電流容量のハードの違い以外における標準化が可能となり、大量製造による低コスト化が可能となる。
【0185】
さらに、インバータ2に接続されるモータ1が既知であれば、既知である値を予めインバータ内部に設定しておき、起動前のモータ定数同定作業によって、電線の接続不良やモータの取り付け間違いを検出できるようになり、製造不良のラインチェックを行うと信頼性向上に繋がる。
【0186】
またさらに、製品固有のばらつきも補正でき、更に信頼性が増加するだけでなく、各製品毎の動作状態に応じた逆起電圧定数に同定すれば自動でモータ1の性能を最大限に引き出す最適運転させることが可能になる。
【0187】
また、不良や過電流の原因を、モータ定数を同定し外部に引き出して表示などを行うことにより、密閉型の製品を分解することなく特定あるいは推定したり、範囲を絞ることが、例えば磁石の減磁などの不良、過負荷など、出来るので運転停止や継続の判断、速やかな必要最小限の修理により短期間の停止や補修費用の低減が可能になる。
【0188】
さらに、通常状態で過負荷となり、減磁することが判明すれば、インバータハードの耐量見なおし、モータ仕様の適性化等が可能になり各装置の適合性等が事前に判断できることになる。インバータとモータの組合せ不良以外でも、例えば電源の種類が違うなど大きなトラブルを発生する前に各種不良を事前に検出できる。
【0189】
さらに、空気調和機に適用した場合、冷媒の充填量や配管長、設置場所の環境など製品間で発生するばらつきも抑制することができ、各製品毎にモータ1の性能を最大限に引き出して駆動する運転が実現できる。
【0190】
また、密閉型の圧縮機を分解することなく特定あるいは推定したり、範囲を絞ることが、例えば上述の他に、冷媒の充填しすぎなど、出来るので運転停止や継続の判断、速やかな必要最小限の修理により短期間の停止や補修費用の低減が可能になる。
【0191】
実施の形態6.
前述までの実施の形態では、モータ1は永久磁石電動機として説明してきたが、モータ1を永久磁石発電機としてもこの逆起電圧定数同定器11やインダクタンス同定器44は使用可能であり、図示はしていないが、前述までのブロック構成と全く同じでモータ駆動制御部3が発電機駆動制御部に変更されるだけでよい。
【0192】
例えば、風力発電などに使用される永久磁石発電機は風力エネルギーを電気エネルギーに変換するものであるが、突風などにより磁石の磁力が低下する可能性がある。低下した磁力の発電機では、十分な発電量が得られない可能性があり、メンテナンス時に風車から発電機を外すか、風が吹いて発電機がフリーラン状態になった場合、もしくは、外力で発電機を回すようメンテナンス用モータを発電機に接続させた場合に発電機の端子間の電圧を計測し、そのフリーラン回転数から逆起電圧定数を求める必要が出る。
【0193】
風が吹くことを待つ場合、メンテナンスの作業性が非常に悪く、発電機を外したり、メンテナンス用にモータを発電機の高さまで吊り上げ外力で回してメンテナンスする場合、作業にかかるメンテナンス費用が増大する。
【0194】
本発明の逆起電圧定数の同定方法を用いれば、発電機の発電動作を停止することなく、減磁を検出することが可能となる。
【0195】
【発明の効果】
この発明の請求項1に係る永久磁石電動機の駆動装置は、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の軸誤差分を、予め設定された所定の回転数での永久磁石電動機に印加される瞬時電圧と永久磁石電動機に流れる瞬時電流値から算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器を備えたことにより、脱調やモータロックの検出ができる。
【0196】
また、この発明の請求項2に係る永久磁石電動機の駆動装置は、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の軸誤差分を、永久磁石電動機に印加される瞬時電圧と、永久磁石電動機に流れる瞬時電流値と、検出されたあるいは演算にて算出された回転数とから算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器を備えたことにより、全ての回転数において、脱調やモータロックの検出ができる。
【0197】
また、この発明の請求項3に係る永久磁石電動機の駆動装置は、インバータの回転座標軸は、永久磁石電動機の回転子の位置を検出して得られた位置を用いることにより、回転子の位置信号が来ない場合でも、脱調やモータロックの検出ができる。
【0198】
また、この発明の請求項4に係る永久磁石電動機の駆動装置は、インバータの回転座標軸は、電動機の回転子の位置を検出せず、駆動装置内部の演算にて得られた位置を用いるので、位置センサが要らない。
【0199】
また、この発明の請求項5に係る永久磁石電動機の駆動装置は、モータ軸推定器の出力に基づいて、永久磁石電動機の動作判定を行う動作判定部を備えたことにより、脱調やモータロックの検出ができる。
【0200】
また、この発明の請求項6に係る永久磁石電動機の駆動装置は、動作判定部は、起動の判別を行うことにより、起動の判別ができる。
【0201】
また、この発明の請求項7に係る永久磁石電動機の駆動装置は、動作判定部は、脱調による永久磁石電動機停止前に脱調を抑制するために、インバータへの電圧指令値を変化させるように指示するので、脱調による永久磁石電動機停止を抑制できる。
【0202】
また、この発明の請求項8に係る永久磁石電動機の駆動装置は、動作判定部は、警報装置または表示装置を備えたことにより、動作状態を外部に知らせることができる。
【0203】
また、この発明の請求項9に係る永久磁石電動機の駆動装置は、インバータにより永久磁石電動機を駆動し、永久磁石電動機の回転子の位置を位置センサレスでインバータを制御する永久磁石電動機の駆動装置において、モータ軸推定器の出力に基づいて永久磁石電動機を制御することにより、センサレス制御ができる。
【0204】
また、この発明の請求項10に係る永久磁石電動機の駆動装置は、モータ軸推定器は、インバータの回転座標軸により座標変換された電圧Vγ、δ、電流Iγ、δと、インバータの回転座標軸の回転速度ω1と、永久磁石電動機の相抵抗Rと、永久磁石電動機のq軸インダクタンスLqとを用いて、
【0205】
【数14】
Figure 0004319377
【0206】
により軸誤差Δθを演算することにより、如何なる動作条件であっても正確に軸誤差を推定することができる。
【0207】
また、この発明の請求項11に係る永久磁石電動機の駆動装置は、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、電動機のインダクタンス成分とから、永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器を備えたことにより、インバータが接続された状態で逆起電圧定数を同定できる。
【0208】
また、この発明の請求項12に係る永久磁石電動機の駆動装置は、インバータの回転座標軸と、永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、予め設定された所定の回転数での前記永久磁石電動機に印加される瞬時電圧と永久磁石電動機に流れる瞬時電流値から算出し、インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、電動機のインダクタンス成分とから、永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器とを備えたことにより、インバータが接続された状態で逆起電圧定数を同定できる。
【0209】
また、この発明の請求項13に係る永久磁石電動機の駆動装置は、逆起電圧定数同定器は、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧Vqes t及び電動機に流れる電流idest、iqestと、電動機の回転角速度ω1と、電動機の抵抗成分Rと、電動機のd軸インダクタンス成分Ldとを用いて、
【0210】
【数15】
Figure 0004319377
【0211】
により、逆起電圧定数φの演算を行うことにより、インバータが接続された状態で逆起電圧定数を同定できる。
【0212】
また、この発明の請求項14に係る永久磁石電動機の駆動装置は、インバータから電動機に印加される電圧および電流を検出し、電圧および電流の検出値を用いて逆起電圧定数の演算を行うことにより、逆起電圧定数同定の精度が上がる。
【0213】
また、この発明の請求項15に係る永久磁石電動機の駆動装置は、逆起電圧定数同定器は、モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機への指令電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、電動機のインダクタンス成分とから、永久磁石電動機における逆起電圧定数を演算し、永久磁石電動機を駆動するインバータにおいて設定される短絡防止時間による電圧歪みを補正する短絡防止時間補正機能を有することにより、電動機への指令電圧を用いて逆起電圧定数を演算しても、精度よく同定できる。
【0214】
また、この発明の請求項16に係る永久磁石電動機の駆動装置は、永久磁石電動機の各相の電流のゼロ付近中の電圧、電流、回転数を逆起電圧定数の演算に使用しないことにより、さらに逆起電圧定数同定の精度が上がる。
【0215】
また、この発明の請求項17に係る永久磁石電動機の駆動装置は、永久磁石電動機を駆動するインバータにおいて設定される短絡防止時間による電圧歪みを補正する短絡防止時間補正機能を有すると共に、インバータから電動機に印加される電圧および電流を検出し、検出値を用いて逆起電圧定数の演算を行うことにより、逆起電圧定数同定の精度が良くなる。
【0216】
また、この発明の請求項18に係る永久磁石電動機の駆動装置は、逆起電圧定数同定器により算出した逆起電圧定数を用いて、永久磁石電動機を駆動制御することにより、モータの出力トルクの最適動作点で駆動することができる。
【0217】
また、この発明の請求項19に係る永久磁石電動機の駆動装置は、外力で永久磁石電動機を回転させて予め計測しておいた逆起電圧定数を初期値として駆動し、この状態より逆起電圧定数を同定して駆動装置に反映させることにより、定常までの動作が円滑に行われる。
【0218】
また、この発明の請求項20に係る永久磁石電動機の駆動装置は、強制的な回転磁界によって永久磁石電動機が引きずられて回転している状態を作り、この状態で逆起電圧定数を同定し、その値を初期値として永久磁石電動機を駆動し、その後同期駆動運転に切り替えて加速し、加速後に逆起電圧定数を同定することにより、逆起電圧定数が未知の場合でも円滑に起動できる。
【0219】
また、この発明の請求項21に係る永久磁石電動機の駆動装置は、強制的な回転磁界によって永久磁石電動機が引きずられて回転している状態を作り、この状態で逆起電圧定数を同定し、その値を初期値として永久磁石電動機を駆動し、その後停止した場合には、停止前に同定した値を初期値として同期運転にて起動することにより、2回目以降は起動時間を短縮できる。
【0220】
また、この発明の請求項22に係る永久磁石電動機の駆動装置は、逆起電圧定数同定器にて同定した逆起電圧定数を用いて、永久磁石電動機を同期駆動運転することにより、同期駆動運転状態での最適動作点で駆動できる。
【0221】
また、この発明の請求項23に係る永久磁石電動機の駆動装置は、インバータに出力する電圧指令を生成するために逆起電圧定数の値を使用することにより、最適動作点で駆動できる。
【0222】
また、この発明の請求項24に係る永久磁石電動機の駆動装置は、逆起電圧定数同定器にて同定した逆起電圧定数を、ローパスフィルタを介して補正し、補正した逆起電圧定数を用いて永久磁石電動機を同期駆動運転することにより、ハンチングを抑制できる。
【0223】
また、この発明の請求項25に係る永久磁石電動機の駆動装置は、ローパスフィルタの時定数を、永久磁石電動機の駆動の制御周期よりも大きくすることにより、ハンチングを抑制できる。
【0224】
また、この発明の請求項26に係る永久磁石電動機の駆動装置は、永久磁石電動機の駆動中に逆起電圧定数を同定することで、永久磁石電動機の永久磁石の減磁を検出することができる。
【0225】
また、この発明の請求項27に係る永久磁石電動機の駆動装置は、故障診断部を備え、永久磁石電動機の永久磁石が減磁したことを表示することにより、外部から永久磁石が減磁したことを認識できる。
【0226】
また、この発明の請求項28に係る永久磁石電動機の駆動装置は、逆起電圧定数を同定することで、永久磁石電動機の環境温度を推定することができる。
【0227】
また、この発明の請求項29に係る永久磁石電動機の駆動装置は、逆起電圧定数を同定することで、永久磁石電動機の相抵抗値を同定することができる。
【0228】
また、この発明の請求項30に係る永久磁石電動機の駆動装置は、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から前記永久磁石電動機のインダクタンス成分を検出し、永久磁石電動機の相数が2n+1(nは1以上の整数)の場合は、微少時間だけ印加するパルスのために動作させるインバータのスイッチは上下毎の総数を交互に入れ替えてパルスを印加することにより、如何なるモータ定数であっても同一の印加パルス時間で精度良くインダクタンスを同定できる。
【0229】
また、この発明の請求項31に係る永久磁石電動機の駆動装置は、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出し、微少時間印加されるパルスは、永久磁石電動機の相数の偶数倍の回数を印加することにより、如何なるモータ定数であっても同一の印加パルス時間で精度良くインダクタンスを同定できる。
【0230】
また、この発明の請求項32に係る永久磁石電動機の駆動装置は、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出し、微少時間だけ印加するパルスによる電流ピーク値を永久磁石電動機の回転子の停止位置を推定にも共用することができる。
【0231】
また、この発明の請求項33に係る永久磁石電動機の駆動装置は、永久磁石電動機に微少時間だけパルスを印加し、永久磁石電動機に印加されるパルス電圧と永久磁石電動機に流れる電流のピーク値、およびパルス時間から永久磁石電動機のインダクタンス成分を検出し、微少時間だけパルスを印加する前に、パルス印加時間を決定するためのパルスを永久磁石電動機に印加して微少時間を設定することにより、如何なるモータ定数であっても同一の印加パルス時間で精度良くインダクタンスを同定できる。
【0232】
また、この発明の請求項34に係る永久磁石電動機の駆動装置は、検出したインダクタンス成分を、永久磁石電動機の駆動制御もしくはモータ軸推定器の演算の少なくとも一方に用いることにより、モータの個々のばらつきによる制御性の悪化に対しても制御性能を向上させることができる。
【0233】
また、この発明の請求項35〜40に係る永久磁石電動機の駆動装置は、逆起電圧定数の同定に、インダクタンス同定器にて同定したインダクタンスを使用しており、モータの個々のばらつきを許容できるので、逆起電圧定数の同定精度の向上にも起因し、結果、逆起電圧定数の同定による効果を増大させることに繋がる。
【0234】
また、この発明の請求項41に係る永久磁石電動機の駆動装置は、算出された逆起電圧定数を永久磁石電動機の制御に使用される逆起電圧定数としてチューニングすることにより、モータの出力トルクの最適動作点で駆動することができる。
【0235】
また、この発明の請求項42に係る永久磁石電動機の駆動装置は、インダクタンス同定器で検出されたインダクタンス成分を永久磁石電動機の駆動制御もしくはモータ軸推定器の演算の少なくとも一方に用いることにより、モータの個々のばらつきによる制御性の悪化に対しても制御性能を向上させることができる。
【0236】
この発明の請求項43に係る密閉形圧縮機は、請求項1〜42の何れかに記載の永久磁石電電機の駆動装置により、圧縮機用電動機を駆動することにより、密閉された状態になっているモータにおいて、そのモータのモータ定数が未知であっても、永久磁石電電機の駆動装置を用いて駆動することが可能になる。これにより、インバータの制御のS/Wの標準化が可能となり、インバータが電流容量のハードの違い以外における標準化が可能となり、大量製造による低コスト化が可能となる。
さらに、インバータに接続されるモータが既知であれば、既知である値を予めインバータ内部に設定しておき、起動前のモータ定数同定作業によって、電線の接続不良やモータの取り付け間違いを検出できるようになり、製造不良のラインチェックを行うと信頼性向上に繋がる。
またさらに、製品固有のばらつきも補正でき、更に信頼性が増加するだけでなく、各製品毎の動作状態に応じた逆起電圧定数に同定すれば自動でモータの性能を最大限に引き出す最適運転させることが可能になる。
また、不良や過電流の原因を、モータ定数を同定し外部に引き出して表示などを行うことにより、密閉型の製品を分解することなく特定あるいは推定したり、範囲を絞ることが、例えば磁石の減磁などの不良、過負荷など、出来るので運転停止や継続の判断、速やかな必要最小限の修理により短期間の停止や補修費用の低減が可能になる。
【0237】
この発明の請求項44に係る冷凍サイクル装置は、請求項43に記載の密閉形圧縮機を搭載したことにより、冷媒の充填量や配管長、設置場所の環境など製品間で発生するばらつきも抑制することができ、各製品毎にモータの性能を最大限に引き出して駆動する運転が実現できる。
【0238】
この発明の請求項45に係る永久磁石発電機の駆動装置は、請求項1〜42の何れかに記載の永久磁石電動機の駆動装置を発電機に適用したことにより、メンテナンスが容易になり、また逆起電圧定数の同定方法を用いれば、発電機の発電動作を停止することなく、減磁を検出することが可能となる。
【図面の簡単な説明】
【図1】 実施の形態1を示す図で、モータ駆動装置の回路ブロック図である。
【図2】 実施の形態1を示す図で、モータ駆動制御部を示す回路ブロック図である。
【図3】 実施の形態1を示す図で、モータの回転軸とインバータの回転軸の説明図である。
【図4】 実施の形態1を示す図で、他の形態を示す回路ブロック図である。
【図5】 実施の形態1を示す図で、更に他の形態を示す回路ブロック図である。
【図6】 実施の形態2を示す図で、モータ駆動装置の回路ブロック図である。
【図7】 実施の形態2を示す図で、動作を示すフローチャート図である。
【図8】 実施の形態2を示す図で、逆起電圧定数同定器の一例を示す回路ブロック図である。
【図9】 実施の形態2を示す図で、インバータの構成図である。
【図10】 実施の形態2を示す図で、短絡防止時間のタイムチャート図である。
【図11】 実施の形態2を示す図で、他の形態を示す回路ブロック図である。
【図12】 実施の形態2を示す図で、更に他の形態を示す回路ブロック図である。
【図13】 実施の形態3を示す図で、モータ駆動装置の回路ブロック図である。
【図14】 実施の形態4を示す図で、モータ駆動装置の回路ブロック図である。
【図15】 実施の形態4を示す図で、モータの等価回路図である。
【図16】 実施の形態4を示す図で、インダクタンスとモータ位置の関係を示す説明図である。
【図17】 実施の形態4を示す図で、印加パルスと電流の波形図である。
【図18】 実施の形態4を示す図で、動作を示すフローチャート図である。
【図19】 実施の形態5を示す図で、モータ駆動装置の回路ブロック図である。
【図20】 従来のモータ駆動装置の回路ブロック図である。
【図21】 他の従来のモータ駆動装置の回路ブロック図である。
【図22】 他の従来のモータ駆動装置の回路ブロック図である。
【符号の説明】
1 モータ、2 インバータ、2a〜2fスイッチング素子、2g コンデンサ、3 モータ駆動制御部、3a 電圧指令生成器、3b 速度推定器、3c 積分器、4 3軸2軸変換部、5 2軸3軸変換部、6 指令値格納部、7 電流検出器、10 モータ軸推定器、11 逆起電圧定数同定器、12 ローパスフィルタ、13 Td補正器、14 電圧検出器、15 動作判定部、20 センサ駆動制御部、21 位置センサ、22 速度算出器、23 センサレス駆動制御部、32 記憶部、43 電圧検出器、44 インダクタンス同定器、50圧縮機、51 駆動装置、52 凝縮器、53 蒸発器、54 絞り弁。

Claims (23)

  1. インバータにより永久磁石電動機を駆動し、前記永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出し前記インバータを制御する永久磁石電動機の駆動装置において、
    前記インバータの回転座標軸と、前記永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、前記永久磁石電動機に印加される瞬時電圧と前記永久磁石電動機に流れる瞬時電流値と検出されたあるいは演算にて算出された回転数とから算出し、前記インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、
    前記モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、電動機のインダクタンス成分とから、前記永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、
    を備え、強制的な回転磁界によって前記永久磁石電動機が引きずられて回転している状態を作り、この状態で逆起電圧定数を同定し、その値を初期値として前記永久磁石電動機を駆動し、その後同期駆動運転に切り替えて加速し、加速後に逆起電圧定数を同定することを特徴とする永久磁石電動機の駆動装置。
  2. インバータにより永久磁石電動機を駆動し、前記永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出し前記インバータを制御する永久磁石電動機の駆動装置において、
    前記インバータの回転座標軸と、前記永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、予め設定された所定の回転数での前記永久磁石電動機に印加される瞬時電圧と前記永久磁石電動機に流れる瞬時電流値から算出し、前記インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、
    前記モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、電動機のインダクタンス成分とから、前記永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、
    を備え、強制的な回転磁界によって前記永久磁石電動機が引きずられて回転している状態を作り、この状態で逆起電圧定数を同定し、その値を初期値として前記永久磁石電動機を駆動し、その後同期駆動運転に切り替えて加速し、加速後に逆起電圧定数を同定することを特徴とする永久磁石電動機の駆動装置。
  3. インバータにより永久磁石電動機を駆動し、前記永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出し前記インバータを制御する永久磁石電動機の駆動装置において、
    前記インバータの回転座標軸と、前記永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、前記永久磁石電動機に印加される瞬時電圧と前記永久磁石電動機に流れる瞬時電流値と検出されたあるいは演算にて算出された回転数とから算出し、前記インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、
    前記モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、電動機のインダクタンス成分とから、前記永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、
    を備え、強制的な回転磁界によって前記永久磁石電動機が引きずられて回転している状態を作り、この状態で逆起電圧定数を同定し、その値を初期値として前記永久磁石電動機を駆動し、その後停止した場合には、前記停止前に同定した値を初期値として同期運転にて起動することを特徴とする永久磁石電動機の駆動装置。
  4. インバータにより永久磁石電動機を駆動し、前記永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出し前記インバータを制御する永久磁石電動機の駆動装置において、
    前記インバータの回転座標軸と、前記永久磁石電動機の回転子磁石による磁束方向と磁束方向より回転方向に90度進んだ方向の座標にて構成されるモータの回転座標軸との間の誤差分を、予め設定された所定の回転数での前記永久磁石電動機に印加される瞬時電圧と前記永久磁石電動機に流れる瞬時電流値から算出し、前記インバータの回転座標軸とモータの回転座標軸との軸誤差分からモータの回転座標軸を推定するモータ軸推定器と、
    前記モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、電動機のインダクタンス成分とから、前記永久磁石電動機における逆起電圧定数を演算する逆起電圧定数同定器と、
    を備え、強制的な回転磁界によって前記永久磁石電動機が引きずられて回転している状態を作り、この状態で逆起電圧定数を同定し、その値を初期値として前記永久磁石電動機を駆動し、その後停止した場合には、前記停止前に同定した値を初期値として同期運転にて起動することを特徴とする永久磁石電動機の駆動装置。
  5. 前記逆起電圧定数同定器は、前記モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機入力電圧Vqest及び電動機に流れる電流idest、iqestと、電動機の回転角速度ω1と、電動機の抵抗成分Rと、電動機のd軸インダクタンス成分Ldとを用いて、
    Figure 0004319377
    により、逆起電圧定数φの演算を行うことを特徴とする請求項1乃至4のいずれかに記載の永久磁石電動機の駆動装置。
  6. 前記インバータから前記電動機に印加される電圧および電流を検出し、前記電圧および電流の検出値を用いて逆起電圧定数の演算を行うことを特徴とする請求項1乃至4のいずれかに記載の永久磁石電動機の駆動装置。
  7. 前記逆起電圧定数同定器は、前記モータ軸推定器にて得られた軸誤差とインバータの回転座標軸とから求められるモータの回転座標軸にて座標変換された電動機への指令電圧及び電動機に流れる電流と、電動機の回転数と、電動機の抵抗成分と、電動機のインダクタンス成分とから、前記永久磁石電動機における逆起電圧定数を演算し、前記永久磁石電動機を駆動するインバータにおいて設定される短絡防止時間による電圧歪みを補正する短絡防止時間補正機能を有することを特徴とする請求項1乃至4のいずれかに記載の永久磁石電動機の駆動装置。
  8. 前記永久磁石電動機の各相の電流のゼロ付近中の電圧、電流、回転数を逆起電圧定数の演算に使用しないことを特徴とする請求項に記載の永久磁石電動機の駆動装置。
  9. 前記永久磁石電動機を駆動するインバータにおいて設定される短絡防止時間による電圧歪みを補正する短絡防止時間補正機能を有すると共に、前記インバータから前記電動機に印加される電圧および電流を検出し、検出値を用いて逆起電圧定数の演算を行うことを特徴とする請求項1乃至4のいずれかに記載の永久磁石電動機の駆動装置。
  10. 前記逆起電圧定数同定器により算出した逆起電圧定数を用いて、前記永久磁石電動機を駆動制御することを特徴とする請求項1乃至9の何れかに記載の永久磁石電動機の駆動装置。
  11. 前記逆起電圧定数同定器にて同定した逆起電圧定数を用いて、前記永久磁石電動機を同期駆動運転することを特徴とする請求項1乃至4のいずれかに記載の永久磁石電動機の駆動装置。
  12. 前記インバータに出力する電圧指令を生成するために逆起電圧定数の値を使用することを特徴とする請求項1乃至4のいずれかに記載の永久磁石電動機の駆動装置。
  13. 前記逆起電圧定数同定器にて同定した逆起電圧定数を、ローパスフィルタを介して補正し、補正した逆起電圧定数を用いて前記永久磁石電動機を同期駆動運転することを特徴とする請求項1乃至4のいずれかに記載の永久磁石電動機の駆動装置。
  14. 前記ローパスフィルタの時定数を、前記永久磁石電動機の駆動の制御周期よりも大きくすることを特徴とする請求項13に記載の永久磁石電動機の駆動装置。
  15. 前記永久磁石電動機の駆動中に逆起電圧定数を同定することで、前記永久磁石電動機の永久磁石の減磁を検出することを特徴とする請求項1乃至4のいずれかに記載の永久磁石電動機の駆動装置。
  16. 故障診断部を備え、前記永久磁石電動機の永久磁石が減磁したことを表示することを特徴とする請求項15に記載の永久磁石電動機の駆動装置。
  17. 逆起電圧定数を同定することで、前記永久磁石電動機の環境温度を推定することを特徴とする請求項1乃至4のいずれかに記載の永久磁石電動機の駆動装置。
  18. 逆起電圧定数を同定することで、前記永久磁石電動機の相抵抗値を同定することを特徴とする請求項1乃至4のいずれかに記載の永久磁石電動機の駆動装置。
  19. インバータにより永久磁石電動機を駆動し、前記永久磁石電動機の回転子の位置を検出しあるいは位置を演算にて算出し前記インバータを制御する永久磁石電動機の駆動装置において、
    前記永久磁石電動機に微少時間だけパルスを印加し、前記永久磁石電動機に印加されるパルス電圧と前記永久磁石電動機に流れる電流のピーク値、およびパルス時間から前記永久磁石電動機のインダクタンス成分を検出し、
    微少時間だけパルスを印加する前に、パルス印加時間を決定するためのパルスを前記永久磁石電動機に印加して前記微少時間を設定することを特徴とする永久磁石電動機の駆動装置。
  20. 検出したインダクタンス成分を、前記永久磁石電動機の駆動制御もしくは前記モータ軸推定器の演算の少なくとも一方に用いることを特徴とする請求項19記載の永久磁石電動機の駆動装置。
  21. 請求項1乃至2のいずれかに記載の永久磁石電電機の駆動装置により、圧縮機用電動機を駆動することを特徴とする密閉形圧縮機。
  22. 請求項1に記載の密閉形圧縮機を搭載したことを特徴とする冷凍サイクル装置。
  23. 請求項1乃至2のいずれかに記載の永久磁石電動機の駆動装置を発電機に適用したことを特徴とする永久磁石発電機の駆動装置。
JP2002160780A 2002-05-31 2002-05-31 永久磁石電動機の駆動装置及び密閉形圧縮機及び冷凍サイクル装置及び永久磁石発電機の駆動装置 Expired - Lifetime JP4319377B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002160780A JP4319377B2 (ja) 2002-05-31 2002-05-31 永久磁石電動機の駆動装置及び密閉形圧縮機及び冷凍サイクル装置及び永久磁石発電機の駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002160780A JP4319377B2 (ja) 2002-05-31 2002-05-31 永久磁石電動機の駆動装置及び密閉形圧縮機及び冷凍サイクル装置及び永久磁石発電機の駆動装置

Publications (2)

Publication Number Publication Date
JP2004007924A JP2004007924A (ja) 2004-01-08
JP4319377B2 true JP4319377B2 (ja) 2009-08-26

Family

ID=30430033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002160780A Expired - Lifetime JP4319377B2 (ja) 2002-05-31 2002-05-31 永久磁石電動機の駆動装置及び密閉形圧縮機及び冷凍サイクル装置及び永久磁石発電機の駆動装置

Country Status (1)

Country Link
JP (1) JP4319377B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542797B2 (ja) * 2004-02-23 2010-09-15 株式会社東芝 同期機の制御装置
JP4781933B2 (ja) * 2006-08-01 2011-09-28 本田技研工業株式会社 電動機の制御装置
JP2008295200A (ja) * 2007-05-24 2008-12-04 Aisin Seiki Co Ltd 同期モータの制御装置、及び同期モータ制御の最適化方法
JP2009022091A (ja) * 2007-07-11 2009-01-29 Toshiba Corp 永久磁石同期電動機の永久磁石減磁監視装置
JP4804496B2 (ja) * 2008-03-18 2011-11-02 三菱電機株式会社 電動機の駆動装置、空気調和機、洗濯機、洗濯乾燥機、冷蔵庫、換気扇、ヒートポンプ給湯器
JP4194645B1 (ja) * 2008-03-28 2008-12-10 日立アプライアンス株式会社 冷凍装置
JP4927052B2 (ja) * 2008-09-22 2012-05-09 日立アプライアンス株式会社 冷凍装置
EP2400652B1 (en) 2009-02-18 2019-09-04 Sumitomo Heavy Industries, LTD. Hybrid shovel
JP5594160B2 (ja) * 2011-01-20 2014-09-24 株式会社豊田自動織機 電動モータ内蔵磁石の劣化検知方法及び装置
JP5967802B2 (ja) * 2012-02-20 2016-08-10 Eddyrent Japan株式会社 ブラシレスモータのロータ停止位置判定装置
JP6806272B1 (ja) * 2019-12-09 2021-01-06 株式会社明電舎 モータの減磁診断装置およびモータ制御装置の減磁診断方法
CN114598218B (zh) * 2022-03-24 2022-10-28 中国矿业大学 带lc滤波器的永磁同步电机无位置传感器控制方法及装置、系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3213751B2 (ja) * 1990-09-13 2001-10-02 株式会社日立製作所 交流電動機の回転子磁極位置検出方法、回転子磁極位置検出装置および交流電動機制御装置
JP3312520B2 (ja) * 1995-01-24 2002-08-12 富士電機株式会社 電動機の磁極位置検出装置
US5844385A (en) * 1996-07-10 1998-12-01 Sundstrand Corporation Absolute angle estimation apparatus for a sensorless switched reluctance machine system
JP3819184B2 (ja) * 1999-08-31 2006-09-06 独立行政法人科学技術振興機構 永久磁石形同期電動機の制御方法
JP3454210B2 (ja) * 1999-11-30 2003-10-06 株式会社日立製作所 同期モータの位置センサレス制御方法
JP3837986B2 (ja) * 1999-12-24 2006-10-25 三菱電機株式会社 永久磁石形モータ、永久磁石形モータの制御方法、永久磁石形モータの制御装置、圧縮機、冷凍・空調装置。
JP3411878B2 (ja) * 2000-03-06 2003-06-03 株式会社日立製作所 同期モータの回転子位置推定方法、位置センサレス制御方法及び制御装置

Also Published As

Publication number Publication date
JP2004007924A (ja) 2004-01-08

Similar Documents

Publication Publication Date Title
JP3680016B2 (ja) 同期電動機の脱調検出装置
KR100919268B1 (ko) 회전기 제어 장치
US9246420B2 (en) Motor control device
RU2561879C2 (ru) Устройство управления синхронной машиной с постоянными магнитами
JP4319377B2 (ja) 永久磁石電動機の駆動装置及び密閉形圧縮機及び冷凍サイクル装置及び永久磁石発電機の駆動装置
JP4300730B2 (ja) 永久磁石電動機装置、冷凍サイクル装置、永久磁石電動機の駆動方法
EP2696495B1 (en) Applied-voltage electrical angle setting method for synchronous motor, and motor control apparatus
US20070152624A1 (en) Motor system, control method thereof, and compressor using the same
JP2004201425A (ja) モータ温度推定装置及び圧縮機内部状態推定装置
US20150226776A1 (en) Method and device for measuring inductance of permanent magnet synchronous motor, and permanent magnet synchronous motor
JP3672876B2 (ja) ベクトル制御インバータ装置及び回転駆動装置
US7375482B2 (en) Driving device of motor
JP3755582B2 (ja) 電動機制御装置
JP2001204190A (ja) 初期磁極位置推定装置その誤差調整方法
WO2022242708A1 (zh) 电机启动方法及可读存储介质
WO2020016972A1 (ja) 回転機制御装置、冷媒圧縮装置、冷凍サイクル装置及び空気調和機
JP2009225596A (ja) 電動機の駆動装置、空気調和機、洗濯機、洗濯乾燥機、冷蔵庫、換気扇、ヒートポンプ給湯器
JP3766348B2 (ja) 電動機のトルク制御装置及び電動機のトルク制御方法及び密閉形圧縮機及び冷凍サイクル装置
JP2003319698A (ja) センサレスベクトル制御用インバータ装置及び回転駆動装置
JP4735439B2 (ja) 永久磁石式同期電動機の初期磁極位置推定装置
JP4051833B2 (ja) 永久磁石式同期電動機のベクトル制御装置
JP2004135458A (ja) Ipmモータの制御方法および制御装置
JP2004015891A (ja) インバータ装置、ブラシレスdcモータの制御方法およびコンプレッサ駆動システム
JP4281376B2 (ja) 電動機の駆動装置
JP6806272B1 (ja) モータの減磁診断装置およびモータ制御装置の減磁診断方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040519

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4319377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term