JP4312586B2 - 表示素子の駆動方法、表示素子、表示装置、およびプログラム - Google Patents

表示素子の駆動方法、表示素子、表示装置、およびプログラム Download PDF

Info

Publication number
JP4312586B2
JP4312586B2 JP2003423358A JP2003423358A JP4312586B2 JP 4312586 B2 JP4312586 B2 JP 4312586B2 JP 2003423358 A JP2003423358 A JP 2003423358A JP 2003423358 A JP2003423358 A JP 2003423358A JP 4312586 B2 JP4312586 B2 JP 4312586B2
Authority
JP
Japan
Prior art keywords
display element
video signal
medium
voltage
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003423358A
Other languages
English (en)
Other versions
JP2005181746A (ja
Inventor
弘一 宮地
靖司 芝原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003423358A priority Critical patent/JP4312586B2/ja
Priority to TW093139713A priority patent/TWI329214B/zh
Priority to KR1020040108265A priority patent/KR100687681B1/ko
Priority to US11/015,771 priority patent/US7639332B2/en
Priority to CNB2004101049967A priority patent/CN100555036C/zh
Publication of JP2005181746A publication Critical patent/JP2005181746A/ja
Priority to KR1020060094762A priority patent/KR100741625B1/ko
Priority to KR1020060094761A priority patent/KR100751168B1/ko
Application granted granted Critical
Publication of JP4312586B2 publication Critical patent/JP4312586B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

本発明は、高速応答で広視野の表示性能を持つ表示素子に関するものである。
各種ある表示素子のなかでも、液晶表示素子は、薄型で軽量、かつ低消費電力なので、テレビやビデオなどの画像表示装置や、モニター、ワープロ、パーソナルコンピュータなどのOA機器に広く用いられている。
従来、液晶表示素子としては、たとえば、ネマチック液晶を用いたツイステッドネマティック(TN)モ−ドの液晶表示素子が実用化されているが、表示の応答速度が遅い、視野角が狭いなどの欠点がある。
また、表示応答が速く、視野角が広い液晶表示素子として、強誘電性液晶(FLC:Ferroelectric Liquid Crystal)、あるいは反強誘電性液晶(AFLC:Anti-Ferroelectric Liquid Crystal)などの表示モ−ドを採用する液晶表示素子もある。しかしながらこの液晶表示素子は、耐ショック性、温度特性等に大きな欠点があり、広く実用化されてはいない。
また、光散乱を利用する高分子分散型液晶表示素子は、偏光板を必要とせず、高輝度表示が可能である。しかしながら、高分子分散型液晶表示素子は、画像表示の応答特性の面で課題を有しているので、TNモードの液晶表示素子よりも優れた表示素子とはいい難い。
さらに近年、電界印加による分子の回転を利用するこれらの表示素子に対して、電界印加により光学的異方性が変化する物質、特に、電気光学効果による配向分極または電子分極を示す物質を用いた表示素子が提案されている。
なお、電気光学効果とは、物質の屈折率が外部電界によって変化する現象のことをいう。また、電気光学効果には、電界の1次に物質の屈折率が比例する効果と、電界の2次に物質の屈折率が比例する効果とがあり、それぞれポッケルス効果、カー効果と呼ばれている。
特にカー効果を示す物質は、高速の光シャッターへの応用が早くから進められており、特殊な計測機器への実用化がなされている。カー効果は1875年にJ.Kerrによって発見されたものであり、カー効果を示す物質の屈折率は、印加電界の2次に比例する。したがって、カー効果を示す物質を配向分極に用いると、ポッケルス効果を示す物質を配向分極に用いた場合に比べて低電圧駆動を見込むことができる。さらに、カー効果を示す物質は、数マイクロ秒〜数ミリ秒の応答特性を示すので、表示装置による表示を入力電圧に対して高速に応答させるために用いられることが期待される。
従来では、カー効果を示す材料として、ニトロベンゼンや二硫化炭素などが知られており、電力ケーブル等における高電界強度を測定するために利用されていた。その後、液晶材料もカー効果を示すことが発見され、光変調素子、光偏向素子、更には光集積回路応用に向けての基礎検討が行われた。そして、ニトロベンゼンの200倍を越えるカー定数を示す液晶化合物も報告されている。
このような状況から、二次の電気光学効果(以下、カー効果と呼ぶ)を示す物質、ひいては電界印加により光学的異方性が変化する物質を表示素子へ応用することが盛んに検討され始めている。
特開2001−249363号公報(2001年9月14日) 特開平11−183937号公報(1999年7月9日) Appl. Phys. Lett., Vol.69, 1996年6月10日、p1044 斉藤 一弥、徂徠 道夫,「光学的に等方性である珍しいサーモトロピック液晶の熱力学」,液晶,第5巻,第1号,p.20−27,2001年 山本 潤,「液晶マイクロエマルション」,液晶,第4巻,第3号,p.248−254,2000年 「Handbook of Liquid Crystals」, Vol.2B, p.887-900, Wiley-VCH,1998 山本 潤,「液晶科学実験講座第1回:液晶相の同定:(4)リオトロピック液晶」,液晶,第6巻,第1号,p.72−82 Eric Grelet、外3名「Structural Investigations on Smectic Blue Phases」,PHYSICAL REVIEW LETTERS, The American Physical Society,23 APRIL 2001,VOLUME 86,NUMBER 17,p.3791-3794 米谷 慎,「分子シミュレーションでナノ構造液晶相を探る」,液晶,第7巻,第3号,p.238−245
しかしながら、電界印加により光学的異方性が変化する物質を用いた表示素子に、一般的な液晶表示素子に用いるのと同様のスイッチング素子を設けて駆動した場合、表示素子による画像表示の応答が、スイッチング素子による信号電圧に対して遅くなるという問題がある。なお、信号電圧とは、表示素子を駆動するためにスイッチング素子により表示素子に書き込まれる電圧を意味している。
具体的には、図9に示すように、表示素子100に、FET(電界効果型トランジスタ)等からなるスイッチング素子200と、電圧波形発生器300とを設ける。このように表示素子100にスイッチング素子200および電圧波形発生器300を設けると、スイッチング素子200が導通状態になったときに、電圧波形発生器300が出力していた電圧が表示素子100に印加されて、表示素子100の充電が行われる。そして、スイッチング素子200が非導通になると、充電された電荷が表示素子100に保持されたままになる。
つまり、理想的には、図10に示すように、電圧波形発生器300により電圧が発生されている際にスイッチング素子200が導通状態となると、表示素子100の充電が開始される。そして、スイッチング素子200が非導通状態とされても、表示素子100に充電された電荷は一定に保持された状態となるはずである。
しかしながら、図11(a)に示すように一定の信号電圧が表示素子に書き込まれている場合に、表示素子100における実際の透過率応答波形を観察すると、該応答波形は、図11(b)に示すように階段状になることが分かった。したがって、結果的に、表示素子の信号電圧に対する表示応答時間は1フレーム以上の長さとなる。典型的な表示応答時間は、フレーム周波数が60Hzだとすると、16.7ms以上の長さになる。これでは、たとえば動画表示において残像が見えるというように、表示品位が低下する。
本発明では、各画素にスイッチング素子を設けて駆動した場合に高速応答が得られる表示素子およびその駆動方法、およびプログラムを提供することを目的とする。
本発明の表示素子の駆動方法は、上記課題を解決するために、電圧を印加することにより光学的異方性が変化する媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子の駆動方法であって、上記媒質へ入力する信号電圧を、前回の映像信号と今回の映像信号とに基づき設定することを特徴としている。
また、本発明の表示素子は、上記課題を解決するために、電圧を印加することにより光学的異方性が変化する媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子であって、前回の映像信号と今回の映像信号とに基づき、上記媒質に入力する信号電圧を設定するための補正後映像信号を出力する映像信号補正処理手段を備えていることを特徴としている。
従来の液晶表示素子では、液晶分子の配向方向の変化を利用していたため、液晶固有の粘度が表示応答速度に大きく影響していた。これに対して、上記の構成における表示素子は、媒質における光学的異方性の変化を用いて表示を行う。したがって、上記の構成の表示素子は、従来の液晶表示素子のように、液晶固有の粘度が表示応答速度に大きく影響するといった問題がないので、高速応答の表示性能を本来的に有している。
さらに、上記構成によれば、今回の映像信号の入力により印加されるべき所望の電圧が、なるべく早く上記媒質に印加されるように算出される信号電圧を、今回の映像信号と前回の映像信号とに基づき設定することができる。
したがって、上記構成によれば、従来の液晶表示素子よりも高速の応答性能を有している表示素子に対して、その高速応答性能を失わないような信号電圧を印加することができる。したがって、媒質における光学的異方性の変化を用いて表示を行う表示素子の高速応答をより的確に実現できるという効果を奏する。
さらに、上記構成の表示素子の駆動方法においては、上記前回の映像信号を入力することにより上記媒質へ現在電圧印加されている際の上記表示素子の容量と、上記今回の映像信号を入力することにより上記媒質へ印加させるべき電圧と、該印加させるべき電圧が印加されている際の上記表示素子の容量とに基づき、上記信号電圧を設定することが好ましい。
たとえば、上記前回の映像信号を入力することにより上記媒質へ現在電圧印加されている際の上記表示素子の容量をCi−1とし、上記今回の映像信号を入力することにより上記媒質へ印加させるべき電圧をVとし、上記電圧Vが印加されている際の上記表示素子の容量をCとした場合(iは1以上の整数)、Vs=V・C/Ci−1にて算出されるVsを、上記信号電圧として設定する。
上記構成によれば、表示素子の容量を考慮して信号電圧が設定されるので、所望の電圧をなるべく早く表示素子に印加するための信号電圧を、より精度良く設定することが可能となるというさらなる効果を奏する。
あるいは、上記構成の表示素子の駆動方法においては、上記今回の映像信号により設定される上記表示素子の階調レベルと、上記前回の映像信号により設定される上記表示素子の階調レベルとに基づき、上記信号電圧を設定することが好ましい。
たとえば、上記今回の映像信号により設定される上記表示素子の階調レベルをαとし、上記前回の映像信号により設定される上記表示素子の階調レベルをβとし、kを0よりも大きな任意の定数とした場合、
γ=β+k×(β−α)
により算出される階調レベルγにて、上記表示素子の表示が行われるよう、上記信号電圧を設定する。
上記構成によれば、デジタルデータである階調レベルを用いて、所望の電圧をなるべく早く表示素子に印加するための信号電圧が設定される。したがって、アナログデータである表示素子への印加電圧値を用いて信号電圧を設定するよりも、簡略化された処理により信号電圧を設定することができるというさらなる効果を奏する。
さらに、上記構成の表示素子の駆動方法においては、上記階調レベルγが、上記表示素子が表示し得る階調レベルの最大値を超えている場合、該最大値の階調レベルにて、上記表示素子の表示が行われるよう、上記信号電圧を設定することが好ましい。
上記構成によれば、最大の階調レベルを表示するための信号電圧以上の電圧が媒質に印加されることが防止されるので、過電圧の印加により表示素子が破壊されてしまうことを防止できるというさらなる効果を奏する。さらに、表示素子は、ある階調レベル以上の階調レベルはそもそも表示できないので、上記構成によれば、適切な階調レベルを表示素子により表現することができるというさらなる効果を奏する。
また、上記階調レベルγが、上記表示素子が表示し得る階調レベルの最小値よりも小さい場合、該最小値の階調レベルにて、上記表示素子の表示が行われるよう、上記信号電圧を設定することも好ましい。
表示素子は、ある階調レベル以下の階調レベルはそもそも表示できないので、上記構成によれば、適切な階調レベルを表示素子により表現することができるというさらなる効果を奏する。
また、kは1/2に設定されることが好ましい。これにより、本発明の表示素子の高速応答性能が向上するというさらなる効果を奏する。
あるいは、上記表示素子が表示し得る階調レベルの最大値をGmaxとした場合、上記kを、k=|β−α|/Gmaxにより算出することが好ましい。上記構成によれば、β−αの値の大きさに応じた補正値k(β−α)が階調レベルβに加えられて階調レベルγが設定されるので、前回の映像信号および今回の映像信号のそれぞれに適した階調レベルγが算出される。したがって、信号電圧の設定をより適切に行うことができるというさらなる効果を奏する。
さらに、上記信号電圧は、前々回の映像信号に基づき設定することが好ましい。これにより、より多くのパラメータに基づいて信号電圧が設定されることになるので、より適切な信号電圧を設定し、表示素子の高速応答をより的確に実現できるという効果を奏する。
また、本発明の表示素子の駆動方法は、上記課題を解決するために、電圧を印加することにより光学的異方性が変化する媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子の駆動方法であって、上記媒質へ入力する信号電圧を、前回の映像信号の入力に応じて上記表示素子が示すと予測される到達予測データと、今回の映像信号とに基づき設定する構成であってもよい。到達予測データとしては、たとえば、表示素子に印加されている電圧を示すデータ、あるいは、表示素子による表示の階調レベルを示すデータを挙げることができる。
従来の液晶表示素子では、液晶分子の配向方向の変化を利用していたため、液晶固有の粘度が表示応答速度に大きく影響していた。これに対して、上記の構成における表示素子は、媒質における光学的異方性の変化を用いて表示を行う。したがって、上記の構成の表示素子は、従来の液晶表示素子のように、液晶固有の粘度が表示応答速度に大きく影響するといった問題がないので、高速応答の表示性能を本来的に有している。
さらに、上記構成によれば、今回の映像信号の入力により印加されるべき所望の電圧が、なるべく早く上記媒質に印加されるように算出される信号電圧を、今回の映像信号と到達予測データとに基づき設定することができる。
したがって、上記構成によれば、従来の液晶表示素子よりも高速の応答性能を有している表示素子に対して、その高速応答性能を失わないような信号電圧を印加することができる。したがって、媒質における光学的異方性の変化を用いて表示を行う表示素子の高速応答をより的確に実現できるという効果を奏する。
特に、到達予測データを用いて信号電圧を設定することにより、到達予測データと、実際に表示素子が示しているデータとが異なっている場合でも、信号電圧の設定を確実に行うことができる。よって、上記表示素子の高速応答を確実に実現できるという効果も奏する。
さらに、上記構成の表示素子の駆動方法においては、上記媒質の温度に基づき、上記媒質へ入力する信号電圧を設定することが好ましい。すなわち、媒質の粘性が温度に基づき変化するので、信号電圧も媒質の温度に基づき変化させるべきである。したがって、上記構成によれば、より精度良く信号電圧を設定することが可能となるというさらなる効果を奏する。
また、上記媒質は、電界無印加時に光学的等方性を示し、電界を印加することによって光学的異方性を示すものであってもよく、あるいは、電界無印加時に光学的異方性を示し、電界を印加することによって光学的等方性を示すものであってもよい。
上記いずれの構成においても、電圧無印加時と電圧印加時とで表示状態が異なり、駆動温度範囲が広く、広視野角特性および高速応答特性を有する表示素子を実現できる。
また、上記媒質は、電圧印加時または電圧無印加時に、光学波長以下の秩序構造を有することが好ましい。秩序構造が光学波長以下であれば、光学的に等方性を示す。したがって、電圧印加時または電圧無印加時に、秩序構造が光学波長以下となる媒質を用いることにより、電圧無印加時と電圧印加時とにおける表示状態を確実に異ならせることができる。
また、上記媒質は、キュービック対称性を示す秩序構造を有するものであってもよい。
また、上記媒質は、キュービック相またはスメクチックD相を示す分子からなるものであってもよい。
また、上記媒質は、液晶マイクロエマルションからなるものであってもよい。また、上記媒質が、ミセル相、逆ミセル相、スポンジ相、キュービック相のいずれかを示すリオトロピック液晶からなるものであってもよい。
また、上記媒質は、ミセル相、逆ミセル相、スポンジ相、キュービック相のいずれかを示す液晶微粒子分散系からなるものであってもよい。
また、上記媒質は、デンドリマーからなるものであってもよい。
また、上記媒質は、コレステリックブルー相を示す分子からなるものであってもよい。
また、上記媒質は、スメクチックブルー相を示す分子からなるものであってもよい。
上記記載の各物質は、電界を印加することによって光学的異方性が変化する。したがって、これらの物質を、本発明の表示素子における誘電性液体層に封入する媒質として用いることができる。
また、本発明の表示素子は、上記一対の基板のうち少なくとも一方に、複数の電極を備え、上記複数の電極間に電界を印加することによって、上記媒質に電界を印加する構成としてもよい。あるいは、上記一対の基板の双方に電極を備え、両基板に備えられた電極間に電界を印加することによって、上記媒質に電界を印加する構成としてもよい。
上記いずれの構成によっても、上記媒質に電界を印加することができ、上記媒質における光学的異方性を変化させることができる。
本発明の表示装置は、上記の課題を解決するために、上記したいずれかの構成の表示素子を備えてなることを特徴としている。
上記の構成によれば、駆動温度範囲が広く、広視野角特性および高速応答特性を備えた表示装置を実現することができる。
また、本発明に係るプログラムは、上記構成の表示素子の駆動方法をコンピュータに実行させるプログラムである。したがって、当該プログラムがコンピュータで実行されると、当該コンピュータは、表示素子を上記駆動方法で駆動できる。この結果、本発明の駆動方法と同様に、表示素子の高速応答性能を確実に実現することができるという効果が奏される。
本発明によれば、電圧を印加することにより光学的異方性が変化する媒質に対して入力する信号電圧を、前回の映像信号と今回の映像信号とに基づき設定するので、該媒質における光学的異方性の変化により表示を行う表示素子の高速応答をより的確に実現できるという効果を奏する。
また、到達予測データと今回の映像信号とに基づいて信号電圧を設定する場合においても、該媒質における光学的異方性の変化により表示を行う表示素子の高速応答をさらに的確に実現できるという効果を奏する。
本発明の一実施形態について図面に基づいて説明すると以下の通りである。
〔1.表示素子の構成および表示原理〕
先ず、本実施の形態の表示素子を用いる表示装置の構成について説明する。図1に示すように、本実施形態の表示装置1は、後述する構成の表示素子を有する画素がマトリクス状に配置された表示パネル2と、表示パネル2のデータ信号線SL1〜SLnを駆動するソースドライバ3と、表示パネルの走査信号線GL1〜GLmを駆動するゲートドライバ4と、コントローラ5と、ソースドライバ3およびゲートドライバ4へ表示パネルにて表示を行うための電圧を供給する電源回路6とを含んでいる。
さらに、表示装置1は、外部装置から入力される映像信号を1フレーム分蓄積するフレームメモリ7と、外部装置から入力される現在のフレームの映像信号(現フレーム映像信号、今回の映像信号)、および現在のフレームの1つ前のフレームの映像信号(前フレーム映像信号、前回の映像信号)に基づいて、現フレーム映像信号を補正した補正後映像信号をコントローラ5に出力する映像信号補正処理部8とを備えている。なお、フレームとは、外部装置から入力される映像信号の伝送単位のことである。また、映像信号補正処理部8が行う映像信号の補正処理に関しては後述する。
コントローラ5は、デジタル化された表示データ信号(例えば、赤、緑、青に対応するRGBの各映像信号)、およびソースドライバの動作を制御するためのソースドライバ制御信号をソースドライバ3に出力するとともに、ゲートドライバの動作を制御するためのゲートドライバ制御信号をゲートドライバ4へに出力している。ソースドライバ制御信号としては、水平同期信号、スタートパルス信号およびソースドライバ用のクロック信号等がある。一方、ゲートドライバ制御信号としては、垂直同期信号やゲートドライバ用のクロック信号等がある。また、コントローラ5は、映像信号補正処理部8から入力される補正後映像信号に基づき、ソースドライバ3へ入力する表示データ信号を決定する。
また、上記表示パネル2は、複数のデータ信号線SL1〜SLnと、各データ信号線SL1〜SLnに、それぞれ交差する複数の走査信号線GL1〜GLmを備えており、データ信号線および走査信号線の組み合わせ毎に、画素10…が設けられている。そして、各画素10は、図2に示すように、後述する構成の表示素子11と、スイッチング素子12とを備えている。
スイッチング素子12は、FET(電界効果型トランジスタ)であり、ゲートが走査信号線GLjへ、ドレインがデータ信号線SLiに接続されている。さらに、スイッチング素子12のソースは、表示素子11に接続されている。また、表示素子11の他端は、全画素に共通の共通電極線に接続されている。
上記各画素10において、走査信号線GLjが選択されると、スイッチング素子12が導通し、コントローラ5から入力される表示データ信号に基づき決定される信号電圧が、ソースドライバ3によりデータ信号線SLiを介して表示素子11へ印加される。一方、当該走査信号線GLjの選択期間が終了して、スイッチング素子12が遮断されている間、理想的には、表示素子11は遮断時の電圧を保持し続ける。
ここで、表示素子11の透過率あるいは反射率は、スイッチング素子12により印加される信号電圧によって変化する。したがって、走査信号線GLjを選択し、各画素10への表示データ信号に応じた信号電圧を、ソースドライバ3からデータ信号線SLiへ印加すれば、各画素10の表示状態を、映像データに合わせて変化させることができる。
図3は、表示素子11の構成を詳細に示す断面図である。図3(a)に示すように、表示素子11は、互いに対向するように配置された2枚のガラス基板13と、ガラス基板13の外側に配置された偏光板14とを備えている。さらに、表示素子11においては、2枚のガラス基板13・13の間に、電圧印加により媒質そのものの異方性または配向秩序が変化する媒質(以下単に「媒質A」と記載する)が封入される。なお、媒質Aは、たとえば、10μm程度の厚みに設定されるとともに、33.3℃未満の温度でネマチック相、それ以上の温度で等方相を示すものである。また、媒質Aとしては、たとえば以下の(化1)にて表される物質を用いることができる。その他の媒質Aの具体例については後述する。
Figure 0004312586
また、ガラス基板13の表面には、2枚の電極15・15が互いに対向するように形成されている。具体的には、図4に示すように、2枚の電極15・15はそれぞれ櫛歯状に形成され、一方の電極の櫛歯が他方の電極の櫛歯に噛み合うようにされている。なお、電極15の幅は5μmに設定され、2枚の電極15・15の間の距離は5μmに設定されている。
なお、図4に示すように、両基板にそれぞれ設けられた偏光板は、互いの吸収軸が直交するとともに、各偏光板における吸収軸と電極15・15における櫛歯部分の電極伸長方向とが約45度の角度をなすように備えられている。このため、各偏光板における吸収軸は、電極15・15の電界印加方向に対して、約45度の角度をなす。
このように電極15・15を配置することにより、図3(b)に示すように、電極15に電圧を印加すると、基板13に略平行な方向に電界が印加されることになる。そして、このように構成された表示素子の温度を、加温装置を用いて、媒質Aのネマチック相と等方相とが転移する温度の近傍(相転移温度よりもわずかに高い温度、たとえば+0.1K)に保った状態で、電極15に電圧を印加すると、透過率を変化させることができる。
次に、本実施形態の表示素子による画像表示の原理を、図5を用いて説明する。図5(a)に示すように、電極15に電圧を印加していない状態では、基板13の間に封入される媒質Aは等方相を示し、光学的にも等方となるので、表示素子は黒色を表示する。
また、図5(b)に示すように、電極15に電圧を印加すると、媒質Aの分子が、その長軸方向が電極15の間に形成される電界に沿うように配向されるので、複屈折現象が発現する。この複屈折現象により、図5(c)に示すように、電極間の電圧に応じて表示素子の透過率を変調できる。
なお、表示素子の温度が、媒質Aの相転移温度と大きく異なっている場合、表示素子の透過率を変調させるために必要な電圧は大きくなる。一方、表示素子の温度が、媒質Aの相転移温度と略一致する場合、0〜100V前後の電圧を電極15に印加すると、十分に表示素子の透過率を変調させることが可能になる。
〔2.その他の表示素子の構成例〕
本表示素子において、媒質Aは、透明な誘電性物質である4’-n-alkoxy-3’-nitrobiphenyl-4-carboxylic acids (ANBC-22)としてもよい。
なお、基板13・13には、ガラス基板を用いた。また、両基板間の間隔は、ビーズをあらかじめ散布しておくことにより、4μmになるように調整した。すなわち、媒質Aの厚さを4μmとした。
また、電極15・15は、ITOからなる透明電極とした。また、両基板の内側(対向面)には、ラビング処理を施したポリイミドからなる配向膜を形成した。ラビング方向はスメクチックC相において明状態となる方向が望ましく、典型的には偏向板軸方向と45度の角度をなしていることが望ましい。なお、基板13側の配向膜については、電極15・15を覆うように形成した。
偏光板14・14は、図4に示したように、互いの吸収軸が直交するとともに、各偏光板における吸収軸と電極15・15における櫛歯部分の電極伸長方向とが約45度の角度をなすように、それぞれ基板13・13の外側(対向面の反対側)に設けた。
このようにして得られた表示素子は、スメクチックC相―キュービック相の相転移温度よりも低温側の温度では、スメクチックC相となる。なお、スメクチックC相は、電圧無印加状態において光学的異方性を示す。
そして、この表示素子を、外部加温装置によりスメクチックC相−キュービック相の相転移近傍の温度(相転移温度の低温側10K程度まで)に保ち、電圧印加(50V程度の交流電場(0より大きく数百kHzまで))を行ったところ、透過率を変化させることができた。すなわち、電圧無印加時に光学的異方性を示すスメクチックC相(明状態)に、電圧を印加することにより、等方的なキュービック相(暗状態)に変化させることができた。
なお、各偏光板の吸収軸と電極がなす角度は45度に限らず、0〜90度のあらゆる角度で表示を行うことができた。なぜなら、明状態は電界無印加時で実現しており、ラビング方向と偏向板吸収軸方向の関係だけで達成できる。また、暗状態は電界印加による媒質の光学的等方相への電界誘起相転移で実現しているために、各偏向板吸収軸が互いに直交しさえすればよく、電極方向との関係によらない。したがって、配向処理は必ずしも必要ではなく、アモルファス配向状態(ランダム配向状態)でも表示を行うことができた。
また、基板13・13に、それぞれ電極を設け、基板面法線方向の電界を発生させても、ほぼ同様の結果が得られた。すなわち、電界方向は基板面水平方向だけでなく、基板面法線方向でもほぼ同様な結果が得られた。
このように、本表示素子の媒質Aとして、電界無印加時に光学的異方性を有し、電界印加により光学的異方性が消失して光学的等方性を示す媒質を用いてもよい。
なお、本表示素子における媒質Aは、正の誘電異方性を有するものであっても、負の誘電異方性を有するものであってもよい。正の誘電率異方性を有するものを媒質Aとして用いた場合には、基板におおむね平行な電界にて駆動する必要があるが、負の誘電異方性を有する媒質を適用した場合にはその限りではない。
例えば、基板に斜めの電界によっても駆動可能であり、垂直な電界によっても駆動可能である。この場合には、対向する一対の基板(基板13・13)の双方に電極を備え、両基板に備えられた電極間に電界を印加することによって、媒質Aに電界を印加することになる。
また、電界を基板面平行方向に印加する場合であっても、あるいは、基板面垂直方向または基板面に対して斜め方向に印加する場合であっても、電極の形状、材質、電極の数、および配置位置等は適宜変更すればよい。例えば、透明電極を用いて基板面に対して垂直に電界を印加すれば、開口率の点で有利である。
〔3.本実施の形態の表示素子に対する電圧の印加方法〕
次に、本実施の形態の表示素子に対する電圧の印加方法について説明する。先ず、本発明者らは、従来の表示素子において表示応答が遅くなった原因をより詳細に検討するために、従来の表示素子に実際に印加されている電圧を観察した。その結果、図6に示すように、表示素子に印加されている電圧は、信号電圧にて一定の状態には保持されず、時間の経過とともに低下していることが分かった。
そこで、図7(a)に示すように、表示素子に電圧を書き込む第1フレーム目において、到達すべき電圧よりも大きい信号電圧を表示素子に書き込むと、図11(b)に示したような階段状の透過率応答波形が観察されることなく、表示素子が信号電圧に対して高速に応答して表示を行うことが分かった。このように、高速応答の表示が実現された理由を以下に説明する。
本実施形態の表示素子における電圧(V)と素子容量(C/nF)との関係を、図8に示す。図8に示すように、本実施形態の表示素子では、電圧上昇に伴い容量が単調増加する。これは、電圧の上昇に伴い媒質Aがより高い秩序性にて配向するようになり、その結果、媒質Aの配向分極が容量に寄与して大きくなることに起因するものと考えられる。
ここで、電圧0.0V・容量0.325nFの状態から、電圧40.0V・容量0.590nFの状態に表示素子を応答させるとする。なお、以下の説明では、0.0V=V0,0.325nF=C0,40.0V=V1,0.590nF=C1として記載する。
電圧がV0の状態の時に、表示素子へ書き込まれる信号電圧が到達させるべき電圧をV1とすれば、電圧V1を印加した瞬間に表示素子に充電される電荷をQ01とすると、
Q01=C0・V1(=13.0(nC))
である。
一方、電圧がV1で容量がC1の状態において充電されているべき電荷量Q1は、
Q1=C1・V1(=23.6(nC))
である。
ここで、図8を参照すればわかるように、C0<C1であることから、明らかに、
Q01<Q1
となり、充電すべき電荷量が不足することが分かる。
実際には、Q01=C2・V2となる電圧V2・容量C2が存在し、信号電圧V1の入力に表示素子が応答する結果、表示素子に印加される電圧は、V1ではなくて、V1よりも小さなV2ということになる。なお、図8のグラフからわかるように、C2=0.530nF、V2=24.5Vである。
つまり、信号電圧V1に対する表示素子の応答は完了しないのである。そして、このような応答未完了状態が複数回繰り返されて、最終的にV1に到達(飽和)するので、一般的な液晶表示素子に用いるのと同様のスイッチング素子を本実施形態の表示素子を駆動するために用いた場合、透過率の応答波形が階段状となったものと考えられる(図11(b)参照)。
したがって、
C0・V3=C1・V1(明らかにV3>V1)
を満たす電圧V3を第1フレーム目の信号電圧として表示素子に書き込み、以降の信号電圧をV1とすれば、第1フレーム目で表示素子に印加されている電圧がV1に達するので、透過率の応答波形は階段状にはならない。したがって、信号電圧に対して高速に応答して表示を行う表示素子を実現することができる。なお、図8のグラフからわかるように、V3=72.6Vである。
つまり、高速応答の表示を実現するためには、到達目標電圧そのものを信号電圧として書き込むのではなく、信号電圧の書き込みを行うときの表示素子11の容量を考慮して、信号電圧を設定することが必要なのである。これにより、媒質Aが本来有する高速応答性能を引き出すことが可能になる。
次に、表示素子11の容量を考慮した信号電圧の設定方法についてより具体的に説明する。
表示素子11の容量を考慮した信号電圧の設定は、図1に示す映像信号補正処理部8により行われる。たとえば、映像信号補正処理部8は、前フレーム映像信号および現フレーム映像信号と、補正後映像信号とが対応付けられたROM(Read Only Memory)やSRAM(Static Random Access Memory)などのメモリから構成されるテーブルを有しており、現フレーム映像信号と前フレーム映像信号とから、補正後映像信号を決定できるように構成されている。このように映像信号補正処理部8がテーブルを用いて補正した補正後映像信号に基づき、信号電圧を決定するための表示データ信号がコントローラ5からソースドライバ3へ出力されることになる。
ここで、補正後映像信号を決定するためのテーブルの作成方法について以下に説明する。
先ず、現フレームにおいて表示素子11に印加されているべき電圧をVとし、印加電圧Vにおける表示素子の容量をCとする。また、前フレームにおいて表示素子11に印加されている電圧をVi−1とし、印加電圧Vi−1における表示素子の容量をCi−1とする。なお容量Ci,i−1は、図8に示すような電圧−素子容量曲線を用いて、電圧V・Vi−1にそれぞれ対応する素子容量を読み取ることにより求められるものである。また、容量Ci−1・電圧Vi−1は、映像信号補正処理部8に入力される前フレーム映像信号に基づき求められ、容量C・電圧Vは、映像信号補正処理部8に入力される現フレーム映像信号に基づき求められる。
このように現フレーム映像信号および前フレーム映像信号が構成されている場合において、高速応答表示を実現するために設定されるべき信号電圧Vsは、C0・C1・V1を具体例として上述したように、Vs=V・C/Ci−1である。したがって、映像信号補正処理部8が有するテーブルにおいては、信号電圧Vsを書き込み得る表示データ信号をコントローラ5が出力するための補正後映像信号が、上記現フレーム映像信号と上記前フレーム映像信号とに対応付けて格納されている。
なお、たとえば256階調を表示する表示装置では、映像信号補正処理部8が有するテーブルとして、256×256のテーブルが理想的には必要である。しかし、256階調における任意の5点、たとえば0階調、64階調、128階調、196階調、255階調を設定し、これらの階調と上記補正後映像信号を対応付けた5×5のテーブルを作成してもよい。そして、テーブルに設定されていない階調については、補間演算を行って補正後映像信号を決定するようにする。これにより、テーブルを記憶するために必要なメモリ容量を削減できるため、回路規模や製造コストを削減することができる。
なお、映像信号補正処理部8による映像信号の補正処理は、必ずしもテーブルを用いて実行される必要は無く、たとえば、適当な関数を用いて実行されてもよい。この場合、テーブルを構成するためのメモリを映像信号補正処理部8に設ける必要がなくなるので、表示装置の製造コストを低減することができる。以下に、映像信号補正処理部8による映像信号の補正処理に用いられる関数の具体例について説明する。
たとえば、現フレームの印加電圧Vを生成するために、現フレーム映像信号において現フレームの階調レベルがαに設定されている一方、前フレームの印加電圧Vi−1を生成するために、前フレーム映像信号において前フレームの階調レベルがβに設定されているとする。
この場合、映像信号補正処理部8は、関数f(α,β)、たとえば
γ=f(α,β)=β+k×(β−α)
に基づき算出される階調レベルγを算出するとともに、その階調レベルγに応じた信号電圧を表示素子11に印加するための補正後映像信号をコントローラ5に出力する。なお、上記関数f(α,β)に基づき算出されるγの値が、表示素子11が表示し得る階調レベルの最大値(たとえば255)や階調レベルの最小値(たとえば0)を超えてしまった場合は、γは、該最大値または最小値に設定されることが好ましい。
上記f(α,β)におけるkは任意の定数である。なお、k=1/2と設定してγを算出し、そのγに応じた補正後映像信号を映像信号補正処理部8から出力すれば、表示素子11が信号電圧に良好な速度で応答して表示を行うことが発明者らにより確認されている。また、表示素子11が表示し得る階調レベルの最大値をGmaxとした場合、
k=|β−α|/Gmax
によりkを算出するとともに
、γを、k、α、およびβに基づいて求めてもよい。
なお、上記の信号電圧の設定方法では、映像信号補正処理部8における補正処理に、フレームメモリ7に記憶された前フレーム映像信号を用いる方法について説明したが、本発明は必ずしもこれに限定されるものではない。すなわち、前フレームの更に1つ前のフレームである前々フレームの映像信号(前々フレーム映像信号)をフレームメモリ7に記憶しておき、この前々フレーム映像信号を用いた信号電圧の設定を行うことも可能である。
具体的には、フレームメモリ7に記憶された前々フレーム映像信号を考慮して、上述の映像信号補正処理部8が補正処理に用いるテーブルまたは関数を設定する。これにより、前フレーム映像信号のみならず、前々フレーム映像信号に基づいて補正後映像信号が決定されるので、高精度にて補正後映像信号を決定できる。したがって、表示素子11による高速応答の表示を実現するために、より的確な補正後映像信号を映像信号補正処理部8にて決定することが可能となる。
なお、前フレーム映像信号ではなく、前フレームにおいて表示素子11が示すと予測される電圧、階調レベル等のデータ(前フレーム到達予測データ)をフレームメモリ7に記憶しておき、この到達予測データを映像信号補正処理部8における映像信号の補正処理に用いてもよい。これにより、万が一、前フレームにおいて信号電圧に対する表示素子11の応答が完了せず、前フレームにおいて実際に表示素子に印加されている電圧と、前フレームにおいて到達しておくべき印加電圧が異なっていた場合にでも、映像信号の補正をより的確に行い、表示素子11による高速応答の表示を実現するために、より的確な補正後映像信号を映像信号補正処理部8にて決定することが可能となる。
ただし、このように前フレームの到達予測データを用いた映像信号補正処理を行うためには、前フレーム到達予測データと、現フレーム映像信号とに基づき、補正後映像信号を出力するためのテーブルや関数を、映像信号補正処理部8に用意しておく必要がある。
このように前フレーム到達予測データと、現フレーム映像信号とに基づく映像信号の補正処理を行うことは、高速応答表示を実現するために設定されるべき信号電圧Vsが、ソースドライバ3に印加し得る電圧(ドライバ耐圧)の上限値を超えている場合に有効である。
つまり、上記信号電圧Vsがドライバ耐圧を超えている場合、表示素子11には、信号電圧Vsよりも低いドライバ耐圧が印加される。この場合、表示素子11に実際に印加されている電圧は、到達すべき電圧には勿論達しない。このような場合において、上述の前フレーム到達予測データを用いた映像信号補正処理を行うことにより出力される補正後映像信号に基づき、映像信号の補正をより的確に行い、表示素子11による高速応答の表示を実現するために、より的確な補正後映像信号が映像信号補正処理部8にて決定される。この補正後映像信号に基づき、再度、ソースドライバ3から高速応答の表示を実現するための信号電圧を印加することができる。
このように、信号電圧Vsがドライバ耐圧を超えている場合、実質上2段階に分けた信号電圧の印加が可能となる点において、前フレーム到達予測データを用いた映像信号補正処理は有利な処理といえる。
さらに、表示素子11の表示応答速度は、媒質Aの温度によって大きな影響を受けることがある。これは、媒質Aの特性が温度によって変化すると、表示素子の容量も変化するためである。したがって、媒質Aの温度に応じて、映像信号補正処理部8による補正処理を変更してもよい。
すなわち、画素10…の温度を検出する温度センサ(図示せず)を設けるとともに、映像信号補正処理部8が映像信号補正処理に用いる上述のテーブルや関数を、予め定められた複数の温度範囲のそれぞれについて設ける。そして、上記温度センサが検出した媒質Aの温度に応じて、これらのテーブルや関数を適宜変更するとよい。具体的には温度が低くなるに応じて、媒質Aの粘性が高くなるので、高い信号電圧が表示素子に印加されるようにテーブル・関数を変更する。
一方で、上述のようにネマチック−等方相の相転移温度付近で表示させる表示素子の場合、温度が上昇すると駆動電圧も上昇する傾向があり、この場合も、高い信号電圧が表示素子に印加されるようにテーブル・関数を変更する必要性が生じる。
具体的には、電界方向の屈折率と、電界方向に垂直な方向の屈折率とを、それぞれn//、n⊥とすると、複屈折変化(Δn=n//−n⊥)と、外部電界、すなわち電界E(V/m)との関係は、
△n=λB
で表される。なお、λは真空中での入射光の波長(m)、Bはカー定数(m/V)、Eは印加電界強度(V/m)である。
そして、カー定数Bは、温度上昇とともに1/(T−T)に比例する関数で減少することが知られており、転移点(T)近傍では弱い電界強度で駆動できていたとしても、温度(T)が上昇するとともに急激に必要な電界強度が増大するため、テーブル・関数の温度調整は極めて有効である。
よって、粘性およびカー定数の温度依存性を考慮したテーブル・関数の調整は実用的な温度範囲を確保する意味で重要な効果を発揮する。
これにより、媒質Aの温度に応じた的確な補正後映像信号を映像信号補正処理部8から出力することができる。したがって、表示素子11の温度がどのような値であるか否かに関わらず、表示素子11を信号電圧に対して高速に応答して表示させることができる。
なお、本実施実施形態の表示素子では、基板と平行な方向に電界が発生されているが、電界の発生方法はこれに限られるものではない。たとえば、特許文献1に記載してある電界発生方法のように、基板に垂直な電界を印加して表示を行うにおいても、本実施形態の表示素子と同様に高速応答の表示を実現できることはいうまでもない。
〔4.既存の液晶表示素子と本実施の形態の表示素子との相違点〕
本実施の形態の表示素子は、既存の液晶表示素子と表示原理の点において大きく異なるので、その相違点について以下に説明する。
既存の液晶表示素子においては、電圧を印加していない状態でも、液晶分子はなんらかの方位に配向している。そして、表示素子の電極に電圧を印加して、液晶分子の配向方向を変化させることにより、透過率の変調が行われる。
一方、本実施形態の表示素子において電極間に電圧を印加していない状態では、媒質Aは光学的に等方となる。すなわち、媒質Aの分子の配向に秩序性はない。そして、本実施形態の表示素子の電極に電圧を印加することにより、媒質Aに異方性を発現させ、媒質Aの配向に秩序性を持たせている。
つまり、既存の液晶表示素子では、一定の秩序性が保たれた状態で液晶分子の配向方向を変化させることにより、画像表示を行っている。一方、本実施形態の表示素子では、光学異方性の方向は一定(電圧印加方向は変化しない)であり、媒質Aの配向秩序度を変調することによって、画像表示を行う。この点において、本実施形態の表示素子は、既存の液晶表示素子と表示原理が異なっている。
さらに、本実施の形態の表示素子は、既存の液晶表示素子と異なり、光学的に等方性を示す媒質を用いるために基板界面の配向処理を必要としない。したがって、本実施形態の表示素子は、液晶表示素子に比べ、低コストで製造できるものであるとともに、配向処理不良による表示不良(特にコントラスト低下)が発生しないというメリットを有している。
また、本実施形態の表示素子により、同じ階調レベルの静止画像を繰り返し表示すると、配向した状態の媒質Aが基板界面付近へ吸着してしまう。このような状態において、異なる階調レベルの画像へ表示を変化させた場合、基板界面から離れた領域に存在する媒質Aは信号電圧に対して高速に応答できるが、基板界面付近の領域に存在する媒質Aは信号電圧に対して応答できないことがある。これは、表示画像のいわゆる焼き付き状態を招来するものであり、好ましくない。
しかしながら、上述したような映像信号の補正処理を行えば、表示画像の階調レベルが変化した場合に、到達すべき電圧よりも過大(または過小)な信号電圧を、表示素子に一瞬印加することになる。したがって、基板界面付近の領域の表示焼き付きを解消することもできる。
〔5.媒質Aの具体例について〕
本実施形態の表示素子に用いられる媒質Aは、上述した通り、電圧印加により、媒質そのものの異方性または配向秩序が変化されるものであり、カー効果を示すものに限定されるものではない。すなわち、電界を印加していない時に光学的に等方である一方、電界を印加すると光学的異方性が発現する物質、および電界を印加していない時に光学的異方性を示し、電界を印加すると光学的異方性がなくなり光学的等方性を示す物質のいずれも、媒質Aとして適用可能である。
なお、媒質Aとしては、液晶性物質を含有することが望ましい。この液晶性物質は、単体で液晶性を示すものであってもよいし、複数の物質が混合されることにより液晶性を示すものであってもよいし、これらの物質に他の非液晶性物質が混入されていてもよい。
たとえば、特許文献1に記載してあるような液晶性物質そのものを適用したり、それに溶媒を添加したものを、媒質Aに含ませられる液晶性物質として適用できる。また、特許文献2に記載してあるような、液晶性物質を小区域に分割したものを適用することもできる。さらには、非特許文献1に記載してあるような高分子・液晶分散系の物質を適用することもできる。
いずれにしても、媒質Aとしては、電圧無印加時に光学的に等方であり、電圧印加時に光学変調を誘起する物質であることが望ましい。典型的には、電圧印加に伴い分子または分子集合体(クラスター)の配向秩序性が向上する物質が媒質Aとして好ましい。
また、媒質Aとしては、カー効果を示す物質が望ましい。たとえば、PLZT(ジルコン酸鉛とチタン酸鉛との固溶体にランタンを添加した金属酸化物)などがあげられる。また、媒質Aは、有極性分子を含有することが望ましく、たとえば、ニトロベンゼンなどが媒質Aとして好適である。
さらに、媒質Aとしては、種々のものを用いることができるので、以下にいくつか例を挙げる。
(媒質例1)
先ず、媒質Aとして、液晶相の一つであるスメクチックD相(SmD)を適用できる。
スメクチックD相を示す液晶性物質としては、例えば、ANBC16がある。なお、ANBC16については、非特許文献2(p.21,図1構造1(n=16))や、非特許文献4(p.888,Table1,化合物(compound no.)1,化合物1a,化合物1a−1)に記載されている。これらの分子構造を、以下に列挙する。
Figure 0004312586
Figure 0004312586
この液晶性物質(ANBC16)では、171.0℃〜197.2℃の温度範囲において、スメクチックD相が発現する。スメクチックD相は、複数の分子がジャングルジム(登録商標)のような三次元的格子を形成しており、その格子定数が光学波長以下である。すなわち、スメクチックD相は、分子の配列がキュービック対称性を示す秩序構造を有する。このため、スメクチックD相は、光学的には等方性を示す。
また、ANBC16がスメクチックD相を示す上記の温度領域において、ANBC16に電界を印加すれば、ANBC16の分子自身に誘電異方性が存在するため、分子が電界方向に向こうとして格子構造に歪が生じる。すなわち、ANBC16に光学異方性が発現する。
したがって、ANBC16を本表示素子の媒質Aとして適用できる。なお、ANBC16に限らず、スメクチックD相を示す物質であれば、本表示素子の媒質Aとして適用できる。
(媒質例2)
媒質Aとして、液晶マイクロエマルションを適用できる。ここで、液晶マイクロエマルションとは、非特許文献3において提案された、O/W型マイクロエマルション(油の中に水を界面活性剤で水滴の形で溶解させた系で、油が連続相となる)の油分子をサーモトロピック液晶分子で置換したシステム(混合系)の総称である。
液晶マイクロエマルションの具体例として、例えば、非特許文献3に記載されている、ネマチック液晶相を示すサーモトロピック液晶であるPentylcyanobiphenyl(5CB)と、逆ミセル相を示すリオトロピック(ライオトロピック)液晶であるDidodecyl ammonium bromide(DDAB)の水溶液との混合系がある。この混合系は、図12および図13のような模式図で表される構造を有している。
また、この混合系は、典型的には逆ミセルの直径が50Å程度、逆ミセル間の距離が200Å程度である。これらのスケールは光学波長より一桁程度小さい。また、逆ミセルが三次元空間的にランダムに存在しており、各逆ミセルを中心に5CBが放射状に配向している。したがって、この混合系は、光学的には等方性を示す。
そして、この混合系からなる媒質に電界を印加すれば、5CBに誘電異方性が存在するため、分子自身が電界方向に向こうとする。すなわち、逆ミセルを中心に放射状に配向していたため光学的に等方であった系に、配向異方性が発現し、光学異方性が発現する。したがって、上記の混合系を本表示素子の媒質Aとして適用できる。なお、上記の混合系に限らず、電圧無印加時には光学的に等方性を示し、電圧印加によって光学異方性が発現する液晶マイクロエマルションであれば、本表示素子の媒質Aとして適用できる。
(媒質例3)
媒質Aとして、特定の相を有するリオトロピック(ライオトロピック)液晶を適用できる。なお、リオトロピック液晶とは、液晶を形成する主たる分子が、他の性質を持つ溶媒(水や有機溶剤など)に溶けているような他成分系の液晶を意味する。また、上記の特定の相とは、電界無印加時に光学的に等方性を示す相である。このような特定の相としては、例えば、非特許文献5に記載されているミセル相、スポンジ相、キュービック相、逆ミセル相がある。図14に、リオトロピック液晶相の分類図を示す。
両親媒性物質である界面活性剤には、ミセル相を発現する物質がある。例えば、イオン性界面活性剤である硫酸ドデシルナトリウムの水溶液やパルチミン酸カリウムの水溶液などは球状ミセルを形成する。また、非イオン性界面活性剤であるポリオキシエチレンノニルフェニルエーテルと水との混合液では、ノニルフェニル基が疎水基として働き、オキシエチレン鎖が親水基として働くことにより、ミセルを形成する。他にも、スチレン−エチレンオキシドブロック共重合体の水溶液でもミセルを形成する。
例えば、球状ミセルは、分子が空間的全方位にパッキングして(分子集合体を形成して)球状を示す。また、球状ミセルのサイズは、光学波長以下であるため、光学波長領域では異方性を示さず等方的に見える。しかしながら、このような球状ミセルに電界を印加すれば、球状ミセルが歪むため異方性を発現する。よって、球状ミセル相を有するリオトロピック液晶を、本表示素子の媒質Aとして適用できる。なお、球状ミセル相に限らず、他の形状のミセル相、すなわち、紐状ミセル相、楕円状ミセル相、棒状ミセル相などを媒質Aとして使用しても、略同様の効果を得ることができる。
また、濃度、温度、界面活性剤の条件によっては、親水基と疎水基が入れ替わった逆ミセルが形成されることが一般に知られている。このような逆ミセルは、光学的にはミセルと同様の効果を示す。したがって、逆ミセル相を媒質Aとして適用することにより、ミセル相を用いた場合と同等の効果を奏する。なお、媒質例2で説明した液晶マイクロエマルションは、逆ミセル相(逆ミセル構造)を有するリオトロピック液晶の一例である。
また、非イオン性界面活性剤ペンタエチレングリコール−ドデシルエーテル(Pentaethylenglychol-dodecylether、C12)の水溶液には、図14に示したような、スポンジ相やキュービック相を示す濃度および温度領域が存在する。このようなスポンジ相やキュービック相は、光学波長以下の秩序を有しているので、光学波長領域では透明な物質である。すなわち、これらの相からなる媒質は、光学的には等方性を示す。そして、これらの相からなる媒質に電圧を印加すると、配向秩序が変化して光学異方性が発現する。したがって、スポンジ相やキュービック相を有するリオトロピック液晶を、本表示素子の媒質Aとして適用できる。
(媒質例4)
本表示素子の媒質Aとして、ミセル相、スポンジ相、キュービック相、逆ミセル相などの、電界印加時と電圧無印加時とで光学的等方性が変化する相を示す液晶微粒子分散系を適用できる。ここで、液晶微粒子分散系とは、溶媒中に微粒子を混在させた混合系である。
このような液晶微粒子分散系としては、例えば、非イオン性界面活性剤ペンタエチレングリコール−ドデシルエーテル(Pentaethylenglychol-dodecylether、C12)の水溶液に、表面を硫酸基で修飾した直径100Å程度のラテックス粒子を混在させた、液晶微粒子分散系がある。この液晶微粒子分散系は、スポンジ相が発現する。したがって、上記媒質例3の場合と同様、本表示素子の媒質Aとして適用できる。なお、上記のラッテックス粒子を媒質例2の液晶マイクロエマルションにおけるDDABと置き換えることによって、媒質例2の液晶マイクロエマルションと同様な配向構造を得ることもできる。
(媒質例5)
本表示素子の媒質Aとして、デンドリマーを適用できる。ここで、デンドリマーとは、モノマー単位ごとに枝分かれのある三次元状の高分岐ポリマーである。
デンドリマーは、枝分かれが多いために、ある程度以上の分子量になると球状構造となる。この球状構造は、光学波長以下の秩序を有しているので、光学波長領域では透明な物質であり、電圧印加によって配向秩序が変化して光学異方性が発現する。したがって、デンドリマーを、本表示素子の媒質Aとして適用できる。
また、上記媒質例2の液晶マイクロエマルションにおけるDDABを、デンドリマー物質に置き換えることにより、上記媒質例2の液晶マイクロエマルションと同様な配向構造を得ることができ、本表示素子の媒質Aとして適用できる。
(媒質例6)
本表示素子の媒質Aとして、コレステリックブルー相を適用できる。なお、図14には、コレステリックブルー相の概略構造が示されている。
図14に示すように、コレステリックブルー相は、高い対称性の構造を有している。また、コレステリックブルー相は、光学波長以下の秩序を有しているので、光学波長領域では概ね透明な物質であり、電圧印加によって配向秩序が変化して光学異方性が発現する。すなわち、コレステリックブルー相は、おおむね光学的に等方性を示し、電界印加によって液晶分子が電界方向に向こうとするために格子が歪み、異方性を発現する。よって、コレステリックブルー相を、本表示素子の媒質Aとして適用できる。
なお、コレステリックブルー相を示す物質としては、例えば、JC1041(混合液晶、チッソ社製)を48.2%、5CB(4-cyano-4’-pentyl biphenyl、ネマチック液晶)を47.4%、ZLI−4572(カイラルドーパント、メルク社製)を4.4%混合した物質がある。この物質は、330.7Kから331.8Kの温度範囲で、コレステリックブルー相を示す。
(媒質例7)
本表示素子の媒質Aとして、スメクチックブルー(BPSm)相を適用できる。なお、図14には、スメクチックブルー相の概略構造が示されている。
図14に示したように、スメクチックブルー相は、コレステリックブルー相と同様、高い対称性の構造を有している。また、光学波長以下の秩序を有しているので、光学波長領域では概ね透明な物質であり、電圧印加によって配向秩序が変化して光学異方性が発現する。すなわち、スメクチックブルー相は、おおむね光学的に等方性を示し、電界印加によって液晶分子が電界方向に向こうとするために格子が歪み、異方性を発現する。よって、スメクチックブルー相を、本表示素子の媒質Aとして適用できる。
なお、スメクチックブルー相を示す物質としては、例えば、非特許文献6に記載されているFH/FH/HH−14BTMHCがある。この物質は、74.4℃〜73.2℃でBPSm3相、73.2℃〜72.3℃でBPSm2相、72.3℃〜72.1℃でBPSm1相を示す。
ここで、BPSm相は、非特許文献7における238頁の図1に示すように、高い対称性の構造を有するため、おおむね光学的等方性が示される。また、物質FH/FH/HH−14BTMHCに電界を印加すると、液晶分子が電界方向に向こうとすることにより格子が歪み、同物質は異方性を発現する。よって、同物質は、本実施形態の表示素子の媒質Aとして使用できる。
〔6.プログラムの実施形態について〕
上記の実施形態では、映像信号補正処理部8を構成する部材がハードウェアのみで実現されている場合を例にして説明したが、これに限るものではない。該部材の全部または一部を、上述した機能を実現するためのプログラムと、そのプログラムを実行するハードウェア(コンピュータ)との組み合わせで実現してもよい。一例として、表示素子11に接続されたコンピュータが、表示素子11を駆動する際に使用されるデバイスドライバとして、映像信号補正処理部8を、実現してもよい。また、表示素子11に外付けされる変換基板として、映像信号補正処理部8が実現され、ソフトウェアなどのプログラムの書き換えによって、映像信号補正処理部8を実現する回路の動作を変更できる場合には、当該ソフトウェアを配布して、当該回路の動作を変更することによって、当該回路を、上記実施形態の映像信号補正処理部8として動作させてもよい。
これらの場合は、上述した機能を実行可能なハードウェアが用意されていれば、当該ハードウェアに、上記プログラムを実行させるだけで、上記実施形態に係る映像信号補正処理部8を実現できる。
本発明によれば、電圧を印加することにより光学的異方性が変化する媒質を用いた表示素子が本来的に有している高速応答性能を確実に実現させることができるので、該表示素子が組み込まれたディスプレイ、たとえば、テレビ・ワープロ・パーソナルコンピュータ・ビデオカメラ・デジタルカメラ・携帯電話等の情報端末に備えられるディスプレイの表示応答速度を確実に向上させることができる。また、本発明の表示素子は、上記したように、高速応答特性を有しているので、大画面表示や動画表示にも適している。
本発明の一実施形態に係る表示素子を用いる表示装置の構成を示すブロック図である。 図1の表示装置に用いられる表示素子の周辺の構成を示す模式図である。 (a)は、図2の表示素子を電圧が印加されていない状態で示す断面図であり、(b)は、図2の表示素子を電圧が印加された状態で示す断面図である。 図2の表示素子における電極の構成を詳細に説明するための模式図である。 (a)は電圧無印加状態における図2の表示素子の断面図であり、(b)は電圧印加状態における同表示素子の断面図であり、(c)は同表示素子における印加電圧と透過率との関係を示すグラフである。 従来の駆動方法により駆動される表示素子における印加電圧の経時的変化を示すグラフである。 (a)は、本発明の駆動方法により得られる信号電圧を第1フレームにおいて印加する様子を示すグラフであり、(b)は、(a)に示すように信号電圧を表示素子に印加した場合の透過率の経時的変化を示すグラフである。 本発明の一実施形態に係る表示素子における、印加電圧と容量との関係を示すグラフである。 従来の駆動方法により駆動される表示素子を、その周辺の構成とともに示す模式図である。 信号電圧に対する表示素子の理想的な応答を説明するための、電圧波形発生器、スイッチング素子、および表示素子のそれぞれにおける電圧波形を示すグラフである。 (a)は、従来の駆動方法により表示素子に印加される信号電圧を示すグラフであり、(b)は、(a)に示すように信号電圧が印加された場合の透過率の変化を示すグラフである。 液晶マイクロエマルションの構造を示す模式図である。 液晶マイクロエマルションの構造を示す模式図である。 リオトロピック液晶相の分類図である。
符号の説明
1 表示装置
8 映像信号補正処理部(映像信号補正処理手段)
11 表示素子
13 基板
15 電極
A 媒質

Claims (29)

  1. 電界を印加していない時に光学的に等方である一方、電界を印加すると光学的異方性を示す媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子の駆動方法であって、
    上記媒質へ入力する信号電圧を、前回の映像信号と今回の映像信号とに基づき設定することを特徴とする表示素子の駆動方法。
  2. 電界を印加していない時に光学的異方性を示し、電界を印加すると光学的等方性を示す媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子の駆動方法であって、
    上記媒質へ入力する信号電圧を、前回の映像信号と今回の映像信号とに基づき設定することを特徴とする表示素子の駆動方法。
  3. 上記前回の映像信号を入力することにより上記媒質へ現在電圧印加されている際の上記表示素子の容量と、
    上記今回の映像信号を入力することにより上記媒質へ印加させるべき電圧と、
    該印加させるべき電圧が印加されている際の上記表示素子の容量とに基づき、
    上記信号電圧を設定することを特徴とする請求項1または2に記載の表示素子の駆動方法。
  4. 上記前回の映像信号を入力することにより上記媒質へ現在電圧印加されている際の上記表示素子の容量をCi−1とし、
    上記今回の映像信号を入力することにより上記媒質へ印加させるべき電圧をVとし、
    上記電圧Vが印加されている際の上記表示素子の容量をCとした場合(iは1以上の整数)、
    Vs=V・C/Ci−1にて算出されるVsを、上記信号電圧として設定することを特徴とする請求項に記載の表示素子の駆動方法。
  5. 上記今回の映像信号により設定される上記表示素子の階調レベルと、
    上記前回の映像信号により設定される上記表示素子の階調レベルとに基づき、
    上記信号電圧を設定することを特徴とする請求項1または2に記載の表示素子の駆動方法。
  6. 上記今回の映像信号により設定される上記表示素子の階調レベルをαとし、
    上記前回の映像信号により設定される上記表示素子の階調レベルをβとし、
    kを0よりも大きな任意の定数とした場合、
    γ=β+k×(β−α)
    により算出される階調レベルγにて、上記表示素子の表示が行われるよう、上記信号電圧を設定することを特徴とする請求項に記載の表示素子の駆動方法。
  7. 上記階調レベルγが、上記表示素子が表示し得る階調レベルの最大値を超えている場合、
    該最大値の階調レベルにて、上記表示素子の表示が行われるよう、上記信号電圧を設定することを特徴とする請求項に記載の表示素子の駆動方法。
  8. 上記階調レベルγが、上記表示素子が表示し得る階調レベルの最小値よりも小さい場合、
    該最小値の階調レベルにて、上記表示素子の表示が行われるよう、上記信号電圧を設定することを特徴とする請求項またはに記載の表示素子の駆動方法。
  9. 上記kが1/2であることを特徴とする請求項ないしのいずれか1項に記載の表示素子の駆動方法。
  10. 上記表示素子が表示し得る階調レベルの最大値をGmaxとした場合、
    上記kを、k=|β−α|/Gmaxにより算出することを特徴とする請求項ないしのいずれか1項に記載の表示素子の駆動方法。
  11. 上記信号電圧を、さらに前々回の映像信号に基づき設定することを特徴とする請求項1ないし10のいずれか1項に記載の表示素子の駆動方法。
  12. 電界を印加していない時に光学的に等方である一方、電界を印加すると光学的異方性を示す媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子の駆動方法であって、
    上記媒質へ入力する信号電圧を、前回の映像信号の入力に応じて上記表示素子が示すと予測される到達予測データと、今回の映像信号とに基づき設定することを特徴とする表示素子の駆動方法。
  13. 電界を印加していない時に光学的異方性を示し、電界を印加すると光学的等方性を示す媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子の駆動方法であって、
    上記媒質へ入力する信号電圧を、前回の映像信号の入力に応じて上記表示素子が示すと予測される到達予測データと、今回の映像信号とに基づき設定することを特徴とする表示素子の駆動方法。
  14. 上記到達予測データは、上記表示素子に印加されている電圧を示すデータであることを特徴とする請求項12または13に記載の表示素子の駆動方法。
  15. 上記到達予測データは、上記表示素子による表示の階調レベルを示すデータであることを特徴とする請求項12または13に記載の表示素子の駆動方法。
  16. さらに、上記媒質の温度に基づき、上記媒質へ入力する信号電圧を設定することを特徴とする請求項1ないし15のいずれか1項に記載の表示素子の駆動方法。
  17. 電界を印加していない時に光学的に等方である一方、電界を印加すると光学的異方性を示す媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子であって、
    前回の映像信号と今回の映像信号とに基づき、上記媒質に入力する信号電圧を設定するための補正後映像信号を出力する映像信号補正処理手段を備えていることを特徴とする表示素子。
  18. 電界を印加していない時に光学的異方性を示し、電界を印加すると光学的等方性を示す媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子であって、
    前回の映像信号と今回の映像信号とに基づき、上記媒質に入力する信号電圧を設定するための補正後映像信号を出力する映像信号補正処理手段を備えていることを特徴とする表示素子。
  19. 上記媒質を構成する分子が、電圧印加時または電圧無印加時に、光学波長以下の秩序構造を有することを特徴とする請求項17または18に記載の表示素子。
  20. 電圧を印加することにより光学的異方性が変化する媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子であって、
    前回の映像信号と今回の映像信号とに基づき、上記媒質に入力する信号電圧を設定するための補正後映像信号を出力する映像信号補正処理手段を備えており、
    上記媒質が、キュービック対称性を示す秩序構造を有することを特徴とする表示素子。
  21. 電圧を印加することにより光学的異方性が変化する媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子であって、
    前回の映像信号と今回の映像信号とに基づき、上記媒質に入力する信号電圧を設定するための補正後映像信号を出力する映像信号補正処理手段を備えており、
    上記媒質が、キュービック相またはスメクチックD相を示す分子からなることを特徴とする表示素子。
  22. 電圧を印加することにより光学的異方性が変化する媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子であって、
    前回の映像信号と今回の映像信号とに基づき、上記媒質に入力する信号電圧を設定するための補正後映像信号を出力する映像信号補正処理手段を備えており、
    上記媒質が、液晶マイクロエマルションからなることを特徴とする表示素子。
  23. 電圧を印加することにより光学的異方性が変化する媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子であって、
    前回の映像信号と今回の映像信号とに基づき、上記媒質に入力する信号電圧を設定するための補正後映像信号を出力する映像信号補正処理手段を備えており、
    上記媒質が、ミセル相、逆ミセル相、スポンジ相、キュービック相のいずれかを示すリオトロピック液晶からなることを特徴とする表示素子。
  24. 電圧を印加することにより光学的異方性が変化する媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子であって、
    前回の映像信号と今回の映像信号とに基づき、上記媒質に入力する信号電圧を設定するための補正後映像信号を出力する映像信号補正処理手段を備えており、
    上記媒質が、ミセル相、逆ミセル相、スポンジ相、キュービック相のいずれかを示す液晶微粒子分散系からなることを特徴とする表示素子。
  25. 電圧を印加することにより光学的異方性が変化する媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子であって、
    前回の映像信号と今回の映像信号とに基づき、上記媒質に入力する信号電圧を設定するための補正後映像信号を出力する映像信号補正処理手段を備えており、
    上記媒質が、デンドリマーからなることを特徴とする表示素子。
  26. 電圧を印加することにより光学的異方性が変化する媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子であって、
    前回の映像信号と今回の映像信号とに基づき、上記媒質に入力する信号電圧を設定するための補正後映像信号を出力する映像信号補正処理手段を備えており、
    上記媒質が、コレステリックブルー相を示す分子からなることを特徴とする表示素子。
  27. 電圧を印加することにより光学的異方性が変化する媒質が、少なくとも一方が透明な一対の基板間に封入されている表示素子であって、
    前回の映像信号と今回の映像信号とに基づき、上記媒質に入力する信号電圧を設定するための補正後映像信号を出力する映像信号補正処理手段を備えており、
    上記媒質が、スメクチックブルー相を示す分子からなることを特徴とする表示素子。
  28. 請求項17ないし27のいずれか1項に記載の表示素子を備えてなる表示装置。
  29. 請求項1ないし16に記載の表示素子の駆動方法をコンピュータに実行させるプログラム。
JP2003423358A 2003-12-18 2003-12-19 表示素子の駆動方法、表示素子、表示装置、およびプログラム Expired - Fee Related JP4312586B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003423358A JP4312586B2 (ja) 2003-12-19 2003-12-19 表示素子の駆動方法、表示素子、表示装置、およびプログラム
KR1020040108265A KR100687681B1 (ko) 2003-12-18 2004-12-17 표시 소자 및 표시 장치, 표시 소자의 구동 방법, 및프로그램
TW093139713A TWI329214B (en) 2003-12-18 2004-12-17 Display element and display device, driving method of display element, and program
CNB2004101049967A CN100555036C (zh) 2003-12-18 2004-12-20 显示元件和显示装置、显示元件的驱动方法以及程序
US11/015,771 US7639332B2 (en) 2003-12-18 2004-12-20 Display element and display device, driving method of display element, and program
KR1020060094762A KR100741625B1 (ko) 2003-12-18 2006-09-28 표시 소자 및 표시 장치
KR1020060094761A KR100751168B1 (ko) 2003-12-18 2006-09-28 표시 소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003423358A JP4312586B2 (ja) 2003-12-19 2003-12-19 表示素子の駆動方法、表示素子、表示装置、およびプログラム

Publications (2)

Publication Number Publication Date
JP2005181746A JP2005181746A (ja) 2005-07-07
JP4312586B2 true JP4312586B2 (ja) 2009-08-12

Family

ID=34783921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423358A Expired - Fee Related JP4312586B2 (ja) 2003-12-18 2003-12-19 表示素子の駆動方法、表示素子、表示装置、およびプログラム

Country Status (1)

Country Link
JP (1) JP4312586B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110949A1 (ja) * 2006-03-29 2007-10-04 Fujitsu Limited 液晶表示素子及びそれを備えた電子ペーパー並びに画像処理方法
KR20090063761A (ko) * 2007-12-14 2009-06-18 삼성전자주식회사 표시 장치
JP5403553B2 (ja) * 2010-01-05 2014-01-29 株式会社ジャパンディスプレイ 液晶表示装置及びその駆動方法
DE102011056166A1 (de) 2011-12-08 2013-06-13 Universität Stuttgart Elektrooptischer Phasenmodulator
CN106716383B (zh) * 2014-09-15 2021-01-22 爱德斯托科技有限公司 存储器装置和控制存储器装置的方法、存储器系统
WO2016042885A1 (ja) * 2014-09-16 2016-03-24 シャープ株式会社 液晶表示装置およびその駆動方法

Also Published As

Publication number Publication date
JP2005181746A (ja) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4176722B2 (ja) 表示素子および表示装置
JP5174857B2 (ja) 表示装置
US7639332B2 (en) Display element and display device, driving method of display element, and program
JP4142019B2 (ja) 表示素子および表示装置
JP4828419B2 (ja) 表示装置
JP2008545161A (ja) 液晶表示素子の駆動方法
JP3535769B2 (ja) 液晶表示素子、及び該液晶表示素子の駆動方法
JPS6118931A (ja) 液晶表示装置
JP2005300780A (ja) 表示装置
JP4312586B2 (ja) 表示素子の駆動方法、表示素子、表示装置、およびプログラム
JP4998560B2 (ja) 液晶表示素子及びその駆動方法
JP4494072B2 (ja) 表示装置
JP4104048B2 (ja) πセル液晶デバイス
JP4728479B2 (ja) 単安定強誘電性アクティブマトリクスディスプレイ
JP3259634B2 (ja) 反強誘電性液晶表示素子
JP3912924B2 (ja) 液晶素子
Talukder et al. 66‐2: High transmittance and fast response FFS LCD for AR and VR displays
JP3530799B2 (ja) カイラルスメクチック液晶素子の製造方法および駆動方法
JP2000275617A (ja) 液晶素子
JP2003121872A (ja) 強誘電性液晶表示装置及びその駆動方法
JP5701104B2 (ja) 双安定型液晶表示装置の駆動方法
JP2000347160A (ja) 強誘電性液晶素子
JP2000275616A (ja) 液晶素子
JPH08152598A (ja) 液晶装置及びその駆動方法
JPH04296821A (ja) 光学変調素子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4312586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees