JP4309167B2 - 尿素を用いた排ガス脱硝方法 - Google Patents
尿素を用いた排ガス脱硝方法 Download PDFInfo
- Publication number
- JP4309167B2 JP4309167B2 JP2003110706A JP2003110706A JP4309167B2 JP 4309167 B2 JP4309167 B2 JP 4309167B2 JP 2003110706 A JP2003110706 A JP 2003110706A JP 2003110706 A JP2003110706 A JP 2003110706A JP 4309167 B2 JP4309167 B2 JP 4309167B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- urea
- catalyst
- pressure
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
【発明の属する技術分野】
本発明は、尿素を用いた排ガス脱硝方法に係り、特に、自動車等の内燃機関または発電所等の外燃機関から排出される排ガスに含まれる窒素酸化物(NOx)を還元剤として安全かつ取り扱いが容易な尿素の加水分解水を利用して分解、除去する排ガス脱硝方法に関する。
【0002】
【従来の技術】
外燃機関である発電所や工場などから排出される排煙中の窒素酸化物(NOx)を除去する方法として、アンモニア(NH3 )を還元剤とした選択的接触還元による排煙脱硝法が幅広く採用されている。また、最近では内燃機関である分散型電源用ディーゼルエンジンを利用したコジェネレーションシステムまたは自動車が都市部を中心として増加しており、これらの排ガスに対してもNOxの排出規制が適用され、かつ地域によっては規制が強化されるために、大型プラントと同様に排ガス脱硝装置の設置が急務となっている。このような小規模施設や自動車用の脱硝装置は人口密集地で使用されるので、発電所や工場で使用されるような液化アンモニアの使用は危険である。このため、毒性が少なく、取り扱いが容易で、かつ安価な尿素を還元剤とする方法が注目されている。
【0003】
尿素を還元剤として使用する場合、直接、排ガス煙道に尿素または尿素水を添加して脱硝反応を行わせる方法もあるが、400℃以下の低温で脱硝を行う場合には、アンモニアへの分解効率の悪さに起因する脱硝反応効率の低下および煙道内部に還元剤に由来する副生成物が付着する等の問題がある。従って、一般には、アルミナ等の還元剤分解触媒(加水分解触媒)を充填した還元剤分解装置を用い、尿素を分解してアンモニアを生成させたのち、脱硝に用いる方法が採用されている。この場合、問題となるのは、アンモニアを生成する尿素の分解率であり、高い分解率を得るための方法として、例えば、還元剤分解触媒の温度を250℃〜500℃の高温とすることで尿素の分解率を向上させようとする方法(特開平5-15739号公報)や、還元剤分解触媒としてアルカリ金属の水酸化物、炭酸塩などを用いることで、200℃という低温雰囲気で尿素を分解してアンモニアを生成させる方法(特開平11−171535号公報)が知られている。
【0004】
【特許文献1】
特開平05−015739号公報
【特許文献2】
特開平11−171535号公報
【0005】
【発明が解決しようとする課題】
しかしながら、前者の方法では、高いアンモニア生成率を得るためには高温にする必要があり、ランニングコストの上昇を招くだけでなく、難分解性物質が生成し易くなって脱硝触媒や配管上に析出するおそれがある。一方、従来の方法では、還元剤分解触媒としてアルカリ金属の水酸化物や炭酸塩などが用いられるが、これらの触媒は水溶性であるために、昇温または降温中に尿素水やアンモニア水中に溶出し、これによって触媒性能が短時間で劣化するか、または触媒そのものが崩壊もしくは目詰りするという問題がある。
【0006】
一方、中規模ディーゼルエンジンは発電が必要な時に運転し、不必要な時は停止する場合がある。加圧加水分解装置を用いて断続運転試験を行ったところ、起動時に配管、フィルタ、調圧弁等が析出物によって閉塞したために、加圧加水分解装置の始動不可となる場合があった。
【0007】
本発明の課題は、比較的低温でエネルギーが小さくて済み、効率的よく尿素の加水分解を行い、高いアンモニア生成を得られる、排ガス脱硝方法及び装置、ならびに該脱硝装置に用いる加圧加水分解装置を安定して使用可能とする方法および装置を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を達成するため、本発明者らは、先願である特願2002−377564号において、尿素の水溶液を加熱、加圧し、固体状加水分解触媒と接触させ、前記尿素を加水分解して炭酸アンモニウムを生成させ、該炭酸アンモニウムを含む水溶液を前記排ガス中に吹き込んでNH3 接触還元脱硝触媒の存在下に排ガスと接触させ、該排ガスに含まれる窒素酸化物を還元、分解することを特徴とする排ガス脱硝方法を提案した。
【0009】
ところで排ガス脱硝に必要な10〜20%のアンモニア水を噴霧するためには、20〜40重量%の尿素水の濃度が必要であるが、尿素水の濃度が高くなると、市販の加水分解触媒(例えばγ−アルミナ)の存在下では、アンモニア生成量がやや低下する傾向が見られた。そこで本発明者らは、尿素の加圧加水分解用触媒について鋭意研究したところ、γ−アルミナをベースにした多成分系触媒、特にγ−アルミナをベースにし、これに高い比表面積を持つチタニアを添加して細孔容積を大きく増加させた触媒、およびγ−アルミナをベースにし、これにセリウムを添加して加水分解などの活性点を大きく増加させた触媒が、高いアンモニア生成率を得ることができることを見出し、本発明に到達した。
【0010】
すなわち、上記課題を解決するために、本願で特許請求する発明は以下のとおりである。
(1)尿素の水溶液を加熱、加圧下に固体状加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させ、該炭酸アンモニウムを含む水溶液を、窒素酸化物を含む排ガス中に吹き込み、NH3接触還元脱硝触媒の存在下に該排ガスに含まれる窒素酸化物を還元、分解する排ガス脱硝方法であって、前記固体状加水分解触媒が、γ−アルミナにチタニアを添加した触媒であり、前記加熱条件を150〜400℃、加圧条件を0.5〜10MPaとすることを特徴とする排ガス脱硝方法。
【0011】
(2)前記チタニアが、比表面積100m2/g 以上を有し、その添加量が2〜40重量%であることを特徴とする(1)記載の排ガス脱硝方法。
(3)尿素の水溶液を加熱、加圧下に固体状加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させ、該炭酸アンモニウムを含む水溶液を、窒素酸化物を含む排ガス中に吹き込み、NH3接触還元脱硝触媒の存在下に該排ガスに含まれる窒素酸化物を還元、分解する排ガス脱硝方法であって、前記固体状加水分解触媒が、γ−アルミナにセリウムを添加した触媒であり、前記加熱条件を150〜400℃、加圧条件を0.5〜10MPaとすることを特徴とする排ガス脱硝方法。
【0012】
(4)前記セリウムの添加量が2〜40重量%であることを特徴とする(3)記載の排ガス脱硝方法。
【0013】
(5)前記加熱条件を200〜400℃、加圧条件を0.5〜10MPaとすることを特徴とする(1)〜(4)のいずれかに記載の方法。
【0018】
本発明において、γ-アルミナをベ−スとしてもう1成分を添加した触媒としては,100m2/g以上の高い比表面積を持つチタニアを全重量基準で2〜40重量%(特に5〜30重量%)添加したγ-アルミナが好ましい。高比表面積のチタニアをγ-アルミナに添加し粒状触媒にすると、γ-アルミナ単味を粒状にした場合に比べ細孔容積が1.5〜2倍に増大する。増加した細孔内へ加圧加温下の尿素水が通過することによって、γ-アルミナの固体酸点としての接触面積が増大することになり、尿素の加水分解反応が促進されると考えられる。ここで100m2未満の比表面積を持つチタニアを添加すると、チタニアの添加量を例えば70重量%と高くしなければならず、細孔容積が増加してもγ-アルミナの固体酸点が不足するため、アンモニア生成率は相対的に低下する。また100m2以上の高い比表面積を持つチタニアの添加量が2重量%未満と少なすぎても、細孔容積が例えば10%程度しか増加しないため、高いアンモニア生成は達成できない。100m2/g 以上の高い比表面積を持つチタニアを40重量%を超えて添加すると細孔容積は増加するが、γ-アルミナの固体酸点が不足するため、高いアンモニア生成は達成できなくなる。
【0019】
γ-アルミナをベ−スとして、もう1成分を添加することによって加水分解反応の活性点を大きく増加させる触媒としては、γ-アルミナにセリウムを全重量基準で2〜40重量%(特に5〜30重量%)添加した触媒が好ましい。γ-アルミナの高い比表面積を保ったまま活性成分(固体酸点)が増加することによって尿素の加水分解反応が促進されると考えられる。活性成分となる物質はアルカリまたはアルカリ土類金属があるが、多くの物質は加水分解反応が起こった時の熱アルカリ水に溶けてしまう。γ-アルミナにセリウムを2重量%未満を添加した触媒は、活性成分の増加が少ないため高いアンモニア生成は達成できない。γ-アルミナにセリウムを40重量%を超えて添加した触媒は活性成分は増加するが、セリウムが比表面積および細孔容積を減少させるため高いアンモニア生成は達成できない。
【0020】
また10〜20%のアンモニア水を噴霧するためには、前述のように尿素水の濃度は20〜40重量%が妥当であるが、アルミナ/チタニア触媒を用いた場合、例えば温度175℃、圧力2MPa、尿素水流速10mL/min触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。
【0021】
実機のディーゼル発電においては、発電が不要なときには、ディーゼルエンジンおよび加圧加水分解装置を停止する。そこで加圧加水分解装置の始動/停止の繰り返しテストを行ったところ、装置の停止時には大きな問題はなかったが、一旦停止し装置内の温度が室温になった後、再度始動する場合に、装置の反応器から後流側の配管、フィルタ、調圧弁および回収容器までの配管の閉塞現象が発生することがあった。配管、フィルタ、調圧弁および回収容器までの配管が閉塞すると、一旦配管等を分解した後、加熱して除去する必要があるため、大きな障害となる。閉塞した部分を分解後、採取し、熱分析したところ、析出物(閉塞物)は炭酸アンモニウムであることが分かった。尿素水は加圧加水分解した後、アンモニア、二酸化炭素および水になるが、一部は炭酸アンモニウムとして存在するのである。同じ加水分解反応率であれば、尿素水の濃度が高くなる程、多量の炭酸アンモニウムが生成する。
【0022】
そこで加圧加水分解装置に炭酸アンモニウムの結晶を析出(閉塞)させない条件を検討したところ、装置の一部を所定の温度(58〜130℃)に保温するか、または加圧加水分解装置の始動前に一部を所定の温度(58〜130℃)に加温した後、ポンプを始動することによって、閉塞せずに断続運転できることを見出した。
【0023】
炭酸アンモニウムは水に対して65℃においては40重量%の溶解度であるが、15℃では20重量%の溶解度である。加圧加水分解装置は、例えば温度150℃以上および尿素水の流量5mL/min以上の条件で運転した後、停止した場合、反応器から後流側の各部分は約80℃以上になっているので炭酸アンモニウムの溶解度は高く析出し難い。しかし、一旦加圧加水分解装置が室温になった後は、炭酸アンモニウムは析出する。そのままポンプを始動すると析出した炭酸アンモニウムは狭い配管、フィルタ、調圧弁および回収容器までの配管に蓄積/閉塞してしまうのである。
【0024】
炭酸アンモニウムは固体で存在する場合、58℃で分解し、アンモニア、二酸化炭素および水になるが、加圧加水分解反応は主に触媒を充填した反応器内で進行するため、反応器から後流側をすべて保温する。または始動前に加熱することにより、機器内を結晶化により閉塞させずに断続運転できることが分かった。
【0025】
保温温度は130℃を超えると、尿素水が加圧加水分解装置内で蒸気になり、尿素が結晶化またはシアヌール酸等の難分解性析出物になり析出するため、130℃以下が望ましい。
【0026】
以下、実施例により本発明を具体的に説明する。
【0027】
【発明の実施の形態】
図1は、本発明に用いる尿素の加圧加水分解装置一例を示す説明図である。この装置は、尿素水を貯蔵するタンク1と、該タンク1に高圧ポンプ2および予熱器4を介して連結された反応器5と、該反応器5内に設けられた加水分解触媒層7およびその加熱手段としての電気ヒータ6と、前記反応器5の後流に順次連結されたフィルター9および回収容器11とから主として構成されている。3は電気ヒータ、8は圧力計、10は圧力調節弁である。タンク1内の尿素水はポンプ2によって予熱器4で電気ヒータ3により予熱された後、反応器5に導入される。該反応器5内の電気ヒータ6で所定温度に加熱された尿素水は加水分解触媒層7に流入し、ここで尿素の一部または全部が加水分解されてNH3 が発生する。発生したNH3 を含む液はフィルター9および圧力調節弁10を経て回収容器11に回収される。
【0028】
回収した水溶液の組成は、下式に示すように炭酸アンモニウム水である。
(NH2)2CO + 3H2O → (NH4)2CO3・H2O
得られた炭酸アンモニウム水は70℃で分解して容易NH3 を生成する。
【0029】
図2は、本発明の一実施例である排ガス脱硝装置を移動型内燃機関に適用した説明図である。図2において、この脱硝装置は、内燃機関であるディーゼルエンジン15の排気管14に設けられたNH3 接触還元脱硝触媒層16と、還元剤としての尿素水2を200〜400℃、0.5〜10MPa雰囲気(亜臨界条件)で固体状の加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させる手段としてのタンク1、ポンプ2、反応器5、該反応器5内に設けられた加水分解触媒層7、電気ヒータ6および背圧弁12と、得られた炭酸アンモニウムの水溶液を前記排気管14のNH3 接触還元脱硝触媒層16の前流側に吹き込む手段としての反応器出口管20とを有するものである。17は、排気である。
【0030】
このような構成において、タンク1に貯留された尿素水はポンプ2によって抜き出されて反応器5に圧入され、電気ヒータ6および背圧弁12により、例えば温度200℃、圧力3MPaに調整された加水分解触媒層7に流入し、尿素が加水分解されて炭酸アンモニウムを生成する。炭酸アンモニウムを含む水溶液は反応器出口管20および背圧弁12を経て排気管14に液相状態で噴霧され、排ガスと混合した後、脱硝触媒層16に流入し、前記排ガス中のNOxが炭酸アンモニウムが分解したNH3 によって還元、分解される。
【0031】
本発明は、工場等で使用される定置用内燃機関の排ガス処理装置にも適用することができるが、移動型内燃機関に適用する場合と比較して、排ガス量が多くなるため、尿素水の供給量を多くする必要がある。
【0032】
以下、本発明の具体的実施例を、尿素の加水分解方法および装置について述べるが、排ガス脱硝装置は、図2に示すように、尿素の加水分解装置をNH3 接触還元脱硝装置のアンモニア発生源として用いることにより、容易に実施することができる。
【0033】
【実施例】
実施例1
ベ−マイト(水酸化アルミニウム)120gと比表面積250m2 /gの酸化チタン30gと水180gを混合してスラリ−状にした後、サンドバス上で水分を蒸発させて固化した。この塊を500℃で焼成した後、1〜2mmの大きさに粉砕し、加圧加水分解触媒とした。外径44mmΦ、内径30mmΦ、長さ300mmのステンレス製の反応器に触媒150mLを充填した後、ポンプを用いて30重量%尿素水を流速20mL/minで反応器に導入し、反応器の後流部に設置された調圧弁で3MPaに保ち、反応器の周囲を電気炉で220℃に加熱した。回収したアンモニア炭酸水をイオンクロマトグラフで分析した結果、アンモニア生成率100%であった。
【0034】
実施例2
ベ−マイト(水酸化アルミニウム)160gと硝酸セリウム100gと水240gを混合してスラリ−状した後、サンドバス上で水分を蒸発させて固化した。この塊を500℃で焼成した後、1〜2mmの大きさに粉砕し、加圧加水分解触媒とした。実施例1と同じ反応器及び装置を用いて触媒150mLを充填した後、ポンプを用いて30重量%尿素水を流速20mL/minで反応器に導入し、反応器の後流部に設置された調圧弁で3MPaに保ち、反応器の周囲を電気炉で220℃に加熱した。回収したアンモニア炭酸水をイオンクロマトグラフで分析した結果、アンモニア生成率100%であった。
【0035】
実施例3
ベ−マイト(水酸化アルミニウム)160gと硝酸セリウム50gと比表面積250m2 /gの酸化チタン15gと水220gを混合してスラリ−状にした後、サンドバス上で水分を蒸発させて固化した。この塊を500℃で焼成した後、1〜2mmの大きさに粉砕し、加圧加水分解触媒とした。実施例1と同じ反応器及び装置を用いて触媒150mLを充填した後、ポンプを用いて30重量%尿素水を流速20mL/minで反応器に導入し、反応器の後流部に設置された調圧弁で3MPaに保ち、反応器の周囲を電気炉で220℃に加熱した。回収したアンモニア炭酸水をイオンクロマトグラフで分析した結果、アンモニア生成率100%であった。
【0036】
実施例4
本発明における尿素水の加圧加水分解試験を行った。アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度35重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置の反応器5から後流側をすべてリボンヒータを用いて80℃に保温し(常時80℃)、停止後は装置が室温になるまでの断続運転を20回繰り返した。その結果、加圧加水分解装置は一度も閉塞せずに断続運転することができた。
【0037】
実施例5
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度35重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置の反応器5から後流側の部品にすべてリボンヒータを設置して、停止後の再起動時に80℃に10分間加熱後、ポンプを始動する断続運転を20回繰り返した。その結果、加圧加水分解装置は一度も閉塞せずに断続運転することができた。
【0038】
実施例6
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度45重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置の反応器5から後流側の部品にすべてリボンヒータを設置して、停止後の再起動時に95℃に10分間加熱後、ポンプを始動する断続運転を20回繰り返した。その結果、加圧加水分解装置は一度も閉塞せずに断続運転することができた。
【0039】
実施例7
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度35重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置において、尿素水タンク1、回収液タンク11および圧力計8を除く全部品を80℃に保たれた恒温槽内に配置した装置を用いて断続運転を20回繰り返した。その結果、加圧加水分解装置は一度も閉塞せずに断続運転することができた。
【0040】
実施例8
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度35重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置に圧力センサを取り付け、圧力が2.5MPa以上になると、反応器5から後流側の部品に設置されたヒータを温度120℃に加熱されるよう設定した。この装置を用いて断続運転を20回繰り返した。その結果、加圧加水分解装置は一度も閉塞せずに断続運転することができた。
【0041】
比較例1
市販のγ-アルミナを1〜2mmの大きさに粉砕し、加圧加水分解触媒とした。実施例1と同じ設備を用いて、触媒150mLを充填した後、ポンプを用いて30重量%尿素水を流速20mL/minで反応器に導入し、反応器の後流部に設置された調圧弁で3MPaに保ち、反応器の周囲を電気炉で220℃に加熱した。回収したアンモニア炭酸水をイオンクロマトグラフで分析した結果、アンモニア生成率80%であった。
【0042】
実施例9
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度35重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置において、実施例5で用いた保温/加熱用のリボンヒータを取り除き、断続運転を20回繰り返した。その結果、加圧加水分解装置は20回のうち6回閉塞した。
【0043】
実施例10
アルミナ/チタニア触媒を用い、温度175℃、圧力2MPa、尿素水の濃度45重量%、尿素水流速10mL/min、触媒充填量280mLの条件で約90%の高いアンモニア生成率であった。図1の装置において、実施例6で用いた保温/加熱用のリボンヒータを取り除き、断続運転を20回繰り返した。その結果、加圧加水分解装置は20回のうち14回閉塞した。
【0044】
【発明の効果】
請求項1〜6記載の発明によれば、還元剤分解の触媒量が少量で済むため、比較的低温でエネルギーが小さくて済み、また加水分解の反応槽がコンパクトで温度制御が容易になり、効率よく尿素の加水分解を行なうことができ、高いアンモニア生成率で排ガス脱硝を行うことができる。
【図面の簡単な説明】
【図1】本発明方法を実施するための加圧加水分解装置の説明図。
【図2】本発明の排ガス脱硝方法を移動型内燃機関に適用した実施例を示す説明図。
【符号の説明】
1…尿素水タンク、2…ポンプ、3…電気ヒ−タ、4…予熱器、5…反応器、6…電気ヒ−タ、7…触媒、8…圧力計、9…フィルタ、10…調圧弁、11…回収液タンク。
Claims (5)
- 尿素の水溶液を加熱、加圧下に固体状加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させ、該炭酸アンモニウムを含む水溶液を、窒素酸化物を含む排ガス中に吹き込み、NH3接触還元脱硝触媒の存在下に該排ガスに含まれる窒素酸化物を還元、分解する排ガス脱硝方法であって、前記固体状加水分解触媒が、γ−アルミナにチタニアを添加した触媒であり、前記加熱条件を150〜400℃、加圧条件を0.5〜10MPaとすることを特徴とする排ガス脱硝方法。
- 前記チタニアが、比表面積100m2/g 以上を有し、その添加量が2〜40重量%であることを特徴とする請求項1記載の排ガス脱硝方法。
- 尿素の水溶液を加熱、加圧下に固体状加水分解触媒と液相で接触させ、前記尿素の一部または全部を加水分解して炭酸アンモニウムを生成させ、該炭酸アンモニウムを含む水溶液を、窒素酸化物を含む排ガス中に吹き込み、NH3接触還元脱硝触媒の存在下に該排ガスに含まれる窒素酸化物を還元、分解する排ガス脱硝方法であって、前記固体状加水分解触媒が、γ−アルミナにセリウムを添加した触媒であり、前記加熱条件を150〜400℃、加圧条件を0.5〜10MPaとすることを特徴とする排ガス脱硝方法。
- 前記セリウムの添加量が2〜40重量%であることを特徴とする請求項3記載の排ガス脱硝方法。
- 前記加熱条件を200〜400℃、加圧条件を0.5〜10MPaとすることを特徴とする請求項1〜4のいずれかに記載の方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003110706A JP4309167B2 (ja) | 2003-04-15 | 2003-04-15 | 尿素を用いた排ガス脱硝方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003110706A JP4309167B2 (ja) | 2003-04-15 | 2003-04-15 | 尿素を用いた排ガス脱硝方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004313917A JP2004313917A (ja) | 2004-11-11 |
JP4309167B2 true JP4309167B2 (ja) | 2009-08-05 |
Family
ID=33471496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003110706A Expired - Lifetime JP4309167B2 (ja) | 2003-04-15 | 2003-04-15 | 尿素を用いた排ガス脱硝方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4309167B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104353567A (zh) * | 2014-11-13 | 2015-02-18 | 河南海力特机电制造有限公司 | 用于sncr脱硝系统的高压细水雾喷枪 |
KR101821096B1 (ko) | 2017-07-14 | 2018-01-23 | 박정봉 | 요소수를 사용하는 질소산화물의 저감시스템 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006068680A (ja) * | 2004-09-03 | 2006-03-16 | Purearth Inc | 脱硝用還元剤組成物およびその製造方法 |
JP4681284B2 (ja) * | 2004-11-18 | 2011-05-11 | 日野自動車株式会社 | 排気浄化装置 |
KR101004741B1 (ko) * | 2006-01-06 | 2011-01-06 | 미쯔이 죠센 가부시키가이샤 | 배 가스의 탈초방법 및 장치 |
JP4817850B2 (ja) * | 2006-01-13 | 2011-11-16 | 三井造船株式会社 | 排ガス処理装置 |
DE102006047019A1 (de) | 2006-10-02 | 2008-04-03 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Verfahren und Vorrichtung zur Bereitstellung eines ein Reduktionsmittel umfassenden Gasstroms |
JP5468732B2 (ja) * | 2007-09-27 | 2014-04-09 | 国立大学法人豊橋技術科学大学 | 尿素改質装置及びそれを備えた排ガス浄化装置 |
DE102008016177A1 (de) | 2008-03-28 | 2009-10-08 | Süd-Chemie AG | Harnstoffhydrolysekatalysator |
CN106890567B (zh) * | 2017-04-06 | 2023-07-18 | 北京烨晶科技有限公司 | 一种流化床式尿素及其衍生物的分解及脱硝系统和工艺 |
EP3470639A1 (en) * | 2017-10-16 | 2019-04-17 | Winterthur Gas & Diesel Ltd. | Device and method for generating a reducing agent gas from a liquid or solid reducing agent |
CN109821413A (zh) * | 2019-04-02 | 2019-05-31 | 宋铭宇 | 一种烟气氨法脱硫脱硝超低排放一体塔 |
CN113750948B (zh) * | 2021-09-09 | 2023-04-28 | 西安热工研究院有限公司 | 一种烟气脱硝用尿素催化水解反应器及方法 |
-
2003
- 2003-04-15 JP JP2003110706A patent/JP4309167B2/ja not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104353567A (zh) * | 2014-11-13 | 2015-02-18 | 河南海力特机电制造有限公司 | 用于sncr脱硝系统的高压细水雾喷枪 |
KR101821096B1 (ko) | 2017-07-14 | 2018-01-23 | 박정봉 | 요소수를 사용하는 질소산화물의 저감시스템 |
Also Published As
Publication number | Publication date |
---|---|
JP2004313917A (ja) | 2004-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4309167B2 (ja) | 尿素を用いた排ガス脱硝方法 | |
JP4646063B2 (ja) | 尿素の分解触媒を用いた排ガス脱硝方法及び装置 | |
RU2600051C2 (ru) | Генератор газообразного аммиака для выработки аммиака для восстановления оксидов азота в отработавших газах | |
CA2284292C (en) | Methods for the production of ammonia from urea and uses thereof | |
JP4838579B2 (ja) | 水銀除去システムおよび水銀除去方法 | |
JP2020503467A (ja) | カルバミン酸アンモニウムの生成および窒素酸化物の還元 | |
EP0542792A1 (en) | PROCESS FOR HYDROLYSIS OF UREA IN A PIPELINE. | |
JP3638638B2 (ja) | 固体還元剤を用いた脱硝装置 | |
JPH11171535A (ja) | アンモニア発生方法及び排ガス処理方法 | |
JP2007145796A (ja) | 尿素水及びそれを用いた脱硝装置 | |
JP4599989B2 (ja) | アンモニアの製造方法および脱硝方法 | |
JP2023024849A (ja) | 高融点配管閉塞物質の生成抑制装置及び方法 | |
JPH0857261A (ja) | 還元剤水溶液を用いる脱硝装置 | |
WO2000043109A1 (fr) | Procede de traitement des gaz d'echappement et son dispositif, et vehicule equipe dudit dispositif | |
JP2001157822A (ja) | 燃焼排ガス中の窒素酸化物の除去方法 | |
CN101627009A (zh) | 含有尿素的水溶液的制备方法和设备 | |
JP2007301524A (ja) | 脱硝方法および脱硝設備 | |
JP2005288397A (ja) | 尿素水を用いる排ガス脱硝装置 | |
JP4266304B2 (ja) | 排ガス脱硝方法および脱硝装置 | |
CN209378764U (zh) | 可高效脱硝的危废焚烧尾气处理装置 | |
CN115090091B (zh) | 一种利用柠檬酸脱除垃圾焚烧烟气中逃逸氨的装置及方法 | |
JP3276158B2 (ja) | 脱硝装置 | |
JP4381881B2 (ja) | 排煙脱硝装置とその起動方法 | |
JP4433694B2 (ja) | 尿素水およびこれを用いる脱硝方法 | |
JP3713634B2 (ja) | 排ガス中の窒素酸化物除去方法と排煙脱硝装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090428 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090507 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4309167 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |