JP4305012B2 - ホログラム動画表示装置 - Google Patents

ホログラム動画表示装置 Download PDF

Info

Publication number
JP4305012B2
JP4305012B2 JP2003063981A JP2003063981A JP4305012B2 JP 4305012 B2 JP4305012 B2 JP 4305012B2 JP 2003063981 A JP2003063981 A JP 2003063981A JP 2003063981 A JP2003063981 A JP 2003063981A JP 4305012 B2 JP4305012 B2 JP 4305012B2
Authority
JP
Japan
Prior art keywords
hologram
moving image
light
dimensional
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003063981A
Other languages
English (en)
Other versions
JP2004272000A (ja
Inventor
利孝 河嶋
重夫 久保田
裕之 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003063981A priority Critical patent/JP4305012B2/ja
Publication of JP2004272000A publication Critical patent/JP2004272000A/ja
Application granted granted Critical
Publication of JP4305012B2 publication Critical patent/JP4305012B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)
  • Holo Graphy (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ホログラム技術を用いて3次元動画あるいは2次元動画を可能にしたホログラム動画表示装置に関する。
【0002】
【従来の技術】
従来、立体動画を得るホログラム動画表示装置としては、代表的なものを挙げると、特許文献1に記載のものが知られている。このホログラム動画表示装置は、レーザを光源とし、音響光学式変調器(AOM)を用いて成り、このAOMにレーザ光を入射することで回折光を得、この回折光をミラーで走査して、ホログラム像を得るようにしている。
図7は、ホログラム動画表示装置の概略的構成を示す。このホログラム動画表示装置1では、画像の水平方向の1ライン分に相当する干渉縞がコンピュータで計算され、計算されたホログラムデータ2が音響光学式変調器(AOM)3に入力される。音響光学式変調器3内部では入力された干渉縞の強度分布にしたがって屈折率分布が生じる。この屈折率分布によって、フーリエ変換レンズ4を通じて音響光学式変調器3に照射された赤(R),緑(G),青(B)のレーザ光5が回折される。この回折光で水平方向の再生像が得られる。屈折率分布は音速で音響光学式変調器3の内部を移動するので、再生された像も同じ速度で移動する。そこで、ポリゴンミラー6を逆方向に同期をとって回転させ、回折光を静止させる。このようにして、音響光学変調器3からの回折光で水平方向の1ラインの再生画像が得られる。音響光学式変調器3で回折された水平方向の1ライン分の3色のレーザ光5は、HOEビーム結合器7で1本にまとめられ、ミラー8で光路変更され、ガルバノミラー9により垂直方向に走査して1画面の立体画像10が得られる。この立体再生画像10は、拡大投影レンズ12、垂直拡散板11を通して観察者に観取される。
【0003】
【特許文献1】
米国特許第5172251号明細書
【0004】
【発明が解決しようとする課題】
ところで、上述の音響光学式変調器(AOM)を使用したホログラム表示装置は、音響光学式変調器の帯域幅の制限で垂直方向の走査線の数が144本と非常に少ないものであり、高画質のホログラム画像が得られ難かった。
【0005】
本発明は、上述に点に鑑み、ホログラム技術を用いて高画質の3次元動画、2次元動画を実現し得るようにしたホログラム動画表示装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明に係るホログラム動画表示装置は、ホログラム動画データ及び光学系制御信号を供給する手段と、この手段からホログラム動画データ(以下、ホログラムデータという)が供給される1次元の光回折型MEMSアレイと、光回折型MEMSアレイへ照射して1次元ホログラムパターンを形成するためのレーザ光を出射するレーザ光源と、上記手段から供給された光学系制御信号により駆動され、1次元ホログラムパターンを走査して2次元ホログラムパターンとする走査ミラーと、走査ミラーの駆動に同期して上記手段から供給された光学系制御信号により参照光を出射するレーザ光源と、走査ミラーからの2次元ホログラムパターンが投影されるフォトリフラクティブ薄膜を有するスクリーンとを有する。そして、本発明は、スクリーンの端面から参照光を入射して前記フォトリフラクティブ薄膜に形成されたホログラムパターンをエッジリット方式により再生してスクリーンにホログラム動画像を表示するようにして成る。
【0007】
光回折型MEMSアレイの反射光側の前面には、各画素に対応する光回折型MEMSピクセルに対して+1次回折光と−1次回折光を反射してフォトリフラクティブ薄膜上にホログラムパターンとなる干渉縞を得るように集光させるための一対のミラーを配置することができる。
【0008】
参照光には、赤色、緑色及び青色のレーザ光を用いることができる。スクリーンの前面には、ホログラム動画を巨視化するためのフレネルレンズを配置することができる。ホログラムデータは、数値計算されたホログラムデータを用いる。ホログラムデータとしては、3次元ホログラムデータ、又は2次元ホログラムデータ、又は3次元と2次元のホログラムデータを組み合わせたホログラムデータとすることができる。
【0009】
本発明のホログラム動画表示装置では、スクリーンにフォトリフラクティブ部材を用いるので、瞬時にホログラムパターンの書き込み、消去が可能になる。この ホログラムパターンに参照光を入射することにより、スクリーン上に再生されたホログラム像が得られる。水平方向の画素数、垂直方向の走査線数の増大化が可能になる。従って、高画質のホログラム動画表示ができる。
回折型MEMSアレイを用いるときは、マイクロ秒の駆動が可能になり、動的なホログラムパターンの書き込み、ホログラム像の再生が可能になる。
【0010】
1次元の回折型MEMSアレイと、走査ミラーとを有し、1次元ホログラムパターンを走査ミラーで2次元ホログラムパターンとするときは、フォトリフラクティブ部材に1フレームのホログラムパターンが書き込まれる。
フォトリフラクティブ部材に形成されたホログラムパターンを、スクリーンの端部から参照光を入射するエッジリット方式で再生するときは、ホログラムパターンが比較的薄い透明媒体を介して比較的大きな角度で再生されてホログラム像が得られる。このため、再生光(参照光)に関与しない光が、全反射条件により透明媒体内に閉じ込められ外部に漏れない。また、再生光の入射角度が大きいので、透明媒体の外部からの光によって像再生されない。
【0011】
参照光として赤色、緑色及び青色のレーザ光を用いることにより、カラーホログラム像が得られる。スクリーンの前面にフレネルレンズを配置するときは、再生した動画像の巨視化を可能にする。
ホログラムデータとして、数値計算されたホログラムデータを用いるときは、ホログラム動画表示が可能になる。ホログラムデータとして3次元ホログラムデータを用いるときは、立体ホログラム動画が表示される。ホログラムデータとして2次元ホログラムデータを用いるときは、2次元ホログラム動画が表示される。ホログラムデータとして3次元ホログラムデータと2次元ホログラムデータを組み合わせたホログラムデータを用いるときは、3次元画面の一部に2次元画面が表示され、あるいは逆に2次元画面の一部に3次元画面が表示されたホログラム動画が得られる。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明のホログラム動画表示装置の実施の形態を説明する。
【0013】
図1は、本発明に係るホログラム動画表示装置の一実施の形態を3次元(立体)動画表示に適用した場合の概略構成を示す。
本実施の形態に係るホログラム動画表示装置21は、ホログラムデータ(いわゆるホログラム動画データ)及び光学系制御信号を供給する手段22と、このホログラムデータ及び光学制御信号の供給手段22からのホログラムデータが入力される光回折器23と、光回折器23へ照射して回折像を形成するためのレーザ光を出射するレーザ光源24と、ホログラム像を映し出すためのフォトリフラクティブ効果を持つ部材25、即ちフォトリフラクティブ材料による薄膜25を有したスクリーン26と、参照光となるレーザ光を出射するレーザ光源27と、1次元のホログラムパターンを走査して2次元のホログラムパターンにするための走査ミラー28とを備えて成る。
【0014】
ホログラムデータ及び光学系制御信号供給手段22は、コンピュータ等の計算機、例えば演算回路を備えている。この手段22からは、演算回路で数値計算されたホログラムデータ、いわゆるホログラム動画データが出力される。ホログラム動画データとしては、表示画像に応じて例えば3次元(立体)ホログラム動画データ、又は2次元ホログラム動画データ、又は立体動画と2次元動画(例えば文字、その他など)が表示される場合は、3次元ホログラム動画データと2次元ホログラム動画データを組み合わせたホログラム動画データとすることができる。また、この手段22からは、光回折器23、走査ミラー、参照光を出射するレーザ光源27〔27R,27G,27B)、さらに必要に応じて上記光源24等を制御する制御信号が供給される。
【0015】
回折像形成用のレーザ光源24は、1本のコヒーレントなレーザ光を出射する1つのレーザ光源である。レーザ光源24からのレーザ光は、例えばシリンドリカルレンズ系29を通してシート・ビームに形成され、光回折器24に入射するようになされる。
【0016】
光回折器23は、マイクロ・エレクトロ・メカニカル・システム(MEMS)、例えば回折型MEMSで構成された静電駆動型のアレイが用いられる。本例では回折型MEMSアレイであるGLV(Grating Light Valve)アレイにより構成される。この光回折器となるGLVアレイ23は、1ライン上に配列された複数本、例えば6000本以上のリボン状ミラー(以下、単にリボンという)からなり、1画素に6本のリボンが割り当てられて形成される。1画素に対応する6本のリボンは、そのうちの1本置きの3本が可動リボンであり、残りの3本が固定リボンであり、電圧印加により可動リボンが変位して回折格子化し、光を振幅変調する。従って、このGLVアレイ23は、一次元の光変調器アレイであり、GLVアレイ23にレーザ光源24からのレーザ光を照射したとき一次元の光回折器として機能する。1画素に対応するGLVの構成は後述する。
【0017】
参照光用の赤、緑及び青のレーザ光源27〔27R,27G,27B〕から出射したレーザ光46〔46R,46G,46B〕はシリンドリカルレンズ系47〔47R,47G,47B〕により水平方向に長いシート・ビームに形成され、例えばガルバノミラー、ポリゴンミラー等の走査ミラー48〔48R,48G,48B〕にて垂直方向の走査されてフォトリフラクティブ薄膜25の裏面に入射されるようになされる。レーザ光源27〔27R,27G,27B〕には、1水平ラインのホログラムデータに同期した制御信号が供給される。
【0018】
ホログラムデータ及び光学系制御信号供給手段22からのホログラムデータは、光回折器として機能するGLVアレイ23に供給され、可動リボンを駆動する。レーザ光源24からのレーザ光がGLVアレイ24に照射されると、GLVアレイ23から±1次回折光が反射される。この±1次回折光をフォトリフラクティブ薄膜25上に集光させることで、フォトリフラクティブ材料で形成したフォトリフラクティブ薄膜25上に干渉縞、即ちホログラムパターンが書き込まれる。
【0019】
走査ミラー28としては、例えばガルバノ・ミラーやポリゴン・ミラーなどを用いることができる。本例ではガルバノ・ミラーを用いる。
GLVアレイ23とガルバノ・ミラー28との間には、GLVアレイ23からの回折光(後述の±1次回折光)をガルバノ・ミラー28で反射してスクリーン26のフォトリフラクティブ薄膜25に集光させるための投射レンズ36が配置される。また、投射レンズ36の前面側には、GLVアレイからの±1次回折光以外の例えば0次光、高次回折光をカットするシュリーレン・フィルタ38が配置される。
【0020】
後述で明らかになるように、スクリーン26を構成するフォトリフラクティブ薄膜25の観察者30側の表面には、参照光を照射して得られる画像光を垂直方向に拡散させるための散乱部材、本例ではマイクロレンズアレイ32が設けられる。このマイクロレンズアレイ32は、1水平ラインの画素に対応して水平方向に延びるかまぼこ型レンズが画素の水平ライン数と同じ数だけ垂直方向に配列されて成る。また、フォトリフラクティブ薄膜25の裏面には、例えばガラス、プラスチック(アクリル、ポリカーボネートなど)等の透明媒体(例えば透明板)33及びその裏面に光選択透過膜34が配置される。光選択透過膜34は、GLVアレイ23からのレーザ光のみを選択的に透過し、可視光等の他の光を吸収する性質を有した膜である。GLVアレイ23からスクリーン26裏面に入射される光は、可視光でなく赤外光又は紫外光のレーザ光である。光選択透過膜34はこの赤外光又は紫外光を透過する。スクリーン26は、この光選択透過膜34、透明媒体33、フォトリフラクティブ薄膜25及びマイクロレンズアレイ32により構成される。このスクリーン26の前面には、ホログラム動画像を巨視化するためのフレネルレンズ37が配置される。
【0021】
フォトリフラクティブ薄膜25に形成されたホログラムパターンを再生するめの参照光としては、レーザ光が用いられる。再生用のレーザ光源27としては、赤、緑、青のコヒーレントな光源であって、例えば赤は波長642nmの半導体レーザ27R、緑は波長532nmの固体レーザ27G、青は波長457nmの固体レーザ27Bを用いることができる。
【0022】
参照光の照射方式としては、エッジリット方式が好ましい。本例では参照光のレーザ光は、スクリーン26の端部から入射してホログラムパターンが形成されているフォトリフラクティブ薄膜25の裏面に照射される。このエッジリット方式、いわゆるエジリットホログラムを採用して再生動画像を得るように構成される。
【0023】
エッジリット方式によるホログラム表示では、フォトリフラクティブ薄膜25の裏面に配した例えば厚さ数センチのガラス又は光学プラスチック等による透明媒体33の端部から参照光のレーザ光を入射する。通常のホログラムは、再生光源とホログラムが空間的に離れているため、広い空間を必要とし、適切な条件でホログラムを再生するには、ホログラムと光源の位置関係を適切に設定する必要がある。
一方、エッジリットホログラムは、再生光源とホログラムを一体化することで、照明のための空間が不要となり、ホログラムが比較的薄い透明媒体33を介して比較的大きな角度で再生できる。このため、次の利点がある。再生光に関与しない光が、全反射条件によって透明媒体33内に閉じ込められ外部に漏れない。再生光の入射角度が大きいために、透明媒体の外部からの光によって像が再生されない。
【0024】
GLVアレイ23からの±1次回折光を集光させてフォトリフラクティブ薄膜25上に干渉縞、即ちホログラム像を形成する光学系の概略を図2を用いて説明する。図2に示すように、1水平ラインの画素数に対応した多数個のGLVピクセル23′を1次元配列したGLVアレイ23が配置される。GLVアレイ23の反射光側の前面には、各画素に対応する1GLVピクセル23′に対して+1次回折光41aと−1次回折光41bを夫々反射してスクリーン26上に集光させるための一対のミラー42〔42a,42b〕が配置される。レーザ光源24からのレーザ光44を1次元GLVアレイ23の各GLVピクセル23′に照射して発する反射光は、各GLVピクセル23′の前面に配置されたシュリーレン・フィルタ38(図1参照)により±1次回折光成分以外が除去される。結果として各GLVピクセル23′から発するのは±1次回折光41a,41bのみとなる。この±1次回折光41a及び41bがミラー42a,42bで反射され、投影光学系、即ち投射レンズ36(図1参照)によりフォトリフラクティブ薄膜25で構成されたスクリーン26上に集光されて干渉縞、即ちホログラムパターンが形成される。ここで、ミラー42a,42bは固定であり、GLVアレイ23とミラー42a,42bとスクリーン26との相互の距離も決まっている。
【0025】
一方、スクリーン26は、上述したようにフォトリフラクティブ効果を有する薄膜25で構成される。ここで、フォトリフラクティブ効果について図3を用いて説明する。
同じ波数を持つ平面波が、結晶表面に対称的な角度で入射したとする。この2光波混合が、フォトリフラクティブ効果のもっとも基本的な配置である。その場合のフォトリフラクティブ効果の立ち上がりは次のような各ステージからなる。光が干渉してフォトリフラクティブ効果を有する膜に、周期的な強度分布を持った光干渉縞ができる。山部が明るい部分、谷部が暗い部分である(図3A参照)。光強度に比例した数密度で正負の電荷が発生する。即ち、電子ー正孔対が励起される。電子は補足されて動けないが、正孔は熱的に全体に拡散する(図3B参照)。干渉縞の明るい部分はマイナスに、暗い部分はプラスに帯電することになる(図3C参照)。その結果、明るい部分と暗い部分との間に電界E(空間電場)が発生する(図3D参照)。この電界Eにより屈折率nが変化し、屈折率の高低による格子縞が形成される(図3E参照)。ここで、屈折率の変化は干渉縞の明るい部分と暗い部分の中間のところで生じ、屈折率格子は干渉縞からπ/2だけ位相がずれる。
【0026】
このようなフォトリフラクティブ効果を示すフォトリフラクティブ材料には、無機材料と有機材料がある。無機材料としては、例えばLiNbO3 、FeなどをドープしたLiNbO3 :FeやBaTiO3 、ビスマスシリコンオキサイド(BSO)、PLZTセラミック等が挙げられる。
また、有機材料としては、長鎖状共役分子またはポリマーからなる共役主鎖上にキャリアトラップが設けられている高分子材料で、光導電性高分子ポリビニルカルバゾールにアゾベンゼン系のNLO色素を大量に混ぜたものや、(DEH)を30wt%、電子補足剤(TNF)を1wt%混合した薄膜などが挙げられる。次に示す材料はその一例である。
【0027】
【化1】
Figure 0004305012
【0028】
【化2】
Figure 0004305012
【0029】
【化3】
Figure 0004305012
【0030】
【化4】
Figure 0004305012
【0031】
【化5】
Figure 0004305012
【0032】
【化6】
Figure 0004305012
【0033】
上述したように、フォトリフラクティブ薄膜25にGLVアレイ23からの±1次回折光が集光し、±1次回折光の交差部に干渉縞が発生する。この干渉縞の明暗には電子と正孔が発生し、このうち電子は強誘電体結晶中の自発分極に基づく内部電界によって干渉縞の暗い部分に移動し、結晶中に局所的な周期的屈折変化を発生させる。フォトリフラクティブ効果は、光が干渉しないと発現しない。従って、屈折率を変えた部分で±1次回折光が交差・干渉するように、GLVピクセル23′のリボンの上下と、回折光の走査ミラー28の動きを動的に調整することで、フォトリフラクティブ薄膜25からなるスクリーン26上に干渉縞を形成することができる。これにより、フォトリフラクティブ薄膜25中にホログラムデータを書き込むことが可能となる。
後述するように、フォトリフラクティブ材料からなるスクリーン26上に動的なホログラムパターンが描かれ、このホログラムパターンに参照光を照射することにより、ホログラム動画表示が可能になる。
【0034】
図4は、1画素に対応する1GLVピクセル23′の概略構成を示す。このGLVピクセル23′は、基板51上に共通の基板側電極52が形成され、この基板側電極52と空間56を挟んで対向するように、支持部を介して絶縁膜53とその表面を被覆する反射膜を兼ねる駆動側電極54からなる6本のリボン55〔551 、552 、553 、554 、555 、556 〕が形成されて成る。このGLVピクセル23′は、リボン55がいわゆる両持ち梁構造である。基板51は例えばシリコン基板上に絶縁膜を有して形成される。リボン55を構成する絶縁膜53は例えばシリコン窒化まく形成され、駆動側電極54は例えばアルミニウム(Al)膜で形成することができる。1GLVピクセル23′は、1本置きの3本のリボン551 、553 、555 が基板側電極52と駆動側電極54間に印加する電気信号(即ち電圧)、本例ではホログラムデータで基板側電極52に対して静電力で近接、離間する可動リボンである。その他のリボン552 、554 、556 は固定リボンとなる。図4Aは、1本置きのリボン551 、553 、556 が基板側電極52に引き寄せられた状態を示している。このとき、6本のリボン55が1本置きに沈み込んで回折格子を形成する。
【0035】
GLVピクセル23′は、可動リボン551 、553 、555 の表面で反射するレーザ光の位相と、固定リボン552 、554 、556 の表面で反射するレーザ光の位相との差がアナログ的に制御される。例えば位相の差が0とλ/4の間でアナログ的に制御される。例えば、レーザ光がこのGLVピクセル23′に対して垂直に入射した場合を考える。6本のリボン55が同一平面を形成していれば、図5Aに示すように、レーザ光はそのまま垂直に反射する。このときリボン55表面における反射光の波面W0 は、破線で示すようになっている。この反射光は0次光である。一方、リボン55が1本置きに下がっていれば、図5Bに示すように垂直に反射する0次光の他に、回折により±1次光が発生する。±1次光の波面W1 、W2 は、実線で示すようになっている。2次以上の回折光も発生しているが、この強度は無視できる程度に小さい。図6は、このようなGLV素子ピクセル23′が基板上に多数(例えば1000個)、本例では画像の水平方向に沿うように、例えば立体像の水平方向の情報が入射されるように配列された1次現GLVアレイ23を示す。このGLVアレイ23は、入射した光の反射光の位相を各GLVピクセル23′毎に変更できる。
【0036】
次に、図1のホログラム動画表示装置21の概略の動作を説明する。3次元(立体)動画表示を例にとる。
図1に示すように、ホログラムデータ及び光学系制御信号の供給手段22から3次元ホログラム動画データが1次元GLVアレイ23に入力される。3次元ホログラム動画データは、立体像の1水平ライン毎のホログラムデータとして順次GLVアレイ23入力され、GLVアレイ23の画素に対応する各GLVピクセル23′の可動リボン15〔151 、153 、155 〕が画素データに応じて駆動される。レーザ光源24により明るさを調整する場合には、レーザ光源24に1水平ライン毎のホログラムデータに同期した制御信号がレーザ光源24に供給され、回折格子形成用のレーザ光44が出射される。レーザ光源24により明るさを調整する必要がない場合には、常時レーザ光源24から回折格子形成用のレーザ光44が出射される。
【0037】
レーザ光源24からレーザ光がシリンドリカルレンズ系29を通じてシート・ビーム44としてGLVアレイ23に入射される。GLVアレイ23で反射された±1次回折光41a,41bは、ミラー42a,42bで反射され、投射レンズ36を通して走査ミラー28で反射され、スクリーン26のフォトリフラクティブ薄膜25上に集光し、干渉縞、即ち1水平ラインのホログラムパターンを形成する。走査ミラー28は、ホログラムデータ及び光学系制御信号の供給手段22からの1水平ライン毎のホログラムデータに同期した制御信号により駆動され、GLVアレイ23からのシート・ビーム(±1次回折光)を垂直方向に走査する。これにより、スクリーン26のフォトリフラクティブ膜25上に1フレームの3次元ホログラムパターンが書き込まれる。
【0038】
1水平ラインのホログラムデータの垂直方向の走査、従って走査ミラー28の駆動に同期して、供給手段22からの制御信号が参照光用の赤、緑及び青のレーザ光源27〔27R,27G,27B〕に供給される。また、走査ミラー48〔48R,48G,48B〕は、走査ミラー28の制御信号に同期した制御信号が供給手段22から供給される。各レーザ光源27R〜27Bからは、参照光となる赤レーザ光46R、緑レーザ光46G及び青レーザ光46Bが出射される。これらのレーザ光46R,46G,46Bは、各シリンドリカルレンズ系47〔47R,47G,47B〕を通してシート・ビームとなり、走査ミラー48〔48R,48G,48B〕で反射され、1本のレーザ光に纏められてスクリーン26の端部から透明媒体33を通してフォトリフラクティブ薄膜25の裏面にホログラムパターンの書き込みに同期して垂直方向に走査しながら照射される。この参照光の照射により、1フレームの立体画像が再生される。
【0039】
フォトリフラクティブ薄膜では、ホログラムデータを書き込むレーザ光44が照射され光の干渉が生じている間はフォトリフラクティブ効果が発現しホログラムパターンが書き込まれるが、レーザ光44が照射されなくなるとフォトリフラクティブ効果が発現せず、書き込まれていたホログラムパターンは直ちに消え初期状態に戻る。 このようにして、レーザ光44により次のフレームのホログラムパターンが書き込まれると共に、レーザ光46による参照光で立体画像(ホログラム像)が再生され、順次各フレームの立体画像が再生されることで立体ホログラム動画像49が表示される。立体ホログラム動画像49は、スクリーン26の前面に配置したフレネルレンズ37によって拡大されて観察者30に観察される。
【0040】
エッジリット方式で照射された光は、干渉縞がない所では裏面側に反射するが、干渉縞が有る所では前方に散乱する。スクリーン26の前面側から見るとバックが黒であって、ここに点で光っているので、奥行き感があるように見える。
【0041】
本実施の形態のようにGLVアレイ23を利用して垂直走査によるホログラム動画表示の場合、1水平ライン毎の情報量は約6Mbitsとなる。このようなホログラムデータを、制御用コンピュータからGLVアレイ23に送る場合、伝送線路の情報伝達速度が足りないときには、ホログラムデータに圧縮をかけて送り、GLVアレイ23の前にある電子回路によってデータの圧縮を解きGLVアレイ23に送っても良い。
【0042】
動画ホログラムには大きな情報量が必要になる。そこで、現実的な実施の形態としては、ホログラムデータを水平方向のみとし、垂直方向は通常の結像データとするのがよい。GLVアレイ等の光回折器23で投影する場合は、水平方向を一ラインのホログラムデータとし、このホログラムデータを垂直方向にビデオレート(例えば1秒間に30回)で走査する必要がある。参照光(再生光)は水平方向のホログラムデータの走査に同期して透明媒体の端部より走査して照射するのが望ましい。ホログラムデータが水平方向のみである場合、フォトリフラクティブ薄膜25の前面に設けたマイクロレンズ32により、再生されたホログラム画像光が垂直方向に拡散され、垂直方向が繋がって見える。
【0043】
上述の本実施の形態に係る立体ホログラム動画表示装置によれば、ホログラムパターンの書き込みに回折型MEMSアレイ、例えばGLVアレイによる光回折器23を用い、ホログラムパターンを書き込む薄膜として瞬時に応答して周期的屈折率変化を発生し、直ぐに消えるフォトリフラクティブ薄膜25を用いることにより、動的にホログラムパターンの書き込みが可能になり、参照光の照射により、動的な立体ホログラム再生画像を表示することができる。
光回折器としてGLVアレイ23を用いることにより、水平方向の画素数、垂直方向の走査線数が大幅に増加することが出来、しかも、マイクロ秒で動作可能であるので、高画質の立体ホログラム動画像が得られる。
【0044】
1次元のGLVアレイ23と2次元の走査ミラー28で、ホログラムパターンをフォトリフラクティブ薄膜25に投影するので、1フレームのホログラムパターンの書き込みが可能になる。水平方向のみをホログラムデータとすることにより、情報量を大幅に少なくでき、立体ホログラム動画表示を可能にすることができる。フォトリフラクティブ薄膜25の前面に垂直方向の光拡散を行うマイクロレンズ32を設けることにより、垂直方向の画像の継ぎ目が目立たなくなり、自然な形で立体動画像を見ることができる。スクリーン26の前面にフレネルレンズ37を配置することにより、ホログラム再生動画像を巨視化することができ、装置の小型化が可能になる。
【0045】
スクリーン26の端部から参照光を入射してフォトリフラクティブ薄膜25に書き込まれたホログラムパターンを、エッジリット方式で再生するので、装置の小型、薄型化が可能になる。
参照光が赤色、緑色、青色のレーザ光を用いるので、カラー動画像が得られる。
【0046】
上述の実施の形態では、3次元ホログラム動画表示装置に適用したが、2次元の動画像を表示する2次元ホログラム動画表示装置に適用することもできる。この場合は、ホログラムデータ及び光学系制御信号の供給手段22からホログラムデータとして、2次元のホログラム動画データをGLVアレイ23に入力する。この2次元ホログラム動画データに同期して、即ち1水平ラインのホログラム動画データに同期して回折像を形成すためのレーザ光44、走査ミラー28、参照光となるレーザ光46及びその走査ミラー48を駆動するようになす。そのたの構成は前述の3次元ホログラム動画表示装置と同様である。
また、2次元の画像の一部に3次元の画像を表示する、その逆に3次元の画像の一部に2次元の画像を表示する様なホログラム動画表示装置にも適用できる。この場合には、上記供給手段22からのホログラムデータとして、3次元ホログラムデータと2次元ホログラムデータとを組み合わせたホログラムデータをGLVアレイ23に供給するようになす。その他の構成は上述の実施の形態と同様である。
【0047】
このような2次元ホログラム動画表示装置、あるいは2次元と3次元の画像が組み合わされたホログラム動画表示装置によれば、上例と同様に高画質の動的な2次元ホログラム再生画像、あるいは2次元及び3次元組み合わせの高画質の動的なホログラム再生画像を表示することができる。
【0048】
上記供給手段22からのホログラムデータとして、赤,緑、青のデータが1つに含まれた形のホログラムデータであれば、再生用の赤、緑及び青のレーザ光は図1に示すように、1つに纏めてスクリーン26に照射してホログラム像を再生できる。その他の再生方法として、時分割方式がある。供給手段22からの1水平ラインのホログラムデータとして、赤,緑、青の各ホログラムデータからなるホログラムデータを出力する。再生側では1水平ラインに関して、赤のホログラムパターンが書き込まれた時には赤の再生用レーザ光を照射し、次に緑のホログラムパターンが書き込まれた時には緑の再生用レーザ光を照射し、次に青のホログラムパターンが書き込まれた時には青の再生用レーザ光を照射するというように、各再生用のレーザ光を切り換えて1水平ラインに関して3回行う。1水平ラインの再生が終えたなら、走査ミラーを駆動して次の水平ラインに移り、同様に赤、緑、青のホログラムパターンを順次に書き込み・再生を繰り返す。これによって、カラー動画表示を行うことができる。
【0049】
【発明の効果】
本発明に係るホログラム動画表示装置によれば、ホログラム技術を用いて3次元動画、あるいは2次元動画、あるいは3次元と2次元動画を組み合わせた、ホログラム動画表示を実現することができる。そして、水平方向の画素数、垂直方向の走査線数を増大化できるので、高画質のホログラム動画を表示することが可能になる。
【0050】
光回折器アレイとして、MEMSアレイ、好ましくは回折型MEMSアレイを用いるときは、高速動作が可能になるので動的なホログラム動画像を実現することができる。
1次元の回折型MEMSアレイと走査ミラーを設けることにより、1フレーム分のホログラムパターンの書き込みが可能になる。この走査ミラーで形成されるホログラムパターンがフォトリフラクティブ部材に投影されることにより、ホログラム動画を表示することができる。
【0051】
フォトリフラクティブ部材に形成されたホログラムパターンをエッジリット方式により再生するときは、再生光に関与しない光を外部に漏れることがなく、外部からの光によりホログラム像を再生することがない。
ホログラムデータを数値計算されたホログラムデータを用いることにより、ホログラム動画表示を実現できる。
参照光が赤色、緑色及び青色のレーザ光であるときは、カラーホログラム動画を表示することができる。
スクリーンの前面にフレネルレンズを配置することにより、再生したホログラム像を巨視化することができる。
【0052】
ホログラムデータとして3次元ホログラムデータを用いるときは、立体ホログラム動画を表示することができる。ホログラムデータとして2次元ホログラムデータを用いるときは、2次元のホログラム動画を表示することができる。ホログラムデータとして3次元ホログラムデータと2次元ホログラムデータを組み合わせたホログラムデータを用いるときは、3次元画面の一部に2次元の画面(文字、記号の表示等を含む)が表示され、あるいは2次元画面の一部に3次元画面が表示されたホログラム動画を表示することがきる。
【図面の簡単な説明】
【図1】本発明に係るホログラム動画表示装置の実施の形態を示す構成図である。
【図2】本実施の形態のホログラム動画表示装置の回折型MEMSアレイによる回折光を集光する光学系の構成図である。
【図3】本発明に適用されるフォトリフラクティブ効果に関する説明図である。
【図4】A 本発明に係る光回折器となる回折型MEMSアレイ(即ちGLVアレイ)の1画素に対応した構成を示す斜視図である。B その断面図である。
【図5】A,B 回折型MEMSアレイの動作説明図である。
【図6】本発明に係る1次元の回折型MEMSアレイの構成図である。
【図7】従来のホログラム動画表示装置の例を示す構成図である。
【符号の説明】
21・・・ホログラム動画表示装置、22・・・ホログラム及び光学系制御信号を供給する手段、23・・・回折型MEMSアレイ(GLVアレイ)、23′・・・GLVピクセル、24・・・回折格子形成用のレーザ光源、25・・・フォトリフラクティブ薄膜、26・・・スクリーン、27〔27R,27G,27B〕・・・参照光用のレーザ光源、28・・・走査ミラー、29・・・シリンドリカルレンズ系、30・・・観察者、32・・・マイクロレンズ、33・・・透明媒体、34・・・光選択透過膜、41a・・・+1次回折光、41b・・・−1次回折光、42〔42a,42b〕・・・ミラー、44・・・レーザ光、46〔46R,46G,46B〕・・・参照光、47〔47R,47G,47B〕・・・シリンドリカルレンズ系、48〔48R,48G,48B〕・・・走査ミラー、51・・・基板、52・・・基板側電極、53・・・絶縁膜、54・・・駆動側電極、55〔551 〜556 〕・・・ビーム、56・・・空間

Claims (8)

  1. ホログラム動画データ及び光学系制御信号を供給する手段と、
    前記手段からホログラム動画データが供給される1次元の光回折型MEMSアレイと、
    前記光回折型MEMSアレイへ照射して1次元ホログラムパターンを形成するためのレーザ光を出射するレーザ光源と、
    前記手段から供給された光学系制御信号により駆動され、前記1次元ホログラムパターンを走査して2次元ホログラムパターンとする走査ミラーと、
    前記走査ミラーの駆動に同期して前記手段から供給された光学系制御信号により参照光を出射するレーザ光源と、
    前記走査ミラーからの2次元ホログラムパターンが投影されるフォトリフラクティブ薄膜を有するスクリーンとを有し、
    前記スクリーンの端面から前記参照光を入射して前記フォトリフラクティブ薄膜に形成されたホログラムパターンをエッジリット方式により再生して前記スクリーンにホログラム動画像を表示するようにして成る
    ことを特徴とするホログラム動画表示装置。
  2. 前記光回折型MEMSアレイの反射光側の前面に、各画素に対応する光回折型MEMSピクセルに対して+1次回折光と−1次回折光を反射して前記フォトリフラクティブ薄膜上にホログラムパターンとなる干渉縞を得るように集光させるための一対のミラーが配置されて成る
    ことを特徴とする請求項1記載のホログラム動画表示装置。
  3. ホログラム動画データは、数値計算されたホログラム動画データである
    ことを特徴とする請求項1記載のホログラム動画表示装置。
  4. 前記参照光が、赤色、緑色及び青色のレーザ光である
    ことを特徴とする請求項3記載のホログラム動画表示装置。
  5. 前記スクリーンの前面に、ホログラム動画を巨視化するためのフレネルレンズが配置されて成る
    ことを特徴とする請求項1記載のホログラム動画表示装置。
  6. 前記ホログラム動画データが、3次元ホログラム動画データである
    ことを特徴とする請求項1記載のホログラム動画表示装置。
  7. 前記ホログラム動画データが、2次元ホログラム動画データである
    ことを特徴とする請求項1記載のホログラム動画表示装置。
  8. 前記ホログラム動画データが、3次元ホログラム動画データと2次元ホログラム動画データを組み合わせたホログラム動画データである
    ことを特徴とする請求項1記載のホログラム動画表示装置。
JP2003063981A 2003-03-10 2003-03-10 ホログラム動画表示装置 Expired - Fee Related JP4305012B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063981A JP4305012B2 (ja) 2003-03-10 2003-03-10 ホログラム動画表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063981A JP4305012B2 (ja) 2003-03-10 2003-03-10 ホログラム動画表示装置

Publications (2)

Publication Number Publication Date
JP2004272000A JP2004272000A (ja) 2004-09-30
JP4305012B2 true JP4305012B2 (ja) 2009-07-29

Family

ID=33125422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063981A Expired - Fee Related JP4305012B2 (ja) 2003-03-10 2003-03-10 ホログラム動画表示装置

Country Status (1)

Country Link
JP (1) JP4305012B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011354A (ko) * 2018-07-24 2020-02-03 한국과학기술원 다중 광회절 소자의 회전 중첩을 이용한 패턴 프로젝터 및 이를 갖는 3차원 내시경

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332032B2 (ja) * 2008-06-27 2013-11-06 国立大学法人東京農工大学 ホログラム表示装置
CN103809365B (zh) * 2012-11-08 2016-08-17 耿征 真三维图像显示系统及真三维图像显示方法
JP6199555B2 (ja) * 2012-12-03 2017-09-20 国立大学法人京都工芸繊維大学 3次元ホログラム形成方法及び3次元ホログラム形成装置
KR101620197B1 (ko) 2014-10-02 2016-05-12 한국생산기술연구원 홀로그램 3차원 안경
JP2018036353A (ja) * 2016-08-30 2018-03-08 国立大学法人高知大学 情報処理装置、立体像表示装置およびプログラム
US10310246B2 (en) * 2016-09-28 2019-06-04 SCREEN Holdings Co., Ltd. Converter, illuminator, and light sheet fluorescence microscope
CN109254410B (zh) * 2018-11-13 2023-10-10 深圳创维新世界科技有限公司 空间成像装置
CN114428446A (zh) * 2022-01-25 2022-05-03 Tcl通讯科技(成都)有限公司 图形全息投影方法、装置、存储介质及终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011354A (ko) * 2018-07-24 2020-02-03 한국과학기술원 다중 광회절 소자의 회전 중첩을 이용한 패턴 프로젝터 및 이를 갖는 3차원 내시경
KR102245346B1 (ko) * 2018-07-24 2021-04-28 한국과학기술원 다중 광회절 소자의 회전 중첩을 이용한 패턴 프로젝터 및 이를 갖는 3차원 내시경

Also Published As

Publication number Publication date
JP2004272000A (ja) 2004-09-30

Similar Documents

Publication Publication Date Title
JP7418378B2 (ja) 表示装置
KR100560529B1 (ko) 자동입체 디스플레이 장치
US8334889B2 (en) Auto stereoscopic 3D telepresence using integral holography
US6057878A (en) Three-dimensional picture image display apparatus
CA2106244C (en) Stereoscopic display apparatus
US6940653B2 (en) Radiation conditioning system
US7843636B2 (en) Image display method for a stereoscopic image
KR102093341B1 (ko) 광학적 어드레싱 공간 광변조기 기반 홀로그래픽 디스플레이
EA002343B1 (ru) Устройство для получения динамичного изображения с целью отображения
US7204593B2 (en) 3-D image display unit
JP4305012B2 (ja) ホログラム動画表示装置
JP3341342B2 (ja) 回折格子アレイおよびそれを用いた立体像表示装置
JP2002062582A (ja) 画像表示装置
JPH06124058A (ja) ホログラフィック・ステレオグラム記録用投影装置
TWI403815B (zh) 可控式光調變器
US6062693A (en) Three-dimensional image projecting device
JP5104063B2 (ja) 3次元像表示装置
JP3487499B2 (ja) 三次元ホログラム表示装置
KR100901352B1 (ko) 3차원 영상 구현 시스템 및 그 방법
Jeon et al. Image-tiling system using optically addressed spatial light modulator for high-resolution and multiview 3D display
JP2007221434A (ja) 画像再生装置
Luo Breaking Through the Fov Limit of Augmented Reality Near-To-Eye Display with High Resolution by Digital Micromirror Device and Volume Hologram Grating
JP2008151863A (ja) 3次元像表示装置
Edwards Approaches to non-glasses-based 3D displays
JP3488061B2 (ja) 表示装置および表示方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees