JP4300954B2 - Polymer solid electrolyte - Google Patents
Polymer solid electrolyte Download PDFInfo
- Publication number
- JP4300954B2 JP4300954B2 JP2003336417A JP2003336417A JP4300954B2 JP 4300954 B2 JP4300954 B2 JP 4300954B2 JP 2003336417 A JP2003336417 A JP 2003336417A JP 2003336417 A JP2003336417 A JP 2003336417A JP 4300954 B2 JP4300954 B2 JP 4300954B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- groups
- solid electrolyte
- meth
- cation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Conductive Materials (AREA)
- Secondary Cells (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
本発明は、リチウムイオン電導性高分子固体電解質に関するものである。 The present invention relates to a lithium ion conductive polymer solid electrolyte.
近年、携帯電話や携帯情報機器PDA,ノートパソコンに代表される情報携帯機器、屋外における使用頻度の高いMDプレーヤー,MP3プレーヤー,デジタルカメラ等の携帯機器、あるいは携帯用医療器具やPHSタイプ福祉機器類などの普及に伴い、より軽量、小容積、安価で、また、安定して使用可能で、高出力な二次電池に対する需要が高まってきている。そして、それらの要求を満たす電源用二次電池材料として、高分子固体電解質が注目されてきている。 In recent years, portable information devices such as mobile phones, portable information devices PDAs and notebook computers, portable devices such as MD players, MP3 players, and digital cameras that are frequently used outdoors, or portable medical devices and PHS type welfare devices With the widespread use, etc., there is an increasing demand for secondary batteries that are lighter, have a smaller volume, are inexpensive, can be used stably, and have a high output. As a power source secondary battery material that satisfies these requirements, a polymer solid electrolyte has been attracting attention.
従来、二次電池用電解質としては、一般に、電気化学的に比較的安定な有機溶媒に、イオン性化合物を溶解させた液体電解質が用いられてきたが、液体電解質の使用に伴う保存性や安定性の問題を克服するために、全固体高分子電解質の開発もこれまで活発に行われており、各種リチウム塩とポリエチレンオキサイド(PEO)の混合物からなるものが、その一例として挙げられる(例えば、特許文献1参照。)。この場合、液状部分が存在しないが故に、低温領域での電池特性が悪く、比較的高温でなければ、所定の電導度を発現できないために、二次電池特性が不十分である系が多い。 Conventionally, as an electrolyte for a secondary battery, a liquid electrolyte in which an ionic compound is dissolved in an organic solvent that is relatively electrochemically stable has been used. However, storage stability and stability associated with the use of the liquid electrolyte have been used. In order to overcome the problem of sexuality, all-solid polymer electrolytes have been actively developed so far, and examples thereof include a mixture of various lithium salts and polyethylene oxide (PEO) (for example, (See Patent Document 1). In this case, since the liquid portion does not exist, the battery characteristics in the low temperature region are poor, and since the predetermined electric conductivity cannot be expressed unless the temperature is relatively high, there are many systems in which the secondary battery characteristics are insufficient.
また一方で、リチウムイオン二次電池及び全固体電解質にみられる欠点を克服するため、常温で流動性を有する常温溶融塩型イオン性化合物と高分子化合物と組み合わせて、電解質として用いる試みも為されている。これら常温溶融塩型電解質系は、分子性塩であるがゆえに分極が非常に強く、リチウム塩等の電荷キャリアを非常に良く溶かす性質があり、また常温で溶融状態であるがゆえに電荷キャリアの移動を妨げにくい構造を有していることから、二次電池用途の固体電解質として、非常に好ましい特性を有していると考えられている。これまで常温溶融塩型イオン性化合物として用いられてきたイミダゾリウム型化合物は、電位窓を広く確保することが難しいため、高容量化を目的としてリチウム電池等に適用する際には困難を伴うことが多く、これに代わってアンモニウム塩型溶融塩が適用されてきている(例えば、非特許文献1及び2参照。)。アンモニウム型常温溶融塩は、電位窓が広く電気化学的に安定である系が多く、製造原料も比較的安価であり、且つ骨格改変も容易であるなど、種々の優れた特徴を備えている。しかし、比較的水溶性の高い系が多く、精製において、特に水分除去が困難であるという欠点を有する。
本発明は、室温付近で高いリチウムイオン伝導性を発現し、且つ経時安定性に優れた、二次電池に好適な高分子固体電解質を提供するものである。 The present invention provides a solid polymer electrolyte suitable for a secondary battery that exhibits high lithium ion conductivity near room temperature and is excellent in stability over time.
本発明者らは、上記の目的を達成するために鋭意検討を重ねた結果、常温溶融塩型のモノマーを用いて高分子電解質を調製する代わりに、特定の固体塩を用いることにより、極めて高いリチウムイオン伝導性を発現し、且つ経時安定性に優れた高分子固体電解質が容易に得られることを見出し、さらに検討を進めて本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the use of a specific solid salt instead of preparing a polymer electrolyte using a room temperature molten salt type monomer is extremely high. The inventors have found that a solid polymer electrolyte that exhibits lithium ion conductivity and is excellent in stability over time can be easily obtained, and further studies have been made to complete the present invention.
即ち本発明は、
1. 重合性官能基を有し、それぞれ窒素原子で電荷を帯びたカチオン部及びアニオン部を有する常温固体塩から構成される重合性単量体を、単独重合又は該重合性単量体と炭素−炭素二重結合を有するビニル化合物を共重合して得られる重合体を含んでなるリチウムイオン電導性高分子固体電解質、
2. カチオン部及びアニオン部が、下記一般式[I]で表される部位を有するものである第1項に記載のリチウムイオン電導性高分子固体電解質、
That is, the present invention
1. A polymerizable monomer comprising a normal temperature solid salt having a polymerizable functional group and having a cation portion and an anion portion each charged with a nitrogen atom is homopolymerized or the polymerizable monomer and carbon-carbon A lithium ion conductive polymer solid electrolyte comprising a polymer obtained by copolymerizing a vinyl compound having a double bond ,
2 . The lithium ion conductive polymer solid electrolyte according to Item 1, wherein the cation part and the anion part have a site represented by the following general formula [I],
[式中、R1及びR2は、置換基を有しても良いアルキル基、アリル基、アルケニル基、アラルキル基、アラルケニル基、アルコキシアルキル基、アシルオキシアルキル基、スルホアルキル基、アリール基又は芳香族複素環残基を示し、少なくとも一方に重合性官能基を有し、R1及びR2は互いに共有結合により連結されていても構わない。]
3. 重合性官能基が、炭素−炭素二重結合を有する基である第1項又は第2項に記載のリチウムイオン電導性高分子固体電解質、
4. アルカリ金属塩を含む、第1項乃至第3項のいずれかに記載のリチウムイオン電導性高分子固体電解質、
56. 可塑剤を含む、第1項乃至第4項のいずれかに記載のリチウムイオン電導性高分子固体電解質、
を提供するものである。
[Wherein R 1 and R 2 are alkyl groups, allyl groups, alkenyl groups, aralkyl groups, aralkenyl groups, alkoxyalkyl groups, acyloxyalkyl groups, sulfoalkyl groups, aryl groups or aromatic groups which may have a substituent. Represents a group heterocyclic residue, has a polymerizable functional group in at least one, and R 1 and R 2 may be linked to each other by a covalent bond. ]
3 . The lithium ion conductive polymer solid electrolyte according to Item 1 or 2 , wherein the polymerizable functional group is a group having a carbon-carbon double bond,
4 . Containing an alkali metal salt, a lithium ion conductive solid polymer electrolyte according to any one of paragraphs 1 through the third term,
5 6. Item 5. The lithium ion conductive polymer solid electrolyte according to any one of Items 1 to 4 , comprising a plasticizer,
Is to provide.
本発明に拠れば、室温付近でも高いリチウムイオン伝導性を発現し、且つ経時安定性に優れ、二次電池に適用した際も良好な特性を得ることができる高分子固体電解質を提供することができ、しかも簡便に電解質を得ることが可能となる。 According to the present invention, it is possible to provide a solid polymer electrolyte that exhibits high lithium ion conductivity even near room temperature, has excellent temporal stability, and can obtain good characteristics when applied to a secondary battery. In addition, an electrolyte can be easily obtained.
本発明の高分子固体電解質は、重合性官能基を有し、カチオン部及びアニオン部において、それぞれ電荷を帯びた原子が窒素である常温固体塩からなる重合性単量体を、単独重合又は該重合性単量体と炭素−炭素二重結合を有するビニル化合物を共重合して得られる重合体を含んでなるものである。 Solid polymer electrolyte of the present invention has a heavy polymerizable functional group, the cation portion and the anion portion, a polymerizable monomer atom bearing a respective electric charge is from room temperature solid salt is nitrogen, homo- or It comprises a polymer obtained by copolymerizing the polymerizable monomer and a vinyl compound having a carbon-carbon double bond .
本発明によれば、重合性官能基を有し、カチオン部及びアニオン部において、それぞれ電荷を帯びた原子が窒素である常温固体塩は、その分子構造が常温溶融塩によく似ていながらも調製操作及び高純度精製操作が極めて簡便であり、しかもこのような固体塩を用いることにより、室温付近でも10-3S/cm以上の極めて高いリチウムイオン伝導性を発現し、且つ経時安定性に優れた高分子固体電解質が容易に得られる。この理由としては種々の理由が考えられるが、(i)この固体塩は電荷を帯びた原子が同一であるため塩を結晶化した際に最密充填構造をとりやすく、その結果、比較的高純度の結晶が回収され易いこと、(ii)固体塩が比較的立体障害の大きな塩を形成するため、電解液に溶解した際に解離し易くなり、電解質塩との親和性が高まること、(iii)ゲル化において固体塩のカチオン部及びアニオン部は、系中の電解質塩や可塑剤を配位子として電荷の周囲に引き付け、その状態で電解質に含まれる高分子に直接固定化されるため、経時安定性が向上すること、等が挙げられる。 According to the present invention, a room temperature solid salt having a polymerizable functional group and having a charged atom of nitrogen in the cation part and the anion part, respectively, is prepared while its molecular structure is very similar to that of a room temperature molten salt. Operation and high-purity purification operation are very simple, and by using such a solid salt, a very high lithium ion conductivity of 10 −3 S / cm or more is exhibited even near room temperature, and the stability over time is excellent. A solid polymer electrolyte can be easily obtained. There are various reasons for this. (I) Since this solid salt has the same charged atoms, it is easy to have a close-packed structure when the salt is crystallized. (Ii) Since the solid salt forms a salt having a relatively large steric hindrance, the solid salt is easily dissociated when dissolved in the electrolytic solution, and the affinity with the electrolyte salt is increased. iii) In the gelation, the cation part and the anion part of the solid salt are attracted around the electric charge by using the electrolyte salt or plasticizer in the system as a ligand, and in that state are directly fixed to the polymer contained in the electrolyte. And the stability over time is improved.
本発明に用いられる重合性単量体を構成する前記固体塩としては、そのカチオン部及びアニオン部において、それぞれ電荷を帯びた原子が窒素である常温固体塩であれば、種々の常温固体塩が利用可能であるが、本発明の目的には、下記一般式[I]で表される部位を有するものが好ましい。 As the solid salt constituting the polymerizable monomer used in the present invention, various normal temperature solid salts can be used as long as it is a normal temperature solid salt in which the charged atom is nitrogen in the cation part and the anion part. Although usable, for the purpose of the present invention, those having a moiety represented by the following general formula [I] are preferred.
式[I]中、R1及びR2は、置換基を有しても良いアルキル基、アリル基、アルケニル基、アラルキル基、アラルケニル基、アルコキシアルキル基、アシルオキシアルキル基、スルホアルキル基、アリール基又は芳香族複素環残基を示し、少なくとも一方に重合性官能基を有し、R1及びR2は互いに共有結合により連結されていても構わない。
前記式[I]におけるR1及びR2として、重合性官能基を有するものとしては、例えば、ビニル基、アリル基、メチルアリル基、ビニルエチル基、スチリル基、スチリルメチル基、(メタ)アクリロイルオキシメチル基、(メタ)アクリロイルオキシエチル基、(メタ)アクリロイルオキシ−n−プロピル基、(メタ)アクリルアミドメチル基、(メタ)アクリルアミドエチル基、(メタ)アクリルアミド−n−プロピル基等が挙げられ、重合性官能基を有さないものとしては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ウンデシル基、n−ステアリル基、シクロプロピル基、シクロブチル基、シクロヘキシル基、シクロヘキシルメチル基、アダマンチル基、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基などが挙げられ、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基、ベンジルオキシエチル基、アシルオキシエチル基、アシルオキシ−n−プロピル基、プロピオニルオキシエチル基、メチルスルホキシエチル基、フェニルスルホキシエチル基、フェニル基、ベンジル基、メチルベンジル基、ナフチル基、ジメチルアミノフェニル基等が挙げられる。
In the formula [I], R 1 and R 2 are an alkyl group, allyl group, alkenyl group, aralkyl group, aralkenyl group, alkoxyalkyl group, acyloxyalkyl group, sulfoalkyl group, aryl group which may have a substituent. Alternatively, it represents an aromatic heterocyclic residue, has a polymerizable functional group in at least one, and R 1 and R 2 may be linked to each other by a covalent bond.
Examples of those having a polymerizable functional group as R 1 and R 2 in the formula [I] include a vinyl group, an allyl group, a methylallyl group, a vinylethyl group, a styryl group, a styrylmethyl group, and a (meth) acryloyloxymethyl. Group, (meth) acryloyloxyethyl group, (meth) acryloyloxy-n-propyl group, (meth) acrylamidomethyl group, (meth) acrylamidoethyl group, (meth) acrylamide-n-propyl group, etc. Examples of those having no functional functional group include, for example, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n-octyl group, n -Decyl, n-undecyl, n-stearyl, cyclopropyl, cyclobutyl, cyclohexyl, cycl Hexylmethyl group, adamantyl group, dimethylene group, trimethylene group, tetramethylene group, pentamethylene group, etc. are mentioned, methoxymethyl group, methoxyethyl group, ethoxymethyl group, ethoxyethyl group, benzyloxyethyl group, acyloxyethyl group, Examples include acyloxy-n-propyl group, propionyloxyethyl group, methylsulfoxyethyl group, phenylsulfoxyethyl group, phenyl group, benzyl group, methylbenzyl group, naphthyl group, dimethylaminophenyl group and the like.
前記固体塩は、その使用に先立ち、予め当該のカチオン部を含むカチオン部前駆体化合物、すなわち下記一般式[II]で表されるカチオンを含む化合物と、当該のアニオン部を含むアニオン部前駆体化合物、すなわち下記一般式[III]で表されるアニオンを含む化合物の2種の化合物を混合し精製して、カチオン[II]及びアニオン[III]以外を除去することにより得られる。このとき、カチオン[II]の対アニオン及びアニオン[III]の対カチオンとしては、上記一般式[I]で表される重合性単量体を精製する際に容易に除去可能であれば、いずれの対イオンも利用可能である。 Prior to its use, the solid salt has a cation moiety precursor compound containing the cation moiety in advance, that is, a compound containing a cation represented by the following general formula [II] and an anion moiety precursor containing the anion moiety. It is obtained by mixing and purifying a compound, that is, a compound containing an anion represented by the following general formula [III] and removing other than cation [II] and anion [III]. At this time, as the counter anion of the cation [II] and the counter cation of the anion [III], any one can be used as long as it can be easily removed when the polymerizable monomer represented by the general formula [I] is purified. Can also be used.
式[II]及び式[III]中、R1及びR2は、置換基を有しても良いアルキル基、アリル基、アルケニル基、アラルキル基、アラルケニル基、アルコキシアルキル基、アシルオキシアルキル基、スルホアルキル基、アリール基又は芳香族複素環残基を示し、少なくとも一方に重合性官能基を有し、R1及びR2は互いに共有結合により連結されていても構わない。 In the formula [II] and the formula [III], R 1 and R 2 are an alkyl group, allyl group, alkenyl group, aralkyl group, aralkenyl group, alkoxyalkyl group, acyloxyalkyl group, sulfo group which may have a substituent. It represents an alkyl group, an aryl group or an aromatic heterocyclic residue, has at least one polymerizable functional group, and R 1 and R 2 may be linked to each other by a covalent bond.
前記固体塩のアニオン部としては、カルボキシル基、スルホン基、ホスフォキシル基、ビスアルキルスルホンイミド基等のアニオン性基を有するものであれば、限定されない。
前記固体塩のアニオン部における重合性官能基としては、炭素−炭素二重結合を有する基が好ましく、さらに好ましくはラジカル重合性のアクリル基、メタクリル基、アクリルアミド基、メタクリルアミド基、ビニル基及びスチリル基等が挙げられるが、特にこれらに限定されない。重合性官能基がDiels−Alder型の環化付加反応を起こし得る場合は、ジエン/ジエノフィルで構成される一対の重合性官能基において、炭素−炭素二重結合以外の構造でも構わない。すなわち、ジエノフィルが適切な構造であれば、ジエンの代わりにC=C−C=N型の化合物を用いることも可能である。また、本発明の高分子固体電解質に、十分な可とう性を付与する等の目的で、アルキル基等からなるスペーサーが、前記重合性単量体のアニオン部と重合性官能基の連結部に共有結合により挿入されていても構わない。
The anion portion of the solid salt is not limited as long as it has an anionic group such as a carboxyl group, a sulfone group, a phosphoxyl group, and a bisalkylsulfonimide group.
The polymerizable functional group in the anion portion of the solid salt is preferably a group having a carbon-carbon double bond, more preferably a radical polymerizable acryl group, methacryl group, acrylamide group, methacrylamide group, vinyl group and styryl. Examples of the group include, but are not limited to, groups. When the polymerizable functional group can cause a Diels-Alder type cycloaddition reaction, the pair of polymerizable functional groups composed of diene / dienophile may have a structure other than the carbon-carbon double bond. That is, if the dienophile has an appropriate structure, it is also possible to use a C═C—C═N type compound instead of a diene. Further, for the purpose of imparting sufficient flexibility to the solid polymer electrolyte of the present invention, a spacer composed of an alkyl group or the like is provided at the connecting portion between the anionic portion of the polymerizable monomer and the polymerizable functional group. It may be inserted by covalent bond.
前記固体塩のアニオン部を形成するものとしては、例えば、酢酸アニオン、メチルスルホン酸アニオン、酪酸アニオン、アクリル酸アニオン、メタクリル酸アニオン、ビニルスルホン酸アニオン、2−ビニルベンゼンスルホン酸アニオン、3−ビニルベンゼンスルホン酸アニオン、4−ビニルベンゼンスルホン酸アニオン、2−メチル−1−ペンテン−1−スルホン酸アニオン、1−オクテン−1−スルホン酸アニオン、4−ビニルベンゼンメタンスルホン酸アニオン、2−アクリルアミド−2−メチル−1−プロパンスルホン酸アニオン、2−[(2−プロペニロキシ)メトキシ]エテンスルホン酸アニオン、3−(2−プロペニロキシ)−1−プロペン−1−スルホン酸アニオン、2−アクリルアミド−2−メチル−1−プロパンリン酸アニオン、ビスアリルスルホンイミドアニオン、ビストリフルオロメタンスルホンイミドアニオン及びビスパーフルオロエタンスルホンイミドアニオン等の各種アニオンが挙げられるが、好ましくはビスアリルスルホンイミドアニオン、ビストリフルオロメタンスルホンイミドアニオン及びビスパーフルオロエタンスルホンイミドアニオン等のビスアルキルスルホンイミドアニオンである。 Examples of the anion portion of the solid salt include acetic acid anion, methylsulfonic acid anion, butyric acid anion, acrylic acid anion, methacrylic acid anion, vinylsulfonic acid anion, 2-vinylbenzenesulfonic acid anion, and 3-vinyl. Benzenesulfonate anion, 4-vinylbenzenesulfonate anion, 2-methyl-1-pentene-1-sulfonate anion, 1-octene-1-sulfonate anion, 4-vinylbenzenemethanesulfonate anion, 2-acrylamide- 2-methyl-1-propanesulfonic acid anion, 2-[(2-propenyloxy) methoxy] ethenesulfonic acid anion, 3- (2-propenyloxy) -1-propene-1-sulfonic acid anion, 2-acrylamide-2- Methyl-1-propanephosphate Various anions such as ON, bisallylsulfonimide anion, bistrifluoromethanesulfonimide anion and bisperfluoroethanesulfonimide anion, preferably bisallylsulfonimide anion, bistrifluoromethanesulfonimide anion and bisperfluoroethane Bisalkylsulfonimide anions such as sulfonimide anions.
前記固体塩のカチオン部としては、アルキル4級アンモニウムカチオン、含窒素複素環式カチオン、含酸素カチオン、含硫黄カチオン及び含リンカチオン等の正電荷部位を有するものであれば、限定されない。
前記固体塩のカチオン部における重合性官能基としては、炭素−炭素二重結合を有する基が好ましく、さらに好ましくはラジカル重合性のアクリル基、メタクリル基、アクリルアミド基、メタクリルアミド基、ビニル基及びスチリル基等が挙げられるが、特にこれらに限定されない。前記同様にして、本発明の高分子固体電解質に十分な可とう性を付与する等の目的で、アルキル基等から成るスペーサーが正電荷部位と重合性官能基の間に挿入されていても構わない。
なお、前記アルキル4級アンモニウムカチオンの場合、窒素原子に共有結合で連結したアルキル基の末端もしくは主鎖にアリール基及びアリル基等に由来する不飽和結合を含む骨格や、酸素、窒素及び硫黄等のヘテロ原子が挿入されていても構わない。前記含窒素複素環式カチオン、含酸素カチオン、含硫黄カチオン及び含リンカチオンの場合も、電解液への溶解性調節及び合成の都合上等の理由で、アリール基、アリル基等に由来する不飽和結合を含む骨格や、酸素、窒素、硫黄等のヘテロ原子が挿入されていても構わない。また、カチオン部とアニオン部が、アルキル基等の連結基により互いに連結されていても構わない。
The cation part of the solid salt is not limited as long as it has a positively charged site such as an alkyl quaternary ammonium cation, a nitrogen-containing heterocyclic cation, an oxygen-containing cation, a sulfur-containing cation, and a phosphorus-containing cation.
The polymerizable functional group in the cation portion of the solid salt is preferably a group having a carbon-carbon double bond, more preferably a radical polymerizable acrylic group, methacryl group, acrylamide group, methacrylamide group, vinyl group and styryl. Examples of the group include, but are not limited to, groups. In the same manner as described above, a spacer composed of an alkyl group or the like may be inserted between the positively charged site and the polymerizable functional group for the purpose of imparting sufficient flexibility to the solid polymer electrolyte of the present invention. Absent.
In the case of the alkyl quaternary ammonium cation, a skeleton containing an unsaturated bond derived from an aryl group or an allyl group at the terminal or main chain of an alkyl group covalently linked to a nitrogen atom, oxygen, nitrogen, sulfur, etc. Of heteroatoms may be inserted. In the case of the nitrogen-containing heterocyclic cation, oxygen-containing cation, sulfur-containing cation and phosphorus-containing cation as well, there is no problem derived from an aryl group, an allyl group, or the like for reasons of adjusting the solubility in an electrolytic solution or for the convenience of synthesis. A skeleton containing a saturated bond or a heteroatom such as oxygen, nitrogen, or sulfur may be inserted. Moreover, the cation part and the anion part may be mutually connected by connecting groups, such as an alkyl group.
前記固体塩のカチオン部を形成するものとしては、例えば、メタクリロイルオキシエチルトリメチルアンモニウムカチオン、メタクリロイルオキシエチルトリエチルアンモニウムカチオン、メタクリロイルオキシエチルトリ−n−プロピルアンモニウムカチオン、メタクリロイルオキシエチルトリ−iso−プロピルアンモニウムカチオン、メタクリロイルオキシエチルトリ−n−ブチルアンモニウムカチオン、メタクリロイルオキシエチルトリ−iso−ブチルアンモニウムカチオン、メタクリロイルオキシエチルトリ−tert−ブチルアンモニウムカチオン、メタクリロイルオキシエチルトリエチルアンモニウムカチオン、メタクリロイルオキシエチルジエチル−n−ヘキシルアンモニウムカチオン、メタクリロイルオキシエチルトリデシルアンモニウムカチオン、メタクリロイルオキシエチルトリオクチルアンモニウムカチオン、メタクリロイルオキシエチルドデシルジメチルアンモニウムカチオン、メタクリロイルオキシエチルドデシルヘキシルメチルアンモニウムカチオン、ジアリルジメチルアンモニウムカチオン、ビススチリルメチルジメチルアンモニウムカチオン、ビススチリルメチルジエチルアンモニウムカチオン、ビススチリルメチルピロリジニウムカチオン、ビススチリルメチルピぺリジニウムカチオン及びビススチリルメチルモルフォリニウムカチオンなどの各種カチオンが挙げられる。 Examples of the cation part of the solid salt include methacryloyloxyethyltrimethylammonium cation, methacryloyloxyethyltriethylammonium cation, methacryloyloxyethyltri-n-propylammonium cation, methacryloyloxyethyltri-iso-propylammonium cation Methacryloyloxyethyl tri-n-butylammonium cation, methacryloyloxyethyl tri-iso-butylammonium cation, methacryloyloxyethyl tri-tert-butylammonium cation, methacryloyloxyethyltriethylammonium cation, methacryloyloxyethyldiethyl-n-hexylammonium Cation, methacryloyloxyethyl tride Silammonium cation, methacryloyloxyethyltrioctylammonium cation, methacryloyloxyethyldodecyldimethylammonium cation, methacryloyloxyethyldodecylhexylmethylammonium cation, diallyldimethylammonium cation, bisstyrylmethyldimethylammonium cation, bisstyrylmethyldiethylammonium cation, bisstyryl Various cations such as methylpyrrolidinium cation, bisstyrylmethylpiperidinium cation and bisstyrylmethylmorpholinium cation can be mentioned.
本発明に用いる重合性官能基を有し、カチオン部及びアニオン部において、それぞれ電荷を帯びた原子が窒素である常温固体塩から構成される重合性単量体を、単独重合又は該重合性単量体と炭素−炭素二重結合を有するビニル化合物を共重合して得られる重合体は、前記重合性官能基による重合反応により得られるが、前記重合性官能基による重合反応としては、ラジカル重合、イオン重合、配位重合、縮重合、付加重合等、種々の既知の重合方法が可能であり、重合操作の簡便さ故にラジカル重合、配位重合、縮重合、付加重合が望ましいが、特にこれらに限定されない。 A polymerizable monomer composed of a room temperature solid salt having a polymerizable functional group used in the present invention and having a cation portion and an anion portion each having a charged atom of nitrogen is homopolymerized or the polymerizable monomer. A polymer obtained by copolymerization of a monomer and a vinyl compound having a carbon-carbon double bond is obtained by a polymerization reaction with the polymerizable functional group, and as a polymerization reaction with the polymerizable functional group, radical polymerization is performed. Various known polymerization methods such as ion polymerization, coordination polymerization, condensation polymerization, and addition polymerization are possible, and radical polymerization, coordination polymerization, condensation polymerization, and addition polymerization are desirable because of the simplicity of the polymerization operation. It is not limited to.
本発明の高分子固体電解質には、前記成分の他に、高分子固体電解質の可塑性、成形性及び熱安定性の調整の他、高分子固体電解質の未硬化電解質組成物の粘度調整など、種々の物性改良を目的として、前記重合性単量体と相溶性を有する種々の化合物を可塑剤として、混合して用いることが出来る。特に、前記目的に好適な可塑剤としては、N−メチルピロリドン、エチレンカーボネート、プロピレンカーボネート、ジオキサン、ジオキソラン、テトラヒドロフラン及びアセトニトリル等の非イオン解離性化合物が挙げられる。 In addition to the above-mentioned components, the polymer solid electrolyte of the present invention includes various adjustments such as adjusting the plasticity, moldability and thermal stability of the polymer solid electrolyte, and adjusting the viscosity of the uncured electrolyte composition of the polymer solid electrolyte. For the purpose of improving the physical properties, various compounds having compatibility with the polymerizable monomer can be mixed and used as a plasticizer. Particularly suitable plasticizers for the above purpose include non-ion dissociable compounds such as N-methylpyrrolidone, ethylene carbonate, propylene carbonate, dioxane, dioxolane, tetrahydrofuran and acetonitrile.
本発明の高分子固体電解質の柔軟性、弾力性、粘着性等の各種物性を改良する目的で、重合性単量体を各種モノマーと共重合する方法も好ましい。上記のカチオン部とアニオン部を備えた重合性単量体とラジカル共重合させる場合は、炭素−炭素二重結合を有する(メタ)アクリルモノマー、(メタ)アクリルアミド、スチレン誘導体等の各種ビニル化合物が好ましく、さらには、アクリル酸エステル、メタクリル酸エステル、スルホン酸エステル、アクリルアミド、メタクリルアミド、スルホンアミド及び置換基を有するスチレン誘導体等のアリール化合物が好ましいが、前記カチオン部及びアニオン部と重合可能な単量体であれば、特に限定されない。これらのモノマーの具体例としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸iso−ブチル、(メタ)アクリル酸sec−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸−2−アセトキシエチル、(メタ)アクリル酸−2−アセトキシエトキシエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸ビニル、(メタ)アクリル酸アリル、メチル(メタ)アクリルアミド、エチル(メタ)アクリルアミド、n−イソプロピル(メタ)アクリルアミド、n−ブチル(メタ)アクリルアミド、iso−ブチル(メタ)アクリルアミド、sec−ブチル(メタ)アクリルアミド、n−ヘキシル(メタ)アクリルアミド、シクロヘキシル(メタ)アクリルアミド、2−エチルヘキシル(メタ)アクリルアミド、デシル(メタ)アクリルアミド、イソデシル(メタ)アクリルアミド、トリデシル(メタ)アクリルアミド、オクタデシル(メタ)アクリルアミド、ラウリル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、イソボルニル(メタ)アクリルアミド、ベンジル(メタ)アクリルアミド、フェニル(メタ)アクリルアミド、フェノキシエチル(メタ)アクリルアミド、2−メトキシエチル(メタ)アクリルアミド、2−アセトキシエチル(メタ)アクリルアミド、2−アセトキシエトキシエチル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリルアミド、アクリル酸、メタクリル酸、アクリル酸リチウム、メタクリル酸リチウム、p−スチレンスルホン酸リチウム、無水マレイン酸、n−エチルマレイン酸イミド、2−アクリルアミド−2−メチル−1−プロパンスルホン酸ジメチルベンジル(アセトアミドエチル)アンモニウム、2−アクリルアミド−2−メチル−1−プロパンスルホン酸テトラエチルアンモニウム、2−[(2−プロペニロキシ)メトキシ]エテンスルホン酸トリメチルベンジルアンモニウム、アクリロニトリル、メタクリロニトリル、N−ビニルピロリドン、アクリロイルモルホリン、メタクリロイルモルホリン、酢酸ビニル、クロトン酸ビニル、スチレン、α−メチルスチレン、4−エチルスチレン、3−クロロメチルスチレン、4−クロロメチルスチレン、4−ジエチルアミノメチルスチレン、4−ジエチルアミノメチルスチレン、4−エトキシメチルスチレン、4−アセトキシメチルスチレン、メチレンビスアクリルアミド、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジビニルベンゼン、ジアリルメチルアミン及びジアリルエチルアミン等が挙げられるが、特にこれらに限定されない。 In order to improve various physical properties such as flexibility, elasticity, and adhesiveness of the polymer solid electrolyte of the present invention, a method of copolymerizing a polymerizable monomer with various monomers is also preferable. In the case of radical copolymerization with the polymerizable monomer having the cation part and the anion part, various vinyl compounds such as a (meth) acrylic monomer having a carbon-carbon double bond, (meth) acrylamide, and a styrene derivative are used. Preferably, aryl compounds such as acrylic acid ester, methacrylic acid ester, sulfonic acid ester, acrylamide, methacrylamide, sulfonamide and styrene derivatives having a substituent are preferable, but a single polymer capable of polymerizing with the cation part and the anion part is preferable. There is no particular limitation as long as it is a monomer. Specific examples of these monomers include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, sec- (meth) acrylate. Butyl, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, tridecyl (meth) acrylate, ( Octadecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate, ( (Meth) acrylic acid-2-methoxyethyl, (meth) acrylic acid-2-acetate Xylethyl, (meth) acrylic acid-2-acetoxyethoxyethyl, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, vinyl (meth) acrylate, allyl (meth) acrylate, methyl (meth) acrylamide , Ethyl (meth) acrylamide, n-isopropyl (meth) acrylamide, n-butyl (meth) acrylamide, iso-butyl (meth) acrylamide, sec-butyl (meth) acrylamide, n-hexyl (meth) acrylamide, cyclohexyl (meth) ) Acrylamide, 2-ethylhexyl (meth) acrylamide, decyl (meth) acrylamide, isodecyl (meth) acrylamide, tridecyl (meth) acrylamide, octadecyl (meth) acrylamide, lauryl ( T) acrylamide, stearyl (meth) acrylamide, isobornyl (meth) acrylamide, benzyl (meth) acrylamide, phenyl (meth) acrylamide, phenoxyethyl (meth) acrylamide, 2-methoxyethyl (meth) acrylamide, 2-acetoxyethyl (meth) ) Acrylamide, 2-acetoxyethoxyethyl (meth) acrylamide, dimethylaminoethyl (meth) acrylamide, diethylaminoethyl (meth) acrylamide, acrylic acid, methacrylic acid, lithium acrylate, lithium methacrylate, lithium p-styrenesulfonate, anhydrous Maleic acid, n-ethyl maleic imide, 2-acrylamido-2-methyl-1-propanesulfonic acid dimethylbenzyl (acetamidoethyl) ammonium , Tetraacrylammonium 2-acrylamido-2-methyl-1-propanesulfonate, trimethylbenzylammonium 2-[(2-propenyloxy) methoxy] ethenesulfonate, acrylonitrile, methacrylonitrile, N-vinylpyrrolidone, acryloylmorpholine, methacryloyl Morpholine, vinyl acetate, vinyl crotonic acid, styrene, α-methylstyrene, 4-ethylstyrene, 3-chloromethylstyrene, 4-chloromethylstyrene, 4-diethylaminomethylstyrene, 4-diethylaminomethylstyrene, 4-ethoxymethylstyrene 4-acetoxymethylstyrene, methylenebisacrylamide, ethylene glycol diacrylate, ethylene glycol dimethacrylate, divinylbenzene, diallylmethyla Examples include, but are not limited to, min and diallylethylamine.
本発明において、前記重合性単量体と各種添加剤との相溶性は、前記重合性単量体、可塑剤、及びその他の成分を混合した直後の、未硬化の状態で、透明均一な溶液若しくはペーストの形態をとるものが、最も好ましい。但し、実際に高分子固体電解質を製造する際に、必然的に必要とされる有限な時間の範囲で、乳化、エマルジョン、コロイド、コアセルベートなどの状態で、十分安定に形態維持可能であれば、透明均一な溶液となり得る化学種に限らず、種々の添加剤が適用可能である。 In the present invention, the compatibility between the polymerizable monomer and various additives is a transparent and uniform solution in an uncured state immediately after mixing the polymerizable monomer, plasticizer, and other components. Or what takes the form of a paste is the most preferable. However, when the polymer solid electrolyte is actually produced, it can be maintained in a stable state in a state of emulsification, emulsion, colloid, coacervate, etc. within a finite time range that is inevitably necessary. Not only the chemical species that can form a transparent and uniform solution, various additives can be applied.
本発明に用いられるアルカリ金属塩としては、LiPF6、LiClO4、LiCF3SO3、LiC4F9SO3、LiAsF6、LiBF4、LiN(CF3SO2)2、LiN(C2F5SO2)2、C4F9SO3Li、LiC(CF3SO2)3等が挙げられる。これらを単独若しくは2種以上を混合して用いても構わない。 Examples of the alkali metal salt used in the present invention include LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiAsF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , C 4 F 9 SO 3 Li, LiC (CF 3 SO 2 ) 3 and the like. You may use these individually or in mixture of 2 or more types.
本発明の高分子固体電解質は、上記種々の成分を、均一に混合し、圧縮成型若しくは注形成型若しくは重合させて得られる。圧縮成型若しくは注形成型の場合は、目的に応じた型枠等を用い、公知の方法で成型可能である。また、重合による成型の際には、上記成分の他に、重合開始剤などを添加して重合させることができる。重合開始剤としては、過酸化ジベンゾイル、過酸化ラウロイル、クミルパーオキサイド、過硫酸カリウム、過酸化水素などの過酸化物、アゾビス(イソブチロニトリル)、アゾビス(2,4−ジメチルバレロニトリル)などのアゾ化合物など公知な熱ラジカル重合開始剤の他、ジフェニルヨードニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロホスフェートなどの光重合開始剤を使用することができる。また、開始温度の調整目的など、必要に応じて、それらの開始剤を複数種混合して用いることも可能である。 The solid polymer electrolyte of the present invention can be obtained by uniformly mixing the above-mentioned various components and compression-molding or casting or polymerizing them. In the case of a compression molding or casting mold, it can be molded by a known method using a mold according to the purpose. Moreover, in the case of the shaping | molding by superposition | polymerization, it can superpose | polymerize by adding a polymerization initiator etc. other than the said component. As polymerization initiators, peroxides such as dibenzoyl peroxide, lauroyl peroxide, cumyl peroxide, potassium persulfate, hydrogen peroxide, azobis (isobutyronitrile), azobis (2,4-dimethylvaleronitrile), etc. In addition to known thermal radical polymerization initiators such as azo compounds, photopolymerization initiators such as diphenyliodonium hexafluoroantimonate and triphenylsulfonium tetrafluorophosphate can be used. Moreover, it is also possible to mix and use these initiators as needed, such as for the purpose of adjusting the starting temperature.
本発明の高分子固体電解質は、前記重合性単量体もしくは前記単量体の混合物及びアルカリ金属塩を、種々の割合で混合し、所定の組成物として得ることが出来る。各成分の混合比率の例としては、前記重合性単量体が5〜95wt%程度、アルカリ金属塩が5〜50wt%程度であるが、好ましくは前記重合性単量体が20〜40wt%、アルカリ金属塩が5〜25wt%である。なお、電解質組成物中に含まれるアルカリ金属塩の濃度は、最終的に0.1〜2mol/Lの範囲にあることが望ましい。また、重合開始剤を添加する場合は、高分子固体電解質系中に含まれる全ての重合性官能基のモル数に対して、0.1〜30mol%程度であることが好ましいが、さらに好ましくは0.5〜20mol%である。 The solid polymer electrolyte of the present invention can be obtained as a predetermined composition by mixing the polymerizable monomer or a mixture of the monomers and an alkali metal salt in various proportions. As an example of the mixing ratio of each component, the polymerizable monomer is about 5 to 95 wt% and the alkali metal salt is about 5 to 50 wt%, preferably the polymerizable monomer is 20 to 40 wt%, Alkali metal salt is 5 to 25 wt%. In addition, it is desirable that the concentration of the alkali metal salt contained in the electrolyte composition is finally in the range of 0.1 to 2 mol / L. In addition, when adding a polymerization initiator, it is preferably about 0.1 to 30 mol%, more preferably, relative to the number of moles of all polymerizable functional groups contained in the polymer solid electrolyte system. 0.5 to 20 mol%.
本発明の高分子固体電解質は、一次及び二次電池、電気二重層キャパシター、燃料電池MEA用電解質、二次電池電極用結着剤、色素増感型太陽電池電解質、ゲルアクチュエーター、電気刺激伝達用人工神経軸索充填剤及びその他の電気化学デバイス等の材料として有用である。 The polymer solid electrolyte of the present invention includes primary and secondary batteries, electric double layer capacitors, electrolytes for fuel cell MEAs, binders for secondary battery electrodes, dye-sensitized solar cell electrolytes, gel actuators, and electrical stimulus transmission. It is useful as a material for artificial nerve axon fillers and other electrochemical devices.
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれによって何ら限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by this.
[実施例1]
[重合性単量体≪MM1≫の調製]
p−クロロメチルスチレンクロリド3.21g及びジエチルアミン50%水溶液1.20gをエタノール7.5mLに溶解し、これに炭酸カリウム3.04gを添加し、室温で24時間攪拌した。24時間経過後、反応液を濾過して不溶分を除去し、濾液から再結晶により、ビス(スチリルメチル)ジエチルアンモニウムクロリドの白色結晶を回収した。これを蒸留水に溶解し、予め、別に調製しておいたビス(トリフルオロメタンスルホン)イミド・リチウム塩2.90gの水溶液と、室温で攪拌混合し、3時間攪拌後、静置すると白色沈殿が分離した。この沈殿を回収し、アセトンを用いて、再結晶で精製し、白色針状結晶を回収した。この結晶は、五酸化二リンの存在下、デシケータ中で、一晩減圧乾燥し、最終的に、重合性単量体≪MM1:ビス(スチリルメチル)ジエチルアンモニウム・ビス(トリフルオロメタンスルホン)イミド≫を回収した。得られた重合性単量体≪MM1≫は、示差走査熱分析(DSC)、熱重量分析(TG)、カールフィッシャー水分量測定及びプロトン核磁気共鳴スペクトル(1H−NMR)により、組成確認及び純度確認を実施した。なお水分量は70ppmであった。
[Example 1]
[Preparation of polymerizable monomer << MM 1 >>]
p-Chloromethylstyrene chloride (3.21 g) and diethylamine 50% aqueous solution (1.20 g) were dissolved in ethanol (7.5 mL), potassium carbonate (3.04 g) was added thereto, and the mixture was stirred at room temperature for 24 hours. After the elapse of 24 hours, the reaction solution was filtered to remove insolubles, and white crystals of bis (styrylmethyl) diethylammonium chloride were recovered by recrystallization from the filtrate. This was dissolved in distilled water, and mixed with 2.90 g of an aqueous solution of bis (trifluoromethanesulfone) imide / lithium salt prepared separately in advance at room temperature. After stirring for 3 hours and standing, a white precipitate was formed. separated. This precipitate was recovered and purified by recrystallization using acetone to recover white needle crystals. The crystals were dried under reduced pressure overnight in a desiccator in the presence of diphosphorus pentoxide. Finally, the polymerizable monomer << MM 1 : bis (styrylmethyl) diethylammonium bis (trifluoromethanesulfone) imide >> was collected. The composition of the obtained polymerizable monomer << MM 1 >> was confirmed by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), Karl Fischer moisture content measurement, and proton nuclear magnetic resonance spectrum ( 1 H-NMR). And the purity was confirmed. The water content was 70 ppm.
[高分子固体電解質≪PE1≫の調製]
上記で得た重合性単量体≪MM1≫0.067g、n−イソプロピルアクリルアミド0.023g、エチレンカーボネート0.4850g、プロピレンカーボネート0.5630g及び六フッ化リン酸リチウム0.1519gを、室温で混合し、終日攪拌して、均一に溶解させた。得られた粘凋な溶液を十分に脱気したのち、ベンゾイルパーオキサイド0.003gを加えて、終日攪拌し、均一に溶解させた。攪拌後、この溶液を80℃で40分間加熱し、高分子固体電解質≪PE1≫を得た。
[Preparation of polymer solid electrolyte << PE 1 >>]
0.067 g of the polymerizable monomer << MM 1 >> obtained above, 0.023 g of n-isopropylacrylamide, 0.4850 g of ethylene carbonate, 0.5630 g of propylene carbonate and 0.1519 g of lithium hexafluorophosphate at room temperature Mix and stir all day to dissolve uniformly. After the obtained viscous solution was sufficiently deaerated, 0.003 g of benzoyl peroxide was added and stirred all day until it was uniformly dissolved. After stirring, this solution was heated at 80 ° C. for 40 minutes to obtain a polymer solid electrolyte << PE 1 >>.
[高分子固体電解質≪PE1≫の電導度評価]
上記で得られた高分子固体電解質≪PE1≫について、交流インピーダンス法により、電導度を測定した。測定の際の周波数範囲は50Hz〜30MHz、電圧は0.5Vとした。測定の結果、室温(20℃)に於ける電導度は3.56×10-3S/cmであった。この乳白色固体は、2ヶ月経過後も、変色/分解等が観察されなかった。
[Electric conductivity evaluation of polymer solid electrolyte << PE 1 >>]
The obtained polymer solid electrolyte «PE 1 »above, by the AC impedance method to measure the conductivity. The frequency range during measurement was 50 Hz to 30 MHz, and the voltage was 0.5 V. As a result of the measurement, the electrical conductivity at room temperature (20 ° C.) was 3.56 × 10 −3 S / cm. The milky white solid was not discolored / decomposed even after 2 months.
[実施例2]
[重合性単量体≪MM2≫の調製]
p−クロロメチルスチレンクロリド3.21g及びピロリジン0.71gをエタノール7.5mLに溶解し、これに炭酸カリウム3.04gを添加し、室温で24時間攪拌した。24時間経過後、反応液を濾過して不溶分を除去し、濾液から再結晶により、ビス(スチリルメチル)ピロリジニウムクロリドの白色不定形固体を回収し、エタノール/アセトン混合溶媒に一晩浸漬したのち洗浄し、再結晶により白色結晶を回収した。これを蒸留水に溶解し、あらかじめ、別に調製しておいたビス(トリフルオロメタンスルホン)イミド・リチウム塩2.90gの水溶液と、室温で攪拌混合し、3時間攪拌後、静置すると白色沈殿が分離した。この沈殿を回収し、アセトンを用いて、再結晶で精製し、白色針状結晶を回収した。この結晶は、五酸化二リンの存在下、デシケータ中で、一晩減圧乾燥し、最終的に、重合性単量体≪MM2:ビス(スチリルメチル)ピロリジニウム・ビス(トリフルオロメタンスルホン)イミド≫を回収した。得られた重合性単量体≪MM2≫は、示差走査熱分析(DSC)、熱重量分析(TG)、カールフィッシャー水分量測定及びプロトン核磁気共鳴スペクトル(1H−NMR)により、組成確認及び純度確認を実施した。なお水分量は85ppmであった。
[Example 2]
[Preparation of polymerizable monomer << MM 2 >>]
3.21 g of p-chloromethylstyrene chloride and 0.71 g of pyrrolidine were dissolved in 7.5 mL of ethanol, and 3.04 g of potassium carbonate was added thereto, followed by stirring at room temperature for 24 hours. After the elapse of 24 hours, the reaction solution was filtered to remove insoluble components, and the white amorphous solid of bis (styrylmethyl) pyrrolidinium chloride was recovered from the filtrate by recrystallization and immersed in an ethanol / acetone mixed solvent overnight. After washing, white crystals were recovered by recrystallization. Dissolve this in distilled water, stir and mix at room temperature with 2.90 g of an aqueous solution of bis (trifluoromethanesulfone) imide / lithium salt previously prepared separately, stir for 3 hours, and leave to stand to precipitate a white precipitate. separated. This precipitate was recovered and purified by recrystallization using acetone to recover white needle crystals. This crystal was dried under reduced pressure overnight in a desiccator in the presence of diphosphorus pentoxide. Finally, the polymerizable monomer << MM 2 : bis (styrylmethyl) pyrrolidinium bis (trifluoromethanesulfone) imide >> Was recovered. The composition of the obtained polymerizable monomer << MM 2 >> was confirmed by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), Karl Fischer moisture content measurement, and proton nuclear magnetic resonance spectrum ( 1 H-NMR). And the purity was confirmed. The water content was 85 ppm.
[高分子固体電解質≪PE2≫の調製]
実施例1と同様にして、上記で得た重合性単量体≪MM2≫0.2032g、アクリロイルモルホリン0.1314g、エチレングリコールジメタクリレート0.0911g、N−メチルピロリドン0.105g、エチレンカーボネート0.116g、プロピレンカーボネート0.134及び六フッ化リン酸リチウム0.1519gを、室温で混合し、終日攪拌して、均一に溶解させた。得られた粘凋な溶液を十分に脱気したのち、ベンゾイルパーオキサイド0.006gを加えて、終日攪拌し、均一に溶解させた。攪拌後、この溶液を80℃で40分間加熱し、高分子固体電解質≪PE2≫を得た。
[Preparation of polymer solid electrolyte << PE 2 >>]
In the same manner as in Example 1, 0.2032 g of the polymerizable monomer << MM 2 >> obtained above, 0.1314 g of acryloylmorpholine, 0.0911 g of ethylene glycol dimethacrylate, 0.105 g of N-methylpyrrolidone, 0.15 g of ethylene carbonate .116 g, propylene carbonate 0.134, and lithium hexafluorophosphate 0.1519 g were mixed at room temperature and stirred all day to dissolve uniformly. After the obtained viscous solution was sufficiently deaerated, 0.006 g of benzoyl peroxide was added and stirred all day until it was uniformly dissolved. After stirring, this solution was heated at 80 ° C. for 40 minutes to obtain a polymer solid electrolyte << PE 2 >>.
[高分子固体電解質≪PE2≫の電導度評価]
上記で得られた高分子固体電解質≪PE2≫について、交流インピーダンス法により、電導度を測定した。測定の際の周波数範囲は50Hz〜30MHz、電圧は0.5Vとした。測定の結果、室温(20℃)に於ける電導度は1.34×10-3S/cmであった。この白色固体は、2ヶ月経過後も、変色/分解等が観察されなかった。
[Electric conductivity evaluation of polymer solid electrolyte << PE 2 >>]
The obtained polymer solid electrolyte «PE 2 »above, by the AC impedance method to measure the conductivity. The frequency range during measurement was 50 Hz to 30 MHz, and the voltage was 0.5 V. As a result of the measurement, the electric conductivity at room temperature (20 ° C.) was 1.34 × 10 −3 S / cm. The white solid was not observed to be discolored / decomposed even after 2 months.
[実施例3]
[高分子固体電解質≪PE3≫の調製]
実施例1で得た重合性単量体≪MM1≫0.166g、n−イソプロピルアクリルアミド0.127g、2−アクリルアミド−2−メチル−1−プロパンスルホン酸ジメチルベンジル(アセトアミドエチル)アンモニウム0.057g、エチレンカーボネート3.570g、プロピレンカーボネート2.618g及び六フッ化リン酸リチウム0.812gを、室温で混合し、終日攪拌して、均一に溶解させた。得られた粘凋な溶液を十分に脱気したのち、ベンゾイルパーオキサイド0.015gを加えて、終日攪拌し、均一に溶解させた。攪拌後、この溶液を80℃で40分間加熱し、高分子固体電解質≪PE3≫を得た。
[Example 3]
[Preparation of polymer solid electrolyte << PE 3 >>]
0.166 g of polymerizable monomer << MM 1 >> obtained in Example 1, 0.127 g of n-isopropylacrylamide, 0.057 g of dimethylbenzyl (acetamidoethyl) ammonium 2-acrylamido-2-methyl-1-propanesulfonate , Ethylene carbonate 3.570 g, propylene carbonate 2.618 g and lithium hexafluorophosphate 0.812 g were mixed at room temperature and stirred all day to dissolve uniformly. After the obtained viscous solution was sufficiently deaerated, 0.015 g of benzoyl peroxide was added and stirred all day until it was uniformly dissolved. After stirring, this solution was heated at 80 ° C. for 40 minutes to obtain a polymer solid electrolyte << PE 3 >>.
[高分子固体電解質≪PE3≫の電導度評価]
上記で得られた高分子固体電解質≪PE3≫について、交流インピーダンス法により、電導度を測定した。測定の際の周波数範囲は50Hz〜30MHz、電圧は0.5Vとした。測定の結果、室温(20℃)に於ける電導度は4.58×10-3S/cmであった。この乳白色半透明固体は、2ヶ月経過後も、変色/分解等が観察されなかった。
[Electric conductivity evaluation of polymer solid electrolyte << PE 3 >>]
The obtained polymer solid electrolyte «PE 3 »above, by the AC impedance method to measure the conductivity. The frequency range during measurement was 50 Hz to 30 MHz, and the voltage was 0.5 V. As a result of the measurement, the electric conductivity at room temperature (20 ° C.) was 4.58 × 10 −3 S / cm. This milky white translucent solid was not observed to be discolored / decomposed even after 2 months.
[比較例1]
前記実施例1において重合性単量体の代わりに、ビス(アクリロイルオキシエチル)ジエチルアンモニウム・ビス(トリフルオロメタンスルホン)イミドの適用を試みたが、これは、常温常圧で溶融状態の塩であり、かつ吸水性・吸湿性が高いため、水分除去が著しく困難であった。なおカールフィッシャー水分量測定による水分量測定値は3200ppmであった。しかし、敢えて実施例1で用いた重合性単量体≪MM1≫の代わりに、この塩とビス(トリフルオロメタンスルホン)イミド・リチウム塩の等モル混合物を用い、所定の高分子電解質の調製を行ったところ、白色固形分を得ることはできたが、これは、含水量が約7500ppmであり、多すぎるため、60℃連続加温条件下で5日間経過後、全体が茶褐色に変色し、且つ全体が溶液状に変化していた。
[Comparative Example 1]
In Example 1, an attempt was made to apply bis (acryloyloxyethyl) diethylammonium bis (trifluoromethanesulfone) imide instead of the polymerizable monomer, which is a salt in a molten state at normal temperature and pressure. In addition, water removal is extremely difficult due to high water absorption and hygroscopicity. The water content measured by Karl Fischer water content was 3200 ppm. However, instead of the polymerizable monomer << MM 1 >> used in Example 1, an equimolar mixture of this salt and bis (trifluoromethanesulfone) imide / lithium salt was used to prepare a predetermined polymer electrolyte. As a result, it was possible to obtain a white solid. However, since the water content was about 7500 ppm and was too much, the whole color changed to brown after 5 days under continuous heating at 60 ° C., And the whole changed into the solution state.
[比較例2]
前記実施例2において重合性単量体の代わりに、ビス(スチリルメチル)メチル−n−ブチルアンモニウム・ビス(トリフルオロメタンスルホン)イミドの適用を試みたが、これもやはり常温常圧で溶融状態の塩であり、かつ吸水性・吸湿性が高いため、水分除去が著しく困難であった。なおカールフィッシャー水分量測定による水分量測定値は2500ppmであった。しかし、敢えて実施例1で用いた重合性単量体≪MM2≫の代わりに、この塩とビス(トリフルオロメタンスルホン)イミド・リチウム塩の等モル混合物を用い、所定の高分子電解質の調製を行ったところ、白色固形分を得ることはできたが、これは、含水量が約6000ppmであり、多すぎるため、60℃連続加温条件下で7日間経過後、全体が茶褐色に変色し、且つ一部が溶液状に変化していた。
[Comparative Example 2]
In Example 2, an attempt was made to apply bis (styrylmethyl) methyl-n-butylammonium bis (trifluoromethanesulfone) imide in place of the polymerizable monomer, which was also in a molten state at normal temperature and pressure. Since it is a salt and has high water absorption and hygroscopicity, water removal was extremely difficult. The water content measured by Karl Fischer water content was 2500 ppm. However, instead of the polymerizable monomer << MM 2 >> used in Example 1, an equimolar mixture of this salt and bis (trifluoromethanesulfone) imide / lithium salt was used to prepare a predetermined polymer electrolyte. As a result, it was possible to obtain a white solid, but since the water content was about 6000 ppm and was too much, after 7 days under continuous heating at 60 ° C., the whole color changed to brown, And a part changed into the solution state.
本発明の高分子固体電解質は、一次及び二次電池、電気二重層キャパシター、燃料電池MEA用電解質、二次電池電極用結着剤、色素増感型太陽電池電解質、ゲルアクチュエーター、電気刺激伝達用人工神経軸索充填剤及びその他の電気化学デバイス等の材料として用いることができる。 The polymer solid electrolyte of the present invention includes primary and secondary batteries, electric double layer capacitors, electrolytes for fuel cell MEAs, binders for secondary battery electrodes, dye-sensitized solar cell electrolytes, gel actuators, and electrical stimulus transmission. It can be used as a material for artificial nerve axon fillers and other electrochemical devices.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003336417A JP4300954B2 (en) | 2003-09-26 | 2003-09-26 | Polymer solid electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003336417A JP4300954B2 (en) | 2003-09-26 | 2003-09-26 | Polymer solid electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005108460A JP2005108460A (en) | 2005-04-21 |
JP4300954B2 true JP4300954B2 (en) | 2009-07-22 |
Family
ID=34532561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003336417A Expired - Fee Related JP4300954B2 (en) | 2003-09-26 | 2003-09-26 | Polymer solid electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4300954B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10497973B2 (en) * | 2013-09-26 | 2019-12-03 | Commissariat à l'énergie atomique et aux énergies alternatives | Polymer compositions that conduct lithium ions for electrochemical lithium generator |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10147974B2 (en) * | 2017-05-01 | 2018-12-04 | Dioxide Materials, Inc | Battery separator membrane and battery employing same |
CN113121735B (en) * | 2021-04-19 | 2022-09-02 | 安徽大学 | Preparation method of two-dimensional anion exchange polymer, prepared polymer and application thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4318324B2 (en) * | 1996-07-17 | 2009-08-19 | 四国化成工業株式会社 | Method for preparing molten salt polymer for molten salt type polymer electrolyte and molten salt type polymer electrolyte |
DE69934170T2 (en) * | 1998-02-03 | 2007-09-27 | Acep Inc., Montreal | NEW MATERIALS SUITABLE AS ELECTROLYTIC SOLUBILISTS |
JP3883439B2 (en) * | 2002-01-25 | 2007-02-21 | 住友ベークライト株式会社 | Polymer solid electrolyte |
JP2003213066A (en) * | 2002-01-25 | 2003-07-30 | Sumitomo Bakelite Co Ltd | Lithium ion-conductive gel-like electrolyte |
JP4538183B2 (en) * | 2002-07-10 | 2010-09-08 | 敬一 宇野 | Ionic resin sheet |
JP4389454B2 (en) * | 2003-03-13 | 2009-12-24 | 住友ベークライト株式会社 | Polymer solid electrolyte |
JP4273803B2 (en) * | 2003-03-28 | 2009-06-03 | 住友ベークライト株式会社 | Polymer solid electrolyte |
KR101211455B1 (en) * | 2003-03-31 | 2012-12-12 | 파이오트렉쿠 가부시키가이샤 | composite polymer electrolyte composition |
-
2003
- 2003-09-26 JP JP2003336417A patent/JP4300954B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10497973B2 (en) * | 2013-09-26 | 2019-12-03 | Commissariat à l'énergie atomique et aux énergies alternatives | Polymer compositions that conduct lithium ions for electrochemical lithium generator |
Also Published As
Publication number | Publication date |
---|---|
JP2005108460A (en) | 2005-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2003130279A (en) | NEW POLYTHIOPHENE DISPERSIONS | |
CN106410270B (en) | It is a kind of using carbon dioxide-base polycarbonate as lithium single-ion conductor solid polymer electrolyte of main chain and preparation method thereof | |
EP2903074A1 (en) | Gel-type polymer electrolyte comprising eutectic mixture and an electrochemical device containing the same | |
Pirnat et al. | Synthesis of redox polymer nanoparticles based on poly (vinyl catechols) and their electroactivity | |
WO2008053864A1 (en) | Proton conducting compound and proton conducting polymer | |
Yu et al. | Lithium salt-induced in situ living radical polymerizations enable polymer electrolytes for lithium-ion batteries | |
JP4407502B2 (en) | Lithium ion conductive electrolyte and secondary battery using the same | |
JP4300954B2 (en) | Polymer solid electrolyte | |
JP2009102461A (en) | Conductive water-containing gel | |
JP4830314B2 (en) | Composition for ion conductive electrolyte, ion conductive electrolyte, and secondary battery using the ion conductive electrolyte | |
JP4403275B2 (en) | Terminal hyperbranched polymer solid electrolyte | |
JP4389454B2 (en) | Polymer solid electrolyte | |
JP2006185831A (en) | Composition for lithium ion conductive electrolyte and production method for lithium ion conductive electrolyte | |
KR20170092933A (en) | Uv curable gel polymer electrolyte composition containing eco-friendly polymer and manufacturing method | |
JP4273803B2 (en) | Polymer solid electrolyte | |
KR20090080868A (en) | Electrolyte comprising eutectic mixture and electrochemical device containing the same | |
JP2006286351A (en) | Lithium ion conductive electrolyte, composition for the same, its manufacturing method, and secondary battery | |
JP2008071546A (en) | Ion conductive electrolyte and secondary battery using ion conductive electrolyte | |
JP4622220B2 (en) | ALL-SOLID ELECTROLYTE, ITS MANUFACTURING METHOD, AND SECONDARY BATTERY USING THE ALL-SOLID ELECTROLYTE | |
JP4265191B2 (en) | Lithium ion conductive all solid electrolyte and lithium ion conductive gel electrolyte | |
JP3883442B2 (en) | Polymer solid electrolyte and method for producing the same | |
JP2006269303A (en) | Ion conducting electrolyte and secondary battery using it | |
JP4967292B2 (en) | Composition, ion conductive electrolyte obtained therefrom, and secondary battery using the same | |
JP2006182975A (en) | Composition for electrolyte, ion conductive electrolyte obtained from the composition and secondary battery using the electrolyte | |
JP4145617B2 (en) | Lithium ion conductive gel electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060612 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090331 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090413 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130501 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130501 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140501 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |