JP3883439B2 - Polymer solid electrolyte - Google Patents

Polymer solid electrolyte Download PDF

Info

Publication number
JP3883439B2
JP3883439B2 JP2002017735A JP2002017735A JP3883439B2 JP 3883439 B2 JP3883439 B2 JP 3883439B2 JP 2002017735 A JP2002017735 A JP 2002017735A JP 2002017735 A JP2002017735 A JP 2002017735A JP 3883439 B2 JP3883439 B2 JP 3883439B2
Authority
JP
Japan
Prior art keywords
functional group
polymerizable functional
polymer
solid electrolyte
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002017735A
Other languages
Japanese (ja)
Other versions
JP2003217344A (en
Inventor
睦宏 松山
保 織原
毅 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002017735A priority Critical patent/JP3883439B2/en
Publication of JP2003217344A publication Critical patent/JP2003217344A/en
Application granted granted Critical
Publication of JP3883439B2 publication Critical patent/JP3883439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高分子固体電解質に関し、さらに詳しくは、室温で溶融状態にある塩モノマーを含有する高分子マトリックス中において、均一に分散した状態のままマトリックスに固定化された塩モノマーの効果により、電解質成型初期の形態を長期間保持することが可能となり、かつリチウム系金属化合物のみを電荷のキャリアとして含有することにより、高いイオン導電性を発揮し、かつ漏液等が無く安全性及び経時安定性、成形性に優れた高分子固体電解質に関するものである。
【0002】
【従来の技術】
近年、携帯電話やPDA,ノートパソコンに代表される情報携帯機器、屋外における使用頻度の高いMDプレーヤー,MP3プレーヤー,デジタルカメラ等の携帯機器、あるいはこれからの高齢化社会に需要が増えることが予測される、携帯用医療器具やPHSタイプ福祉機器類などの普及に伴い、より軽量、小容積で、安価、安全、高出力な二次電池に対する需要が高まってきている。そしてそれらの要求を満たす電源用二次電池材料として、高分子固体電解質が注目されてきている。
【0003】
従来、二次電池用電解質としては一般に、電気化学的にみて比較的安定な有機溶媒に、イオン性化合物を溶解させた液体電解質が用いられてきた。しかしこの場合、電池内部に流動性のある液体を含有するため、長期間使用した場合や電池自身が何らかの理由により外部から加熱された場合、あるいは機器の故障により過充電されたり物理的に損壊した場合に、人体に被害あるいは使用機器に障害を与えうる電解液が、電池内部から外部に漏出する危険性を常に孕んでいた。
【0004】
このため、これまでに種々の方法により、電解液の外部への漏出を防ぐための試みが為されてきた。電解液に高分子化合物を含有若しくは含浸させ、電解液全体をゲル状物とすることによる方法は、その一つとしてあげられる。ゲル化方法には、ポリマー同士の相互作用により物理的にゲル化させる方法と、架橋剤を用いて共有結合により直接的にポリマー同士を連結する方法とがある。一般に前者を物理ゲル、後者を化学ゲルと呼称することが多い。これらは柔軟であるため成型が容易であり、また比較的軽量なものが多く、これらの点が二次電池用に狭いスペースしか確保できない小型機器類には、設計上の大きなメリットとなっている。しかし比較的多くの有機溶媒を含むため、高温域における形態安定性が不十分なものも多く、例えば、不測の事象に於いて長時間高温条件にさらされた場合に液漏れを起こしたり、あるいは内圧上昇により電池容器が圧力損壊する例も見受けられた。
【0005】
その一方で、有機溶媒を全く含まないいわゆる「全固体型電解質」の開発もこれまで活発に行われてきた。各種リチウム塩とポリエチレンオキサイドの混合物がその一例としてあげられる。この場合、上記のような漏液等の被害はほぼ克服されているが、液状部分が存在しないが故に低温領域での電池特性が悪く、比較的高温でなければ所定の電導度を発現できない系が多い。これは人間の活動領域において比較的低温条件にさらされる機会の多い各種携帯機器にとっては、致命的な欠点と言えよう。
【0006】
一方で、ゲル型電解質及び全固体型電解質にみられる欠点を克服するため、常温で流動性を有するイオン性化合物、いわゆる「常温溶融塩」を何らかの高分子化合物と組み合わせて、電解質として用いる試みも為されている。しかしハロゲン化アルミニウム化合物等の比較的危険性の高い化合物を利用したものが多く、安全性の点から問題が大きい。また従来検討されてきたイミダゾリウム型化合物は電位窓を広く確保することが難しいため、高容量化を目的としてリチウム電池等に適用する際には、困難を伴うことが多いという欠点を有する。
【0007】
また、無機化合物をベースポリマーとした固体電解質の開発も最近活発に行われており、中には室温付近で比較的高い電導度を示しうる例も報告されている。しかしいずれも、可撓性に乏しいため成型が困難であるという欠点を克服しきれておらず、製品化する上での最大の障害となっていることは否めない。
【0008】
【発明が解決しようとする課題】
以上に述べたように、二次電池用途の固体電解質としては様々な系がこれまで提案されてきており、次世代の固体電解質に向けて年々開発競争も熾烈を極める情勢となってきている。どの様式においても一長一短があるため一概に優劣を論じることは出来ないが、成型性に優れ比較的電導度も高い点などを理由に、ゲル状電解質に関する研究がこれまで活発に行われてきている。しかし電導度の問題さえ解決できるならば、より安定性/安全性の高い全固体型電解質の方が望ましいと考えられる。
【0009】
ここでいま一度、それぞれの系における問題点を整理すると、ゲル状固体電解質の場合は、▲1▼比較的多量の溶媒を含むことに伴う漏液,発火の危険性,▲2▼経時安定性(ゲル骨格の部分結晶化に伴う固液分離が無いかどうか)等が挙げられ、全固体型電解質の場合は、▲3▼低温域における電導度の劣化,▲4▼成型性等の問題が挙げられよう。
【0010】
そこでこの発明の主たる目的は、室温付近でも10-3S/cm以上の、高いイオン導電性を発現し、且つ可尭性、機械強度、柔軟性、経時安定性に優れ、尚且つ人間の活動圏内に於いて十分に安全な高分子固体電解質を得ることとする。
【0011】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するために鋭意検討を重ねた結果、室温で溶融状態にある塩モノマーを含有する高分子マトリックス中に、これらの塩モノマーを均一に分散した状態のまま固定化することにより、電荷キャリアとして機能する化学種の移動度を大きく低下させることが無く、高いイオン導電性を発揮でき、かつ漏液等が無く安全性及び経時安定性、成形性に優れた高分子固体電解質が得られることを見出し、さらに検討を進めて本発明を完成させるに至った。
【0012】
即ち本発明は、特定構造のポリマー、金属塩、および可塑剤からなる高分子固体電解質であって、特定構造のポリマーが、イオン的相互作用と重合性官能基とを有する塩モノマーと、該塩モノマーと相溶性が良くイオン解離基を持たない1種類以上の重合性モノマーとからなる、高分子共重合体であり、前記塩モノマーは、重合性官能基を有するアルキル四級アンモニウムカチオン,重合性官能基を有する含窒素複素環式カチオン,重合性官能基を有する含酸素カチオン,および重合性官能基を有する含硫黄カチオンの中の1つと、重合性官能基を有する有機酸アニオンとから構成されることを特徴とする高分子固体電解質である。
【0013】
【発明の実施の形態】
本発明の高分子固体電解質は、イオン的相互作用と重合性官能基とを有する塩モノマーと、該塩モノマーと相溶性が良くイオン解離基を持たない1種類以上の重合性モノマーとからなる、特定構造のポリマーを使用して、高分子マトリックス中に、塩モノマーを均一に分散した状態のまま固定化することにより、高いイオン導電性を発揮すると共に、漏液等が無く安全性及び経時安定性、成形性に優れた高分子固体電解質を得る子とを骨子とし、イオン的相互作用と重合性官能基とを有する塩モノマーは、重合性官能基を有するアルキル四級アンモニウムカチオン,含窒素複素環式カチオン,含酸素カチオン,および含硫黄カチオンの中の1つと、重合性官能基を有する有機酸アニオンとから構成され、室温で溶融状態にあることを特徴とする。
【0014】
本発明に用いられるイオン的相互作用を有する塩モノマーは、自身を構成する正電荷部位、負電荷部位それぞれに共有結合で結合せしめた重合性官能基を有するため、高分子固体電解質を成型する際には、高分子固体電解質に含まれる高分子量成分に共有結合で固定されることとなる。このような塩モノマーとしては、下記一般式[I]〜一般式[III]で表される化合物が使用出来る。
【0015】
【化1】

Figure 0003883439
【0016】
一般式[I]で表される化合物は、重合性官能基を備えたアルキル四級アンモニウムカチオンまたは含窒素複素環式カチオン、及び重合性官能基を備えた有機酸アニオンから構成され、式中、P1,P2はそれぞれ重合性官能基を含む置換基、Ac-はイオン的相互作用に直接的に関与するイオン性官能基を表し、R1,R2,R3,R4,R5はそれぞれ、アルキル基、アルケニル基、アラルキル基、アラルケニル基、アルコキシアルキル基、アシルオキシアルキル基、スルホアルキル基、アリール基、あるいは芳香族複素環残基等からなる。R2,R3,R4,R5は、いずれか一対若しくはそれ以上が相互に共有結合により連結され、環状構造を形成していても構わない。また、R2−N+,R3−N+,R4−N+,R5−N+に示される共有結合のいづれか一つが、単結合でなく二重結合である場合は、R3,R4,R5のいづれか一つは存在しない。また、P1−R1及びP2−R2は、複数の共有結合により連結されていても良く、P2はR2のほかR3,R4,R5と同時に共有結合により連結されていても構わない。さらに、P1もしくはR1は、P2,R2,R3,R4,R5の1つ以上の部位と、一つ以上の共有結合により連結されていても構わない。同様にP2もしくはR2は、P1,R1の1つ以上の部位と一つ以上の共有結合により連結されていても構わない。但し、何れの場合もこれらの相互連結によりP1及びP2の重合性は阻害されない。
【0017】
【化2】
Figure 0003883439
【0018】
一般式[II]で表される化合物は、重合性官能基を備えたオキソニウムカチオン及び重合性官能基を備えた有機酸アニオンから構成され、式中、P3,P4はそれぞれ重合性官能基を含む置換基、Ac-はイオン的相互作用に直接的に関与するイオン性官能基を表し、R6,R7,R8,R9はそれぞれアルキル基、アルケニル基、アラルキル基、アラルケニル基、アルコキシアルキル基、アシルオキシアルキル基、スルホアルキル基、アリール基、あるいは芳香族複素環残基等からなる。R7,R8,R9は、いずれか一対若しくはそれ以上が相互に共有結合により連結され環状構造を形成していても構わない。また、R7−N+,R8−N+,R9−N+に示される共有結合のいづれか一つが、単結合でなく二重結合である場合は、R8,R9のいづれか一つは存在しない。また、P3−R6及びP4−R7は、複数の共有結合により連結されていても良く、P4はR7のほかR8,R9と同時に共有結合により連結されていても構わない。また、P3もしくはR6は、P4,R7,R8,R9の1つ以上の部位と、一つ以上の共有結合により連結されていても構わない。同様にP4もしくはR7は、P3,R6の1つ以上の部位と、一つ以上の共有結合により連結されていても構わない。但し、何れの場合もこれらの相互連結により、P3及びP4の重合性は阻害されない。
【0019】
【化3】
Figure 0003883439
【0020】
一般式[III]で表される化合物は、重合性官能基を備えたスルホニウムカチオン及び重合性官能基を備えた有機酸アニオンから構成され、式中、P5,P6はそれぞれ重合性官能基を含む置換基、Ac-はイオン的相互作用に直接的に関与するイオン性官能基をを表し、R10,R11,R12,R13はそれぞれアルキル基、アルケニル基、アラルキル基、アラルケニル基、アルコキシアルキル基、アシルオキシアルキル基、スルホアルキル基、アリール基、あるいは芳香族複素環残基等からなる。R11,R12,R13は、いずれか一対若しくはそれ以上が相互に共有結合により連結され環状構造を形成していても構わない。また、R11−N+,R12−N+,R13−N+に示される共有結合のいづれか一つが、単結合でなく二重結合である場合は、R12,R13のいづれか一つは存在しない。また、P5−R10及びP6−R11は、複数の共有結合により連結されていても良く、P6はR11のほかR12,R13と、同時に共有結合により連結されていても構わない。また、P5もしくはR10は、P6,R11,R12,R13の1つ以上の部位と、一つ以上の共有結合により連結されていても構わない。同様にP6もしくはR11は、P5,R10の1つ以上の部位と、一つ以上の共有結合により連結されていても構わない。但し、何れの場合もこれらの相互連結により、P5及びP6の重合性は阻害されない。
【0021】
重合性官能基による重合反応としては、ラジカル重合、イオン重合、配位重合、縮重合、付加重合等、種々の既知の重合方法が可能であり、重合操作の簡便さ故にラジカル重合、配位重合、縮重合、付加重合が望ましいが、特にこれらに限定されない。また、塩モノマーを構成するカチオン部位とアニオン部位のモル比、すなわちカチオン/アニオン比は10/1から1/10の範囲にあることが望ましく、さらには1/1であることが望ましいが、特にこの範囲に限定されない。なお、この比が1/1でない場合は、金属塩等の高分子固体電解質の他の構成成分との間で電荷バランスが図られていれば良い。
【0022】
塩モノマーを構成するカチオンとアニオンのモル比が1/1でない場合は、電荷バランスを図るために、重合性官能基を備えていない高分子化学種若しくは低分子化学種若しくは各種金属塩等の添加を行うのが望ましい。但しこの場合、電解質中におけるカチオン性キャリアー(例えばリチウムイオン等)の輸率低下を避けるために、アニオン性キャリアーの移動度は低いか、もしくは移動度の比較的高いアニオン性化学種(ハロゲンアニオン等)の電解質中に含まれる濃度が低い方が好ましい。この条件を満たすものであれば如何様な化学種でも実使用に供することは可能であるが、電導度等の電気的特性において良好な結果を得るためには、特に移動度の高いアニオン性化学種、即ちハロゲンアニオン濃度が、500ppm以下であることが望ましい。常温溶融塩を使用した従来の固体電解質の場合、対アニオンとして例えばAlCl4-等の金属酸アニオンを使用する場合があるが、この場合、高分子固体電解質の調製直後はハロゲンイオンが低濃度しか含有されていなくても、長期に渡る使用に際し、大気中からの吸湿により分解して系中に大量のハロゲンアニオンを発生し、その結果電池特性の悪化をもたらす事例が多々見受けられた。本発明者らの開発した高分子固体電解質は塩モノマーを使用することを特徴とするが、塩モノマー合成過程において対アニオンを重合性官能基を備えた対アニオンと交換したり、あるいは対イオンの交換が対カチオンと同時に行えるため、移動度の高いフリーのハロゲンアニオン含有量を低減することが容易であると言う特徴を有する。
【0023】
本発明に用いられるイオン的相互作用を有する塩モノマーの合成方法としては、炭素−炭素二重結合を有するスルホン酸若しくはカルボン酸の、スルホン酸銀塩若しくはカルボン酸銀塩と、炭素−炭素二重結合を有するアンモニウム塩のハロゲン化物とを反応させる方法(銀塩法)の他、炭素−炭素二重結合を有するスルホン酸若しくはカルボン酸の、スルホン酸アルキルエステル若しくはアリールアルキルエステル、カルボン酸アルキルエステル若しくはアリールアルキルエステルと、炭素−炭素二重結合を有する3級アミンとを反応させる方法(4級化法)等が挙げられるが、特にこれらに限定されない。
【0024】
本発明に用いられる塩モノマーと相溶性が良くイオン解離基を持たない1種類以上の重合性モノマーは、高分子固体電解質の可塑性、成形性、熱安定性の調節の目的の他、高分子固体電解質の未硬化原液の粘度調節の目的のために添加せしめるものである。この目的のための重合性モノマーとしては、上記塩モノマーとラジカル共重合させる場合は、炭素−炭素二重結合を有するカルボン酸エステル、スルホン酸エステル若しくは芳香族化合物であることが好ましく、さらにはアクリル酸エステル、メタクリル酸エステル、スルホン酸エステル、アクリルアミド、メタクリルアミド、スルホンアミド、若しくは置換基を備えたスチレン誘導体等に代表されるアリール化合物が望ましいが、上記塩モノマーと共重合可能な化学種であれば特に限定されない。
【0025】
前項に述べた、塩モノマー前駆体と重合性モノマーの相溶性は、塩モノマー前駆体、重合性モノマー、及びその他の構成成分を混合した直後の、未硬化原液の状態で透明均一な溶液若しくはペーストの形態をとるものが最も好ましい。但し、実際に高分子固体電解質を製造する際に、必然的に必要とされる有限な時間の範囲で、乳化、エマルジョン、コロイド、コアセルベートなどの状態で十分安定に形態維持可能であれば、透明均一な溶液となり得る重合性モノマーに限らず、種々の重合性モノマーが適用可能である。
【0026】
本発明に用いられる金属塩としては、LiPF6、LiClO4、LiCF3SO3、LiAsF6、LiBF4、LiN(CF3SO32、C49SO3Li、LiC(CF3SO23、LiFが挙げられ、これらを単独若しくは2種以上を混合して用いても構わない。
【0027】
本発明に用いられる可塑剤としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメトキシエタン、テトラヒドロフラン、ジオキサン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられ、これらを単独若しくは2種以上を混合して用いても構わない。但し、全固体高分子電解質としての特質を実現するため、可塑剤の添加量は高分子固体電解質全体に対して30wt%以下であることが望ましい。
【0028】
【実施例】
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれによって何ら限定されるものではない。
【0029】
[実施例]
塩モノマーAの合成
2−アクリルアミド−2−メチル−1−プロパンスルホン酸10.36g(50mmol)を、無水メタノール500mlに溶解し、これに炭酸銀27.6g(100mmol)を添加して、室温下で穏やかに24時間連続攪拌し、濾過後、淡黄色透明の溶液を得た。この濾過液に、100mmol/Lのジアリルジメチルアンモニウムクロリド・メタノール溶液を滴下反応させた。反応は定量的に進行した。反応生成物である塩化銀を濾別し、無色透明のメタノール溶液を回収した。この濾液をエバポレーターで減圧濃縮し、さらにオイルポンプで終日減圧濃縮することにより、粘凋な液状塩モノマーAを得た。得られた塩モノマーAは示差走査熱分析(DSC)、熱重量分析(TG)、及びプロトン核磁気共鳴スペクトル(1H−NMR)により組成確認を実施した。
【0030】
高分子固体電解質の調製
上記塩モノマーAの80wt%EC/PC溶液を1.349ml、N,N−ジメチルアクリルアミド0.102ml、メチレンビスアクリルアミド0.0911g、EC/PC混合溶媒0.050ml、および過塩素酸リチウム0.2128gを室温で混合し、終日攪拌して均一に溶解させた。得られた粘凋な溶液を十分に脱気したのち、240mMベンゾイルパーオキサイドEC/PC溶液0.104mlを加えて攪拌し、均一に溶解させた。攪拌後、この溶液を80℃で100分加熱し、白色の高分子電解質を得た。
【0031】
高分子固体電解質の電導度評価
上記で得られた高分子電解質について、交流インピーダンス法により電導度を測定した。測定の際の周波数範囲は50Hz〜30MHz、電圧は0.5Vとした。測定の結果、室温(20℃)に於ける電導度は5.77×10-3S/cmであった。この白色固体は2ヶ月経過後も変色/分解等は観察されなかった。
【0032】
[比較例]
前記実施例において、高分子固体電解質を調製する際に、塩モノマーAの代わりに、2−アクリルアミド−2−メチル−1−プロパンスルホン酸及びメタクリル酸ジメチルアミノエチルベンジルクロライドを用いて、銀塩法により調製した塩モノマーBを用いたが、この塩モノマーBは常温常圧では白色結晶であるため、加熱硬化に先立ち均一溶液を調製することは出来なかった。またN,N−ジメチルアクリルアミドの代わりにメタクリル酸メチルを用いた場合は、硬化反応前の混合溶液を調製する際に、金属塩(ここでは過塩素酸リチウム)と他の構成成分との相溶性が著しく悪いため、均一な溶液とすることが困難であり、そのまま加熱硬化すると、塩状の白色固形分と無色透明のガラス状部位に分離し、組成の均質な高分子固体電解質を得ることは出来なかった。
【0033】
【発明の効果】
本発明に拠れば、室温付近でも10-3S/cm以上の、高いイオン導電性を発現し、且つ可尭性、機械強度、柔軟性、経時安定性に優れ、尚且つ十分に安全な高分子固体電解質を得ることが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer solid electrolyte, and more specifically, in a polymer matrix containing a salt monomer that is in a molten state at room temperature, due to the effect of the salt monomer immobilized on the matrix in a uniformly dispersed state, It is possible to maintain the initial shape of the electrolyte molding for a long period of time, and by including only a lithium-based metal compound as a charge carrier, it exhibits high ionic conductivity, no leakage, etc., safety and stability over time The present invention relates to a polymer solid electrolyte having excellent properties and moldability.
[0002]
[Prior art]
In recent years, demand is expected to increase in portable information devices such as mobile phones, PDAs, and notebook computers, portable devices such as MD players, MP3 players, and digital cameras that are frequently used outdoors, or an aging society in the future. With the spread of portable medical devices and PHS type welfare equipment, there is an increasing demand for secondary batteries that are lighter, smaller in volume, inexpensive, safe, and high output. As a power source secondary battery material that satisfies these requirements, a polymer solid electrolyte has been attracting attention.
[0003]
Conventionally, as a secondary battery electrolyte, a liquid electrolyte in which an ionic compound is dissolved in an organic solvent that is relatively stable from an electrochemical viewpoint has been used. However, in this case, since the battery contains a fluid liquid, it may be overcharged or physically damaged when used for a long period of time, when the battery itself is heated from outside for some reason, or due to equipment failure. In some cases, there has always been a risk of electrolytes that could damage the human body or damage equipment used from the inside of the battery.
[0004]
For this reason, attempts have been made to prevent leakage of the electrolytic solution to the outside by various methods. One example is a method in which a polymer compound is contained or impregnated in the electrolytic solution and the entire electrolytic solution is made into a gel. As the gelation method, there are a method of physically gelling by interaction between polymers, and a method of directly connecting polymers by covalent bond using a crosslinking agent. In general, the former is often called a physical gel and the latter is called a chemical gel. Since these are flexible, they are easy to mold and many of them are relatively light, and these points are a great design advantage for small devices that can secure only a small space for secondary batteries. . However, since it contains a relatively large amount of organic solvent, many of them have insufficient shape stability at high temperatures, such as liquid leakage when exposed to high-temperature conditions for a long time in an unexpected event, or There were also cases in which the battery container was damaged by the increase in internal pressure.
[0005]
On the other hand, so-called “all-solid electrolytes” that do not contain any organic solvent have been actively developed. Examples thereof include a mixture of various lithium salts and polyethylene oxide. In this case, the above-mentioned damage such as leakage is almost overcome, but since there is no liquid portion, the battery characteristics in the low temperature region are poor, and the predetermined conductivity cannot be expressed unless the temperature is relatively high. There are many. This is a fatal drawback for various portable devices that are frequently exposed to relatively low temperature conditions in human activity.
[0006]
On the other hand, in order to overcome the disadvantages found in gel electrolytes and all solid electrolytes, an attempt is also made to use an ionic compound having fluidity at room temperature, that is, a so-called “room temperature molten salt” in combination with some polymer compound as an electrolyte. It has been done. However, many use relatively high-risk compounds such as aluminum halide compounds, and this is a serious problem in terms of safety. Further, since imidazolium-type compounds that have been studied in the past are difficult to ensure a wide potential window, they have a drawback that they are often accompanied by difficulties when applied to lithium batteries and the like for the purpose of increasing capacity.
[0007]
In addition, solid electrolytes based on inorganic compounds as base polymers have been actively developed recently, and some examples have been reported that can exhibit a relatively high conductivity near room temperature. However, none of them has overcome the drawback that molding is difficult due to poor flexibility, and it cannot be denied that it is the greatest obstacle to commercialization.
[0008]
[Problems to be solved by the invention]
As described above, various systems have been proposed as solid electrolytes for use in secondary batteries, and the development competition for next-generation solid electrolytes has become intense every year. In any style, there are merits and demerits, so it is not possible to discuss superiority or inferiority. However, research on gel electrolytes has been actively conducted because of its excellent moldability and relatively high conductivity. . However, if even the problem of electrical conductivity can be solved, an all solid electrolyte having higher stability / safety may be desirable.
[0009]
Here, once again, the problems in each system are summarized. In the case of gel-like solid electrolytes, (1) leakage due to containing a relatively large amount of solvent, risk of ignition, and (2) stability over time. (Whether there is no solid-liquid separation associated with partial crystallization of the gel skeleton), etc. In the case of an all solid electrolyte, there are problems such as (3) degradation of conductivity in low temperature range, and (4) moldability. Let's mention.
[0010]
Therefore, the main object of the present invention is to exhibit high ionic conductivity of 10 −3 S / cm or more even near room temperature, excellent flexibility, mechanical strength, flexibility, stability over time, and human activity. A sufficiently solid polymer electrolyte is obtained in the vicinity.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that these salt monomers are uniformly dispersed in a polymer matrix containing a salt monomer in a molten state at room temperature. By immobilization, the mobility of chemical species that function as charge carriers is not greatly reduced, high ionic conductivity can be exhibited, and there is no leakage etc., which is excellent in safety, stability over time, and moldability. It has been found that a polymer solid electrolyte can be obtained, and further studies have been made to complete the present invention.
[0012]
That is, the present invention relates to a polymer solid electrolyte comprising a polymer having a specific structure, a metal salt, and a plasticizer, wherein the polymer having a specific structure has an ionic interaction and a polymerizable functional group, and the salt. monomer compatibility consisting of one or more polymerizable monomers having no well-ionizing group, Ri polymer copolymer der, said salt monomer, an alkyl quaternary ammonium cation having a polymerizable functional group, polymerization A nitrogen-containing heterocyclic cation having a polymerizable functional group, an oxygen-containing cation having a polymerizable functional group, and a sulfur-containing cation having a polymerizable functional group, and an organic acid anion having a polymerizable functional group it is a polymer solid electrolyte according to claim Rukoto.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The solid polymer electrolyte of the present invention comprises a salt monomer having an ionic interaction and a polymerizable functional group, and one or more polymerizable monomers that are compatible with the salt monomer and have no ion dissociation group. By using a polymer with a specific structure and immobilizing the salt monomer in the polymer matrix in a uniformly dispersed state, it exhibits high ionic conductivity, and there is no leakage and safety and stability over time. Basically, a salt monomer having a polymer functional group with an ionic interaction and a polymerizable functional group is an alkyl quaternary ammonium cation having a polymerizable functional group and a nitrogen-containing complex. It is composed of one of a cyclic cation, an oxygen-containing cation, and a sulfur-containing cation, and an organic acid anion having a polymerizable functional group, and is characterized by being in a molten state at room temperature. .
[0014]
The salt monomer having an ionic interaction used in the present invention has a polymerizable functional group covalently bonded to each of a positively charged site and a negatively charged site constituting itself, and therefore, when molding a polymer solid electrolyte. In other words, it is fixed by a covalent bond to a high molecular weight component contained in the polymer solid electrolyte. As such a salt monomer, compounds represented by the following general formulas [I] to [III] can be used.
[0015]
[Chemical 1]
Figure 0003883439
[0016]
The compound represented by the general formula [I] is composed of an alkyl quaternary ammonium cation or a nitrogen-containing heterocyclic cation having a polymerizable functional group, and an organic acid anion having a polymerizable functional group, P 1 and P 2 each represent a substituent containing a polymerizable functional group, and Ac represents an ionic functional group that directly participates in ionic interaction, and R 1 , R 2 , R 3 , R 4 , R 5 Are each composed of an alkyl group, an alkenyl group, an aralkyl group, an aralkenyl group, an alkoxyalkyl group, an acyloxyalkyl group, a sulfoalkyl group, an aryl group, or an aromatic heterocyclic residue. One pair or more of R 2 , R 3 , R 4 and R 5 may be connected to each other by a covalent bond to form a cyclic structure. In addition, when any one of the covalent bonds represented by R 2 -N + , R 3 -N + , R 4 -N + , R 5 -N + is not a single bond but a double bond, R 3 , One of R 4 and R 5 does not exist. P 1 -R 1 and P 2 -R 2 may be linked by a plurality of covalent bonds, and P 2 is linked by a covalent bond simultaneously with R 2 , R 3 , R 4 and R 5. It doesn't matter. Furthermore, P 1 or R 1 may be linked to one or more sites of P 2 , R 2 , R 3 , R 4 , R 5 by one or more covalent bonds. Similarly, P 2 or R 2 may be linked to one or more sites of P 1 and R 1 by one or more covalent bonds. However, in any case, the polymerizability of P 1 and P 2 is not inhibited by these interconnections.
[0017]
[Chemical 2]
Figure 0003883439
[0018]
The compound represented by the general formula [II] is composed of an oxonium cation having a polymerizable functional group and an organic acid anion having a polymerizable functional group, wherein P 3 and P 4 are each a polymerizable functional group. substituents comprising group, Ac - represents an ionic functional groups directly involved in ionic interactions, R 6, R 7, R 8, R 9 are each an alkyl group, an alkenyl group, an aralkyl group, aralkenyl group , An alkoxyalkyl group, an acyloxyalkyl group, a sulfoalkyl group, an aryl group, or an aromatic heterocyclic residue. Any one or more of R 7 , R 8 and R 9 may be linked to each other by a covalent bond to form a cyclic structure. In addition, when any one of the covalent bonds represented by R 7 -N + , R 8 -N + , R 9 -N + is not a single bond but a double bond, one of R 8 and R 9 is used. Does not exist. P 3 -R 6 and P 4 -R 7 may be linked by a plurality of covalent bonds, and P 4 may be linked by a covalent bond simultaneously with R 8 and R 9 in addition to R 7. Absent. P 3 or R 6 may be linked to one or more sites of P 4 , R 7 , R 8 , R 9 by one or more covalent bonds. Similarly, P 4 or R 7 may be linked to one or more sites of P 3 and R 6 by one or more covalent bonds. However, in any case, the polymerizability of P 3 and P 4 is not inhibited by these interconnections.
[0019]
[Chemical 3]
Figure 0003883439
[0020]
The compound represented by the general formula [III] is composed of a sulfonium cation having a polymerizable functional group and an organic acid anion having a polymerizable functional group, wherein P 5 and P 6 are each a polymerizable functional group. substituents comprising, Ac - represents an ionic functional groups directly involved in ionic interactions, R 10, R 11, R 12, R 13 are each an alkyl group, an alkenyl group, an aralkyl group, aralkenyl group , An alkoxyalkyl group, an acyloxyalkyl group, a sulfoalkyl group, an aryl group, or an aromatic heterocyclic residue. One pair or more of R 11 , R 12 and R 13 may be linked to each other by a covalent bond to form a cyclic structure. In addition, when any one of the covalent bonds represented by R 11 -N + , R 12 -N + , and R 13 -N + is not a single bond but a double bond, one of R 12 and R 13 is used. Does not exist. Also, P 5 -R 10 and P 6 -R 11 may be linked by a plurality of covalent bonds, P 6 and the other R 12, R 13 of R 11, be covalently linked at the same time I do not care. P 5 or R 10 may be linked to one or more sites of P 6 , R 11 , R 12 , R 13 by one or more covalent bonds. Similarly, P 6 or R 11 may be linked to one or more sites of P 5 and R 10 by one or more covalent bonds. However, in any case, the polymerizability of P 5 and P 6 is not inhibited by these interconnections.
[0021]
As the polymerization reaction by the polymerizable functional group, various known polymerization methods such as radical polymerization, ionic polymerization, coordination polymerization, condensation polymerization, and addition polymerization are possible, and radical polymerization and coordination polymerization are possible due to the simplicity of the polymerization operation. However, condensation polymerization and addition polymerization are desirable, but not particularly limited thereto. Further, the molar ratio of the cation site to the anion site constituting the salt monomer, that is, the cation / anion ratio is preferably in the range of 10/1 to 1/10, more preferably 1/1, It is not limited to this range. In addition, when this ratio is not 1/1, the electric charge balance should just be aimed at between the other structural components of polymer solid electrolytes, such as a metal salt.
[0022]
When the molar ratio between the cation and anion constituting the salt monomer is not 1/1, addition of high molecular species or low molecular species or various metal salts that do not have a polymerizable functional group in order to achieve charge balance It is desirable to do. However, in this case, in order to avoid a decrease in the transport number of the cationic carrier (for example, lithium ion) in the electrolyte, the anionic carrier having a low mobility or a relatively high mobility (such as a halogen anion) It is preferable that the concentration contained in the electrolyte is lower. Any chemical species that satisfies this condition can be used for actual use, but in order to obtain good results in electrical properties such as conductivity, anionic chemistry with particularly high mobility is used. It is desirable that the seed, that is, the halogen anion concentration is 500 ppm or less. In the case of a conventional solid electrolyte using a room temperature molten salt, a metal acid anion such as AlCl 4- may be used as a counter anion. In this case, only a low concentration of halogen ions is present immediately after the preparation of the polymer solid electrolyte. Even when it is not contained, there have been many cases in which when it is used for a long period of time, it decomposes due to moisture absorption from the atmosphere and generates a large amount of halogen anions in the system, resulting in deterioration of battery characteristics. The polymer solid electrolyte developed by the present inventors is characterized by using a salt monomer. In the salt monomer synthesis process, the counter anion is exchanged with a counter anion having a polymerizable functional group, or Since the exchange can be performed simultaneously with the counter cation, it is easy to reduce the content of free halogen anions having high mobility.
[0023]
As a method for synthesizing a salt monomer having an ionic interaction used in the present invention, a sulfonic acid silver salt or carboxylic acid silver salt of a sulfonic acid or carboxylic acid having a carbon-carbon double bond, and a carbon-carbon double In addition to a method of reacting with a halide of an ammonium salt having a bond (silver salt method), a sulfonic acid alkyl ester or arylalkyl ester, carboxylic acid alkyl ester of a sulfonic acid or carboxylic acid having a carbon-carbon double bond or Examples of the method include a method of reacting an arylalkyl ester with a tertiary amine having a carbon-carbon double bond (a quaternization method), but the method is not particularly limited thereto.
[0024]
One or more polymerizable monomers having good compatibility with the salt monomer used in the present invention and having no ion dissociation group are used for the purpose of controlling the plasticity, moldability and thermal stability of the polymer solid electrolyte, as well as polymer solids. It is added for the purpose of adjusting the viscosity of the uncured electrolyte stock solution. The polymerizable monomer for this purpose is preferably a carboxylic acid ester, sulfonic acid ester or aromatic compound having a carbon-carbon double bond in the case of radical copolymerization with the above-mentioned salt monomer. An aryl ester typified by acid ester, methacrylic acid ester, sulfonic acid ester, acrylamide, methacrylamide, sulfonamide, or a styrene derivative having a substituent is desirable. There is no particular limitation.
[0025]
The compatibility of the salt monomer precursor and the polymerizable monomer described in the previous section is a transparent uniform solution or paste in an uncured stock solution immediately after mixing the salt monomer precursor, the polymerizable monomer, and other components. Most preferably, it takes the form of However, when the solid polymer electrolyte is actually produced, it is transparent if it can maintain its shape sufficiently stably in the state of emulsification, emulsion, colloid, coacervate, etc. within the finite time range necessary. Not only the polymerizable monomer which can become a uniform solution but various polymerizable monomers are applicable.
[0026]
Examples of the metal salt used in the present invention include LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiBF 4 , LiN (CF 3 SO 3 ) 2 , C 4 F 9 SO 3 Li, and LiC (CF 3 SO 2 3 ) and LiF, and these may be used alone or in combination of two or more.
[0027]
Examples of the plasticizer used in the present invention include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethoxyethane, tetrahydrofuran, dioxane, dimethyl sulfoxide, dimethylformamide, dimethylacetamide and the like. These may be used alone or in admixture of two or more. However, in order to realize the characteristics as an all solid polymer electrolyte, it is desirable that the amount of the plasticizer added is 30 wt% or less with respect to the entire polymer solid electrolyte.
[0028]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by this.
[0029]
[Example]
Synthesis of Salt Monomer A 10.36 g (50 mmol) of 2-acrylamido-2-methyl-1-propanesulfonic acid was dissolved in 500 ml of anhydrous methanol, and 27.6 g (100 mmol) of silver carbonate was added thereto. The solution was stirred gently for 24 hours, and after filtration, a pale yellow transparent solution was obtained. To this filtrate, a 100 mmol / L diallyldimethylammonium chloride / methanol solution was reacted dropwise. The reaction proceeded quantitatively. The reaction product silver chloride was removed by filtration, and a colorless and transparent methanol solution was recovered. The filtrate was concentrated under reduced pressure with an evaporator, and further concentrated under reduced pressure with an oil pump throughout the day to obtain a viscous liquid salt monomer A. The obtained salt monomer A was subjected to composition confirmation by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), and proton nuclear magnetic resonance spectrum ( 1 H-NMR).
[0030]
Preparation of polymer solid electrolyte 1.349 ml of 80 wt% EC / PC solution of the above salt monomer A, 0.102 ml of N, N-dimethylacrylamide, 0.0911 g of methylenebisacrylamide, 0.050 ml of EC / PC mixed solvent, and excess Lithium chlorate (0.2128 g) was mixed at room temperature and stirred all day to dissolve uniformly. The obtained viscous solution was sufficiently degassed, and 0.104 ml of 240 mM benzoyl peroxide EC / PC solution was added and stirred to dissolve uniformly. After stirring, this solution was heated at 80 ° C. for 100 minutes to obtain a white polymer electrolyte.
[0031]
Conductivity evaluation of polymer solid electrolyte The conductivity of the polymer electrolyte obtained above was measured by the AC impedance method. The frequency range during measurement was 50 Hz to 30 MHz, and the voltage was 0.5 V. As a result of the measurement, the electric conductivity at room temperature (20 ° C.) was 5.77 × 10 −3 S / cm. This white solid was not discolored / decomposed even after 2 months.
[0032]
[Comparative example]
In the above examples, when preparing the polymer solid electrolyte, instead of the salt monomer A, 2-acrylamido-2-methyl-1-propanesulfonic acid and dimethylaminoethylbenzyl chloride methacrylate were used to prepare a silver salt method. Although the salt monomer B prepared by the above method was used, the salt monomer B was a white crystal at normal temperature and pressure, and therefore a uniform solution could not be prepared prior to heat curing. In addition, when methyl methacrylate is used instead of N, N-dimethylacrylamide, the compatibility of the metal salt (here, lithium perchlorate) with the other components when preparing the mixed solution before the curing reaction It is difficult to make a uniform solution because it is extremely bad, and when heated and cured as it is, it separates into a salty white solid and a colorless and transparent glassy part, and it is possible to obtain a polymer solid electrolyte with a homogeneous composition I could not do it.
[0033]
【The invention's effect】
According to the present invention, high ionic conductivity of 10 −3 S / cm or more is exhibited even near room temperature, excellent flexibility, mechanical strength, flexibility, stability over time, and sufficiently safe high A molecular solid electrolyte can be obtained.

Claims (9)

特定構造のポリマー、金属塩、および可塑剤からなる高分子固体電解質であって、特定構造のポリマーが、イオン的相互作用と重合性官能基とを有する塩モノマーと、該塩モノマーと相溶性が良くイオン解離基を持たない1種類以上の重合性モノマーとからなる、高分子共重合体であり、前記塩モノマーは、重合性官能基を有するアルキル四級アンモニウムカチオン,重合性官能基を有する含窒素複素環式カチオン,重合性官能基を有する含酸素カチオン,および重合性官能基を有する含硫黄カチオンの中の1つと、重合性官能基を有する有機酸アニオンとから構成されることを特徴とする高分子固体電解質。A solid polymer electrolyte comprising a polymer having a specific structure, a metal salt, and a plasticizer, wherein the polymer having a specific structure is compatible with the salt monomer having an ionic interaction and a polymerizable functional group. consisting of better ionizing group one or more polymerisable monomers having no, Ri polymer copolymer der, said salt monomer has an alkyl quaternary ammonium cation having a polymerizable functional group, the polymerizable functional group wherein the nitrogen-containing heterocyclic cations, oxygen-containing cation having a polymerizable functional group, and one in the sulfur-containing cation having a polymerizable functional group, a Rukoto is composed of an organic anion having a polymerizable functional group Solid polymer electrolyte. 塩モノマーが、重合性官能基を有するアルキル四級アンモニウムカチオンと、重合性官能基を有する有機酸アニオンとから構成されることを特徴とする、請求項1記載の高分子固体電解質。 The polymer solid electrolyte according to claim 1, wherein the salt monomer is composed of an alkyl quaternary ammonium cation having a polymerizable functional group and an organic acid anion having a polymerizable functional group. 塩モノマーが、重合性官能基を有する含窒素複素環式カチオンと、重合性官能基を有する有機酸アニオンとから構成されることを特徴とする、請求項1記載の高分子固体電解質。 The polymer solid electrolyte according to claim 1, wherein the salt monomer is composed of a nitrogen-containing heterocyclic cation having a polymerizable functional group and an organic acid anion having a polymerizable functional group. 塩モノマーが、重合性官能基を有する含酸素カチオンと、重合性官能基を有する有機酸アニオンから構成されることを特徴とする、請求項1記載の高分子固体電解質。 The polymer solid electrolyte according to claim 1, wherein the salt monomer is composed of an oxygen-containing cation having a polymerizable functional group and an organic acid anion having a polymerizable functional group. 塩モノマーが、重合性官能基を備えた含硫黄カチオンと、重合性官能基を備えた有機酸アニオンから構成されることを特徴とする、請求項1記載の高分子固体電解質。 The solid polymer electrolyte according to claim 1, wherein the salt monomer is composed of a sulfur-containing cation having a polymerizable functional group and an organic acid anion having a polymerizable functional group. 塩モノマーが、室温で溶融状態にあることを特徴とする、請求項〜請求項5のいずれかに記載の高分子固体電解質。Salt monomer, characterized in that a molten state at room temperature, solid polymer electrolyte according to any one of claims 1 to 5. 塩モノマー中のカチオンの対アニオンとして含まれる、ハロゲンイオンすなわちF-、Cl-、Br-、又はI-の量が、高分子固体電解質全体に対して500ppm以下であることを特徴とする、請求項〜請求項6のいずれかに記載の高分子固体電解質。The amount of a halogen ion, that is, F , Cl , Br , or I contained as a counter anion of a cation in a salt monomer is 500 ppm or less based on the whole polymer solid electrolyte, Item 7. The polymer solid electrolyte according to any one of Items 1 to 6. 金属塩が、アルカリ金属塩若しくはアルカリ土類金属塩を、単独若しくは2種以上を混合したものであることを特徴とする、請求項7記載の高分子固体電解質。 8. The solid polymer electrolyte according to claim 7, wherein the metal salt is an alkali metal salt or an alkaline earth metal salt, or a mixture of two or more thereof. 可塑剤の配合量が、高分子固体電解質全体に対して30wt%以下であることを特徴とする、請求項1〜請求項8のいずれかに記載の高分子固体電解質。 The polymer solid electrolyte according to any one of claims 1 to 8, wherein the blending amount of the plasticizer is 30 wt% or less with respect to the entire polymer solid electrolyte.
JP2002017735A 2002-01-25 2002-01-25 Polymer solid electrolyte Expired - Fee Related JP3883439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002017735A JP3883439B2 (en) 2002-01-25 2002-01-25 Polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017735A JP3883439B2 (en) 2002-01-25 2002-01-25 Polymer solid electrolyte

Publications (2)

Publication Number Publication Date
JP2003217344A JP2003217344A (en) 2003-07-31
JP3883439B2 true JP3883439B2 (en) 2007-02-21

Family

ID=27653320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017735A Expired - Fee Related JP3883439B2 (en) 2002-01-25 2002-01-25 Polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JP3883439B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4239632B2 (en) * 2003-03-20 2009-03-18 住友ベークライト株式会社 Lithium ion conductive gel electrolyte
JP4300954B2 (en) * 2003-09-26 2009-07-22 住友ベークライト株式会社 Polymer solid electrolyte
JP4622220B2 (en) * 2003-09-29 2011-02-02 住友ベークライト株式会社 ALL-SOLID ELECTROLYTE, ITS MANUFACTURING METHOD, AND SECONDARY BATTERY USING THE ALL-SOLID ELECTROLYTE
JP2005142024A (en) * 2003-11-06 2005-06-02 Sumitomo Bakelite Co Ltd Solid polyelectrolyte and secondary battery using the same
JP2007258081A (en) * 2006-03-24 2007-10-04 Sumitomo Bakelite Co Ltd Electrolyte composition, ionic conductive electrolyte, and secondary battery using it

Also Published As

Publication number Publication date
JP2003217344A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
US4620944A (en) Macromolecular material of ionic conduction for producing electrolytes or electrodes
US9711823B2 (en) Electrolyte having eutectic mixture of hetero cyclic compound and lithium salt and electrochemical device containing the same
JPH1186632A (en) Molten salt type polymer electrolyte
KR101737434B1 (en) Ionic polyhedral oligomeric silsesquioxane, electrolyte composition for secondary battery including the same, polymer electrolyte for secondary battery and method of manufacturing the same
Yu et al. Lithium salt-induced in situ living radical polymerizations enable polymer electrolytes for lithium-ion batteries
JP3883439B2 (en) Polymer solid electrolyte
JP3883442B2 (en) Polymer solid electrolyte and method for producing the same
Wang et al. Facile Assembly of C–N Bond-Containing Polymer Electrolytes Enabled by Lithium Salt-Catalyzed Aza-Michael Addition
JP2012142196A (en) Polyvalent ion conductive material, polyvalent ion conductive electrolyte, polyvalent ion conductive electrolyte-electrode assembly, and polyvalent ion battery
KR20140074540A (en) Block copolymers for lithium polymer batteries, electrolytes containing the same and lithium polymer batteries
JP4830314B2 (en) Composition for ion conductive electrolyte, ion conductive electrolyte, and secondary battery using the ion conductive electrolyte
JP4389454B2 (en) Polymer solid electrolyte
JP2003142160A (en) Lithium ion conductive gel-form electrolyte and polymer lithium ion secondary battery
KR20230014577A (en) Solid-polymer electrolyte with covalent organic frameworks and all-solid battery comprising the same
JP2006269303A (en) Ion conducting electrolyte and secondary battery using it
JP2003213066A (en) Lithium ion-conductive gel-like electrolyte
JP3558243B2 (en) Rechargeable battery
JP2006185831A (en) Composition for lithium ion conductive electrolyte and production method for lithium ion conductive electrolyte
JP4145617B2 (en) Lithium ion conductive gel electrolyte
JP4300954B2 (en) Polymer solid electrolyte
JP2006182975A (en) Composition for electrolyte, ion conductive electrolyte obtained from the composition and secondary battery using the electrolyte
JP2004303492A (en) Solid polyelectrolyte
CN117865893A (en) POSS-based zwitterionic polymer electrolyte membrane and preparation method thereof
Silva Genier New Solid Polymer Electrolytes for Lithium, Sodium, and Calcium-based Batteries
JP4945992B2 (en) Ion conductive electrolyte and secondary battery using the ion conductive electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees