JP4538183B2 - Ionic resin sheet - Google Patents

Ionic resin sheet Download PDF

Info

Publication number
JP4538183B2
JP4538183B2 JP2002236726A JP2002236726A JP4538183B2 JP 4538183 B2 JP4538183 B2 JP 4538183B2 JP 2002236726 A JP2002236726 A JP 2002236726A JP 2002236726 A JP2002236726 A JP 2002236726A JP 4538183 B2 JP4538183 B2 JP 4538183B2
Authority
JP
Japan
Prior art keywords
integer
group
sheet
imidazole
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002236726A
Other languages
Japanese (ja)
Other versions
JP2004047400A5 (en
JP2004047400A (en
Inventor
敬一 宇野
Original Assignee
敬一 宇野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敬一 宇野 filed Critical 敬一 宇野
Priority to JP2002236726A priority Critical patent/JP4538183B2/en
Publication of JP2004047400A publication Critical patent/JP2004047400A/en
Publication of JP2004047400A5 publication Critical patent/JP2004047400A5/ja
Application granted granted Critical
Publication of JP4538183B2 publication Critical patent/JP4538183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はイオン性樹脂シートに関し,これから得られるイオン伝導性の固体電解質膜はリチウムイオン電池,燃料電池,キャパシターなどの電解質としての応用が期待されるものである。
【0002】
【従来の技術】
携帯用情報機器の発展や地球環境・エネルギー問題への対応を背景に電池やキャパシターなどが脚光を浴びている。これら電池やキャパシターに必須の構成成分としてイオン伝導性の電解質が用いられている。現在は液体の電解液にイオン性の低分子塩を溶解した電解質溶液が主に用いられている。また,エーテル系,アクリル系,フッ素系の直鎖ポリマーあるいは架橋されたポリマーに電解質溶液を多量に含ませたゲル状の電解質もある。いずれも,機械的特性,絶縁特性を付与するために,不織布や孔空きフィルムなどのシート状樹脂成形物に多量の電解質溶液を含浸させた状態で用いられている。
【0003】
しかしながら,従来の液状電解液型は勿論,ゲル型においても,電池が破損したとき,危険な電解液が漏出する点が問題となっている。
【0004】
【発明が解決しようとする課題】
上記の電解液の漏出がなく,電池やキャパシターの電解質として用い得る様なイオン伝導性を有する電解質を得ようとするのが,本発明が解決しようとする課題である。
【0005】
【課題を解決するための手段】
上記課題を解決するために,イミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するカチオンとBF又はPF又はC2n+1CO(但しnは1〜4の整数)又はC2n+1SO(但しnは1〜4の整数)又は(C2n+1SON(但しnは0〜2の整数)又はRSO(但しRは脂肪族(基)又はArSO(但しArは芳香族基)に由来するアニオンとの塩を(A)、イミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するカチオンと BF又はPF又はC2n+1CO(但しnは1〜4の整数)又はC2n+1SO(但しnは1〜4の整数)又は(C2n+1SON(但しnは0〜2の整数)又はRSO(但しRは脂肪族基)又はArSO(但しArは芳香族基)に由来するアニオンとから構成される塩構造および重合性官能基を含む単量体を(B)とするとき、A/B=99.9/0.1〜0/100(重量比)のイオン性化合物が、塩形成性官能基を含まない樹脂からなるシート状成形物に含浸されており、該含浸されたシート状樹脂成型物中および表面の単量体Bを重合させて得られることを特徴とするイオン性樹脂シートを用いる。また、イオン性化合物において、更に単量体(B)と共重合可能な重合性官能基を2個以上有する単量体(C)を単量体(B)に対して0.5モル%以上含有することを特徴とするイオン性樹脂シートを用いる。
【0006】
【発明の実施の形態】
本発明について更に詳しく説明する。
本発明において用いる塩(A)は、イミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するカチオンとBF又はPF又はC2n+1CO(但しnは1〜4の整数)又はC2n+1SO(但しnは1〜4の整数)又は(C2n+1SON(但しnは0〜2の整数)又はRSO(但しRは脂肪族基)又はArSO(但しArは芳香族基)に由来するアニオンとの塩である。
【0007】
イミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するカチオンとは、イミダゾール環由来のアンモニウムカチオンであり、不飽和基などの重合性官能基を含む場合は、重合前の単量体における置換基の炭素数を指す。例示すれば、イミダゾリウムカチオン、1−メチル−2−エチルイミダゾリウムカチオン、1−メチル−2−n−ブチルイミダゾリウムカチオン、1−ビニル−3−エチルイミダゾリウムカチオン、ベンズイミダゾリウムカチオンなどを挙げることができる。
【0008】
これら特定のアンモニウムカチオンは、耐熱性、耐還元性に優れ、電気化学窓が広くとれ、各種電池やキャパシターに用いるために好ましい。特に好ましいイミダゾール環由来アンモニウムカチオン種としては,重合前の形で示せば1−ビニル−3−エチルイミダゾリウムカチオン,1−メチル−3−アリルイミダゾリウムカチオン,1−(4−ビニルベンジル)−3−n−ブチルイミダゾリウムカチオン,1−(ビニルオキシエチル)−3−エチルイミダゾリウムカチオン,1−ビニルイミダゾリウムカチオン,1−アリルイミダゾリウムカチオン,N−アリルベンズイミダゾリウムカチオン,1−メチル−3−エチルイミダゾリウムカチオン,イミダゾリウムカチオン,ベンズイミダゾリウムカチオンなどを挙げることが出来る
【0009】
本発明において、イミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するアンモニウムカチオンは次の様な特定のアニオンとイオン反応で容易に塩構造を形成する。アニオン種として、BF,PF,C2n+1CO(但しnは1〜4の整数),C2n+1SO(但しnは1〜4の整数),(C2n+1SON(但しnは0〜2の整数)、RSO(Rは脂肪族基),ArSO(Arは芳香族基)を挙げることができる。これらのアニオン種は耐熱性,耐酸化性に優れ,電池やキャパシターに用いるために好ましい。特に,−SO−N−SO−アニオン,−SO−Oアニオンが好ましい。又、イミダゾールやその誘導体は塩基性であり、酸成分と酸塩基反応により容易に塩を形成する。
【0010】
特に好ましいアニオン種としてはビス−{(トリフルオロメチル)スルフォニル}アミドアニオン,2,2,2−トリフルオロ−N−(トリフルオロメチルスルフォニル)アセトアミドアニオン,ビス−{(ペンタフルオロエチル)スルフォニル}アミドアニオン,ビス−{(フルオロ)スルフォニル}アミドアニオン,テトラフルオロボレートアニオン,トリフルオロメタンスルフォネートアニオン,アルキル置換ジフェニルエーテルスルフォネートアニオン(炭素数1〜30のアルキル基),アリルスルフォネートアニオン,p−スチレンスルフォネートアニオンなどを挙げることが出来る。
【0011】
単量体(B)に含まれる重合性官能基としてビニル基,アクリル基,メタクリル基,アリル基などの炭素−炭素不飽和基,エポキシ基,オキセタン基などの環状アルコキシド基やイソシアネート基,水酸基,カルボキシル基などを例示できる。
【0012】
本発明のイミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するイミダゾリウムカチオン、BF又はPF又はC2n+1CO(但しnは1〜4の整数)又はC2n+1SO(但しnは1〜4の整数)又は(C2n+1SON(但しnは0〜2の整数)又はRSO(但しRは脂肪族基)又はArSO(但しArは芳香族基)に由来するアニオンとから構成される塩構造および重合性官能基を含む単量体を例示すれば、イミダゾリウム アリルスルフォネート,ベンズイミダゾリウム アリルスルフォネート,1−アルキルイミダゾリウム アリルスルフォネート(但し,アルキルはC1〜C10),1−アルキルイミダゾリウム p−スチレンスルフォネート(但し,アルキルはC1〜C10),イミダゾリウム p−スチレンスルフォネート,ベンズイミダゾリウム p−スチレンスルフォネート,1−ビニル−3−アルキルイミダゾリウム 4−メチルフェニルスルフォネート(但し,アルキルはC1〜C10),1−ビニル−3−アルキルイミダゾリウム ビス−{(トリフルオロメチル)スルフォニル}アミド(但し,アルキルはC1〜C10),1−ビニル−3−アルキルイミダゾリウム テトラフルオロボレート(但し,アルキルはC1〜C10),1−(4−ビニルベンジル)−3−アルキルイミダゾリウム ビス−{(トリフルオロメチル)スルフォニル}アミド(但し,アルキルはC1〜C10),1−(4−ビニルベンジル)−3−アルキルイミダゾリウム テトラフルオロボレート(但し,アルキルはC1〜C10),1−グリシジル−3−アルキル−イミダゾリウム ビス−{(トリフルオロメチル)スルフォニル}アミド(但し,アルキルはC1〜C10),1−グリシジル−3−アルキル−イミダゾリウム テトラフルオロボレート(但し,アルキルはC1〜C10)などがある。
【0013】
更に,上記単量体(B)と共重合可能な重合性官能基を2個以上含む単量体(C)を単量体(B)に対して0.5モル%以上含有することが好ましい。単量体(C)として、例えばジビニルベンゼン,ジアリルフタレート,エチレングリコールジメタクリレート,ジエチレングリコールジメタクリレート,トリエチレングリコールジメタクリレート,トリメチロールプロパントリメタクリレート,ペンタエリスリトールテトラメタクリレート,トリアリルイソシアヌレート,トリアリルシアヌレート,ジアリル−ジメチルアンモニウム ビス−{(トリフルオロメチル)スルフォニル}アミド,ジアリル−ジメチルアンモニウム テトラフルオロボレート,2,2−ビス(グリシジロキシフェニル)プロパン,などを挙げることができる。
【0014】
本発明においてイミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するカチオンとBF又はPF又はC2n+1CO(但しnは1〜4の整数)又はC2n+1SO(但しnは1〜4の整数)又は(C2n+1SON(但しnは0〜2の整数)又はRSO(但しRは脂肪族基)又はArSO(但しArは芳香族基)に由来するアニオンとの塩を(A)、イミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するカチオンとBF又はPF又はC2n+1CO(但しnは1〜4の整数)又はC2n+1SO(但しnは1〜4の整数)又は(C2n+1SON(但しnは0〜2の整数)又はRSO(但しRは脂肪族基)又はArSO(但しArは芳香族基)に由来するアニオンとから構成される塩構造および重合性官能基を含む単量体を(B)とするとき、A/B=99.9/0.1〜0/100(重量比)のイオン性化合物が、塩形成性官能基を含まない樹脂からなるシート状成形物に含浸されており、該含浸されたシート状樹脂成型物中および表面の単量体Bを重合させて得られることを特徴とするイオン性樹脂シートを用いる。
A/B(重量比)が99.9/0.1を超えると液の漏出・溶出を防止するのが困難になる。A/Bは0/100でもよいが、イオン伝導性を改善し、また電極との密着性向上、充放電に伴う電極の膨張・収縮を吸収するためには、A/Bは20/80〜50/50の範囲が好ましい。
【0015】
次に,A/B(重量比)=99.9/0.1〜0/100からなるイオン性化合物が含浸されているイオン性樹脂シートについて説明する。イオン性化合物が含浸されているイオン性樹脂シートを製造するには,大きく分けると次の二つの方法がある。第一の方法は,予めシート状の樹脂成形物を作っておき,それにイオン性化合物を含浸する方法,第二はイオン性化合物と樹脂の混合物からシート状成形物を作る方法である。
【0016】
第一の方法において用いるシート状樹脂成形物とは,ポリテトラフルオロエチレン,ポリフッ化ビニリデンなどのフッ素系ポリマー,ポリエチレン,ポリプロピレンなどのポリオレフィン,ポリアクリロニトリル,ポリスチレンなどのビニル系ポリマー,ポリスルフォン,ポリエーテルスルフォンなどのポリスルフォン系ポリマー,ポリエーテルケトン,ポリエーテルエーテルケトンなどのポリエーテルケトン系ポリマー,ポリエーテルイミド,ポリアミドイミド,ポリイミドなどのポリイミド系ポリマー(いずれも共重合ポリマーを含むが、塩形成性官能基を含まない)のシート状樹脂成形物である。シート状樹脂成形物とは繊維編織物や不織布,多孔質フィルムやシート類,孔のないフィルムやシート類であり,厚さ5〜100μm,好ましくは10〜50μmの不織布や多孔質フィルムである。その不織布の透気度(JIS−1096による)は5〜40cc/m・sec,多孔質フィルムの孔径は0.05μm〜1μm,好ましくは0.05μm〜0.5μm,気孔率は20%〜80%,好ましくは35%〜60%である。これらのシート状樹脂成形物は既存の製法,設備で製造でき,又市販品を利用出来る。
【0017】
第二の方法は,イオン性化合物と樹脂および場合により溶剤を混合しておき,それをシート状に成形することによって製造することが出来る。シート状樹脂成形物の製法としては溶融製膜,溶液キャスト法,溶液コーティング法などが適用でき,得られるシートを更に,延伸,熱処理などを行うことも出来る。
【0018】
次いで,イオン性化合物が含浸されたシート状樹脂成形物中および表面に存在する重合性官能基を含有する単量体(B)を重合させ高分子量化させる。高分子量化は,イオン性化合物混合物が漏液しない程度に増粘しておれば良く,特に分子量で規制する必要はないが,5000以上50000程度であれば良い。
【0019】
単量体(B)を重合させるためには,単量体と共に重合開始剤も予め含浸させたシート状樹脂成形物を加熱すれば良い。重合性官能基が炭素−炭素不飽和基である場合,重合開始剤としては,ベンゾイルパーオキサイド,ジクミルパーオキサイド,ジ−t−ブチルパーオキサイド,1,1−ビス(t−ブチルパーオキシ)シクロヘキサン,キュメンハイドロパーオキサイドなどのパーオキサイド類,2,2’−アゾビスイソブチロニトリル,2,2’−アゾビス(2,4−ジメチルバレロニトリル)などのアゾビス化合物,過硫酸アンモニウムなどの無機系開始剤などを挙げることが出来る。
重合開始剤の使用量は,通常重合性単量体の総重量に対して0.1〜10%,好ましくは,1〜5%である。
【0020】
単量体(B)を重合させるために電子線などの放射線を照射することも出来る。この場合,シート状樹脂成形物自体の架橋反応や単量体のシート状樹脂成形物へのグラフト反応が起こることもあるが、なんら差し支えない。照射はイオン性化合物の含浸前(後重合法)でも,含浸後でも良く,照射量は0.1〜50Mrad,好ましくは1〜20Mradである。
【0021】
本発明においてイオン伝導性を向上させるために他の低分子量のイオン性化合物を混合させることは好ましい態様のひとつである。勿論この場合,溶液中で低分子イオン性化合物を混合しておくことが好ましい。
【0022】
本発明で用いる低分子(以下,高分子に対して使用しており,通常,分子量1000以下を指す)のイオン性化合物について説明する。本発明のイオン性樹脂シートをリチウムイオン2次電池の電解質として用いるために,リチウムイオンを生成する低分子イオン性化合物を併用する。
リチウムイオンを生成する低分子イオン性化合物として,例えば,次の様な化合物を挙げることが出来る。即ち,LiPF,LiClO,LiBF,LiN(SOCFLiN(SO
【0023】
本発明において,更にエチレンカーボネート,プロピレンカーボネート,γ−ブチロラクトン,スルフォラン,1,2−ジメトキシエタン,テトラハイドロフラン,1,3−ジオキソラン,ジメチルカーボネート,ジエチルカーボネート,メチルエチルカーボネート,アセトニトリルなどの溶媒,又はこれらの混合溶媒を可塑剤として併用することも出来る。
【0024】
【実施例】
以下に本発明について,実施例,及び比較例を挙げて,具体的に説明するが,実施例によって本発明が限定されるものではない。
実施例,比較例中の測定は下記の方法によって行った。
イオン伝導率:電極面積0.95cmの白金電極間に試料を挟み,室温,65%RHで,交流インピーダンス法(0.1V,周波数1Hz〜10MHz)により膜抵抗を測定し,イオン伝導率を算出した。
釘刺し試験:イオン性樹脂シートに直径3mmの釘を刺し込み,引き抜いて,液の漏出を観察した。
また実施例中で合成した化合物はIRスペクトル,NMRスペクトルで同定した。
【0025】
(実施例1)1−メチルイミダゾール16.4gr(0.2mol)を100mlの1,1,1−トリクロロエタンに溶解し,激しく攪拌しながら,n−ブチルブロマイド27.4gr(0.2mol)を50mlの1,1,1−トリクロロエタンに溶解した溶液を1時間かけて滴下後,更に2時間還流させながら反応させた。反応液を分液分離し,各50mlの1,1,1−トリクロロエタンで2回洗浄後,70℃,0.1mmで1時間,乾燥し,1−ブチル−3−メチルイミダゾリウムブロマイド(BMIBr)を単離した。
カリウムビス−{(トリフルオロメチル)スルフォニル}アミド(KTFSI)31.9gr(0.1mol)を100mlの水に70℃で溶解し,50℃で攪拌しながら,上で得たBMIBr 21.9gr(0.1mol)を50mlの水に溶解した溶液を15分で滴下・混合した。50℃で激しく攪拌しながら更に2時間,複分解反応を行った後,水層を分離除去した。生成物を各50mlの水で2回洗浄した後,60℃,0.1mmHgで2時間乾燥し,1−ブチル−3メチルイミダゾリウムビス−{(トリフルオロメチル)スルフォニル}アミド(BMITFSI)を得た。
同様にして,1−メチルイミダゾール16.4gr(0.2mol)とアリルブロマイド24.2gr(0.2mol)とから1−アリル−3−メチルイミダゾリウムブロマイド(AMIBr)を合成,更にAMIBr20.3gr(0.1mol)とKTFSI 31.9gr(0.1mol)とから1−アリル−3−メチルイミダゾリウムビス−{(トリフルオロメチル)スルフォニル}アミド(AMITFSI)を合成した。
次に,上記に合成したBMITFSI 5gr,AMITFSI 5gr,2,2’−アゾビスイソブチロニトリル0.2gr,LiN(SOCF(LiTFSI)2gr,をテトラヒドロフラン10grに溶解した溶液(I)を調整した。
溶液Iを市販のポリエチレン製の微多孔膜(27μm,気孔率50%)に減圧含浸した後,テトラヒドロフランを室温,減圧で除去した。
本含浸シートを70℃で2時間加熱し,重合させた。このシートは釘刺し試験で漏液は認められず,イオン伝導率は1.2×10−3S/cmであった。
【0026】
(比較例1)AMITFSIを用いない以外,実施例1と同様にして含浸シートを作成し,釘刺し試験を行ったところ,漏液が認められた。
【0027】
(実施例2)実施例1と同様にして,BMITFSI 7gr,AMITFSI 3gr,2,2’−アゾビスイソブチロニトリル0.15gr,LiTFSI 2grをテトラヒドロフラン10grに溶解した溶液(II)を調整した。溶液IIを用い,実施例1と同様にして,ポリエチレン製微多孔膜に含浸・重合させて得られたシートは釘刺し試験で漏液が認められず,イオン伝導率は7.3×10−2S/cmであった。
【0028】
(実施例3)1−メチルイミダゾール16.4gr(0.2mol)とエチルブロマイド21.8gr(0.2mol)を用い,実施例1と同様にして,1−エチル−3−メチルイミダゾリウムブロマイド(EMIBr)を合成した。更に,実施例1と同様にして,EMIBr 19.1gr(0.1mol)とKTFSI 31.9gr(0.1mol)を用い,1−エチル−3−メチルイミダゾリウムビス−{(トリフルオロメチル)スルフォニル}アミド(EMITFSI)を合成した。
同様にして,1−ビニルイミダゾール18.8gr(0.2mol)とエチルブロマイド21.8gr(0.2mol)とから,1−ビニル−3−エチルイミダゾリウムブロマイド(VEIBr)を合成,更にVEIBr20.3gr(0.1mol)とKTFSI 31.9gr(0.1mol)とから1−ビニル−3−エチルイミダゾリウムビス−{(トリフルオロメチル)スルフォニル}アミド(VEITFSI)を合成した。
次に,ポリフッ化ビニリデン(エルフ アトケム社 KYNAR 301F)15grをメチルエチルケトン85grに,80℃で4時間,加熱して溶解した。本溶液を厚さ3mmのガラス板上にキャストし,室温でゆっくりと乾燥した。得られた気孔率55%のシートを上記で合成したEMITFSI 7gr,VEITFSI 3gr,2,2’−アゾビスイソブチロニトリル0.15gr,LiTFSI 3grをプロピレンカーボネート10grに溶解した溶液(III)に室温で浸漬し,含浸した。含浸シートを100℃で48時間,真空乾燥し,プロピレンカーボネートを除くと同時にVEITFSIを重合させた。
得られた含浸シートは,釘刺し試験で漏液は認められす,イオン伝導率は2.5×10−2S/cmであった。
【0029】
(実施例4)1−ビニルイミダゾール18.8gr(0.2mol)を50mlの水/エタノール(50/50)に溶解し,攪拌しながらビス−{(トリフルオロメチル)スルフォニル}アミド(HTFSI)56.2gr(0.2mol)を50mlの水/エタノール(50/50)に溶解した溶液に滴下・混合した。更に50℃で2時間攪拌後,水/エタノールを減圧で溜去させ,1−ビニルイミダゾリウム ビス−{(トリフルオロメチル)スルフォニル}アミド(VITFSI)を得た。
次に,ポリエーテルスルフォン(アモコ ポリマー社 RADEL A−200A)18gr,上記で合成したVITFSI 12gr,ベンゾイルパーオキサイド0.6grをジメチルアセトアマイド100mlに溶解し,厚さ3mmのガラス板上にキャストした。ガラス板をつけたまま,100℃で2分,130℃で30分,乾燥と同時にVITFSIの重合を行った。得られた30μmの膜は釘刺し試験で液の漏出はなく,イオン伝導率は6.0×10−4S/cmであった。
【0030】
【発明の効果】
以上に記述した通り、イミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するカチオンとBF又はPF又はC2n+1CO(但しnは1〜4の整数)又はC2n+1SO(但しnは1〜4の整数)又は(C2n+1SON(但しnは0〜2の整数)又はRSO(但しRは脂肪族基)又はArSO(但しArは芳香族基)に由来するアニオンとの塩を(A)、イミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するカチオンとBF又はPF又はC2n+1CO(但しnは1〜4の整数)又はC2n+1SO(但しnは1〜4の整数)又は(C2n+1SON(但しnは0〜2の整数)又はRSO(但しRは脂肪族基)又はArSO(但しArは芳香族基)に由来するアニオンとから構成される塩構造および重合性官能基を含む単量体を(B)とするとき、A/B=99.9/0.1〜0/100(重量比)のイオン性化合物が、塩形成性官能基を含まない樹脂からなるシート状成形物に含浸されており、該含浸されたシート状樹脂成型物中および表面の単量体Bを重合させて高分子化する。生成する高分子はイミダゾール環由来の特定のアンモニウムカチオンおよびBFアニオンなど特定のアニオン構造部分を有するので、併用する低分子塩と親和性が高く、該塩をよく溶解保持すると共に、単量体自体は重合し固化するため、低分子塩の漏出・溶出防止効果が発現する。この効果は単量体(B)と共重合可能な重合性官能基を2個以上有する単量体(C)を併用すると更に改善される。重合後の樹脂シートは大量のイオン種を含有するため、イオン伝導性が高く、また塩形成性官能基を含まない樹脂層は樹脂シートの機械的な性質や耐化学薬品性、耐熱性を賦与し、両方あいまって本発明の樹脂シートは電池やキャパシターなどの固体電解質への応用(電解質層、電極層など)が期待できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ionic resin sheet, and the ion conductive solid electrolyte membrane obtained therefrom is expected to be applied as an electrolyte for lithium ion batteries, fuel cells, capacitors, and the like.
[0002]
[Prior art]
Batteries and capacitors are in the spotlight due to the development of portable information devices and the response to global environmental and energy issues. An ion-conducting electrolyte is used as an essential component for these batteries and capacitors. At present, an electrolyte solution in which an ionic low-molecular salt is dissolved in a liquid electrolyte is mainly used. There are also gel electrolytes in which a large amount of an electrolyte solution is contained in an ether-based, acrylic-based, or fluorine-based linear polymer or a crosslinked polymer. Both are used in a state where a large amount of electrolyte solution is impregnated into a sheet-like resin molded product such as a nonwoven fabric or a perforated film in order to impart mechanical properties and insulating properties.
[0003]
However, not only the conventional liquid electrolyte type but also the gel type has a problem in that a dangerous electrolyte leaks when the battery is damaged.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to obtain an electrolyte having ion conductivity that can be used as an electrolyte for batteries and capacitors without leakage of the electrolyte.
[0005]
[Means for Solving the Problems]
In order to solve the above problem, cation derived from imidazole in which a hydrocarbon group having 1 to 10 carbon atoms is bonded to imidazole or its N atom and / or a carbon atom forming a ring, and BF 4 or PF 6 Or C n F 2n + 1 CO 2 (where n is an integer of 1 to 4) or C n F 2n + 1 SO 3 (where n is an integer of 1 to 4) or (C n F 2n + 1 SO 2 ) 2 N (where n is 0) An integer of ˜2) or RSO 3 (where R is an aliphatic (group) or ArSO 3 (where Ar is an aromatic group) a salt with an anion (A), imidazole or its N atom and / or ring A cation derived from imidazole in which a hydrocarbon group having 1 to 10 carbon atoms is bonded to the carbon atom being formed, and BF 4 or PF 6 or C n F 2n + 1 CO 2 (where n is an integer of 1 to 4) or C n F 2n + 1 SO 3 (where n is an integer of 1 to 4) or (C n F 2n + 1 SO 2 ) 2 N (where n is an integer of 0 to 2) or RSO 3 (where R is an aliphatic group) or ArSO 3 ( However, when Ar is a monomer having a salt structure composed of an anion derived from an aromatic group) and a polymerizable functional group, (A) = 99.9 / 0.1-0 / 100 (weight ratio) of an ionic compound is impregnated in a sheet-like molded article made of a resin not containing a salt-forming functional group, and the monomer B in and on the impregnated sheet-like resin molded article is An ionic resin sheet obtained by polymerization is used, and a monomer having two or more polymerizable functional groups copolymerizable with the monomer (B) (C ) In an amount of 0.5 mol% or more based on the monomer (B). The characteristic ionic resin sheet is used.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in more detail.
The salt (A) used in the present invention is a cation derived from imidazole in which a hydrocarbon group having 1 to 10 carbon atoms is bonded to imidazole or its N atom and / or a carbon atom forming a ring, and BF 4 or PF 6 or C n F 2n + 1 CO 2 (where n is an integer of 1 to 4) or C n F 2n + 1 SO 3 (where n is an integer of 1 to 4) or (C n F 2n + 1 SO 2 ) 2 N (where n Is a salt with an anion derived from RSO 3 (where R is an aliphatic group) or ArSO 3 (where Ar is an aromatic group).
[0007]
A cation derived from imidazole in which a hydrocarbon group having 1 to 10 carbon atoms is bonded to imidazole or its N atom and / or a carbon atom forming a ring is an ammonium cation derived from an imidazole ring and unsaturated. When it contains a polymerizable functional group such as a group, it indicates the number of carbon atoms of the substituent in the monomer before polymerization. For example, imidazolium cation, 1-methyl-2-ethylimidazolium cation, 1-methyl-2-n-butylimidazolium cation, 1-vinyl-3-ethylimidazolium cation, benzimidazolium cation, etc. be able to.
[0008]
These specific ammonium cations are excellent in heat resistance and reduction resistance, have a wide electrochemical window, and are preferable for use in various batteries and capacitors. Particularly preferred imidazole ring-derived ammonium cation species include 1-vinyl-3-ethylimidazolium cation, 1-methyl-3-allylimidazolium cation, and 1- (4-vinylbenzyl) -3 in the form before polymerization. -N-butylimidazolium cation, 1- (vinyloxyethyl) -3-ethylimidazolium cation, 1-vinylimidazolium cation, 1-allylimidazolium cation, N-allylbenzimidazolium cation, 1-methyl-3 -Ethyl imidazolium cation, imidazolium cation, benzimidazolium cation, etc.
In the present invention, an ammonium cation derived from imidazole in which a hydrocarbon group having 1 to 10 carbon atoms is bonded to imidazole or its N atom and / or a carbon atom forming a ring is represented by the following specific anion: A salt structure is easily formed by an ionic reaction. As anion species, BF 4 , PF 6 , C n F 2n + 1 CO 2 (where n is an integer of 1 to 4), C n F 2n + 1 SO 3 (where n is an integer of 1 to 4), (C n F 2n + 1 SO 2) 2 n (where n is integer of 0 to 2), RSO 3 (R may be mentioned aliphatic group), ArSO 3 (Ar is an aromatic group). These anionic species are excellent in heat resistance and oxidation resistance, and are preferable for use in batteries and capacitors. In particular, —SO 2 —N—SO 2 —anion and —SO 2 —O anion are preferable. In addition, imidazole and its derivatives are basic and easily form a salt by an acid-base reaction with an acid component.
[0010]
Particularly preferred anionic species include bis-{(trifluoromethyl) sulfonyl} amide anion, 2,2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide anion, bis-{(pentafluoroethyl) sulfonyl} amide Anion, bis-{(fluoro) sulfonyl} amide anion, tetrafluoroborate anion, trifluoromethanesulfonate anion, alkyl-substituted diphenyl ether sulfonate anion (alkyl group having 1 to 30 carbon atoms), allyl sulfonate anion, p -Styrene sulfonate anion etc. can be mentioned.
[0011]
The polymerizable functional group contained in the monomer (B) is a carbon-carbon unsaturated group such as vinyl group, acrylic group, methacryl group or allyl group, cyclic alkoxide group such as epoxy group or oxetane group, isocyanate group, hydroxyl group, A carboxyl group etc. can be illustrated.
[0012]
Imidazolium cation, BF 4 or PF 6 or C n derived from imidazole of the present invention in which a hydrocarbon group having 1 to 10 carbon atoms is bonded to the carbon atom forming the N atom and / or the ring thereof. F 2n + 1 CO 2 (where n is an integer of 1 to 4) or C n F 2n + 1 SO 3 (where n is an integer of 1 to 4) or (C n F 2n + 1 SO 2 ) 2 N (where n is 0 to 2 ) For example, a monomer having a salt structure and a polymerizable functional group composed of an anion derived from an integer) or RSO 3 (where R is an aliphatic group) or ArSO 3 (where Ar is an aromatic group) Imidazolium allyl sulfonate, benzimidazolium allyl sulfonate, 1-alkyl imidazolium allyl sulfonate (wherein alkyl is C1-C10), 1-alkyl Imidazolium p-styrene sulfonate (wherein alkyl is C1-C10), imidazolium p-styrene sulfonate, benzimidazolium p-styrene sulfonate, 1-vinyl-3-alkylimidazolium 4-methylphenyl Sulfonate (wherein alkyl is C1-C10), 1-vinyl-3-alkylimidazolium bis-{(trifluoromethyl) sulfonyl} amide (wherein alkyl is C1-C10), 1-vinyl-3-alkyl Imidazolium tetrafluoroborate (wherein alkyl is C1-C10), 1- (4-vinylbenzyl) -3-alkylimidazolium bis-{(trifluoromethyl) sulfonyl} amide (wherein alkyl is C1-C10), 1- (4-vinylbenzyl) -3-alkyl Imidazolium tetrafluoroborate (wherein alkyl is C1-C10), 1-glycidyl-3-alkyl-imidazolium bis-{(trifluoromethyl) sulfonyl} amide (wherein alkyl is C1-C10), 1-glycidyl- 3-alkyl-imidazolium tetrafluoroborate (wherein alkyl is C1-C10).
[0013]
Furthermore, the monomer (C) containing two or more polymerizable functional groups copolymerizable with the monomer (B) is preferably contained in an amount of 0.5 mol% or more based on the monomer (B). . As monomer (C), for example, divinylbenzene, diallyl phthalate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetramethacrylate, triallyl isocyanurate, triallyl cyanurate , Diallyl-dimethylammonium bis-{(trifluoromethyl) sulfonyl} amide, diallyl-dimethylammonium tetrafluoroborate, 2,2-bis (glycidyloxyphenyl) propane, and the like.
[0014]
In the present invention, a cation derived from imidazole in which a hydrocarbon group having 1 to 10 carbon atoms is bonded to imidazole or its N atom and / or a carbon atom forming a ring, and BF 4 or PF 6 or C n F 2n + 1 CO 2 (where n is an integer from 1 to 4) or C n F 2n + 1 SO 3 (where n is an integer from 1 to 4) or (C n F 2n + 1 SO 2 ) 2 N (where n is an integer from 0 to 2) Or a salt with an anion derived from RSO 3 (where R is an aliphatic group) or ArSO 3 (where Ar is an aromatic group) (A), imidazole or its N atom and / or carbon atom forming a ring cation and BF 4 or PF 6, or derived from imidazole hydrocarbon group having 1 to 10 carbon atoms bonded to C n F 2n + 1 CO 2 ( where n is an integer from 1 to 4) or C n F 2n + 1 S 3 (where n is an integer from 1 to 4) or (C n F 2n + 1 SO 2) 2 N ( where n is an integer of 0 to 2) or RSO 3 (wherein R represents an aliphatic group), or ArSO 3 (where Ar is When (B) is a monomer containing a salt structure composed of an anion derived from an aromatic group and a polymerizable functional group, A / B = 99.9 / 0.1 to 0/100 (weight) Ratio) ionic compound is impregnated in a sheet-like molded article made of a resin that does not contain a salt-forming functional group, and the monomer B on and in the impregnated sheet-like resin molded article is polymerized. An ionic resin sheet characterized by being obtained is used.
When A / B (weight ratio) exceeds 99.9 / 0.1, it becomes difficult to prevent leakage and elution of the liquid. A / B may be 0/100, but in order to improve ion conductivity, improve adhesion with the electrode, and absorb expansion / contraction of the electrode accompanying charge / discharge, A / B is 20/80 to A range of 50/50 is preferred.
[0015]
Next, an ionic resin sheet impregnated with an ionic compound having A / B (weight ratio) = 99.9 / 0.1 to 0/100 will be described. There are roughly the following two methods for producing an ionic resin sheet impregnated with an ionic compound. The first method is a method in which a sheet-shaped resin molded product is prepared in advance and impregnated with an ionic compound, and the second method is a method in which a sheet-shaped molded product is formed from a mixture of an ionic compound and a resin.
[0016]
The sheet-shaped resin molding used in the first method is a fluoropolymer such as polytetrafluoroethylene and polyvinylidene fluoride, a polyolefin such as polyethylene and polypropylene, a vinyl polymer such as polyacrylonitrile and polystyrene, a polysulfone and a polyether. Polysulfone polymers such as sulfone, polyether ketone polymers such as polyether ketone and polyether ether ketone, and polyimide polymers such as polyether imide, polyamide imide, and polyimide (all include copolymer polymers, but salt-forming properties) It is a sheet-like resin molded product that does not contain a functional group . The sheet-like resin molded product is a fiber knitted fabric or nonwoven fabric, a porous film or sheet, or a film or sheet having no holes, and is a nonwoven fabric or porous film having a thickness of 5 to 100 μm, preferably 10 to 50 μm. The nonwoven fabric has an air permeability (according to JIS-1096) of 5 to 40 cc / m 2 · sec, a porous film has a pore diameter of 0.05 μm to 1 μm, preferably 0.05 μm to 0.5 μm, and a porosity of 20% to 80%, preferably 35% to 60%. These sheet-like resin moldings can be manufactured by existing manufacturing methods and equipment, and commercially available products can be used.
[0017]
The second method can be produced by mixing an ionic compound, a resin, and optionally a solvent, and then molding the mixture into a sheet. As a method for producing a sheet-like resin molded product, melt film formation, solution casting method, solution coating method and the like can be applied, and the obtained sheet can be further subjected to stretching, heat treatment and the like.
[0018]
Next, the monomer (B) containing a polymerizable functional group present in and on the surface of the sheet-shaped resin molded article impregnated with the ionic compound is polymerized to increase the molecular weight. In order to increase the molecular weight, it is sufficient that the viscosity is increased to such an extent that the ionic compound mixture does not leak.
[0019]
In order to polymerize the monomer (B), a sheet-shaped resin molded product impregnated with a polymerization initiator together with the monomer may be heated. When the polymerizable functional group is a carbon-carbon unsaturated group, the polymerization initiator includes benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, 1,1-bis (t-butylperoxy). Peroxides such as cyclohexane and cumene hydroperoxide, azobis compounds such as 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), inorganic systems such as ammonium persulfate An initiator etc. can be mentioned.
The amount of the polymerization initiator used is usually 0.1 to 10%, preferably 1 to 5%, based on the total weight of the polymerizable monomers.
[0020]
In order to polymerize the monomer (B), radiation such as an electron beam can be irradiated. In this case, a cross-linking reaction of the sheet-shaped resin molded product itself or a graft reaction of the monomer to the sheet-shaped resin molded product may occur, but there is no problem. Irradiation may be before or after impregnation with the ionic compound (post-polymerization method) or after impregnation, and the irradiation amount is 0.1 to 50 Mrad, preferably 1 to 20 Mrad.
[0021]
In the present invention, it is one of preferred embodiments to mix other low molecular weight ionic compounds in order to improve ionic conductivity. Of course, in this case, it is preferable to mix a low molecular weight ionic compound in the solution.
[0022]
An ionic compound of a low molecular weight (hereinafter used for a polymer, usually indicating a molecular weight of 1000 or less) used in the present invention will be described. In order to use the ionic resin sheet of the present invention as an electrolyte of a lithium ion secondary battery, a low molecular ionic compound that generates lithium ions is used in combination.
Examples of low molecular ionic compounds that generate lithium ions include the following compounds. That is, LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2 LiN (SO 2 C 2 F 5 ) 2.
[0023]
In the present invention, a solvent such as ethylene carbonate, propylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, acetonitrile, or the like, These mixed solvents can be used together as a plasticizer.
[0024]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to the examples.
Measurements in Examples and Comparative Examples were performed by the following methods.
Ionic conductivity: A sample is sandwiched between platinum electrodes with an electrode area of 0.95 cm 2 , the membrane resistance is measured by AC impedance method (0.1 V, frequency 1 Hz to 10 MHz) at room temperature and 65% RH, and the ionic conductivity is measured. Calculated.
Nail penetration test: A 3 mm diameter nail was inserted into the ionic resin sheet and pulled out, and liquid leakage was observed.
Moreover, the compound synthesize | combined in the Example was identified by IR spectrum and NMR spectrum.
[0025]
Example 1 16.4 gr (0.2 mol) of 1-methylimidazole was dissolved in 100 ml of 1,1,1-trichloroethane, and 27.4 gr (0.2 mol) of n-butyl bromide was dissolved in 50 ml with vigorous stirring. A solution dissolved in 1,1,1-trichloroethane was added dropwise over 1 hour, and the mixture was further reacted for 2 hours under reflux. The reaction solution was separated and washed twice with 50 ml of 1,1,1-trichloroethane, dried at 70 ° C. and 0.1 mm for 1 hour, and 1-butyl-3-methylimidazolium bromide (BMIBr). Was isolated.
31.9 gr (0.1 mol) of potassium bis-{(trifluoromethyl) sulfonyl} amide (KTFSI) was dissolved in 100 ml of water at 70 ° C. and stirred at 50 ° C., 21.9 gr of BMIBr obtained above ( 0.1 mol) in 50 ml of water was added dropwise and mixed in 15 minutes. After further metathesis reaction for 2 hours with vigorous stirring at 50 ° C., the aqueous layer was separated and removed. The product was washed twice with 50 ml of water each and then dried at 60 ° C. and 0.1 mmHg for 2 hours to obtain 1-butyl-3methylimidazolium bis-{(trifluoromethyl) sulfonyl} amide (BMITSI). It was.
In the same manner, 1-allyl-3-methylimidazolium bromide (AMIBr) was synthesized from 16.4 gr (0.2 mol) of 1-methylimidazole and 24.2 gr (0.2 mol) of allyl bromide, and further, 20.3 gr of AMBr ( 0.1 mol) and KTFSI 31.9 gr (0.1 mol), 1-allyl-3-methylimidazolium bis-{(trifluoromethyl) sulfonyl} amide (AMITFSI) was synthesized.
Next, a solution (I) of BMITFSI 5gr, AMITFSI 5gr, 2,2′-azobisisobutyronitrile 0.2gr, LiN (SO 2 CF 3 ) 2 (LiTFSI) 2gr synthesized in the above was dissolved in 10gr tetrahydrofuran. ) Was adjusted.
Solution I was impregnated with a commercially available polyethylene microporous membrane (27 μm, porosity 50%) under reduced pressure, and then tetrahydrofuran was removed at room temperature under reduced pressure.
The impregnated sheet was heated at 70 ° C. for 2 hours for polymerization. This sheet showed no leakage in the nail penetration test and had an ionic conductivity of 1.2 × 10 −3 S / cm.
[0026]
(Comparative Example 1) An impregnation sheet was prepared in the same manner as in Example 1 except that AMITFSI was not used, and a nail penetration test was conducted.
[0027]
(Example 2) In the same manner as in Example 1, a solution (II) in which BMITFSI 7gr, AMITFSI 3gr, 2,2'-azobisisobutyronitrile 0.15gr and LiTFSI 2gr was dissolved in 10gr of tetrahydrofuran was prepared. In the same manner as in Example 1, using the solution II, a sheet obtained by impregnating and polymerizing a polyethylene microporous membrane showed no leakage in the nail penetration test, and the ionic conductivity was 7.3 × 10 − 2 S / cm.
[0028]
(Example 3) 1-methyl-3-methylimidazolium bromide (16.4 gr (0.2 mol) of 1-methylimidazole and 21.8 gr (0.2 mol) of ethyl bromide was used in the same manner as in Example 1. EMIBr) was synthesized. Further, in the same manner as in Example 1, 19.1 gr (0.1 mol) of EMIBr and 31.9 gr (0.1 mol) of KTFSI were used, and 1-ethyl-3-methylimidazolium bis-{(trifluoromethyl) sulfonyl was used. } An amide (EMITFSI) was synthesized.
Similarly, 1-vinyl-3-ethylimidazolium bromide (VEIBr) was synthesized from 18.8 gr (0.2 mol) of 1-vinylimidazole and 21.8 gr (0.2 mol) of ethyl bromide, and further VEIBr 20.3 gr. 1-vinyl-3-ethylimidazolium bis-{(trifluoromethyl) sulfonyl} amide (VEITFSI) was synthesized from (0.1 mol) and KTFSI 31.9 gr (0.1 mol).
Next, 15 g of polyvinylidene fluoride (Elf Atchem KYNAR 301F) was dissolved in 85 g of methyl ethyl ketone by heating at 80 ° C. for 4 hours. The solution was cast on a 3 mm thick glass plate and slowly dried at room temperature. The obtained EMITFSI 7gr, VEITFSI 3gr, 2,2'-azobisisobutyronitrile 0.15gr, and LiTFSI 3gr synthesized in the above-mentioned synthesized sheet of 55% porosity in room temperature (III) at room temperature were added. Soaked and impregnated. The impregnated sheet was vacuum-dried at 100 ° C. for 48 hours to remove propylene carbonate and polymerize VEITFSI at the same time.
The obtained impregnated sheet showed no leakage in the nail penetration test, and the ionic conductivity was 2.5 × 10 −2 S / cm.
[0029]
Example 4 18.8 gr (0.2 mol) of 1-vinylimidazole was dissolved in 50 ml of water / ethanol (50/50), and bis-{(trifluoromethyl) sulfonyl} amide (HTFSI) 56 with stirring. .2 gr (0.2 mol) was added dropwise to and mixed with a solution of 50 ml of water / ethanol (50/50). Furthermore, after stirring at 50 ° C. for 2 hours, water / ethanol was distilled off under reduced pressure to obtain 1-vinylimidazolium bis-{(trifluoromethyl) sulfonyl} amide (VITFSI).
Next, 18 g of polyethersulfone (Amoco Polymer RADEL A-200A), 12 g of VITFSI synthesized above and 0.6 g of benzoyl peroxide were dissolved in 100 ml of dimethylacetamide and cast on a glass plate having a thickness of 3 mm. With the glass plate attached, VITFSI was polymerized simultaneously with drying at 100 ° C. for 2 minutes and at 130 ° C. for 30 minutes. The obtained 30 μm film had no leakage of liquid in the nail penetration test, and the ionic conductivity was 6.0 × 10 −4 S / cm.
[0030]
【The invention's effect】
As described above, a cation derived from imidazole in which a hydrocarbon group having 1 to 10 carbon atoms is bonded to imidazole or its N atom and / or a carbon atom forming a ring, and BF 4 or PF 6 or C n F 2n + 1 CO 2 (where n is an integer of 1 to 4) or C n F 2n + 1 SO 3 (where n is an integer of 1 to 4) or (C n F 2n + 1 SO 2 ) 2 N (where n is 0 to 2 ) Or a salt with an anion derived from RSO 3 (where R is an aliphatic group) or ArSO 3 (where Ar is an aromatic group), forming an imidazole or its N atom and / or a ring A cation derived from imidazole in which a hydrocarbon group having 1 to 10 carbon atoms is bonded to a carbon atom and BF 4 or PF 6 or C n F 2n + 1 CO 2 (where n is an integer of 1 to 4) or C n F 2n + 1 SO 3 (where n is an integer of 1 to 4) or (C n F 2n + 1 SO 2 ) 2 N (where n is an integer of 0 to 2) or RSO 3 (where R is an aliphatic group) or ArSO 3 (where When Ar is a monomer having a salt structure and a polymerizable functional group composed of an anion derived from an aromatic group), A / B = 99.9 / 0.1-0 / 100 (Weight ratio) of the ionic compound is impregnated in a sheet-like molded article made of a resin not containing a salt-forming functional group, and the monomer B in the impregnated sheet-like resin molded article and the surface is polymerized. To polymerize. Since the polymer to be produced has a specific anion structure portion such as a specific ammonium cation derived from an imidazole ring and a BF 4 anion, it has high affinity with a low molecular salt to be used together, and the salt is well dissolved and retained. Since it itself polymerizes and solidifies, the effect of preventing leakage and elution of low molecular weight salt is manifested. This effect is further improved when a monomer (C) having two or more polymerizable functional groups copolymerizable with the monomer (B) is used in combination. The resin sheet after polymerization contains a large amount of ionic species, so the ion conductivity is high, and the resin layer that does not contain salt-forming functional groups imparts the mechanical properties, chemical resistance, and heat resistance of the resin sheet. In addition, the resin sheet of the present invention can be expected to be applied to solid electrolytes such as batteries and capacitors (electrolyte layer, electrode layer, etc.).

Claims (2)

イミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するカチオンとBF又はPF又はC2n+1CO(但しnは1〜4の整数)又はC2n+1SO(但しnは1〜4の整数)又は(C2n+1SON(但しnは0〜2の整数)又はRSO(但しRは脂肪族基)又はArSO(但しArは芳香族基)に由来するアニオンとの塩を(A)、イミダゾール又はそのN原子および/又は環を形成している炭素原子に炭素数1〜10の炭化水素基が結合しているイミダゾールに由来するカチオンとBF又はPF又はC2n+1CO(但しnは1〜4の整数)又はC2n+1SO(但しnは1〜4の整数)又は(C2n+1SON(但しnは0〜2の整数)又はRSO(但しRは脂肪族基)又はArSO(但しArは芳香族基)に由来するアニオンとから構成される塩構造および重合性官能基を含む単量体を(B)とするとき、A/B=99.9/0.1〜0/100(重量比)のイオン性化合物が、塩形成性官能基を含まない樹脂からなるシート状成形物に含浸されており、該含浸されたシート状樹脂成型物中および表面の単量体Bを重合させて得られることを特徴とするイオン性樹脂シート。A cation derived from imidazole in which a hydrocarbon group having 1 to 10 carbon atoms is bonded to imidazole or its N atom and / or a carbon atom forming a ring, and BF 4 or PF 6 or C n F 2n + 1 CO 2 ( Where n is an integer of 1 to 4) or C n F 2n + 1 SO 3 (where n is an integer of 1 to 4) or (C n F 2n + 1 SO 2 ) 2 N (where n is an integer of 0 to 2) or RSO 3 (Where R is an aliphatic group) or a salt with an anion derived from ArSO 3 (where Ar is an aromatic group) (A), imidazole or its N atom and / or the carbon atom forming the ring has a carbon number Cation derived from imidazole to which 1 to 10 hydrocarbon groups are bonded, and BF 4 or PF 6 or C n F 2n + 1 CO 2 (where n is an integer of 1 to 4) or C n F 2n + 1 SO 3 (where n Is Integer of 1 to 4) or (C n F 2n + 1 SO 2) 2 N ( where n is an integer from 0 to 2) or RSO 3 (wherein R is an aliphatic group), or ArSO 3 (where Ar is an aromatic group) When a monomer having a salt structure and a polymerizable functional group composed of an anion derived therefrom is (B), the ionicity of A / B = 99.9 / 0.1-0 / 100 (weight ratio) The compound is impregnated in a sheet-like molded article made of a resin not containing a salt-forming functional group, and is obtained by polymerizing monomers B in and on the impregnated sheet-like resin molded article. An ionic resin sheet. イオン性化合物において、更に単量体(B)と共重合可能な重合性官能基を2個以上有する単量体(C)を単量体(B)に対して0.5モル%以上含有することを特徴とする請求項1記載のイオン性樹脂シート In the ionic compound, the monomer (C) having at least two polymerizable functional groups copolymerizable with the monomer (B) is contained in an amount of 0.5 mol% or more based on the monomer (B). The ionic resin sheet according to claim 1 .
JP2002236726A 2002-07-10 2002-07-10 Ionic resin sheet Expired - Fee Related JP4538183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236726A JP4538183B2 (en) 2002-07-10 2002-07-10 Ionic resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236726A JP4538183B2 (en) 2002-07-10 2002-07-10 Ionic resin sheet

Publications (3)

Publication Number Publication Date
JP2004047400A JP2004047400A (en) 2004-02-12
JP2004047400A5 JP2004047400A5 (en) 2005-10-27
JP4538183B2 true JP4538183B2 (en) 2010-09-08

Family

ID=31712049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236726A Expired - Fee Related JP4538183B2 (en) 2002-07-10 2002-07-10 Ionic resin sheet

Country Status (1)

Country Link
JP (1) JP4538183B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389454B2 (en) * 2003-03-13 2009-12-24 住友ベークライト株式会社 Polymer solid electrolyte
JP4300954B2 (en) * 2003-09-26 2009-07-22 住友ベークライト株式会社 Polymer solid electrolyte
JP4820535B2 (en) * 2004-02-24 2011-11-24 弘幸 大野 New imidazolium compounds
KR101197115B1 (en) * 2004-02-24 2012-11-07 히로유키 오노 Novel imidazolium compound
US7419623B2 (en) * 2004-08-03 2008-09-02 Air Products And Chemicals, Inc. Proton conducting mediums for electrochemical devices and electrochemical devices comprising the same
JP4709518B2 (en) 2004-09-29 2011-06-22 株式会社東芝 Proton conducting membrane and fuel cell
JP4718827B2 (en) 2004-12-24 2011-07-06 株式会社東芝 Fuel cell
JP4830314B2 (en) * 2005-02-28 2011-12-07 住友ベークライト株式会社 Composition for ion conductive electrolyte, ion conductive electrolyte, and secondary battery using the ion conductive electrolyte
JP5205692B2 (en) * 2005-10-12 2013-06-05 住友ベークライト株式会社 Electrolyte resin composition, ion conductive electrolyte, and secondary battery using the same
JP4857789B2 (en) * 2006-02-01 2012-01-18 株式会社日立製作所 Fuel cell, polymer electrolyte and ion-exchange resin used therefor
JP2007258081A (en) * 2006-03-24 2007-10-04 Sumitomo Bakelite Co Ltd Electrolyte composition, ionic conductive electrolyte, and secondary battery using it
JP4444355B2 (en) 2008-09-03 2010-03-31 株式会社東芝 Fuel cell
WO2010064386A1 (en) * 2008-12-04 2010-06-10 国立大学法人大阪大学 Pattern-forming method
JP5439009B2 (en) * 2009-03-31 2014-03-12 大塚化学株式会社 Imidazolium salts, electrolytes and electrochemical devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186632A (en) * 1997-09-12 1999-03-30 Shikoku Chem Corp Molten salt type polymer electrolyte

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186632A (en) * 1997-09-12 1999-03-30 Shikoku Chem Corp Molten salt type polymer electrolyte

Also Published As

Publication number Publication date
JP2004047400A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
KR101211455B1 (en) composite polymer electrolyte composition
JP4538183B2 (en) Ionic resin sheet
KR101016276B1 (en) Polymeric electrolyte, method for production thereof, and electrochemical element
JP2005166557A (en) Polymer electrolyte composite membrane, its manufacturing method and solid polymer type fuel cell using it
CN108400379A (en) A kind of preparation of the preparation method and full battery of high security lithium ion battery diaphragm
US6774150B2 (en) Partially fluorinated copolymer based on trifluorostyrene and substituted vinyl compound and ionic conductive polymer membrane formed therefrom
KR20160067797A (en) Polymer electrolyte membrane
JP2007122902A (en) Manufacturing method of lithium ion battery
JP2007265955A (en) Polymer electrolyte membrane, process for production thereof, polymer electrolyte, electrolyte composition, membrane-electrode assembly, and fuel cell
JP4899238B2 (en) Composite cross-linked electrolyte
JP2002249742A (en) Adhesive porous membrane, polymeric gel electrolyte obtained therefrom and application thereof
KR20170086117A (en) Polymeric electrolyte membrane for a redox flow battery
Ghahramani et al. Novel Single-ion conducting gel polymer electrolyte with honeycomb-like morphology prepared using brush copolymer for lithium-ion battery application
JP2004035868A (en) Ionic rubber or elastomer
JP4431939B2 (en) Method for producing polymer electrolyte and fuel cell
JP2004303567A (en) Polysiloxane group gel electrolyte composition, and manufacturing method of the same
JP2004162019A (en) Electrolyte composition
JP2006052362A (en) Graft copolymer having poly(quaternary-ammonium salt) side chain, and electrolyte film
JP2003096232A (en) Adhesive and porous film and polymer-gel electrolyte obtained from the same and their use
JP3843505B2 (en) Polymer electrolyte and battery
JP2004035869A (en) Ionic resin composition and its cured product
JP2007194019A (en) Cross-linked electrolyte film and its manufacturing method
Zhou et al. Nanocomposite polymer electrolytes prepared by in situ polymerization on the surface of nanoparticles for lithium-ion polymer batteries
JP2006049866A (en) Electrochemical capacitor
JP2006049157A (en) Composite polymer electrolyte for lithium ion battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees