JP4403275B2 - Terminal hyperbranched polymer solid electrolyte - Google Patents

Terminal hyperbranched polymer solid electrolyte Download PDF

Info

Publication number
JP4403275B2
JP4403275B2 JP2005169359A JP2005169359A JP4403275B2 JP 4403275 B2 JP4403275 B2 JP 4403275B2 JP 2005169359 A JP2005169359 A JP 2005169359A JP 2005169359 A JP2005169359 A JP 2005169359A JP 4403275 B2 JP4403275 B2 JP 4403275B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer solid
hyperbranched polymer
peoma
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005169359A
Other languages
Japanese (ja)
Other versions
JP2006344504A (en
Inventor
敬人 伊藤
貴浩 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Original Assignee
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC filed Critical Mie University NUC
Priority to JP2005169359A priority Critical patent/JP4403275B2/en
Publication of JP2006344504A publication Critical patent/JP2006344504A/en
Application granted granted Critical
Publication of JP4403275B2 publication Critical patent/JP4403275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、高分岐ポリマー型高分子固体電解質に関し、さらに詳しくは高分岐ポリマー、オリゴエチレンオキシド鎖含有メタクリル酸エステル、ポリエチレンオキシド及びリチウム塩からなる末端高分岐型高分子固体電解質に関わる。
The present invention relates to a hyperbranched polymer solid electrolyte, and more particularly to a terminal hyperbranched polymer solid electrolyte comprising a hyperbranched polymer, an oligoethylene oxide chain-containing methacrylic acid ester, polyethylene oxide and a lithium salt.

現在、小型電子・電気機器用に市販されているリチウム二次電池の多くは、可燃性の有機溶媒を電解液として使用しており、この有機溶媒電解液の液漏れおよびそれに伴う発火などの危険性を有している。従って、このようなリチウム二次電池を電気自動車のような大型用途に用いることは、安全性の観点から好ましくない。よって、より安全な電解質材料が求められ、その解決策のひとつとして電解質に固体ポリマーを用いる高分子固体電解質電池が注目されている。 Many of the lithium secondary batteries that are currently marketed for small electronic and electrical equipment use flammable organic solvents as electrolytes, and there are dangers such as leakage of these organic solvent electrolytes and associated ignition. It has sex. Therefore, it is not preferable to use such a lithium secondary battery for large applications such as an electric vehicle from the viewpoint of safety. Therefore, a safer electrolyte material is required, and a polymer solid electrolyte battery using a solid polymer as an electrolyte attracts attention as one of the solutions.

固体状態でイオンを高速かつ選択的に伝導できる高分子固体電解質の研究は、1973年のWrightらの報告に端を発している。すなわちポリエチレンオキシドが固体状態でアルカリ金属塩と錯体を形成し、室温でイオン導電性を示すことが見出された。1979年にはArmandらによって、高分子固体電解質を用いた全固体ポリマー電池の可能性がはじめて示唆され、それ以来、今日に至るまで多岐にわたるポリマー電解質の研究が進められてきた。   Research on solid polymer electrolytes that can conduct ions rapidly and selectively in the solid state originated in the report of Wright et al. That is, it was found that polyethylene oxide forms a complex with an alkali metal salt in a solid state and exhibits ionic conductivity at room temperature. In 1979, Armand et al. Suggested the possibility of an all-solid-state polymer battery using a polymer solid electrolyte for the first time, and since then, a wide variety of polymer electrolytes have been studied.

ところで、高分子固体電解質に要求される性質として次のようなものが上げられる。
第1に、溶液型電解質に匹敵する高いイオン伝導度と小さな温度依存性を有することである。ここで、 高いイオン伝導度を得るには電荷キャリア濃度が高く、固体中のキャリアの移動速度が大きいことが必要である。キャリア濃度はポリマー中への塩の溶解度とイオン解離のしやすさで決まる。一方、イオンの移動はポリマー複合体の非晶質部分の熱運動と連動して起こるので、高いイオン移動度を得るには、セグメント運動しやすいポリマーの構造を持っていることが望ましい。又、 熱的および化学的安定性に優れることが必要である。電解質として、広い安定電位窓を有していて長期間物理的に安定であることや、耐熱性、機械的強度に優れていることも電池としての実用性上、重要な要素である。
By the way, the following properties are required for the polymer solid electrolyte.
First, it has a high ionic conductivity comparable to that of a solution electrolyte and a small temperature dependence. Here, in order to obtain high ionic conductivity, it is necessary that the charge carrier concentration is high and the moving speed of carriers in the solid is high. The carrier concentration is determined by the solubility of the salt in the polymer and the ease of ionic dissociation. On the other hand, since the movement of ions occurs in conjunction with the thermal motion of the amorphous part of the polymer complex, it is desirable to have a polymer structure that is easily segmented to obtain high ion mobility. It is also necessary to have excellent thermal and chemical stability. As an electrolyte, having a wide stable potential window and being physically stable for a long period of time, and being excellent in heat resistance and mechanical strength are also important factors for practicality as a battery.

これまで研究されてきた高分子固体電解質のマトリックスポリマー骨格としては、ポリエーテル系、ポリエステル系、ポリアミン系及びポリスルフィド系がある。これらの中でも比較的高いイオン導電性を示すことが知られているポリエーテル系のポリマーが注目を集め、直鎖状のポリエチレンオキシド(以下、PEOと略称する)あるいはその構造中にPEO構造を含むものについて数多くの報告がなされている。
しかし、PEOは結晶性が高いため、イオン導電率は温度によって大きく変化し、融点以上では
10−3S/cmという高いイオン導電率を示すが、融点以下では結晶化に伴う鎖の運動性の低下により導電率が急激に低下してしまうという問題点がある。さらにPEOをベースにした錯体は、酸素-リチウム間の相互作用が強いためにリチウムイオンのみならずアニオンの移動もおきる両イオン導電体であるという欠点も持っている。
Matrix polymer skeletons of polymer solid electrolytes that have been studied so far include polyether-based, polyester-based, polyamine-based, and polysulfide-based. Among these, polyether polymers known to exhibit relatively high ionic conductivity have attracted attention, and include linear polyethylene oxide (hereinafter abbreviated as PEO) or a PEO structure in the structure thereof. There have been many reports about things.
However, since PEO has high crystallinity, the ionic conductivity varies greatly depending on the temperature, and shows a high ionic conductivity of 10 −3 S / cm above the melting point, but below the melting point, the chain mobility associated with crystallization is low. There is a problem in that the electrical conductivity is drastically decreased due to the decrease. Furthermore, the complex based on PEO has a disadvantage that it is a zwitterionic conductor in which not only lithium ions but also anions move because of the strong interaction between oxygen and lithium.

リチウムイオンのみならずアニオンの移動も起こる両イオン伝導体の場合、リチウム電極はアニオンに対してブロッキング電極であるため、直流電場ではアニオンの電極上への移動と堆積に伴って、膜の伝導度が時間と共に減少する。この現象は電池に用いた場合、放電直後に急速に電流が低下するという問題点が生ずる。 よって、全イオン輸送に対するリチウムイオン輸送の割合 (リチウムイオン輸率) ができるだけ1に近いシングルイオン伝導体が望ましい。 In the case of zwitterionic conductors in which not only lithium ions but also anions move, the lithium electrode is a blocking electrode for the anions, so in a DC electric field, the conductivity of the membrane is accompanied by the movement and deposition of anions on the electrode. Decreases with time. When this phenomenon is used for a battery, there arises a problem that the current rapidly decreases immediately after discharging. Therefore, a single ion conductor whose ratio of lithium ion transport to total ion transport (lithium ion transport number) is as close to 1 as possible is desirable.

上述の課題を達成するため、これまでに幾つかの検討がなされてきた。先ず第1は、PEOの結晶性を低下させることを目的としたベースポリマーの改質であり、ベースポリマーに側鎖を導入したり、ポリメチルメタクリレート(以下、PMMAと略称する)など結晶性の異なる他のポリマーと共重合させたり、主鎖間に架橋構造を導入することなどによってPEOの結晶性を低下させる検討である。又、側鎖にもPEO鎖を持つコポリマーは、室温で10−4S/cmという高いイオン導電率を示すことが報告されている(非特許文献1)。 In order to achieve the above-mentioned problems, several studies have been made so far. The first is modification of the base polymer for the purpose of lowering the crystallinity of the PEO. The side polymer is introduced into the base polymer, and crystalline such as polymethyl methacrylate (hereinafter abbreviated as PMMA) is used. This is a study to reduce the crystallinity of PEO by copolymerizing with another different polymer or introducing a crosslinked structure between the main chains. Moreover, it is reported that the copolymer which has a PEO chain also in a side chain shows high ionic conductivity of 10 <-4 > S / cm at room temperature (nonpatent literature 1).

次に、側鎖にPEO鎖を有するホスファゼン環を組み込んだポリマーは、10−5S/cmという導電率を示したと報告されている(非特許文献2)。 Next, it has been reported that a polymer incorporating a phosphazene ring having a PEO chain in the side chain exhibited a conductivity of 10 −5 S / cm (Non-patent Document 2).

エーテル系高分子のPEOとリチウム塩との錯体は、一般にリチウムイオン輸率が0.5以下である。そこで、本発明者の一人は、リチウムイオン輸率の向上を目的としたアニオンのポリマー鎖への固定化や、アニオン捕捉剤の添加を検討し、アニオン捕捉効果を有するボロキシンポリマーを用いることで10−5S/cmという導電率と、0.8という高いリチウムイオン輸率を見出した(特許文献1)。 In general, a complex of an ether polymer PEO and a lithium salt has a lithium ion transport number of 0.5 or less. Therefore, one of the inventors of the present invention studied the immobilization of anions on the polymer chain for the purpose of improving the lithium ion transport number and the addition of an anion scavenger and used a boroxine polymer having an anion scavenging effect. The inventors have found a conductivity of 10 −5 S / cm and a high lithium ion transport number of 0.8 (Patent Document 1).

A.Nishimoto,et al, Electrochimica Act, 43, 1177(1998)A. Nishimoto, et al, Electrochimica Act, 43, 1177 (1998) Harry R.Allcock, et al,Macromolecules, 36, 3563(2003)Harry R. Allcock, et al, Macromolecules, 36, 3563 (2003) 特開2004−6237号公報JP 2004-6237 A

PEO系高分子固体電解質のイオン導電率は、50℃以下の低温で低下するという問題点があり、本発明の課題はこの問題点を解決する手段を提供することにある。 The ionic conductivity of the PEO polymer solid electrolyte has a problem that it decreases at a low temperature of 50 ° C. or lower, and an object of the present invention is to provide means for solving this problem.

以上の課題を解決するため、本発明者等は高分岐ポリマー(HBP)を用いた高分子固体電解質について検討を行ってきた。HBPは完全に非晶質であり、セグメント運動性に優れた多くの自由な鎖を持つことより、イオン導電性を改善することが期待される。実際にベースポリマーをPEOとし、アセチル化HBPを可塑剤として用い、リチウム塩、及び、無機フィラーであるチタン酸バリウムからなる電解質のイオン導電率は、高温領域で非常に高い導電率を示した。 In order to solve the above problems, the present inventors have studied a polymer solid electrolyte using a hyperbranched polymer (HBP). Since HBP is completely amorphous and has many free chains excellent in segment mobility, it is expected to improve ionic conductivity. Actually, the ionic conductivity of the electrolyte composed of PEO as the base polymer, acetylated HBP as the plasticizer, and the lithium salt and barium titanate as the inorganic filler was very high in the high temperature region.

さらに、アセチル化HBPがPEOの結晶化を完全に抑制するため、低温領域における導電率の低下が小さいことを見出した。また、HBPの末端に重合性基を導入した化2に示す Acrylated Poly[bis(ethylene glycol) benzoate](以下、アクリル化HBPと略称する)を用いることにより、高い機械的強度を有する非晶質な架橋型高分子固体電解質も開発した。しかし、アクリル化HBPを用いた架橋型電解質は、架橋に伴う鎖末端の運動性の低下により、アセチル化HBPと比較するとイオン導電率が低下するという問題点が生じてきた。 Furthermore, since acetylated HBP completely suppressed the crystallization of PEO, it discovered that the fall of the electrical conductivity in a low-temperature area | region was small. In addition, by using Acrylated Poly [bis (ethylene glycol) benz oa te] (hereinafter abbreviated as acrylated HBP) in which a polymerizable group is introduced at the end of HBP, non-high mechanical strength is obtained. We have also developed a crystalline cross-linked polymer solid electrolyte. However, cross-linked electrolytes using acrylated HBP have had the problem of reduced ionic conductivity compared to acetylated HBP due to a decrease in chain end mobility associated with cross-linking.

そこで本発明等は、架橋型高分子固体電解質の高い機械的強度を保持したままイオン導電率を向上させることを目的に、Poly(ethylene
glycol) methyl ether methacrylate(以下、PEOMAと略称する)(化1)を添加することに思い至った。重合性基とオリゴエチレンオキシド鎖の両方を有するPEOMAはアクリル化HBPの架橋間のスペーサーとして働くことにより、架橋によるイオン導電率の低下を抑制することが期待できるためである。
In view of this, the present invention and the like have the purpose of improving the ionic conductivity while maintaining the high mechanical strength of the crosslinked polymer solid electrolyte.
Glycol) methyl ether methacrylate (hereinafter abbreviated as PEOMA) (Chemical Formula 1) was added. This is because PEOMA having both a polymerizable group and an oligoethylene oxide chain can be expected to suppress a decrease in ionic conductivity due to cross-linking by acting as a spacer between cross-links of acrylated HBP.

本発明は、より詳しくは、ポリエチレンオキシドを主鎖として側鎖の末端にアクリル基を導入した高分岐ポリマー及びリチウム塩とを含み構成される高分子固体電解質において、架橋制御剤として(化1)で示されるオリゴエチレンオキシド鎖含有メタクリル酸エステルを添加してなる末端高分岐型高分子固体電解質に関わる。そして、前記のリチウム塩がLiN(SOCF、LiBF、LiClO、又はLiN(SOCFの何れか1種から選択され、又、末端にアクリル基を導入した高分岐ポリマーが化2で示されるアクリル化HBPであることを特徴とする。 The present invention is more particularly the polyethylene oxide as a main chain terminal of a side chain and a hyperbranched polymer and a lithium salt to introduce acrylic group consisting solid polymer electrolyte, as a crosslinking control agent (Formula 1) It relates to a terminal hyperbranched polymer solid electrolyte to which an oligoethylene oxide chain-containing methacrylic acid ester represented by The lithium salt is selected from any one of LiN (SO 2 CF 3 ) 2 , LiBF 4 , LiClO 4 , or LiN (SO 2 F 2 CF 3 ) 2 , and an acrylic group is introduced at the terminal. The hyperbranched polymer obtained is an acrylated HBP represented by Chemical Formula 2.

更には、アクリル化HBPが化2のx=3とする Acrylated Poly[bis(triethylene
glycol)benzoate](以下、ATEBと略称する)であり、リチウムと酸素のモル比がリチウム1に対して酸素が8−16であり、又、ATEBとPEOMAとのモル比が、AREB1に対しPEOMAが1−6であり、更には、ATEBとPEOMAの合計量に対するPEOの重量比が、90/10−70/30であることを特徴とする。
Furthermore, Acrylated Poly [bis (triethylene
glycol) benzoate] (hereinafter abbreviated as ATEB), the molar ratio of lithium to oxygen is 8 to 16 with respect to lithium 1, and the molar ratio of ATEB to PEOMA is relative to AREB1. PEOMA is 1-6, further, the weight ratio of PEO to the total amount of ATEB and PEOMA, wherein the 90 / 10-70 / 30 der Rukoto.

本発明の架橋制御型高分子固体電解質は、高いイオン導電率(1×10−4S/cm 以上 at 60℃)と良好な機械的強度を有し、リチウム二次電池用全固体電解質に好適に用いられる。 The cross-linking controlled polymer solid electrolyte of the present invention has high ionic conductivity (1 × 10 −4 S / cm or more at 60 ° C.) and good mechanical strength, and is suitable for an all solid electrolyte for a lithium secondary battery. Used for.

以下に本発明の好適な一実施の形態を実施例によって説明するが、本発明の技術的範囲は下記の実施形態によって限定されるものでなく、その要旨を変更することなく様々に改変して実施することができる。 Preferred embodiments of the present invention will be described below by way of examples. However, the technical scope of the present invention is not limited by the following embodiments, and various modifications can be made without changing the gist thereof. Can be implemented.

<アクリル化HBPの合成>
マグネティックスターラー、ジムロートを装備した300 ml ナスフラスコにMethyl 3,5-Dihydroxybenzoate (5.3 g, 30 mmol), Triethylene glycol
monochlorohydrin (12.0 g, 70 mmol), Potassium carbonate (48.0 g, 350
mmol), 18-Crown-6 (0.18 g, 0.70 mmol), CH3CN 130 mlを測り取り、フラスコ内を窒素置換し48時間還流した。白色固体を吸引濾過により取り除き、濾液から溶媒を減圧留去して淡黄色オイルを得た。得られたオイルを、CH2Cl2を用いて充填したシリカゲルカラムに通し、未反応物を含む第1, 2バンドをAcOEtにより取り除き、CH3OHにより第3バンドを集め、溶媒を減圧留去することにより、Methyl 3,5-Bis[(8’-hydroxy-3’,6’-dioxaoctyl)oxy]benzoate を淡黄色透明オイルとして得た。
<Synthesis of acrylated HBP>
Methyl 3,5-Dihydroxybenzoate (5.3 g, 30 mmol), Triethylene glycol in a 300 ml eggplant flask equipped with a magnetic stirrer and Dimroth
monochlorohydrin (12.0 g, 70 mmol), Potassium carbonate (48.0 g, 350
mmol), 18-Crown-6 (0.18 g, 0.70 mmol), 130 ml of CH 3 CN, and the flask was purged with nitrogen and refluxed for 48 hours. The white solid was removed by suction filtration, and the solvent was distilled off from the filtrate under reduced pressure to obtain a pale yellow oil. The obtained oil was passed through a silica gel column packed with CH 2 Cl 2 , the first and second bands containing unreacted substances were removed with AcOEt, the third band was collected with CH 3 OH, and the solvent was distilled off under reduced pressure. As a result, Methyl 3,5-Bis [(8′-hydroxy-3 ′, 6′-dioxaoctyl) oxy] benzoate was obtained as a pale yellow transparent oil.

次に、マグネティックスターラーを装備した30 ml ナスフラスコにMethyl 3,5-Bis[(8’-hydroxy-3’,6’-dioxaoctyl)oxy]benzoate
(5.00 g, 11.5 mmol) を測り取り、フラスコ内を窒素気流下にし、200℃に加熱して120分間重合した。得られた粘性液体を少量のTHFに溶解し、CH3OHに再沈殿させた。上澄み液から溶媒を減圧留去し得られたオイルを少量のTHFに溶解しIPEに沈殿させ、低分子量オリゴマーを上澄み液として除いた。沈殿を減圧下で乾燥させることにより、ATEBすなわちPoly[bis(triethylene glycol)benzoate] (分子量3,000)
を黄色粘性液体として得た。
Next, Methyl 3,5-Bis [(8'-hydroxy-3 ', 6'-dioxaoctyl) oxy] benzoate was added to a 30 ml eggplant flask equipped with a magnetic stirrer.
(5.00 g, 11.5 mmol) was weighed and the flask was placed in a nitrogen stream and heated to 200 ° C. for polymerization for 120 minutes. The resulting viscous liquid was dissolved in a small amount of THF and reprecipitated in CH 3 OH. The oil obtained by distilling off the solvent under reduced pressure from the supernatant was dissolved in a small amount of THF and precipitated in IPE, and the low molecular weight oligomer was removed as the supernatant. By drying the precipitate under reduced pressure, ATEB, ie Poly [bis (triethylene glycol) benzoate] (molecular weight 3,000)
Was obtained as a yellow viscous liquid.

次に、マグネティックスターラーを装備した100 ml 二口ナスフラスコにPoly[bis(triethylene
glycol)benzoate] (4.05 g, 9.35 mmol), Acryloyl Chloride (4.00 ml, 28.1 mmol),
CH2Cl2 10 mlを測り取り、攪拌しながら, CH2Cl2
15 mlに溶解したTriethylamine (2.30 ml, 28.1 mmol) を滴下し、室温で24時間攪拌した。溶液を分液漏斗に入れ、 CH2Cl2 と飽和食塩水を加えて分液し、抽出したCH2Cl2 層を硫酸マグネシウム乾燥した後、濾過により硫酸マグネシウムを除去した。溶媒を減圧留去し得られたオイルを少量のCH2Cl2 に溶解し、IPEに沈殿させ精製した後、減圧下で乾燥させることによりATEB (分子量3,200) を黄色粘性液体として得た。
Next, a 100 ml two-necked eggplant flask equipped with a magnetic stirrer was charged with Poly [bis (triethylene
glycol) benzoate] (4.05 g, 9.35 mmol), Acryloyl Chloride (4.00 ml, 28.1 mmol),
Weigh 10 ml of CH 2 Cl 2 and stir, CH 2 Cl 2
Triethylamine (2.30 ml, 28.1 mmol) dissolved in 15 ml was added dropwise and stirred at room temperature for 24 hours. The solution was put into a separatory funnel, and CH 2 Cl 2 and saturated brine were added for liquid separation. The extracted CH 2 Cl 2 layer was dried over magnesium sulfate, and then magnesium sulfate was removed by filtration. The oil obtained by distilling off the solvent under reduced pressure was dissolved in a small amount of CH 2 Cl 2 , precipitated in IPE, purified, and dried under reduced pressure to obtain ATEB (molecular weight 3,200) as a yellow viscous liquid.

<Poly[poly(ethylene
glycol) methyl ether methacrylate]の合成 >
アンプル管にpoly(ethylene glycol)methyl ether
methacrylate](PEOMA) (1.198 g, 4.0 mmol), α,α’-azobisisobutyronitrile
(AIBN) (0.033 g, 0.2 mmol), トルエン 4 ml を量り取り、Freeze-thaw法を数回行い脱気した後、60 ℃で24時間反応させた。反応終了後、CHCl3 / Hex で再沈殿を行い、無色透明粘性液体としてMn = 6400の Poly[poly(ethylene glycol)methyl
ether methacrylate] (Poly(PEOMA)) (Mn = 6400, Mn/Mw = 3.72) を得た。
<Poly [poly (ethylene
glycol) methyl ether methacrylate]>
Poly (ethylene glycol) methyl ether in ampule
methacrylate] (PEOMA) (1.198 g, 4.0 mmol), α, α'-azobisisobutyronitrile
(AIBN) (0.033 g, 0.2 mmol) and 4 ml of toluene were weighed, degassed by the Freeze-thaw method several times, and then reacted at 60 ° C. for 24 hours. After completion of the reaction, reprecipitation was performed with CHCl 3 / Hex, and Mn = 6400 Poly [poly (ethylene glycol) methyl as a colorless transparent viscous liquid
ether methacrylate] (Poly (PEOMA)) (Mn = 6400, Mn / Mw = 3.72).

<高分子固体電解質フィルムの作成>
PEO /ATEB /PEOMA/ LiN(SO2CF3)2 系電解質フィルムを以下の作成手順で実施した。
1. 真空ポンプで残留溶媒を留去したATEB、PEOMA,精製過酸化ベンゾイル (ATEB+ PEOMA の10 wt%) をサンプル瓶へ測り入れた後、DryBoxへサンプル瓶を入れた。
2. CH3CNを適量加えてATEB、PEOMAを溶かし、サンプル瓶にチップを入れて攪拌し、そこにPEOを加えて約6時間攪拌した。
3. 十分混ざっているのを確認した後、LiN(SO2CF3)2を加え更に6時間攪拌した。
4.混合物をフッ素樹脂シャーレ (直径:3.3cm、深さ:1.0 cm) に注ぎ、乾燥炉に入れゆっくり減圧し、最大減圧まで達した後、この状態を一晩続けた。
5. 乾燥炉を90 ℃まで徐々に加熱し24時間乾燥及び加熱架橋を行った。
6. 乾燥炉が室温になるまで放冷し、ピンセットでフッ素樹脂シャーレよりフィルムをはがし、高分子固体電解質フィルムを完成した。
<Preparation of polymer solid electrolyte film>
PEO / ATEB / PEOMA / LiN the (SO 2 CF 3) 2 based electrolyte film was carried out under the following production procedure.
1. After ATEB, PEOMA, and purified benzoyl peroxide (ATEB + PEOMA 10 wt%) from which the residual solvent was distilled off with a vacuum pump were measured into a sample bottle, the sample bottle was put into DryBox.
2. A suitable amount of CH 3 CN was added to dissolve ATEB and PEOMA, the chip was placed in a sample bottle and stirred, and PEO was added thereto and stirred for about 6 hours.
3. After confirming sufficient mixing, LiN (SO 2 CF 3 ) 2 was added and the mixture was further stirred for 6 hours.
4). The mixture was poured into a fluororesin petri dish (diameter: 3.3 cm, depth: 1.0 cm), put in a drying oven, slowly depressurized, and after reaching the maximum depressurization, this state was continued overnight.
5). The drying furnace was gradually heated to 90 ° C., followed by drying and heating crosslinking for 24 hours.
6). The drying oven was allowed to cool to room temperature, and the film was peeled off from the fluororesin petri dish with tweezers to complete a polymer solid electrolyte film.

<イオン導電率の測定法>
イオン導電率の測定用サンプルは、前記の方法により調製した高分子固体電解質フィルムをドライボックス中で直径5mmのポンチでくり抜き、UFOセルに組み込んだ。作成したセルを複素交流インピーダンス測定装置に銅線を用いて接続し、その抵抗を測定した。測定はセルを80℃に設定した恒温槽に12時間放置し、電解質とステンレス電極を十分になじませた後、80℃から10℃ずつ温度を下げ、各温度で1時間放置した後に行った。イオン導電率σ
(S/cm) は次のように定義される。
σ = C/R
(C = l/s)
ここでlは試料の厚さ、sはその面積、Rは抵抗を示す。
<Ion conductivity measurement method>
As a sample for measuring ionic conductivity, the polymer solid electrolyte film prepared by the above method was cut out with a punch having a diameter of 5 mm in a dry box and incorporated in a UFO cell. The created cell was connected to a complex alternating current impedance measuring apparatus using a copper wire, and the resistance was measured. The measurement was carried out after leaving the cell in a thermostatic bath set at 80 ° C. for 12 hours, sufficiently blending the electrolyte and the stainless steel electrode, then lowering the temperature from 80 ° C. by 10 ° C. and leaving it at each temperature for 1 hour. Ionic conductivity σ
(S / cm) is defined as follows.
σ = C / R
(C = l / s)
Here, l is the thickness of the sample, s is the area, and R is the resistance.

架橋型高分子固体電解質のイオン導電率に対するPEOMA添加効果を調査するため、様々な量のPEOMAを添加した電解質を調製した。
各電解質のイオン導電率の温度依存性の結果を、図1に示す。
PEOMA添加量の増加と共に導電率は増加する傾向を示し、ATEB / PEOMA = 1 / 3 (ATEBの割合は電解質の総重量の5 wt%) の時に最大値を示した。後に示す機械的強度の測定において、PEOMAの割合の増加と共に電解質の強度は低下する傾向を示したことから、PEOMAの添加により、ATEBの架橋密度が低下していると考えられる。また図1に示すように、アクリル化HBP / PEOMA = 1 / 3の電解質の導電率は、Acetylated
Poly[bis(triethylene glycol) benzoate]を用いた非架橋型電解質より高いことが確認された。
In order to investigate the effect of PEOMA addition on the ionic conductivity of the crosslinked polymer solid electrolyte, electrolytes with various amounts of PEOMA added were prepared.
The results of the temperature dependence of the ionic conductivity of each electrolyte are shown in FIG.
The conductivity tended to increase with the increase of PEOMA addition, and showed the maximum value when ATEB / PEOMA = 1/3 (ATEB ratio was 5 wt% of total electrolyte weight). In the measurement of the mechanical strength shown later, the strength of the electrolyte tended to decrease with the increase in the proportion of PEOMA, so it is considered that the crosslink density of ATEB was decreased by the addition of PEOMA. As shown in FIG. 1, the conductivity of the acrylated HBP / PEOMA = 1/3 electrolyte is Acetylated.
It was confirmed that it was higher than non-crosslinked electrolyte using Poly [bis (triethylene glycol) benzoate].

ATEB / PEOMA = 1
/ 3 とし、リチウム塩濃度を変化させた電解質を調製した。
各電解質のイオン導電率の温度依存性を図2に示す。図に示すように、リチウム塩濃度Li/O = 1/12の時が全温度範囲に於いて高い導電率を示した。リチウム塩濃度は高すぎる場合 (Li/O = 1/8)、エチレンオキシド鎖とのイオン架橋が生じ、鎖のセグメント運動性が低下するため、イオン導電率が低下したと考えられる。
ATEB / PEOMA = 1
An electrolyte with varying lithium salt concentration was prepared.
FIG. 2 shows the temperature dependence of the ionic conductivity of each electrolyte. As shown in the figure, when the lithium salt concentration Li / O = 1/12, high conductivity was exhibited over the entire temperature range. If the lithium salt concentration is too high (Li / O = 1/8), ionic cross-linking with the ethylene oxide chain occurs and the chain segment mobility decreases, which is thought to reduce the ionic conductivity.

PEOMA添加量と、リチウム塩濃度を固定し、PEO/(ATEB + PEOMA) 比について検討した。その結果を図3に示す。
ATEB + PEOMAの割合はPEO/(ATEB + PEOMA) = 80/20から多くした時、少なくした時、どちらも導電率は若干低下する傾向を示した。ATEB + PEOMA比の増加はHBP添加量の増加でもあり、架橋密度の増加がイオン導電率の低下を引き起こしていると考えられる。
一方PEO/(ATEB + PEOMA) = 90/10とした場合もイオン導電率は低下したが、これは電解質に対するATEBの添加量が少なく、可塑化効果が少ないためであると考えられる。
The amount of PEOMA added and the lithium salt concentration were fixed, and the PEO / (ATEB + PEOMA) ratio was examined. The result is shown in FIG.
When the ratio of ATEB + PEOMA was increased from PEO / (ATEB + PEOMA) = 80/20, both showed a tendency for the conductivity to decrease slightly. The increase in the ATEB + PEOMA ratio is also an increase in the amount of HBP added, and it is considered that the increase in the crosslink density causes a decrease in ionic conductivity.
On the other hand, when PEO / (ATEB + PEOMA) = 90/10, the ionic conductivity was lowered, but this is thought to be because the amount of ATEB added to the electrolyte was small and the plasticizing effect was small.

PEOMAを予め単独ラジカル重合させておき、スペーサーとして機能しないPoly(PEOMA) ブレンド型電解質を調製し、PEOMAをスペーサーとして用いた場合とイオン導電率の比較を行った。各電解質のイオン導電率の温度依存性を、図4に示す。
全温度範囲に於いてPEOMAをスペーサーとして用いた電解質の方が高い導電率を示した。ATEBとPEOMAを架橋、共重合させた場合、ATEBの架橋密度が低下し、イオン導電が促進されるのに対し、Poly(PEOMA) をブレンドしただけでは
ATEBの架橋密度を低下させる効果はないためであると考えられる。
PEOMA was previously radically polymerized alone to prepare a Poly (PEOMA) blend type electrolyte that does not function as a spacer, and the ionic conductivity was compared with the case where PEOMA was used as a spacer. FIG. 4 shows the temperature dependence of the ionic conductivity of each electrolyte.
The electrolyte using PEOMA as a spacer showed higher conductivity over the entire temperature range. When ATEB and PEOMA are cross-linked and copolymerized, the cross-link density of ATEB decreases and ionic conduction is promoted, but blending Poly (PEOMA) alone does not have the effect of reducing the cross-link density of ATEB. It is thought that.

スペーサーとしての機能を有するが、側鎖がメチレン鎖であるDodecyl Acrylateをスペーサーとして用いた電解質を調製し、側鎖がエチレンオキシド鎖のPEOMAの場合と比較した。その結果を図5に示す。
全温度範囲に於いてPEOMAをスペーサーとして用いた電解質の方が高い導電率を示した。Dodecyl Acrylate 側鎖のメチレン鎖はLiイオンと相互作用する極性基が無いため、イオン伝導を促す効果が少ないと考えられる。また、Dodecyl Acrylateをスペーサーとして用いた電解質の方が、スペーサーを添加しない電解質より導電率が若干高いのは、Dodecyl Acrylate の架橋密度低下効果が働いているためだと考えられる。実際 Dodecyl Acrylate を添加した電解質の強度は無添加の電解質よりも低いことが確認されている。
以上からLiイオンと相互作用するエチレンオキシド鎖を有するPEOMAを架橋制御剤として用いることがイオン導電率の向上に極めて有用であることを確認した。
An electrolyte was prepared using Dodecyl Acrylate, which has a function as a spacer but the side chain is a methylene chain, as a spacer, and was compared with the case of PEOMA having an ethylene oxide chain as the side chain. The result is shown in FIG.
The electrolyte using PEOMA as a spacer showed higher conductivity over the entire temperature range. Dodecyl Acrylate The side chain methylene chain has no polar group that interacts with Li ion, so it is considered that the effect of promoting ion conduction is small. In addition, the conductivity of the electrolyte using Dodecyl Acrylate as a spacer is slightly higher than that of the electrolyte without the spacer, because of the effect of reducing the cross-linking density of Dodecyl Acrylate. In fact, the strength of the electrolyte with added Dodecyl Acrylate has been confirmed to be lower than the electrolyte without additive.
From the above, it was confirmed that the use of PEOMA having an ethylene oxide chain that interacts with Li ions as a crosslinking controller is extremely useful for improving the ionic conductivity.

<機械的強度の測定>
ポリマー電解質の性質として問題になるものの一つに、寸法安定性がある。電池を作製した時にポリマー電解質は負極と正極の間に圧着されており、セパレーターとしての役割もあるといえる。その時、負極と正極が接触してショートしない為にはポリマー電解質はある程度の強度を持つことが望まれる。本研究では、引っ張り試験によりポリマー電解質の引張り強度を調査し、その寸法安定性を評価した。
Dry Box中電解質フィルムを適当な大きさ (約1 cm × 1 cm) にカットし、試料の幅、厚さから電解質フィルムの断面積 を計算した。
<Measuring mechanical strength>
One of the problems as a property of the polymer electrolyte is dimensional stability. When the battery is manufactured, the polymer electrolyte is pressed between the negative electrode and the positive electrode, and can also be said to have a role as a separator. At that time, it is desired that the polymer electrolyte has a certain degree of strength so that the negative electrode and the positive electrode are in contact with each other and do not short-circuit. In this study, the tensile strength of the polymer electrolyte was investigated by a tensile test, and its dimensional stability was evaluated.
The electrolyte film in the dry box was cut into an appropriate size (about 1 cm × 1 cm), and the cross-sectional area of the electrolyte film was calculated from the width and thickness of the sample.

機械的強度に対するPEOMAの添加効果を調査するため、PEO/(ATEB + PEOMA) = 80/20, リチウム塩濃度Li/O =
1/12系電解質に様々な量のPEOMAを添加した電解質及び、ATEB
/Additive = 1/3 でAdditiveを変えた電解質の引っ張り試験を30 ℃、2.5 mm / secにて行った。
図6からもわかるように、PEOMA添加量の増加に伴い、機械的強度が低下していく傾向が見られ、PEOMAが架橋制御剤として有効に働き架橋密度を低下させていると考えられる。
イオン導電率が最も高いATEB
/PEOMA = 1/3 電解質の機械的強度は1.391 MPaであり、PEOMA無添加の電解質の6割程度であるが、非架橋型電解質の値 (0.3 MPa) の4倍以上高い値であり、充分な強度を保っていると考えられる。
To investigate the effect of PEOMA addition on mechanical strength, PEO / (ATEB + PEOMA) = 80/20, lithium salt concentration Li / O =
1/12 series electrolytes with various amounts of PEOMA and ATEB
An electrolyte tensile test was performed at 30 ° C. and 2.5 mm / sec with / Additive = 1/3.
As can be seen from FIG. 6, there is a tendency for the mechanical strength to decrease with an increase in the amount of PEOMA added, and it is considered that PEOMA works effectively as a crosslinking control agent and decreases the crosslinking density.
ATEB with highest ionic conductivity
/ PEOMA = 1/3 The mechanical strength of the electrolyte is 1.391 MPa, about 60% of the electrolyte without PEOMA, but it is 4 times higher than the value of the non-cross-linked electrolyte (0.3 MPa). It is thought that the strength is maintained.

PEO/ATEB/PEOMA/LiN(SO2CF3)2 架橋型高分子固体電解質のイオン導電率に対する温度依存性を示す図である。It is a figure which shows the temperature dependence with respect to the ionic conductivity of a PEO / ATEB / PEOMA / LiN (SO2CF3) 2 bridge | crosslinking type polymer solid electrolyte. PEO/ATEB/PEOMA/LiN(SO2CF3)2 架橋型高分子固体電解質において、ATEB/PEOMA 比を1/3とし、Li/O比率を変えた場合の、イオン導電率に対する温度依存性を示す図である。In the PEO / ATEB / PEOMA / LiN (SO2CF3) 2 cross-linked polymer solid electrolyte, the figure shows the temperature dependence on the ionic conductivity when the ATEB / PEOMA ratio is 1/3 and the Li / O ratio is changed. is there. PEO/ATEB/PEOMA/LiN(SO2CF3)2 架橋型高分子固体電解質において、PEO/(ATEB+PEOMA)比を変えた場合の、イオン導電率に対する温度依存性を示す図である。In PEO / ATEB / PEOMA / LiN (SO2CF3) 2 crosslinkable polymer solid electrolyte, it is a figure which shows the temperature dependence with respect to ionic conductivity at the time of changing PEO / (ATEB + PEOMA) ratio. PEO/ATEB/LiN(SO2CF3)2 架橋型高分子固体電解質において、PEOMA又はPoly(PEOMA)の添加有無による、イオン導電率に対する温度依存性を示す図である。FIG. 3 is a graph showing temperature dependence on ionic conductivity depending on whether or not PEOMA or Poly (PEOMA) is added in a PEO / ATEB / LiN (SO 2 CF 3) 2 cross-linked polymer solid electrolyte. PEO/ATEB/LiN(SO2CF3)2 架橋型高分子固体電解質において、PEOMA又はDodecyl Acrylateの添加有無による、イオン導電率に対する温度依存性を示す図である。It is a figure which shows the temperature dependence with respect to ionic conductivity by the presence or absence of addition of PEOMA or Dodecyl Acrylate in a PEO / ATEB / LiN (SO2CF3) 2 crosslinkable polymer solid electrolyte.

Claims (6)

ポリエチレンオキシドを主鎖として側鎖の末端にアクリル基を導入した高分岐ポリマーとリチウム塩とを含み構成される高分子固体電解質において、架橋制御剤として下記の化学式1で示されるオリゴエチレンオキシド鎖含有メタクリル酸エステルを添加・架橋されてなる末端高分岐型高分子固体電解質。
Figure 0004403275
In a polymer solid electrolyte comprising a highly branched polymer having polyethylene oxide as a main chain and an acrylic group introduced at the end of a side chain and a lithium salt, an oligoethylene oxide chain-containing methacrylic compound represented by the following chemical formula 1 is used as a crosslinking controller. Terminal hyperbranched polymer solid electrolyte to which acid ester is added and crosslinked.
Figure 0004403275
前記のリチウム塩がLiN(SOCF、LiBF、LiClO、又はLiN(SOCFの何れか1種から選ばれ、又、末端に重合性基を導入した高分岐ポリマーが下記の化学式2で示されるアクリル化高分岐ポリマーであることを特徴とする請求項1に記載の末端高分岐型高分子固体電解質。
Figure 0004403275
The lithium salt is selected from any one of LiN (SO 2 CF 3 ) 2 , LiBF 4 , LiClO 4 , or LiN (SO 2 F 2 CF 3 ) 2 , and a polymerizable group is introduced at the terminal. 2. The terminal hyperbranched polymer solid electrolyte according to claim 1, wherein the hyperbranched polymer is an acrylated hyperbranched polymer represented by the following chemical formula 2.
Figure 0004403275
前記のアクリル化高分岐ポリマーが、Acrylated Poly[bis(triethylene
glycol)benzoate]であることを特徴とする請求項1又は2のいずれかに記載の末端高分岐型高分子固体電解質。
The acrylated hyperbranched polymer is an Acrylated Poly [bis (triethylene
glycol) benzoate], the terminal hyperbranched polymer solid electrolyte according to claim 1 or 2.
前記において、リチウムと酸素のモル比がリチウム1に対して酸素が8−16であることを特徴とする請求項1〜3のいずれかに記載の末端高分岐型高分子固体電解質。 In the above, the terminal high branched polymer solid electrolyte according to any one of claims 1 to 3 molar ratio of lithium and oxygen, wherein oxygen is 8-16 der Rukoto the lithium 1. 前記において、AcrylatedPoly[bis(triethylene glycol)benzoate]とオリゴエチレンオキシド鎖含有メタクリル酸エステルとのモル比が、Acrylated Poly[bis(triethylene glycol)benzoate]1に対しオリゴエチレンオキシド鎖含有メタクリル酸エステルが1−6であることを特徴とする請求項3又は4のいずれかに記載の末端高分岐型高分子固体電解質。   In the above, the molar ratio of AcrylatedPoly [bis (triethylene glycol) benzoate] to oligoethylene oxide chain-containing methacrylate is 1-6 of the oligoethylene oxide chain-containing methacrylate to Acrylated Poly [bis (triethylene glycol) benzoate] 1. The terminal hyperbranched polymer solid electrolyte according to any one of claims 3 and 4, wherein 前記において、Acrylated Poly[bis(triethylene glycol)benzoate]とオリゴエチレンオキシド鎖含有メタクリル酸エステルの合計量に対するポリエチレンオキシドの重量比が、90/10−70/30であることを特徴とする請求項1〜5のいずれかに記載の末端高分岐型高分子固体電解質。 In the above, the claim 1 Acrylated Poly [bis (triethylene glycol ) benzoate] and the weight ratio of polyethylene oxide to the total amount of oligoethylene oxide chain-containing methacrylic acid ester, characterized in 90 / 10-70 / 30 Der Rukoto The terminal hyperbranched polymer solid electrolyte according to any one of -5.
JP2005169359A 2005-06-09 2005-06-09 Terminal hyperbranched polymer solid electrolyte Active JP4403275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169359A JP4403275B2 (en) 2005-06-09 2005-06-09 Terminal hyperbranched polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169359A JP4403275B2 (en) 2005-06-09 2005-06-09 Terminal hyperbranched polymer solid electrolyte

Publications (2)

Publication Number Publication Date
JP2006344504A JP2006344504A (en) 2006-12-21
JP4403275B2 true JP4403275B2 (en) 2010-01-27

Family

ID=37641306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169359A Active JP4403275B2 (en) 2005-06-09 2005-06-09 Terminal hyperbranched polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JP4403275B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428931A (en) * 2018-04-17 2018-08-21 中国科学院宁波材料技术与工程研究所 A kind of ion liquid polymer composite solid electrolyte, preparation method and lithium ion battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548937B2 (en) * 2009-08-25 2014-07-16 国立大学法人三重大学 Ion conductive polymer solid electrolyte
JP5429829B2 (en) * 2010-02-10 2014-02-26 国立大学法人三重大学 Composition for solid electrolyte, solid electrolyte, lithium ion secondary battery, and method for producing lithium ion secondary battery
KR102007112B1 (en) 2015-08-26 2019-08-02 에보니크 데구사 게엠베하 Use of Specific Polymers as Charge Storage
KR101989727B1 (en) 2015-08-26 2019-06-14 에보니크 데구사 게엠베하 Use of specific polymers as charge carriers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428931A (en) * 2018-04-17 2018-08-21 中国科学院宁波材料技术与工程研究所 A kind of ion liquid polymer composite solid electrolyte, preparation method and lithium ion battery
CN108428931B (en) * 2018-04-17 2020-10-09 中国科学院宁波材料技术与工程研究所 Ionic liquid polymer composite solid electrolyte, preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
JP2006344504A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
US6361901B1 (en) Self-doped microphase separated block copolymer electrolyte
EP1272538B1 (en) A polymer electrolyte, a battery cell comprising the electrolyte and a method of producing the electrolyte
KR101358474B1 (en) Organic solid electrolyte and secondary battery
US20190051939A1 (en) Poly(lithium acrylate) and other materials for membranes and other applications
KR20170052388A (en) Polymer electrolyte and battery including the same
JPH10237143A (en) Block-graft copolymer and polymer solid electrolyte produced from the same
JP4995185B2 (en) Cyclic siloxane compound crosslinking agent, solid polymer electrolyte composition containing the crosslinking agent, and solid polymer electrolyte for small lithium polymer secondary battery
CA2433670A1 (en) Conductive polyamine-based electrolyte
JPS6183249A (en) Solid polymer electrolyte
KR20180000942A (en) Polymer electrolyte, preparing method thereof, and lithium metal battery including the same
JP3677782B2 (en) Polymer solid electrolyte
JP4403275B2 (en) Terminal hyperbranched polymer solid electrolyte
CN110071328B (en) Cross-linked modified polyethyleneimine solid electrolyte and application thereof
JP4701404B2 (en) High ion conductive polymer solid electrolyte
JP4563668B2 (en) Boron-containing compounds for electrochemical devices, ion-conducting polymers and polymer electrolytes
JPH10101883A (en) Oligomer
Jalbert et al. A 3D Network Based on Poly (ε-caprolactone) Macromonomers as Polymer Electrolyte for Solid State Lithium Metal Batteries
JP3603383B2 (en) Polymer solid electrolyte
JP4985959B2 (en) Organic solid electrolyte and secondary battery using the same
CN116231060A (en) Preparation method and application of single lithium ion conductive fluoropolymer solid electrolyte
KR20190123566A (en) Gel-type polymer electrolyte membrane and the manufacruting method thereof
JP3843505B2 (en) Polymer electrolyte and battery
JP4389454B2 (en) Polymer solid electrolyte
JP3601200B2 (en) Polymer electrolyte and method for producing the same
KR101295678B1 (en) Polysiloxane resin containing single-ion conductor and a film for lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090305

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150