JP4298769B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP4298769B2
JP4298769B2 JP2007215113A JP2007215113A JP4298769B2 JP 4298769 B2 JP4298769 B2 JP 4298769B2 JP 2007215113 A JP2007215113 A JP 2007215113A JP 2007215113 A JP2007215113 A JP 2007215113A JP 4298769 B2 JP4298769 B2 JP 4298769B2
Authority
JP
Japan
Prior art keywords
cylinder
amount
fuel
deviation
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007215113A
Other languages
English (en)
Other versions
JP2008215338A (ja
Inventor
真人 四竈
宗紀 塚本
宏幸 安藤
秀治 高宮
聡文 平星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007215113A priority Critical patent/JP4298769B2/ja
Priority to US12/222,790 priority patent/US7877192B2/en
Priority to CN2008102130061A priority patent/CN101372922B/zh
Publication of JP2008215338A publication Critical patent/JP2008215338A/ja
Application granted granted Critical
Publication of JP4298769B2 publication Critical patent/JP4298769B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

この発明は、内燃機関の制御装置に関し、より具体的には、気筒間の出力変動を抑制するための制御装置、および、気筒毎に、吸気系のずれと燃料系のずれを区別して特定することができる制御装置に関する。
下記の特許文献1には、内燃機関の気筒間のバラツキを抑制する手法が開示されている。この手法によると、全気筒の筒内圧の合計値から算出された平均値と、気筒毎の筒内圧の平均値との偏差を算出し、その偏差に基づいて燃料供給量および点火時期を調整する。
特開2000−64899号公報
上記手法によれば、燃料供給量や点火時期を制御することによって気筒間の出力の変動(バラツキ)を抑制することができる。しかしながら、この手法によれば、出力の変動を平滑化するのに、筒内圧センサ等の付加的な構成要素を必要とする。
そこで、本願発明の一つの目的は、このような付加的な構成要素を必要とすることなく、より簡単な手法で気筒間の出力の変動を抑制することができる改良された手法を提案することである。
また、気筒間のバラツキは、燃料系と吸気系のそれぞれで生じうる。仮に、気筒間において、燃料量のバラツキが存在しない場合でも、吸入空気量のバラツキが存在すれば、それによって出力にバラツキが生じる。他方、気筒間において、吸入空気量のバラツキが存在しない場合でも、燃料量にバラツキが存在すれば、それによって出力にバラツキが生じる。気筒間の出力を、より良好な精度で平滑化させるために、燃料量と吸入空気量のどちらにどの程度のバラツキが生じているかを見極めることが望ましい。
この発明の一つの側面によると、内燃機関の気筒間の出力変動を抑制する出力変動制御装置は、内燃機関の出力を変更する出力変更手段と、内燃機関の回転速度に応じた回転速度パラメータ(OMG)を検出する回転速度パラメータ検出手段と、回転速度パラメータの基準値を算出する基準値算出手段と、気筒毎に、該基準値と、所定のクランク角度毎に検出される該回転速度パラメータとの偏差を、相対速度パラメータ(OMGREF)として算出する相対速度パラメータ算出手段と、気筒毎に、該相対速度パラメータを所定期間にわたって積算して積算値(MFJUD)を算出する積算値算出手段と、を備える。さらに、該装置は、該積算値を全気筒について加算した値(TRQALL)の気筒あたりの平均値(TRQPARM)を算出する平均値算出手段と、気筒毎に、該気筒の上記積算値と該平均値との偏差(DTRQPARM)を算出する偏差算出手段と、気筒間の出力変動を抑制するよう、気筒毎に、該気筒について算出された該偏差に応じて上記出力変更手段を制御する制御手段と、を備える。
本願発明者は、気筒毎について算出される相対速度パラメータの積算値が、該気筒の出力トルクを表すことを知見した。したがって、この積算値を用いることにより、より簡単な手法で気筒間の出力変動(バラツキ)を抑制することができる。また、相対速度パラメータは、従来より車両に設けられているクランク角センサの出力から得られるので、付加的なセンサを必要としない。したがって、従来からのエンジン構造を変更する必要がなく、出力変動を抑制するのに、コストが増大することを回避することができる。
この発明の一実施例によると、さらに、内燃機関が所定の運転状態にあるとき、気筒毎に、上記積算値を所定期間にわたって平均化して積算平均値を算出する手段を備える。上記の平均値は、該積算平均値を全気筒について加算した値の気筒あたりの平均値となる。上記の偏差は、気筒毎に、該気筒の該積算平均値と、該積算平均値を全気筒について加算した値の気筒あたりの平均値との偏差である。
前述したように、気筒について算出された積算値は該気筒の出力トルクを表しているので、積算値を所定期間にわたって平均した値は、単位期間あたりの該気筒の出力トルクを表し、これを用いても、気筒間の出力変動を検出することができる。また、所定の運転状態にある時に演算を行うので、たとえば内燃機関の出力が安定している時に演算して、より良好な精度で気筒毎の偏差を算出することができる。
この発明の一実施例によると、上記の出力変更手段は、気筒毎に、該気筒に対して燃料を供給する燃料供給装置と、該気筒内で混合気に点火する点火装置を含むことができる。上記の制御手段は、内燃機関の運転状態に基づいて、燃料供給装置によって供給される燃料の量および点火装置によって混合気に点火する点火時期のそれぞれについて補正が許可可能かどうかを判断し、許可可能と判断された燃料供給量および点火時期のいずれかまたは両方を気筒毎に補正することにより、気筒間の出力変動を抑制する。
この発明によれば、燃料供給量および点火時期のいずれかまたは両方を補正することにより、気筒間の出力変動を抑制することができる。また、補正を行う前に補正許可の判断を行うので、補正によって内燃機関の運転状態が不安定になるのを回避することができる。
この発明の一実施例によると、上記の出力変更手段は、気筒毎に、該気筒に対して燃料を供給する燃料供給装置と、該気筒内で混合気に点火する点火装置と、該気筒の吸気バルブのリフト量を可変に制御可能な可変リフト機構を含むことができる。上記の制御手段は、内燃機関の運転状態に基づいて、燃料供給装置によって供給される燃料の量、点火装置によって混合気に点火する点火時期、および可変リフト機構によって制御される吸気バルブのリフト量の補正が許可可能かどうか判断し、許可可能と判断された燃料供給量、点火時期およびリフト量のうちの1つまたは複数を気筒毎に補正することにより、気筒間の出力変動を抑制する。
この発明によれば、燃料供給量および点火時期だけでなく、リフト量によっても、気筒間の出力変動を抑制することができる。また、補正を行う前に補正許可の判断を行うので、補正によって運転状態が不安定になるのを回避することができる。
この発明の他の側面によると、内燃機関の制御装置は、内燃機関の回転速度に応じて回転速度パラメータ(OMG)を検出する回転速度パラメータ検出手段と、回転速度パラメータの基準値(OMG)を算出する基準値算出手段と、気筒毎に、該基準値と、所定のクランク角度毎に検出される回転速度パラメータとの偏差を、相対速度パラメータ(OMGREF)として算出する相対速度パラメータ算出手段と、気筒毎に、相対速度パラメータを所定期間にわたって積算し、積算値(MFJUD)を算出する積算値算出手段と、気筒間の出力が平滑化されるよう、気筒毎に、該気筒の積算値に基づいて、点火時期を補正するための点火時期補正量を算出する点火時期補正量算出手段(30)と、気筒間の空燃比が平滑化されるよう、気筒毎に、燃料量を制御する燃料制御手段(131)と、気筒毎に、該点火時期補正量に応じて、第1の所望値に対する該気筒の吸入空気量のずれ量と、第2の所望値に対する、上記燃料制御手段によって算出される該気筒の燃料量のずれ量と、を区別して特定する気筒毎ずれ量特定手段(133,141,142)と、を備える。ここで、第1の所望値は、気筒間に吸入空気量のバラツキが存在しない場合の吸入空気量を示し、第2の所望値は、気筒間の空燃比を平滑化するための燃料量のバラツキが該気筒間に存在しない場合の燃料量を示す。
この発明によれば、気筒間の出力を平滑化するよう算出された点火時期補正量に基づいて、吸入空気量がどの気筒でどの程度ずれているのか、および、燃料量がどの気筒でどの程度ずれているのか、を特定することができる。気筒毎にずれ量を特定できるだけでなく、吸入空気量のずれと燃料量のずれを区別して特定することができるので、吸気系と燃料系のどちらに問題があるのかを気筒毎に明瞭に見極めることができる。
この発明の一実施例によると、上記気筒毎ずれ量特定手段は、気筒毎に、上記点火時期補正量に応じて吸入空気量のずれ量を求めると共に、該吸入空気量のずれ量に応じて該燃料量のずれ量を求める。こうして、点火時期補正量から、吸入空気量と燃料量のそれぞれについて、ずれ量を求めることができる。
この発明の一実施例では、制御装置は、すべての気筒の空燃比が所定値に維持されている場合の、点火時期補正量と、第1の所望値からの吸入空気量のずれ量との間の相関を定義した第1のテーブルを有している。気筒毎に、点火時期補正量に基づいて該第1のテーブルを参照することにより、吸入空気量のずれ量を求める。
点火時期補正量は、気筒間の出力を平滑化するための補正量である。したがって、全気筒が所定の空燃比(たとえば、理論空燃比)に維持されている条件下では、点火時期補正量は、現在の吸入空気量のずれ量に対して相関を有する。したがって、この発明によれば、点火時期補正量に基づいて、吸入空気量がどの程度ずれているかを推定することができる。
この発明の一実施例では、第1の所望値は、運転状態に基づいて予め決められた所定値である。したがって、吸入空気量のずれ量は、該所定値に対する偏差として算出される。
この発明の一実施例によると、制御装置は、気筒間で空燃比を平滑化するための燃料量のバラツキが気筒間に存在しない場合の、第1の所望値からの吸入空気量のずれ量と、第1の燃料補正量との間の相関を定義した第2のテーブルを有している。気筒毎に、吸入空気量のずれ量に基づいて該第2のテーブルを参照することにより、第1の燃料補正量を上記第2の所望値として求める。一実施例では、燃料制御手段は、気筒毎に、該気筒に供給される燃料の第2の燃料補正量を算出することにより、該気筒への燃料量を制御する。該第2の燃料補正量の、上記第2の所望値すなわち第1の燃料補正量に対するずれ量が、燃料量のずれ量として算出される。
気筒間で空燃比を平滑化するための燃料量のバラツキが気筒間に存在しない(すなわち、燃料系にバラツキが存在しない)という条件下では、吸入空気量のずれ量は、燃料補正量に対して相関を有する。したがって、この相関関係を用いて、吸入空気量のずれ量から、第1の燃料補正量を求めることができる。
第1の燃料補正量は、燃料系にバラツキが存在しない場合の燃料補正量である。したがって、燃料制御手段によって算出される第2の燃料補正量と比較することにより、該燃料制御手段によって実現される燃料系の平滑化において、実際にバラツキが生じているかどうかを見極めることができる。
この発明の一実施例によると、気筒毎に、該気筒の吸入空気量のずれ量が所定値を超えたときは、該気筒の吸気系に異常があると判断する。さらに一実施例では、気筒毎に、該気筒の燃料量のずれ量が所定値を超えたときは、該気筒の燃料系に異常があると判断する。こうして、どの気筒のどの系で異常生じているのかを見極めることができる。
この発明の一実施例によると、内燃機関の吸気バルブのリフト量を可変に制御可能なリフト量制御手段と、内燃機関の吸気管の圧力を制御可能な圧力制御手段とを備える。いずれかの気筒の吸入空気量のずれ量が所定値を超えたときは、すべての気筒について、リフト量制御手段を介して制御されるリフト量を増やすとともに、該圧力制御手段を介して制御される圧力を小さくする。
このような制御により、吸入空気量のずれ量が、リフト量に対して相対的に小さな割合となり、よって、該ずれ量を、吸入空気量の平滑化に影響を与えないほどの割合すなわち無視可能な割合にすることができる。目標吸入空気量を維持するため、リフト量の増加に伴い、吸気管の圧力は小さくされる(吸気管の圧力は負圧であるので、該負圧の絶対値が大きくされることとなる)。
この発明の一実施例によると、上記気筒毎ばらつき特定手段による処理は、内燃機関がアイドル運転状態にあるときに実施される。アイドル運転状態においては、内燃機関の運転状態が安定しているので、気筒毎の吸気系および燃料系のずれ量を安定的に判断することができる。
次に図面を参照してこの発明の実施の形態を説明する。図1は、この発明の実施形態に従う、内燃機関(以下、エンジンと呼ぶ)およびその制御装置の全体的な構成図である。
図1(a)を参照すると、電子制御ユニット(以下、「ECU」)という)1は、中央演算処理装置(CPU)およびメモリを備えるコンピュータである。メモリには、車両の様々な制御を実現するためのコンピュータ・プログラムおよび該プログラムの実施に必要なデータおよびマップを格納することができる。ECU1は、車両の各部から送られてくるデータを受け取って演算を行い、車両の各部を制御するための制御信号を生成する。
エンジン2は、この実施例では6個の気筒を備えている。エンジン2には、吸気管3および排気管4が備えられている。
EGR通路5が、吸気管3と排気管4の間に接続されており、EGR通路5を介して、排気管4の排ガスを吸気管3に還流し、各気筒に供給することができる。還流する排ガスの量は、EGRバルブ6により調整することができる。EGRバルブ6の開度は、ECU1からの制御信号に従って変更される。
吸気管3には、吸気管2を通過する空気量を検出するエアフローメータ(AFM)7、吸気管3の温度TAを検出する吸気温センサ8、および吸気管3の圧力PBを検出する吸気管圧力センサ9が設けられている。これらのセンサの検出値は、ECU1に送られる。ECU1は、吸気管圧力センサ9の検出値から、ゲージ圧(大気圧に対する吸気管圧力の差圧)を算出する。吸気管3は、吸気管圧力センサ9の下流で、各気筒に向かって分岐されている。
エンジン2には、エンジン2の冷却水の温度TWを検出する水温センサ10、およびクランク角センサ11が設けられている。クランク角センサ11は、クランクシャフト26(図1(b)参照)の回転に従って、CRK信号およびTDC信号をECU1に出力する。CRK信号は、所定のクランク角毎に出力される。ECU1は、CRK信号に応じ、エンジン2の回転数NEを算出する。TDC信号は、ピストン25(図1(b)参照)の上死点(TDC)位置に関連したクランク角度で出力される。また、大気圧PAを検出するPAセンサ12が、ECU1に接続されている。
また、エンジン1の排気管の排ガスを浄化する装置(図示せず)の上流には、空燃比(LAF)センサ13が設けられており、エンジン2のリーンからリッチにわたる領域の空燃比をリニアに検出する。空燃比センサ13の検出値は、ECU1に送られる。
図1(b)を参照すると、エンジン2に搭載された気筒のうちの1つが示されている。気筒の燃焼室15は、吸気バルブ16を介して吸気管3に連結され、排気バルブ17を介して排気管4に連結されている。燃料噴射弁18が吸気管3に取り付けられている。燃料噴射機構21は、ECU1からの制御信号に従って、燃料噴射弁18を駆動して燃料を噴射させる。燃料噴射弁18および燃料噴射機構21を合わせて燃料供給装置と呼ばれる。
点火プラグ19が、燃焼室15に臨むように取り付けられている。点火機構22は、ECU1からの制御信号に従って点火プラグ19を駆動して火花を飛ばす。該火花により、噴射された燃料と空気の混合気が、燃焼室15内で燃焼する。点火プラグ19と点火機構22を合わせて点火装置と呼ばれる。
燃焼により混合気の体積は増大し、これによりピストン25を下方に押し下げる。ピストン25の往復運動は、クランクシャフト26の回転運動に変換される。
可変リフト機構23は、ECU1からの制御信号に従って、吸気バルブ16のリフト量を変更する。リフト量により、燃焼室15内に吸入される空気の量を調整することができる。可変リフト機構23は、任意の適切な手法で構成されることができる。たとえば、カムのロッカーアームに一対のリンクアームを連結し、一方のリンクアームの一端を無段階に変位させることにより、リフト量を無段階に変更させることのできる可変リフト機構が提案されている(特開2004―36560号公報)。可変リフト機構23には、各気筒の吸気バルブ16のリフト量を検出するリフト量センサ(図示せず)が設けられている。リフト量センサは、任意の適切な手法により(たとえば、ポテンショメータを用いて)実現されることができる。
この実施例では、図1の(a)に示すように、可変リフト機構23に加え、吸気管3にスロットル弁27が設けられている。スロットル弁27には、ECU1からの制御信号によって該スロットル弁の開度を制御するスロットル機構(図示せず)が接続されている。スロットル弁27の開度を制御することにより、燃焼室15内に取り込まれる吸入空気量を制御することができる。以下の実施例では、吸入空気量は、主に可変リフト機構23によって制御されるが、エンジン2の運転領域(出力や負荷の状態)に応じて、スロットル弁27の制御を実施することもできる。スロットル弁27には、スロットル弁の開度を検出するスロットル弁開度(θTH)センサ28が連結されており、この検出値は、ECU1に送られる。
また、図には示していないが、吸気バルブ16および/または排気バルブ17の位相を変更可能な可変位相機構を搭載してもよい。また、可変位相機構の有無にかかわらず、吸気バルブ16および/または排気バルブ17の位相を検出する位相センサを設けることができる。該位相センサは、任意の適切な手法により実現されることができる。位相センサによって、吸気バルブを開弁するタイミングのクランクシャフトに対する位相(進角量)を検出することにより、吸気バルブと排気バルブの両方が開弁しているオーバーラップ期間を求めることができる。
図2は、本願発明の一実施例に従う、気筒間の出力変動を抑制する制御装置30の機能ブロック図である。これらの機能ブロックは、ECU1において実現される。
許可判定部31は、気筒間の出力変動を抑制するためのプロセスの実行を許可するかどうか判断する。この実施例では、内燃機関がアイドル運転状態にある時に、該プロセスの実行を許可する。これは、内燃機関の出力が低く、かつ安定している時の方が、より安定的に気筒間の出力の変動(バラツキ)を検出することができるからである。
代替的に、該プロセスの実行を許可するかどうかの判定に、他の条件を用いてもよい。たとえば、アイドル運転状態かどうかに代えて、またはアイドル運転状態に加えて、エンジン負荷(吸気管圧力センサ9(図1)により検出される吸気管圧力PBに基づくことができる)、エフローメータ7から検出可能な吸入空気量、水温センサ10により検出されるエンジン水温TW、吸気温センサ8により検出される吸気温TA、リフト量センサにより検出される吸気バルブ16のリフト量、吸気バルブと排気バルブのオーバーラップ期間、EGRバルブ6の開度から検出可能な排気ガス還流量(EGR量)等を用いることができる。
トルクパラメータ算出部32は、気筒毎に、該気筒の出力トルクを表すトルクパラメータを算出する。算出手法についての詳細は後述される。
気筒間出力変動判定部33は、許可判定部31により許可されたことに応じて、トルクパラメータ算出部32により算出されたトルクパラメータを用いて、気筒間の出力トルクの変動(バラツキ)を判定する。この判定手法の詳細は、後述される。
出力補正部34は、エンジン2の運転状態に基づいて、エンジン2の出力トルクを変更可能な運転パラメータのうち、どの運転パラメータの補正が許可可能かどうかを判断することにより、今回補正すべき運転パラメータを決定する。このような許可可能判断を行うことにより、運転パラメータの補正によってエンジン2の運転状態が不安定になることを防ぐことができる。出力補正部34は、気筒間の出力変動を抑制するよう、上記の判定結果に基づいて、気筒毎に、決定された運転パラメータに対する補正を行う。このような運転パラメータとして、この実施例では、内燃機関に供給される燃料の量、点火時期、および吸入空気量を用いる。
代替的に、エンジン2の出力トルクを変更可能な他の運転パラメータを用いてもよい。たとえば、吸気バルブの開弁時期(位相)を、このような運転パラメータに含めることができる。
出力変動制御部35は、補正された運転パラメータに従う制御信号を気筒毎に生成し、該制御信号を、対応する機構に送る。たとえば運転パラメータが燃料供給量の場合には、補正された燃料供給量を示す制御信号が気筒毎に生成される。燃料噴射機構21は、該補正された燃料供給量が、対応する気筒に対して供給されるように、受取った制御信号に従って該気筒の燃料噴射弁18を駆動する。運転パラメータが点火時期の場合には、補正された点火時期を示す制御信号が気筒毎に生成される。点火機構22は、補正された点火時期を、対応する気筒で実現するように、受取った制御信号に従って該気筒の点火プラグ19を駆動する。運転パラメータが吸入空気量である場合には、補正された吸入空気量を示す制御信号が生成される。可変リフト機構23は、補正された吸入空気量が、対応する気筒に供給されるように、受取った制御信号に従って該気筒の吸気バルブ16のリフト量を制御する。こうして、気筒毎に、補正された運転パラメータに従って出力トルクが補正され、気筒間の出力変動を抑制することができる。
図3を参照すると、本願発明の一実施形態に従う、ECU1のCPUにより実行され、より具体的には、図2のトルクパラメータ算出部32により実行されるプロセスの一例が示されている。このプロセスを、図4〜図6を参照しながら説明する。該プロセスは、TDCパルスの発生に同期して実行される。
この実施例では、クランク角センサ11からのCRKパルスは、クランク角度6度毎に取得される。CRKパルスの発生時間間隔を示す時間パラメータCRME(i)については、クランク角度720度分のデータ(i=0〜ND−1,データ数NDは120個)がECU1のメモリに格納される。また、点火順の気筒識別番号をk(=1〜6)とし、1TDC期間内のデータ数をNTDC(この例では、20)とすると、このプロセスの1回の実行で、パラメータiが(k−1)NTDCから(kNTDC−1)までの演算が行われる。たとえば今回の処理が1番目の気筒(k=1)に対応する演算を行うときは、パラメータiは0から(NTDC−1)までの値をとり、5番目の気筒(k=5)に対応する演算を行うときは、パラメータiは4NTDCから(5NTDC−1)までの値をとる。
ステップS11において、回転速度OMG(i)(rad/s)を、式(1)に従って算出する。回転速度OMGは、CRKパルスの発生時間間隔を角速度に変換したものであり、クランクシャフト26の回転する速度を表している。ここで、Dθは、時間パラメータCRMEを計測する角度間隔4π/NDであり、この実施例では、π/30(rad)である。
OMG(i)=Dθ/CRME(i) (1)
図4(a)には、エンジン回転数NEが上昇していく時の時間パラメータCRMEの推移の一例が示されており、図4(b)には、それに対応する回転速度OMGが示されている。
ステップS12において、式(2)に従って720度フィルタ処理を実行し、フィルタ処理後回転速度OMGR(i)を算出する。
OMGR(i)=OMG(i)−(OMG(ND)−OMG(0))×Dθ×i/4π (2)
720度フィルタ処理は、1サイクル期間(クランク角度720度)における線形変化分をキャンセルし、比較的周期の短い変動を抽出する。この処理は、エンジンの負荷側からエンジンに加わるトルク(エンジンにより駆動される車両のタイヤや補機から加わるトルク、エンジンの摺動部品の摩擦によるトルク等)に起因する回転変動成分を除くために行われる。図4(c)には、図4(b)に基づいて算出されたOMGRの推移が示されている。
ステップS13において、式(3)に従って、相対回転速度OMGREFを算出する。
OMGREF(i)=OMGR(i)−OMGR((k-1)NTDC) (3)
ここで、OMGR((k−1)NTDC)は基準回転速度であり、対象となる気筒の圧縮上死点(TDC)におけるフィルタ処理後回転速度に相当する。
ここで図5を参照すると、クランク角度が0〜720度の間の相対回転速度の挙動の一例が示されている。#1〜#6は、点火順に6つの気筒を識別するのに付された気筒識別番号である。相対回転速度OMGREFは、圧縮上死点後、燃料と空気の混合気の燃焼により一旦上昇した後、減少する。なお、失火が発生すると、相対回転速度は、圧縮上死点後、上昇することなく下降することとなる。
相対回転速度OMGREFで囲まれた面積S(網掛けされた部分)は、燃焼によって発生するトルクを表している。したがって、気筒ごとに、相対回転速度OMGREFを1TDC期間(この実施例では、クランク角度120度の期間)にわたって積算することにより得られる積算値を、その気筒で発生するトルクを表すトルクパラメータとして用いることができる。
好ましくは、上記の積算値を算出する前に、ステップS14およびS15を実施して、慣性トルクの影響を相対回転速度から除去する。慣性トルクは、エンジン2の往復運動部品(ピストンおよびコンロッド)の質量、コンロッドの長さ、クランク半径、クランクプーリ、トルクコンバータ、ロックアップクラッチ等のエンジンの負荷側の回転部品の慣性力に基づくトルクである。相対回転速度には、慣性力に基づく成分が含まれているが、慣性トルクは、燃焼により生成される出力トルクに寄与するものではないので、これを除去するのが好ましい。
ステップS14において、式(4)に従い、各気筒の圧縮上死点における慣性力回転速度OMGI(k)を算出する。
OMGI(k)=K・OMG((k−1)NTDC)/3I (4)
ここで、Kは比例定数であり、Iは、クランクプーリ、トルクコンバータなどの回転部品の慣性モーメントを示す。式(4)の根拠については、後述される。なお、自動変速機(図示せず)のロックアップクラッチが係合しているか否かに応じて、慣性モーメントIの値を変更することが好ましい。これにより、ロックアップクラッチの係合/非係合にかかわらず、より正確なトルクパラメータの算出を行うことができる。
図6(a)は、各気筒の圧縮上死点近傍において、基準回転速度の算出と同じタイミングで算出される慣性力回転速度OMGIの推移の一例を示す。
ステップS15において、式(5)に従い、修正相対回転速度OMGREFM(i)を算出する。修正相対回転速度は、慣性トルクの影響が除去された相対回転速度である。
OMGREFM(i)=OMGREF(i)+OMGI(k) (5)
図6(b)は、各気筒の修正相対回転速度の推移の一例を示す。
ステップS16において、式(6)に従い、修正相対回転速度OMGREFMを積算して、トルクパラメータMFJUD(k)を算出する。
Figure 0004298769
図6(c)は、1TDC期間にわたって修正相対回転速度を積算することにより算出される各気筒のトルクパラメータMFJUDの推移の一例を示す。
ステップS17において、気筒識別番号kが気筒数Nと等しいか否かを判断する。その答えがNoであるときは、気筒識別番号kを1だけインクリメントし(S18)、答えがYesであるときは、気筒識別番号kを1に戻す(S19)。
こうして、TDCパルスの発生に同期して、気筒毎に、該気筒の出力トルクを表すトルクパラメータMFJUDが算出される。
ここで、慣性力回転速度OMGIを算出するより詳細な手法を説明する。1つの気筒で発生する慣性力によるトルク(単一気筒慣性トルクと呼ぶ)TI1は、図7に示すようにコンロッド長をL、クランク半径をR、オフセットをe、クランク軸26の回転角速度をω、ピストン25及びコンロッドの合計質量をmとし、角度θおよびφを図のように定義すると、式(7)で与えられる。以下の式中の角度の単位はラジアン(rad)が用いられる。
Figure 0004298769
図8(a)は、式(7)により算出される単一気筒慣性トルクTI1を、クランク角度θの関数として示す。単一気筒慣性トルクTI1の位相を120度ずらして6気筒分を加算した合成慣性トルクTIは、図8(b)のように推移し、式(8)で近似することができる。
TI=−Asin3θ (8)
ここで、Aは、回転角速度ω(rad/s)の2乗に比例する係数である。
一方、前述したようにIを慣性モーメントとすると、合成慣性トルクTIは、式(9)で与えられる。
TI=I×(dω/dt) (9)
式(8)および(9)から式(10)が得られ、これを回転角速度ωについて解くと、合成トルクTIに対応する慣性力回転速度ωIは、式(11)で与えられる。
―Asin3θ=I×(dω/dt) (10)
ωI=(Acos3θ×dt/dθ)/3I (11)
図8(c)は、慣性力回転速度ωIの推移を示す。
よって、圧縮上死点での慣性力回転速度OMGIは、式(11)のθをゼロとして、式(12)により算出することができる。
OMGI=(A/3I)(1/OMG) (12)
係数Aは、回転速度OMGの2乗に比例するので、比例定数をKとすると、式(12)は、式(13)のように変形することができる。
OMGI=K・OMG/3I (13)
したがって、各気筒の圧縮上死点における慣性力回転速度OMGIは、前述した式(4)のように表されることができる。
図8(c)に示すように、圧縮上死点(θ=0、120、240、・・・)での慣性力回転速度OMGIは最大の値となるので、相対回転速度OMGREFに慣性力回転速度OMGIを加算すること(これは、基準回転速度から慣性力回転速度OMGIを減算することと等価である)により、慣性力回転速度ωIの影響を除去した修正相対回転速度OMGREFMを得ることができる。なお、図8(c)に示す慣性力回転速度ωIの周期変動成分は、修正相対回転速度OMGREFMを1TDC期間(この実施例では、120度)にわたって積算することによりキャンセルされる。
図9は、或る運転状態におけるトルクパラメータMFJUDの値を示す。(a)は、気筒間のトルクパラメータのバラツキがほとんど無い状態を示し、(b)は、気筒#1が、他の気筒に比べて、トルクパラメータの偏差が大きい状態を示す。本願発明の目的は、(b)のような状態を、(a)のような状態にすることである。
図10は、この発明の一実施例に従う、ECU1のCPUにより実行され、より具体的には、図2の許可判定部31、出力変動判定部33、出力補正部34、および出力変動制御部35により実行されるプロセスのフローである。
ステップS101において、エンジンがアイドル運転状態かどうかを判断する。アイドル運転状態ならば、出力変動抑制プロセスを許可し、ステップS102に進む。
ステップS102において、式(14)に従い、気筒ごとに、図3のプロセスによって算出されたトルクパラメータMFJUDを所定期間にわたって平均する。kは、気筒識別番号を示す。前述したように、トルクパラメータMFJUDは、1TDC期間にわたって積算された修正相対回転速度OMGREFMである。トルクパラメータMFJUDを、1TDC期間(この例では、クランク角度120度である)にわたって平均することにより、クランク角度あたりのトルクパラメータが算出される。トルクパラメータMFJUDが、1TDC期間(この実施例では、120度)にわたって生成されるトルクを表しているので、その平均値は、クランク角度あたりに生成されるトルクを表す。
TRQPARM(k)=MDJUD(k)/1TDC期間 (14)
ステップS103において、各気筒のトルクパラメータ平均値TRQPARMを用い、式(15)に従って、全気筒の平均値TRQALLを算出する。ここで、括弧内の数字は、気筒識別番号である。この実施例では、全気筒平均値TRQALLが、基準値として用いられる。
TRQALL=(TRQPARM(1)+TRQPARM(2)+TRQPARM(3)+TRQPARM(4)+TRQPARM(5)+TRQPARM(6))/6
(15)
ステップS104において、式(16)に従い、気筒ごとに、全気筒平均値TRQALLと、該気筒のトルクパラメータ平均値TRQPARMとの偏差DTRQPARMを算出する。
DTRQPARM(k)=TRQPARM(k)−TRQALL
(16)
ステップS105において、出力トルクを変更可能な運転パラメータのうち、どの運転パラメータを補正するか、エンジンの運転状態に従って決定するプロセス(図13〜図15を参照して後述される)を実行する。この実施例では、前述したように、運転パラメータとして燃料供給量、点火時期および吸入空気量が用いられ、これらのうちの1または複数が、補正すべき運転パラメータとして決定される。
目的は、各気筒のトルクパラメータ平均値TRQPARMが全気筒平均値TRQALLになるよう、各気筒の出力を制御することである。したがって、ステップS106において、ステップS105で決定された運転パラメータについて、気筒ごとに、該気筒の該偏差DTRQPARMを解消するための補正係数(点火時期の場合は「補正項」であり、以下同様)Cを算出する。
ここで図11(a)を参照すると、燃料量補正マップの一例が示され、図11(b)を参照すると、点火時期補正マップの一例が示され、図11の(c)を参照すると、リフト量補正マップの一例が示されている。これらのマップは、ECU1のメモリに記憶されることができる。
いずれのマップにおいても、偏差DTRQPARMがゼロである時は、補正係数Cも0であり、よって補正は行われない。偏差DTRQPARMがゼロより大きくなるにつれ、該気筒のトルクパラメータ平均値が全気筒平均値よりも大きいことを示す。したがって、該気筒のトルクパラメータ平均値を全気筒平均値にまで減らすよう、ゼロより小さい補正係数Cが割り当てられる。偏差DTRQPARMがゼロより小さくなるにつれ、該気筒のトルクパラメータ平均値が、全気筒平均値よりも小さいことを示す。したがって、該気筒のトルクパラメータ平均値を全気筒平均値にまで増やすよう、ゼロより大きい補正係数Cが割り当てられる。
補正すべき運転パラメータが燃料供給量であるとき、算出された偏差DTRQPARMに基づいて図11(a)のようなマップを参照し、該偏差に対応する補正係数Cを算出する。補正すべき運転パラメータが点火時期であるとき、算出された偏差DTRQPARMに基づいて図11(b)のようなマップを参照し、該偏差に対応する補正項Cを算出する。補正すべき運転パラメータがリフト量であるとき、算出された偏差DTRQPARMに基づいて図11(c)のようなマップを参照し、該偏差に対応する補正係数Cを算出する。
運転パラメータの値は、エンジン2の運転状態に基づいて、任意の適切な手法により算出されている。たとえば、所定の時間間隔で実行される適切な制御プロセスにより、運転パラメータの今回値を算出することができる。ステップS107では、こうして決定された運転パラメータの今回値を、気筒ごとに、該気筒についてステップS106で求めた補正係数Cに従って補正する。運転パラメータが燃料供給量およびリフト量の場合には、以下の式(17−1)に従って補正され、運転パラメータが点火時期の場合には、以下の式(17−2)に従って補正される。補正係数Cがゼロであるとき、運転パラメータは補正されない。こうして、補正係数Cが大きくなるにつれ、出力トルクが増加するよう運転パラメータは補正される。
補正済み運転パラメータ=運転パラメータの値×(1+補正係数C)
(17―1)
補正済み運転パラメータ=運転パラメータの値+補正項C
(17−2)
ステップS108において、補正済み運転パラメータに従って作動するよう、対応する機構に指示が送られる。たとえば、運転パラメータが燃料供給量であるとき、各気筒について算出された補正済み燃料供給量に基づく制御信号が、燃料噴射機構21に送られる。燃料噴射機構21は、各気筒の燃料噴射弁18を、受け取った制御信号に従って駆動する。こうして、各気筒に、該気筒に対応して算出された補正済み燃料供給量が供給されるようにする。点火時期およびリフト量についても、同様である。
代替的に、ステップS102のトルクパラメータMFJUDの所定期間にわたる平均化は、他の手法を用いてもよい。たとえば、重み付け係数を用いて平滑化を行ってもよいし、移動平均を用いてもよい。
また、図10に示す実施例では、クランク角あたりのトルクパラメータについて、各気筒と全気筒平均とを比較して偏差を算出したが、代替的に、トルクパラメータ(積算値)MFJUDについて、各気筒と全気筒平均とを比較してもよい。この場合、たとえば図12のようなプロセスとして実現されることができる。
ステップS201は、図10のステップS101と同じである。ステップS202において、トルクパラメータMFJUDについて、全気筒の平均値を式(18)により算出する。括弧内の数字は気筒識別番号を示す。
TRQALL=(MFJUD(1)+MFJUD(2)+MFJUD(3)+MFJUD(4)+MFJUD(5)+MFJUD(6))/6 (18)
ステップS203において、式(19)に従い、それぞれの気筒について、全気筒平均値TRQALLと、該気筒のトルクパラメータMFJUDの偏差DTRQPARMを算出する。
DTRQPARM(k)=MFJUD(k)−TRQALL
(19)
ステップS204は、図10のステップS105と同じである。ステップS205において、ステップS204において決定された運転パラメータについて、該偏差DTRQPARMを解消するための補正係数Cを気筒ごとに算出する。図11と同様のマップを予め用意してECU1のメモリに記憶することができる。偏差に基づいて該マップを参照することにより、補正係数Cを求めることができる。ステップS206およびステップS207は、図10のステップS107およびS108と同じである。
図10および図12に示される実施例では、全気筒平均値に対する各気筒のトルクパラメータの偏差に基づいて補正係数Cを求めているが、代替的に、各気筒のトルクパラメータと全気筒平均値との間の比を求め、該比に基づいて補正係数を求めるようにしてもよい。
また、補正係数Cを用いて運転パラメータを補正するステップS107およびS206に先立ち、該補正を実際に行うことを許可するかどうかの判断ステップを設けてもよい。たとえば、補正すべき運転パラメータとしてリフト量が決定されたが、リフト量を補正によって実際に変更する際に運転状態が急変した(たとえば、エンジン回転数が高くなった)場合には、補正が良好に反映されないことがあるので、このような場合には、リフト量の補正を抑制することができる。
図13〜図15は、図10のステップS105または図12のステップS204で実行される、補正すべき運転パラメータを決定するためのプロセスである。図13〜図15のプロセスは、並列に実行されることができる。
図13は、燃料供給量についてのプロセスを示す。このプロセスでは、エンジン2の運転状態を調べることにより、燃料量の補正を許可するかどうかを判断している。
ステップS111において、クランク角センサ11(図1)から検出されるエンジン回転数が、所定値(たとえば、2000rpm)より大きいかどうかを判断する。ステップS112において、吸気管圧力センサ9から検出される吸気管圧力が、所定値(たとえば、300mmHg(約40kPa))より小さいかどうかを判断する。ステップS113において、エアフローメータ7により検出される吸入空気量が、所定値(たとえば、0.2g)より大きいかどうかを判断する。ステップS114において、吸気温センサ8により検出される吸気温TAが所定値(たとえば、70度)より大きいかどうかを判断する。ステップS115において、エンジン水温センサ10により検出されるエンジン水温TWが所定値(たとえば、100度)より小さいかどうかを判断する。ステップS116において、大気圧センサ12により検出される大気圧PAが所定値(たとえば、550mmHg(約73kPa))より大きいかどうかを判断する。
ステップS117において、リフト量センサにより検出される吸気バルブのリフト量が所定値(たとえば、0.2mm)より小さいかどうかを判断する。ステップS118において、吸排気バルブのオーバーラップ期間が所定値(たとえば、クランク角度25度)より小さいかどうかを判断する。ステップS119において、EGR率が所定値(たとえば、20%)より大きいかどうかを判断する。EGR率は、還流排ガス量/(還流排ガス量+新気量)により求められることができる。還流排ガス量は、EGRバルブ6の開度に基づいて求められることができ、新気量は、エアフローメータ7により検出されることができる。ステップS120において、エンジン2がアイドル運転状態かどうかを判断する。
ステップS111〜S120の判断のすべてがYesであるならば、燃料供給量の補正を許可し(S121)、よって、燃料供給量が、補正すべき運転パラメータとして決定される。ステップS111〜S120の判断のいずれかがNoであるならば、燃料供給量の補正を不許可とする(S122)。
図14は、点火時期の補正を許可するかどうかを判断するプロセスであり、ステップS139以外は図13と同様であるので、説明を省略する。ステップS139では、EGR率が所定値(たとえば、20%)より小さいかどうかを判断する。このステップEGR率の判断が、燃料供給量(図13)および以下に示すリフト量(図15)におけるEGR率の判断と異なるのは、EGR率が高くなるほど、不活性ガスにより燃焼時間が長くなって点火時期が遅角し、その結果、点火時期を用いたトルク制御の安定性が低下するおそれがあるためである。したがって、点火時期については、EGR率が所定値より小さいときに補正を許可している。
図15は、リフト量の補正を許可するかどうかを判断するプロセスであり、図13と同様であるので説明を省略する。
このように、燃料供給量、点火時期およびリフト量からなる運転パラメータのうち、エンジン2の運転状態に基づいて許可可能と判断された運転パラメータが、補正すべき運転パラメータとして決定される。運転状態に基づいて補正の許可可能性を判断しているので、運転パラメータの補正に起因して、エンジン2の運転状態が不安定になることを回避することができる。
図13〜図15に示される判断ステップは一例であり、様々な形態が考えられる。たとえば、これらの判断ステップのすべてを必ずしも実行する必要はなく、また、他の判断を含めてもよい。さらに、エンジンの運転状態だけでなく、エンジンの特性(ストイキエンジンかリーンバーンエンジンか等)を考慮してもよい。この例では、すべての判断の答えがYesである場合(AND条件)に補正を許可しているが、或る1つまたは複数の判断の答えがYesであるか、または、他の1つまたは複数の判断の答えがYesであるときに(OR条件)、補正を許可するようにしてもよい。
以下は、図3のトルクパラメータ算出部32により実行されるトルクパラメータを算出する手法の代替形態の説明である。
図16は、図3に示すプロセス(第1の実施形態)の変形例を示し、ステップS15およびS16を、ステップS16a、S16bおよびS16cに変更したものである。
ステップS16aでは、式(20)に従い、相対回転速度OMGREF(i)の積算値として、トルクパラメータMFJUDa(k)を算出する。
Figure 0004298769
ステップS16bでは、式(21)に従い、慣性力回転速度OMGIの積算値MFTH(k)を算出する。
MFTH(k)=−NTDC×OMGI(k) (21)
ステップS16cでは、式(22)に従い、トルクパラメータMFJUDを算出する。
MFJUD(k)=MFJUDa(k)―MFTH(k) (22)
このように、この変形例では、修正相対回転速度を積算することに代えて、相対回転速度を積算した値と慣性力回転速度を積算した値とを用いてトルクパラメータMFJUDを算出する。
図17は、トルクパラメータを算出するプロセスの第2の実施形態のフローを示す。図3および図16を参照して説明した第1の実施形態では、時間パラメータCRMEを回転速度OMGに変換したが、この形態では、時間パラメータCRMEを速度パラメータとして使用する。以下のプロセス中で算出される相対時間パラメータCRMEREFの積算値は、図5に一例として示された相対回転速度OMGREFの積算値と同様の変化を呈するので、トルクを表すパラメータとして用いることができる。なお、以下に説明する点以外は、第1の実施形態と同じである。
ステップS32において、式(23)に従って720度フィルタ処理を実行し、フィルタ処理後時間パラメータCRMER(i)を算出する。
CRMER(i)=CRME(i)―(CRME(0)−CRME(ND))×Dθ×i/4π (23)
ステップS33において、式(24)に従い、相対時間パラメータCRMEREF(i)を算出する。ここで、CRMER((k−1)NTDC)は基準時間パラメータであり、対象となる気筒の圧縮上死点におけるフィルタ処理後時間パラメータに相当する。
CRMEREF(i)=CRMER((k−1)NTDC)−CRMER(i) (24)
ステップS34において、式(25)に従い、慣性力時間パラメータCRMEI(k)を算出する。
CRMEI(k)=3I・CRME((k−1)NTDC)/K (25)
ステップS35において、式(26)に従い、修正相対時間パラメータCRMEREFM(i)を算出する。
CRMEREFM(i)=CRMEREF(i)―CRMEI(k) (26)
ステップS36において、式(27)に従い、修正相対時間パラメータCRMEREFMの積算値を算出することにより、トルクを表すトルクパラメータMFJUD(k)を算出する。
Figure 0004298769
ステップS37では、気筒識別番号kが気筒数Nと等しいか否かを判断する。答えがNoであるときは、気筒識別番号kを1だけインクリメントし(S38)、答えがYesであるときは、気筒識別番号kを1に戻す(S39)。
このトルクパラメータMFJUDを用いて、前述した図10または図12のプロセスにより、気筒間の出力変動を制御することができる。
図18は、図17に示すプロセスの変形例を示し、ステップS36を、ステップS36a、S36bおよびS36cに変更したものである。
ステップS36aでは、式(28)により、相対時間パラメータの積算値MFJUDc(k)を算出する。
Figure 0004298769
ステップS36bでは、式(29)に従い、CRMEIの積算値MFTHa(k)を算出する。
MFTHa(k)=NTDC×CRMEI(k) (29)
ステップS36cにおいて、式(30)に従い、トルクパラメータMFJUDを算出する。
MFJUD(k)=MFJUDc−MFTHa(k) (30)
この変形例では、修正相対時間パラメータCRMEREFMを積算することに代えて、相対時間パラメータCRMEREFの積算値と慣性力時間パラメータCRMEIの積算値とを用いて、トルクパラメータMFJUDを算出する。
トルクパラメータの算出は、様々な変形が可能である。たとえば、時間パラメータCRME(i)を式(1)に適用して回転速度OMGを算出したが、高回転時に算出精度が低下しないようにするため、式(31)により算出される5個の時間パラメータCRMEの積算値CRME30(i)を用いて回転速度OMGを算出するようにしてもよい。
Figure 0004298769
この場合、回転速度OMG(i)は、式(32)により算出される。ただし、回転速度の算出位相がずれるので、その分の位相補正を行うのが良い。
OMG(i)=5Dθ/CRME30(i) (32)
また、上記の基準回転速度および基準時間パラメータは、圧縮上死点における回転速度および時間パラメータを用いたが、圧縮上死点近傍(例えば、±7.5度の範囲内)でもよい。ここで、7.5度は、回転速度パラメータのサンプリング周期が15度の場合に対応しており、一般的にサンプリング周期をθSPLとすると、±θSPL/2の範囲内でサンプリングされた回転速度パラメータを用いるのが良い。
また、720度フィルタ処理は、上記の式(2)に代えて、下記の式(33)により行ってもよい。この式は、クランク角720度の期間の回転速度OMGの移動平均値OMGAVE(m)を用いて線形変化分をキャンセルするものである。ここで、mは、クランク角度720度の周期に対応する離散化時刻である。
OMGR(i)=OMG(i)
―(OMGAVE(m)―OMGAVE(m-1))×Dθ×i/4π (33)
次に、図3のトルクパラメータ算出部32により実行される、トルクパラメータを算出する手法の第3の実施形態について説明する。この形態では、クランク軸の捩れやクランク角センサによる時間パラメータCRMEの検出誤差等に起因する外乱の影響を排除することができる。
図19(a)は、修正相対回転速度OMGREFMの実測値の一例を示しており、点線で囲んだ部分が、このような外乱の影響を受けた部分である。このような外乱の影響があると、トルクパラメータの算出に誤差が生じるおそれがある。
そこで、この実施形態では、正常燃焼が行われ、かつクランク角センサの検出に影響を与える外乱がない場合の回転速度変化を近似する燃焼相関関数FCRを修正相対回転速度OMGREFMに乗算することにより、外乱の影響を排除する。図19(b)は、(a)に示す修正相対回転速度OMGREFMに関数FCRを乗算することにより算出したOMGREFMbを示しており、外乱が抑制されていることがわかる。
図20は、相関関数FCRの一例を示し、式(34)で定義される。ここで、Nは気筒数であり、θは、特定気筒のピストンが上死点に位置する角度を基準としたクランク角度である(図7を参照)。なお、図20は、6気筒エンジンに対応する相関関数FCRを示している。
FCR={1−2cos(N・θ/2)}/2 (34)
相関関数FCRは、例えばエンジンの暖機後の定常運転状態において、正常燃焼時の各気筒の筒内圧を計測し、計測した気筒毎の筒内圧を加算することにより合成の筒内圧変化を算出し、その合成筒内圧変化を回転速度の変化に換算することにより、求めてもよい。図21は、そのようにして求めた関数FCRを示す。この関数FCRは、正常燃焼状態における回転速度変化波形を、最小値が0で最大値が1となるように正規化されている。
図22(a)は、燃焼相関関数FCRによる相対回転速度の補正を行わない場合のトルクパラメータMFJUDのばらつきの範囲の例を示し、図22(b)は、この第3の実施形態におけるトルクパラメータMFJUDのばらつき範囲の例を示す。これらの図から明らかなように、相関関数FCRを用いた補正を行うことにより、トルクパラメータの算出精度が高まり、ばらつき範囲を減少させることができる(図の例では、約40%減少)。
図23は、この第3の実施形態に従う、トルクパラメータを算出するプロセスのフローを示す。
ステップS51〜53は、第1の実施形態に従う図3のステップS11〜S13と同じであるので、説明を省略する。
ステップS54において、式(4)により算出される慣性力回転速度OMGI(k)を下記の式(35)に適用し、慣性力回転速度OMGIa(I)を算出する。第1の実施形態では、圧縮上死点での慣性力回転速度OMGI(k)をそのまま式(5)に適用して修正相対回転速度OMGREFMを算出したが、この実施形態では、各サンプリングタイミングにおける慣性力回転速度OMGIa(i)を算出して、相対回転速度OMGREFの修正を行う。
OMGIa(i)=OMGI(k)×{cos(N・Dθ・i/2)―1} (35)
ステップS55では、式(36)に、ステップS54で算出した慣性力回転速度OMGIa(i)を適用し、第1修正相対回転速度OMGREFMa(i)を算出する。
OMGREFMa(i)=OMGREF(i)−OMGIa(i) (36)
ステップS56では、ステップS55で算出した第1修正相対回転速度OMGREFMa(i)および式(37)により算出される相関関数FCR(i)を式(38)に適用し、第2修正相対回転速度OMGREFMb(i)を算出する。式(37)は、式(34)のθを、(Dθ・i)に置換したものである。
FCR(i)={1−2cos(N・Dθ・i/2)}/2 (37)
OMGREFMb(i)=OMGREFMa(i)×FCR(i) (38)
ステップS57では、式(39)に従ってトルクパラメータMFJUDを算出する。
Figure 0004298769
こうして、燃焼関数を用いることにより、クランク角センサの検出値に影響を与えうる外乱の影響を排除しつつトルクパラメータを算出することができる。また、式(37)に示す燃焼相関関数を用いることにより、燃焼相関関数値算出用のテーブル設定のための実験が不要となり、比較的簡単な演算でトルクパラメータの算出補正を行うことができる。
代替的に、図21に示す実測データに基づく相関関数を用いる場合には、図21に示す1周期分の関数値FCR(i)をパラメータiに応じて検索するFCRテーブルを予めメモリに格納しておき、ステップS56において、式(37)による演算に代えて、FCRテーブル検索を行う。実測データに基づく燃焼相関関数を用いることにより、燃焼相関関数に内燃機関の特性を反映するようトルクパラメータの算出を補正することができる。
また、式(38)の演算も、コサイン関数を予めテーブルとしてメモリに記憶しておき、そのテーブルを検索することにより、相関関数値FCR(i)を算出するようにしてもよい。FCRを用いた補正は、第2の実施形態にも適用可能である。
次に、この発明の一実施形態に従う、これまで述べてきた出力変動抑制のための制御装置30(図2、出力変動抑制装置と呼ぶ)を用いて、気筒間の燃料系および吸気系のバラツキを判断する制御手法について説明する。
気筒間で空燃比を平滑化するため、気筒毎に供給される燃料量を制御する燃料制御装置が提案されている。しかしながら、燃料制御装置によって各気筒の空燃比が平滑化されるよう燃料制御が行われても、吸入空気量のバラツキによって空燃比がずれるおそれがある。空燃比のずれの大きさによっては、燃料補正量が過大となり、よって燃料制御装置を介した燃料系に何らかの異常が生じたと誤判定されるおそれがある。
したがって、吸入空気量がずれているのか、燃料量がずれているのかについて、気筒毎に見極めるのが望ましい。このような見極めができれば、燃料制御装置によって気筒毎に算出される燃料補正量が適切かどうかを判断することができると共に、気筒間で吸入空気量が平滑化されるよう、気筒毎に吸入空気量をより適切に補正することができる。さらに、燃料系および吸気系のどちらに異常があるかを、気筒毎に見極めることができる。
そこで、この実施形態では、図24に示すように、出力変動抑制装置30(図2)に加え、上記のような気筒間の空燃比が所定の空燃比(この実施例では、理論空燃比)に平滑化されるように気筒毎に燃料制御を行う燃料制御装置131が搭載されているエンジンにおいて、上記のような見極めが可能となる制御装置を提案する。
ここで、エンジンは、図1を参照して述べたのと同様の構成を有している。出力変動抑制装置30は、図2と同様の構成を有しており、この実施例では、出力変動抑制のために補正すべき運転パラメータとして点火時期が選択され、該点火時期についての補正量(図11(b)および式(17−2)の補正項C)が算出される。この点火時期補正量に従って、出力変動制御部35により、点火時期が制御される。
他方、燃料制御装置131は、気筒間の空燃比を平滑化するための燃料噴射量の補正量(第2の燃料補正量)を算出する。この実施例では、燃料制御装置131は、すべての気筒の空燃比が所定の空燃比(この実施例では、理論空燃比(ストイキ))に維持されるよう、各気筒について、第2の燃料補正量を算出する。
許可判定部132は、吸入空気量および燃料量のずれを見極めるためのプロセスの実行を許可するかどうかを判断する。この実施例では、内燃機関がアイドル運転状態にある時に、該プロセスの実行を許可する。これは、内燃機関の出力が低く、かつ安定している時の方が、より安定的な見極めを行うことができるからである。
吸入空気ずれ量算出部133は、各気筒について、出力変動抑制装置30から受け取った点火時期補正量に基づいて、吸入空気のずれ量を算出する。具体的には、吸入空気ずれ量算出部133は、各気筒の点火時期補正量に応じて、可変リフト機構23(図1)によって制御される該気筒の吸気バルブの現在のリフト量が、目標リフト量に対してどれほどずれているか(以下、リフトずれ量と呼ぶ)を算出する。ここで、目標リフト量は、吸入空気量のバラツキが気筒間に存在しない場合の所望値である。この実施例では、目標リフト量は、運転状態に応じて予め決められた全気筒に共通の値であり、たとえばアイドル運転状態用の所定値に設定される。
前述したように、各気筒の点火時期補正量は、該気筒の出力のずれを表しているので、空燃比が一定であるときには、リフトずれ量と相関関係を有している。したがって、一実施例では、すべての気筒が所定の空燃比(燃料制御装置131が平滑化の目標とする空燃比であり、この実施例では、ストイキ)に維持されているという条件の下で、点火時期補正量とリフトずれ量の間の相関関係が予め生成される。吸入空気ずれ量算出部133は、各気筒について、出力変動抑制装置30から受け取った点火時期補正量に基づいて該相関関係を参照し、該気筒のリフトずれ量を求める。
吸気系判定部134は、各気筒について、リフトずれ量が第1の所定値より小さければ、気筒間の出力トルクの平滑化にほとんど影響しないので、目標リフト量を現在の値に維持する。吸気系判定部134は、各気筒について、リフトずれ量が、第2の所定値(>第1の所定値)より大きければ、該気筒の吸気系(該気筒の吸気を実現するための系であり、可変リフト機構23、吸気バルブ16等を含む)に故障等の何らかの異常があると判断する。異常があると判断された場合には、たとえば警告灯を点灯する等の任意の適切な手段によって、運転者に知らせることができる。
吸気系判定部134は、各気筒について、リフトずれ量が、第1と第2の所定値の間にある場合には、リフトずれ量を解消するための制御を行う。具体的には、吸気系判定部134は、目標リフト量を増加する。これは、現在のリフトずれ量の目標リフト量に対する割合を小さくするためである。リフトずれ量の割合が小さくなれば、気筒間の出力トルクの平滑化の観点からは、リフトずれ量が無視可能な誤差とみなすことができる。さらに、目標吸入空気量を維持するために、吸気系判定部134は、該目標リフト量の増加に伴い、目標ゲージ圧を小さくする。吸気系判定部134は、増加した目標リフト量に従う制御信号を生成し、該制御信号を可変リフト機構23に送ると共に、小さくした目標ゲージ圧に従う制御信号を生成し、該制御信号を、スロットル弁27を駆動するスロットル機構(図示せず)に送る。これにより、可変リフト機構23は、目標リフト量に達するよう、全気筒の吸気バルブのリフト量を制御し、スロットル機構は、目標ゲージ圧に達するよう、スロットル弁27の開度を制御する。こうして、各気筒のリフトずれ量を無視可能な状態にすることで、気筒間の吸入空気量のバラツキを解消する。
第1の燃料補正量算出部141は、各気筒について、吸入空気ずれ量算出部133により算出されたリフトずれ量に応じて、第1の燃料補正量を算出する。
空燃比を所定値に平滑化するための燃料量が各気筒に供給されているとき、各気筒のリフトずれ量は、該気筒の燃料補正量と相関関係を有している。したがって、一実施例では、すべての気筒を所定の空燃比(燃料制御装置131が平滑化の目標とする空燃比であり、この実施例では、ストイキ)にするのに要する燃料量が各気筒に供給されているという条件の下で、リフトずれ量と燃料補正量(第1の燃料補正量)との間の相関関係が予め生成される。第1の燃料補正量算出部141は、各気筒について、吸入空気量ずれ算出部133から受け取ったリフトずれ量に基づいて該相関関係を参照し、該気筒の第1の燃料補正量を求める。
燃料ずれ量算出部142は、各気筒について、燃料制御装置131から出力された第2の燃料補正量と、上記第1の燃料補正量との差を、燃料ずれ量として算出する。前述したように、第1の燃料補正量は、燃料量のバラツキが気筒間で生じていない場合(すなわち、気筒間の空燃比が所定値に平滑化されるよう燃料量が各気筒に供給されている場合)に、リフトずれ量に対して補正すべき燃料量を示している。したがって、燃料制御装置131による制御によって該バラツキが解消されていれば、第2の燃料補正量は第1の燃料補正量にほぼ一致すべきである。第1および第2の燃料補正量の差が大きいということは、該気筒の燃料系(該気筒への燃料供給を実現するための系であり、燃料噴射機構21、燃料噴射弁18等を含む)に故障等の何らかの異常が生じている可能性があることを示す。したがって、燃料系判定部143は、該第1および第2の燃料補正量の差が所定値より大きければ、このような異常があると判断する。異常があると判断された場合には、たとえば警告灯を点灯する等の任意の適切な手段によって、運転者に知らせることができる。
異常があると判定されなかった場合には、燃料系判定部143は、燃料制御装置131によって算出された第2の燃料補正量に従って、燃料噴射機構を駆動する。異常があると判定された場合には、異常の通知と共に、第1の燃料補正量に従って燃料噴射機構を駆動するようにしてもよい。
こうして、出力変動抑制装置30によって算出された点火時期補正量に基づいて、吸入空気のずれ量および燃料のずれ量のそれぞれについて、気筒毎に特定することができる。さらに、これらのずれ量の大きさに基づいて、どの気筒の吸気系および/または燃料系に異常があるかどうかを判断することができる。このような異常箇所の切り分けにより、たとえばこれらの系を構成する要素の故障原因、修理、取り替え等の対応がしやすくなる。
燃料制御装置131は、任意の適切な手段で構成されることができる。一例として、図25に燃料制御装置131の構成を示し、これについて簡単に説明する。詳細は、特開2006−161577号公報に示されている。
LAFセンサ13(図1)において排ガスの空燃比に対応する出力KACTが計測される。他方、基準信号生成部112は、各気筒の排気ガスの排出挙動を模した基準信号Fcr#1〜#6を、クランク信号CRKに同期して生成する。
相関関数算出部111は、LAFセンサ出力KACTと基準信号Fcrとの有限区間の相関関数Crを、式(40)に従って算出する。
Figure 0004298769
ここで、iは気筒番号(6気筒の場合i=1〜6)であり、Nは1燃焼サイクル当りのCRK信号のパルス数である。CRK信号が30度毎に発せられるとすると、N=24である。また、kは時間ステップである。
ここで、LAFセンサ出力KACTと基準信号Fcr#iについて、図26および図27を参照して説明する。図26は、LAFセンサ出力KACTの概略図である。この図では、KACTと目標空燃比KCMDは当量比で表される。ストイキ(理論空燃比であり、例えば14.7)を実現している場合、1の値を示す。一方、ストイキよりリッチの場合、1以上の値を示し、リーンの場合1以下の値を示す。図では気筒#4がリッチ、気筒#5がリーンの状態のLAFセンサ出力KACTを示している。また、各気筒の燃料噴射タイミングによって排気タイミングも決まるので、ある気筒がリッチまたはリーンの場合、LAFセンサ出力KACTは周期的な変動を示す。
このようなLAFセンサ出力KACTの特徴に注目して基準信号Fcr#iは生成される。図27は基準信号Fcr#iの概略図である。基準信号Fcr#iは、1燃焼サイクルのうち各気筒の排気ガスの排出挙動に対応するように気筒別に生成されており、各気筒の基準信号は対象となる気筒の排気タイミングの範囲のみにサイン波状の信号を有する。これらの基準信号を用いることで、相関関数Cr#iは、対応する気筒iの空燃比がリッチなほど大きな値をとり、リーンなほど小さい値をとる。例えば図26のLAFセンサ出力KACTとの相関関数を考えると、気筒#4の基準信号Fcr#4との相関関数Cr#4が最大値をとり、気筒#5の基準信号Fcr#5との相関関数Cr#5が最小値をとる。
ここで基準信号Fcrは、エンジンの1燃焼サイクルを1周期とする周期信号である。一般に、周期信号の相互相関は、周期信号の周期の整数倍以外の有限区間で算出すると周期的挙動を示し、周期信号の周期の整数倍の有限区間で算出すると一定値を示すという特徴がある。また、制御系の共振の発生を防ぐためにも、制御系内の内部変数は、周期的な挙動を持つものとしない方が良い。したがって、相関関数Cr#iが周期的な挙動を持たないようにするため、積分区間を基準信号の周期と同じにした。
次に、平滑化目標値算出部113は、各気筒の空燃比を平滑化するための平滑化目標値Cr_cmdを算出する。ここで相関関数Cr#iと各気筒の空燃比との関係に着目すると、各気筒の空燃比が一致するということは、各気筒の相関関数Cr#iが一致することになる。したがって、この実施形態では、各気筒の相関関数Cr#iを収束させるための平滑化目標値Cr_cmdを、次式(41)のように各相関関数の平均値で定義する。ここで、mは気筒数であり、本実施形態ではm=6である。
Figure 0004298769
気筒別制御器114は、各気筒の相関関数Cr#iを平滑化目標値Cr_cmdに収束するように、各気筒への燃料噴射量を調整するための気筒別平滑化係数Kcr#iを算出する。この気筒別平滑化係数の生成には、以下に詳述する2自由度応答指定型制御が用いられる。この制御手法を用いるメリットは、平滑化目標値Cr_cmdが急変したときや、相関関数Cr#iが大きく変化して平滑化目標値Cr_cmdに対して大きく離間してしまったときに、オーバーシュートや振動的挙動を生じずに安定的に気筒間の空燃比のばらつきを補正でき、エミッションやドライバビリティの低下を防止できる点にある。しかしながら、他の制御手法(たとえば、PID制御等)を用いてもよい。
気筒別制御器114では、式(42)に示されるように、まず目標値応答指定パラメータRcrを用いて、平滑化目標値Cr_cmdにローパスフィルタリングを施す。この処理により、ステップ状に変動する目標値波形を平滑化して、目標値に漸近収束する曲線に変換する。
Cr_cmd_f(k) = −Rcr・Cr_cmd_f(k-1) + (1+Rcr)Cr_cmd(k) (42)
ここで、Cr_cmd_fはフィルタ処理後の目標値であり、kは時間ステップである。応答指定パラメータは、好ましくは−1 < Rcr < 0であるよう設定される。
式(42)に示されるように、目標値応答指定パラメータRcrにより、フィルタ処理後の目標値Cr_cmd_fの軌道が規定される。目標値をどのような軌道に設定するかにより、相関関数Cr#iの目標値Cr_cmdへの追従速度を指定することが可能となる。こうして設定された目標値Cr_cmd_fに相関関数Cr#iが収束するように、気筒別制御器114は、気筒別平滑化係数Kcr#iを算出する。
そのため、式(43)に示されるように、相関関数Cr#iと目標値Cr_cmd_fとの偏差Ecr#iを求める。
Ecr#i(k) = Cr#i(k) − Cr_cmd_f(k) (43)
式(44)に示されるように、切り替え関数σcr#iを定義する。切り替え関数σcr#iは、偏差Ecr#iの収束挙動を規定する。Scrは、外乱抑制応答指定パラメータであり、外乱が印加された時の偏差Ecr#iの収束速度を指定する。外乱抑制応答指定パラメータScrは、好ましくは、−1 < Scr < 0を満たすように設定される。
σcr#i(k) = Ecr#i(k) + Scr・Ecr#i(k-1) (44)
式(45)に示されるように、気筒別平滑化係数Kcr#iを算出する。ここで、Krch_crおよびKadp_crはフィードバックゲインである。式(45)の右辺の第一項は比例項であり、第二項は積分項である。したがって、式(45)は、入力を切り替え関数σcr#iとしたPI制御のフィードバック量を計算していることと等価である。
Figure 0004298769
このように算出された気筒別平滑化係数Kcr#iは、相関関数Cr#iを平滑化目標値Cr_cmdに収束させるための補正入力である。この係数Kcr#iは、LAFセンサ出力KACTを目標空燃比KCMDに制御するための制御量ではない。むしろ、気筒別平滑化係数Kcr#iは、平滑化目標値Cr_cmdが目標空燃比KCMDと一致する場合を除いて、LAFセンサ出力KACTと目標空燃比KCMDとの間に定常偏差を生じさせるおそれがある。
このため、気筒別制御器114に加え、LAFセンサ出力KACTを目標空燃比KCMDに収束させるための集合部制御器115を設けるのが好ましい。集合部制御器115のアルゴリズムは、PID制御、適応制御、または最適制御などでも実現可能であるが、この実施形態では、気筒別制御器114と同様に2自由度応答指定型制御を用いる。
このとき、集合部制御器115の目標値応答および外乱抑制の応答指定パラメータを、気筒別制御器114のものよりも速く設定することにより、定常偏差を速やかに高精度に補償できる。
集合部制御器115は、式(46)に示されるように、目標値応答指定パラメータRを用いて、目標空燃比KCMDにローパスフィルタリングを施す。この処理によりステップ状に変動する目標値波形を平滑化して、目標値に漸近収束する曲線に変換する。
KCMD_f(k) = −R・KCMD_f(k-1) + (1+R)KCMD(k) (46)
ここで、KCMD_fはフィルタ処理後の目標値であり、kは時間ステップである。また、応答指定パラメータの範囲は、気筒別制御器114より高速化するため、−1 < Rcr < R < 0を満たすよう設定されるのがよい。
式(47)に示されるように、LAFセンサ出力KACTと目標値KCMD_fとの偏差Eを求める。
E(k) = KACT(k) − KCMD_f(k) (47)
式(48)に示されるように、切り替え関数σを定義する。Sは外乱抑制応答指定パラメータであり、外乱が印加された時の偏差Eの収束速度を規定する。外乱抑制応答指定パラメータSは、気筒別制御器114より高速化するために、−1 < Scr < S < 0を満たすように設定されるのがよい。
σ(k) = E(k) + S・E(k-1) (48)
式(49)に示されるように、空燃比補正係数KAFを算出する。ここで、KrchおよびKadpはフィードバックゲインである。
Figure 0004298769
なお、式(49)は式(45)と比べて右辺第一項に「1」が追加されている。これは、制御開始時に、右辺第二項、第三項の初期値が0なので、補正係数が0となって燃料噴射量が0になるのを防ぐためである。なお、積分項である第三項の初期値を1とし、第一項の「1」を使用しない手法を用いてもよい。
最後に、燃料制御装置131は、式(50)のように気筒別平滑化係数Kcr#iに空燃比補正係数KAFを加算して、気筒別空燃比補正係数KAF#iを算出する。
KAF#i(k) = Kcr#i(k) + KAF(k) (50)
この気筒別空燃比補正係数KAF#iによって、該気筒の燃料噴射弁18の燃料噴射量が調整され、各気筒の空燃比が平滑化される。
上記補正係数KAF#iが、図24を参照して説明した各気筒の第2の燃料補正量を表している。
なお、出力変動抑制装置30について説明した図3から図9、図14、図16から図23に示されるプロセスおよびそれに関連する各種パラメータの挙動は、図24に示される出力変動抑制装置30においても、同様に適用可能であり、該プロセスは同様に実施されることができる。したがって、ここでの説明は省略する。
また、この実施形態では、図10のステップS105および図12のステップS204において、補正すべき運転パラメータは点火時期と決定され、図11の(b)のようなマップ(テーブル)を参照して、各気筒につき、トルクの偏差DTRQPARMに基づいて、点火時期の補正項(補正量)Cを算出する。前述した式(17−2)に示すように、点火時期補正量Cで、現在の点火時期が補正される。以下に説明するプロセスでは、この点火時期補正量Cが用いられる。
図28は、この発明の一実施例に従う、吸気量および燃料量のずれを見極めるプロセスのフローである。このプロセスは、所定の時間間隔で、ECU1のCPUにより実行され、より具体的には、吸入空気ずれ量算出部133、第1の燃料補正量算出部141、および燃料ずれ量算出部142によって実行される。
ステップS301において、エンジンがアイドル運転状態かどうかを判断する。アイドル運転状態ならば、当該プロセスの実行を許可し、ステップS302に進む。
ステップS302において、各気筒について、図10のステップS106または図12のステップS205で決定された点火時期補正量Cに基づいて、図29の(a)のようなマップ(テーブル)を参照し、リフトずれ量を算出する。ここで、該マップは、前述したように、全気筒がストイキで燃焼している場合の、点火時期補正量とリフトずれ量との間の相関を定義したものであり、点火時期補正量に対し、吸気バルブのリフト量が目標リフト量からどれくらいずれているかを示すマップである。このようなマップは、シミュレーション等に基づいて予め作成され、ECU1のメモリ(たとえば、不揮発性メモリ)に記憶されることができる。前述したように、この実施例での目標リフト量は、アイドル運転用に設定された所定値である。なお、図11の(b)には、点火時期補正量として±30度の範囲が示されているが、この例では、そのうちの±5度の範囲の点火時期補正量について示している。
該マップに示されるように、点火時期補正量が正方向に大きくなるほど、低い側にリフトずれ量が大きくなる。これは、点火時期補正量が大きくなる(点火時期が進角になる)ということは、出力変動抑制装置30が出力トルクを増やすために吸入空気量を増やそうとしていることを示す。したがって、現在の吸入空気量は、足りない方向にずれていることを示す。こうして、気筒毎に、吸入空気量のずれが算出される。
ステップS303において、各気筒について、ステップS302で算出されたリフトずれ量に基づいて、図29の(b)のようなマップ(テーブル)を参照し、第1の燃料補正量を算出する。ここで、該マップは、前述したように、すべての気筒をストイキにするのに要する燃料量が各気筒に供給されている場合の、リフトずれ量と第1の燃料補正量(補正係数で表される)との間の相関を定義したものであり、リフトずれ量に対し、第1の燃料補正量がどの程度であれば、各気筒の空燃比をストイキにすることができるか、を示している。このようなマップは、シミュレーション等に基づいて予め作成され、ECU1のメモリ(たとえば、不揮発性メモリ)に記憶されることができる。
該マップに示されるように、リフトずれ量が正方向に大きくなるほど、第1の燃料補正量は大きくなる。これは、リフトずれ量が正方向に大きくなるにつれ、空燃比をストイキにするために燃料補正量が多くなる、ということを示す。
ステップS304において、各気筒について、燃料制御装置131から出力される第2の燃料補正量から、ステップS303で算出された第1の燃料補正量を減算することにより、第1および第2の燃料補正量の差、すなわち燃料ずれ量を算出する。
図29の(b)に示すように、燃料量のバラツキが気筒間に無い場合には、リフトずれ量に対する燃料補正量は、ライン201上に存在すべきである。しかしながら、図29の(c)(これは、ライン202が追加で示されている以外は、図29(b)と同じである)に示すように、燃料制御装置131によって算出された第2の燃料補正量が、ライン201上ではなくライン202上に存在するということは、該第2の燃料補正量にずれ203が生じていることを示す。したがって、第1の燃料補正量に対する第2の燃料補正量の差203を、燃料ずれ量として算出する。こうして、気筒毎に、燃料量のずれが算出される。
図30は、吸入空気量のずれに基づく対応を判定するためのプロセスであり、所定の時間間隔で気筒毎に実施される。該プロセスは、ECU1のCPUにより実行され、より具体的には図24の吸気系判定部134により実行される。
ステップS311において、図28のステップS302で算出されたリフトずれ量の絶対値が、第1の所定値より大きいかどうかを判断する。この判断がNoならば、リフトずれ量が小さく、気筒間の出力トルクの平滑化に対する影響はほとんど無いと判断し、そのまま当該プロセスを抜ける。ステップS311の判断がYesならば、ステップS312において、リフトずれ量が、第2の所定値(これは、第1の所定値より大きい)より大きいかどうかを判断する。この判断がYesならば、リフトずれ量が大きく、よって、ステップS313において、該気筒の吸気系に何らかの異常がある判断する。この場合、任意の適切な手段で、警告灯を点灯したり等の通知を行うことができる。
ステップS312の判断がNoの場合には、リフトずれ量が、第1の所定値と第2の所定値との間にあることを示す。この場合には、ステップS314において、リフトずれ量が、気筒間の出力トルクの平滑化に影響しないよう、目標リフト量を増やす(たとえば、現在の目標リフト量を10%増やす)。これにより、目標リフト量に対するリフトずれ量の割合が小さくなるので、リフトずれ量を、出力トルクの平滑化に影響しない程度の許容範囲内とすることができる。目標吸入空気量を維持するために、目標リフト量の増加に伴い、目標ゲージ圧を小さくする。
ここで、図31を参照すると、目標吸入空気量を維持するための目標リフト量と目標ゲージ圧との間の関係が示されている。ここで、目標リフト量は、運転状態に応じて決められており、この実施例では、アイドル運転状態のための値に設定されている。目標吸入空気量を一定に維持するため、目標リフト量が増えるほど、目標ゲージ圧は小さくなる。すなわち、リフト量が増える方向に制御されるほど、スロットル弁は、閉じる方向に制御される。この図のマップに従うように、ステップS314において、目標リフト量の増大および目標ゲージ圧の減少は実行される。
図32を参照すると、一例として、目標吸入空気量の変化に対し、目標リフト量と目標ゲージ圧がどのように変化するかが示されている。目標リフト量と目標ゲージ圧を可変リフト機構およびスロットル機構を介してそれぞれ実現することにより、目標吸入空気量が達成される。
目標吸入空気量が小さい所定領域が、アイドル運転領域に相当する。アイドル運転領域では、主にゲージ圧によって吸入空気量が調整され、所定の目標吸入空気量までは、目標リフト量はほぼ一定に維持される。アイドル運転領域を超えて目標吸入空気量が増加するにつれ、主にリフト量によって吸入空気量が調整され、ゲージ圧はほぼ一定に維持される。
アイドル運転領域に着目すると、符号211に示すような目標リフト量で全気筒の吸気バルブが制御されると共に、符号210に示すような目標ゲージ圧でスロットル弁が制御される。図30のステップS314の制御を行うときには、目標リフト量を、符号213に示すようなラインに増加すると共に、目標ゲージ圧を、符号212に示されるようなラインに減少させる。こうして、ステップS314の制御にかかわらず、目標吸入空気量を達成するようにする。
図33は、燃料ずれ量に基づく対応を判定するためのプロセスであり、所定の時間間隔で気筒毎に実施される。該プロセスは、ECU1のCPUによって実行され、より具体的には、燃料系判定部143によって実行される。
ステップS321において、図28のステップS304で算出した燃料ずれ量の絶対値が所定値より大きいかどうかを判断する。この判断がYesの場合には、前述したように、燃料制御装置131によって算出された第2の燃料補正量が、第1の燃料補正量に対して大きくずれており、ステップS322において、該気筒の燃料系に何らかの異常が生じたと判断する。この場合、任意の適切な手段で、警告灯を点灯したり等の通知を行うことができる。
上述した実施形態では、6気筒エンジンを例に説明したが、本願発明は、任意の数の気筒を有するエンジンに適用可能である。また、本願発明は、直接噴射式のエンジン、ディーゼルエンジン等のエンジンにも適用可能である。
さらに、本発明は、汎用の(例えば、船外機等の)内燃機関に適用可能である。
この発明の一実施例に従う、エンジンおよびその制御装置を概略的に示す図。 この発明の一実施例に従う、出力変動抑制装置の機能ブロック図。 この発明の第1の実施例に従う、トルクパラメータを算出する処理のフローチャート。 この発明の一実施例に従う、トルクパラメータ算出のために用いられるパラメータの推移を示す図。 この発明の一実施例に従う、トルクパラメータ算出のために用いられるパラメータの推移を示す図。 この発明の一実施例に従う、トルクパラメータ算出のために用いられるパラメータの推移を示す図。 この発明の一実施例に従う、エンジンの往復運動部品の作動に起因する慣性力トルクの算出手法を説明するための図。 この発明の一実施例に従う、単一気筒慣性力トルク、合成慣性トルク、および慣性力回転速度を示す図。 この発明の一実施例に従う、気筒間のトルクパラメータを示す図。 この発明の一実施例に従う、出力変動を抑制するプロセスのフローチャート。 この発明の一実施例に従う、出力を補正する補正係数を求めるためのマップ。 この発明の他の実施例に従う、出力変動を抑制するプロセスのフローチャート。 この発明の他の実施例に従う、燃料量について補正を許可するかどうかを判断するプロセスのフローチャート。 この発明の他の実施例に従う、点火時期について補正を許可するかどうかを判断するプロセスのフローチャート。 この発明の他の実施例に従う、リフト量について補正を許可するかどうかを判断するプロセスのフローチャート。 この発明の第1の実施形態の変形例に従うトルクパラメータを算出するプロセスのフローチャート。 この発明の第2の実施形態に従うトルクパラメータを算出するプロセスのフローチャート。 この発明の第2の実施形態の変形例に従うトルクパラメータを算出するプロセスのフローチャート。 クランク角センサ出力に含まれる外乱の影響を説明するための図。 この発明の一実施例に従う、燃焼相関関数の例を示す図。 この発明の一実施例に従う、燃焼相関関数の他の例を示す図。 この発明の一実施例に従う、トルクパラメータの実測値のばらつきを示す図。 この発明の第3の実施形態に従うトルクパラメータを算出するプロセスのフローチャート。 この発明の一実施例に従う、出力変動抑制装置および燃料制御装置を含む制御装置の機能ブロック図。 この発明の一実施例に従う、燃料制御装置の概略的な構成図。 この発明の一実施例に従う、LAFセンサの出力KACTを概略的に示す図。 この発明の一実施例に従う、燃料制御装置で用いる基準信号を概略的に示す図。 この発明の一実施例に従う、吸入空気ずれ量(リフトずれ量)および燃料ずれ量を求めるプロセスのフローチャート。 この発明の一実施例に従う、(a)点火時期補正量とリフトずれ量の相関を示すテーブル、(b)リフトずれ量と第1の燃料補正量の相関を示すテーブル、および(c)燃料ずれ量の一例を示す図。 この発明の一実施例に従う、リフトずれ量に基づく対応を判定するプロセスのフローチャート。 この発明の一実施例に従う、目標リフト量と目標ゲージ圧との関係を示す図。 この発明の一実施例に従う、目標リフト量の増大と目標ゲージ圧の減少の制御を概略的に示す図。 この発明の一実施例に従う、燃料ずれ量に基づく対応を判定するプロセスのフローチャート。
符号の説明
1 ECU
2 エンジン
11 クランク角センサ
13 空燃比センサ
16 吸気バルブ
30 出力変動抑制装置
131 燃料制御装置

Claims (14)

  1. 内燃機関の気筒間の出力変動を抑制する出力変動制御装置であって、
    前記内燃機関の出力を変更する出力変更手段と、
    前記内燃機関の回転速度に応じた回転速度パラメータを検出する回転速度パラメータ検出手段と、
    前記回転速度パラメータの基準値を算出する基準値算出手段と、
    前記気筒毎に、前記基準値と、所定のクランク角度毎に検出される前記回転速度パラメータとの偏差を、相対速度パラメータとして算出する相対速度パラメータ算出手段と、
    前記気筒毎に、前記相対速度パラメータを所定期間にわたって積算して積算値を算出する積算値算出手段と、
    前記積算値を全気筒について加算した値の気筒あたりの平均値を算出する平均値算出手段と、
    前記気筒毎に、該気筒の前記積算値と前記平均値の偏差を算出する偏差算出手段と、
    前記気筒間の出力変動を抑制するよう、前記気筒毎に、該気筒について算出された前記偏差に応じて前記出力変更手段を制御する制御手段と、
    を備える、出力変動制御装置。
  2. 前記内燃機関が所定の運転状態にあるとき、前記気筒毎に、前記積算値を所定期間にわたって平均化して積算平均値を算出する手段を備え、
    前記平均値算出手段により算出される平均値は、該積算平均値を全気筒について加算した値の気筒あたりの平均値であり、
    前記偏差算出手段により算出される偏差は、前記気筒毎に、該気筒の前記積算平均値と、前記積算平均値を全気筒について加算した値の気筒あたりの前記平均値との偏差である、
    請求項1に記載の出力変動制御装置。
  3. 前記出力変更手段は、前記気筒毎に、該気筒に対し燃料を供給する燃料供給装置と、該気筒内で混合気に点火する点火装置を含んでおり、
    前記制御手段は、前記内燃機関の運転状態に基づいて、前記燃料供給装置によって供給される燃料の量および前記点火装置によって混合気に点火する点火時期のそれぞれについて補正が許可可能かどうかを判断し、許可可能と判断された燃料供給量および点火時期のいずれかまたは両方を前記気筒毎に補正することにより、前記気筒間の出力変動を抑制する、
    請求項1または2に記載の出力変動抑制装置。
  4. 前記出力変更手段は、前記気筒毎に、該気筒に対し燃料を供給する燃料供給装置と、該気筒内で混合気に点火する点火装置と、該気筒の吸気バルブのリフト量を可変に制御可能な可変リフト機構を含んでおり、
    前記制御手段は、前記内燃機関の運転状態に基づいて、前記燃料供給装置によって供給される燃料の量、前記点火装置によって混合気に点火する点火時期、および前記可変リフト機構によって制御される吸気バルブのリフト量の補正が許可可能かどうか判断し、許可可能と判断された燃料供給量、点火時期およびリフト量のうちの1つまたは複数を前記気筒毎に補正することにより、前記気筒間の出力変動を抑制する、
    請求項1または2に記載の出力変動抑制装置。
  5. 複数の気筒を備える内燃機関の制御装置であって、
    前記内燃機関の回転速度に応じて回転速度パラメータを検出する回転速度パラメータ検出手段と、
    前記回転速度パラメータの基準値を算出する基準値算出手段と、
    前記気筒毎に、前記基準値と、所定のクランク角度毎に検出される前記回転速度パラメータとの偏差を、相対速度パラメータとして算出する相対速度パラメータ算出手段と、
    前記気筒毎に、前記相対速度パラメータを所定期間にわたって積算し、積算値を算出する積算値算出手段と、
    前記気筒間の出力が平滑化されるよう、該気筒毎に、該気筒の前記積算値に基づいて、点火時期を補正するための点火時期補正量を算出する点火時期補正量算出手段と、
    前記気筒間の空燃比が平滑化されるよう、該気筒毎に、燃料量を制御する燃料制御出手段と、
    前記気筒毎に、前記点火時期補正量に応じて、第1の所望値に対する該気筒の吸入空気量のずれ量と、第2の所望値に対する、前記燃料制御手段によって制御される該気筒の燃料量のずれ量と、を区別して特定する気筒毎ずれ量特定手段と、を備え、
    前記第1の所望値は、前記気筒間に吸入空気量のバラツキが存在しない場合の吸入空気量を示し、前記第2の所望値は、該気筒間の空燃比を平滑化するための燃料量のバラツキが該気筒間に存在しない場合の燃料量を示す、
    制御装置。
  6. 前記気筒毎ずれ量特定手段は、前記気筒毎に、前記点火時期補正量に応じて前記吸入空気量のずれ量を求めると共に、該吸入空気量のずれ量に応じて、前記燃料量のずれ量を求める、
    請求項5に記載の制御装置。
  7. すべての気筒の空燃比が所定値に維持されている場合の、点火時期補正量と、前記第1の所望値からの吸入空気量のずれ量との間の相関を定義した第1のテーブルを有しており、
    前記気筒毎ずれ量特定手段は、前記気筒毎に、前記点火時期補正量算出手段によって算出された点火時期補正量に基づいて該第1のテーブルを参照することにより、該気筒の前記吸入空気量のずれ量を求める、
    請求項5または6に記載の制御装置。
  8. 前記第1の所望値は、前記内燃機関の運転状態に応じて予め決められた所定値である、
    請求項5から7のいずれかに記載の制御装置。
  9. 気筒間で空燃比を平滑化するための燃料量のバラツキが該気筒間に存在しない場合の、前記第1の所望値からの吸入空気量のずれ量と、第1の燃料補正量との間の相関を定義した第2のテーブルを有しており、
    前記気筒毎ずれ量特定手段は、前記気筒毎に、前記吸入空気量のずれ量に基づいて該第2のテーブルを参照することにより、該気筒の前記第1の燃料補正量を、前記第2の所望値として求める、
    請求項5から8のいずれかに記載の制御装置。
  10. 前記燃料制御手段は、前記気筒毎に、該気筒に供給される燃料の第2の燃料補正量を算出することにより、該気筒への燃料量を制御し、
    前記気筒毎ずれ量特定手段は、前記気筒毎に、前記第2の燃料補正量の前記第2の所望値に対するずれ量を、前記燃料量のずれ量として算出する、
    請求項9に記載の制御装置。
  11. さらに、
    前記気筒毎に、該気筒の前記吸入空気量のずれ量が所定値を超えたかどうかを判断し、超えたと判断したときは、該気筒の吸気系に異常があると判断する手段を備える、
    請求項5から10のいずれかに記載の制御装置。
  12. さらに、
    前記気筒毎に、該気筒の前記燃料量のずれ量が所定値を超えたかどうかを判断し、超えたと判断したときは、該気筒の燃料系に異常があると判断する手段を備える、
    請求項5から11のいずれかに記載の制御装置。
  13. 前記内燃機関の吸気バルブのリフト量を可変に制御可能なリフト量制御手段と、
    前記内燃機関の吸気管の圧力を制御可能な圧力制御手段と、
    いずれかの気筒の前記吸入空気量のずれ量が所定値を超えたときは、すべての気筒について、前記リフト量制御手段を介して制御されるリフト量を増やすとともに、前記圧力制御手段を介して制御される圧力を小さくする、
    請求項5から12のいずれかに記載の制御装置。
  14. 前記気筒毎ずれ量特定手段による処理は、前記内燃機関がアイドル運転状態にあるときに実施される、
    請求項5から13のいずれかに記載の制御装置。
JP2007215113A 2007-02-07 2007-08-21 内燃機関の制御装置 Expired - Fee Related JP4298769B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007215113A JP4298769B2 (ja) 2007-02-07 2007-08-21 内燃機関の制御装置
US12/222,790 US7877192B2 (en) 2007-02-07 2008-08-15 Control for an internal-combustion engine
CN2008102130061A CN101372922B (zh) 2007-02-07 2008-08-20 内燃机的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007028597 2007-02-07
JP2007215113A JP4298769B2 (ja) 2007-02-07 2007-08-21 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2008215338A JP2008215338A (ja) 2008-09-18
JP4298769B2 true JP4298769B2 (ja) 2009-07-22

Family

ID=39835644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007215113A Expired - Fee Related JP4298769B2 (ja) 2007-02-07 2007-08-21 内燃機関の制御装置

Country Status (3)

Country Link
US (1) US7877192B2 (ja)
JP (1) JP4298769B2 (ja)
CN (1) CN101372922B (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136057B1 (en) * 2008-06-19 2021-12-08 Vitesco Technologies GmbH Fuel quality dependent injection timing control for an internal combustion engine
JP5083569B2 (ja) * 2009-01-29 2012-11-28 三菱自動車工業株式会社 多気筒エンジンの空燃比制御装置
JP5203514B2 (ja) * 2010-01-13 2013-06-05 本田技研工業株式会社 内燃機関の失火検出装置
DE102010042853A1 (de) 2010-10-25 2012-04-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung eines Injektors in einer Kraftstoffeinspritzanlage einer Brennkraftmaschine
US8051704B2 (en) * 2010-11-19 2011-11-08 Ford Global Technologies, Llc Method for diagnosing fuel injectors
CN102022198A (zh) * 2010-12-16 2011-04-20 中国石油天然气集团公司 气体发动机并车系统及方法
JP5278466B2 (ja) * 2011-02-16 2013-09-04 トヨタ自動車株式会社 気筒間空燃比ばらつき異常検出装置
SE537106C2 (sv) * 2011-02-23 2015-01-13 Scania Cv Ab Detektion och dämpning av drivlineoscillationer
JP5844162B2 (ja) 2011-03-09 2016-01-13 本田技研工業株式会社 内燃機関の失火検出装置
JP5605317B2 (ja) * 2011-06-17 2014-10-15 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5348228B2 (ja) * 2011-11-29 2013-11-20 トヨタ自動車株式会社 気筒間空燃比ばらつき異常検出装置
JP5939119B2 (ja) * 2012-10-03 2016-06-22 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
KR101976761B1 (ko) * 2012-10-16 2019-05-09 콘티넨탈 오토모티브 시스템 주식회사 밸브 리프트 가변제어 시스템에서의 실린더별 점화시기 제어방법
JP2014080918A (ja) * 2012-10-16 2014-05-08 Toyota Motor Corp 内燃機関の筒内圧検出装置
JP5716771B2 (ja) * 2013-02-25 2015-05-13 トヨタ自動車株式会社 内燃機関の制御装置
CN105378489B (zh) * 2013-07-12 2018-04-10 马自达汽车株式会社 车辆用发动机转速显示装置
JP6259246B2 (ja) * 2013-10-09 2018-01-10 三菱重工業株式会社 内燃機関の制御装置
JP5892144B2 (ja) 2013-11-13 2016-03-23 トヨタ自動車株式会社 内燃機関の制御装置
AT516669B1 (de) * 2014-11-24 2016-08-15 Ge Jenbacher Gmbh & Co Og Verfahren zur Steuerung einer Brennkraftmaschine
JP6879356B2 (ja) * 2019-12-23 2021-06-02 トヨタ自動車株式会社 インバランス検出装置、インバランス検出システム、データ解析装置、および内燃機関の制御装置
KR20220145450A (ko) * 2021-04-21 2022-10-31 현대자동차주식회사 차량의 주행 저항 계산 방법 및 그 계산 장치
KR20220154511A (ko) * 2021-05-13 2022-11-22 현대자동차주식회사 차량의 주행 저항 계산 방법 및 그 계산 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993945A (ja) * 1982-11-19 1984-05-30 Nippon Denso Co Ltd 内燃機関のアイドル運転制御方法
JPH0718371B2 (ja) * 1986-11-24 1995-03-06 三菱電機株式会社 内燃機関の回転数制御装置
US5740045A (en) * 1995-11-29 1998-04-14 General Motors Corporation Predictive spark controller
JPH09209814A (ja) * 1996-02-05 1997-08-12 Unisia Jecs Corp 内燃機関の制御装置
JP4004656B2 (ja) 1998-08-12 2007-11-07 本田技研工業株式会社 内燃機関制御装置
JP2000205025A (ja) * 1999-01-14 2000-07-25 Fuji Heavy Ind Ltd エンジンの制御装置
US6234010B1 (en) * 1999-03-31 2001-05-22 Caterpillar Inc. Method and system for predicting torque from crank speed fluctuations in an internal combustion engine
JP4306123B2 (ja) * 2000-12-15 2009-07-29 トヨタ自動車株式会社 内燃機関の燃料供給系異常検出装置
JP2004316613A (ja) * 2003-04-21 2004-11-11 Denso Corp 内燃機関の可変バルブ制御装置
JP3960339B2 (ja) * 2005-01-11 2007-08-15 トヨタ自動車株式会社 吸入空気量ばらつき検出装置

Also Published As

Publication number Publication date
US7877192B2 (en) 2011-01-25
CN101372922A (zh) 2009-02-25
US20090064967A1 (en) 2009-03-12
CN101372922B (zh) 2012-11-14
JP2008215338A (ja) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4298769B2 (ja) 内燃機関の制御装置
JP5107392B2 (ja) 気筒間の空燃比の不均衡を判断するための装置
JP5861779B2 (ja) 内燃機関の制御装置
US7654252B2 (en) Air-fuel ratio control system and method for internal combustion engine
JP4066971B2 (ja) 内燃機関の制御装置
JP4364777B2 (ja) 内燃機関の空燃比制御装置
JP5949218B2 (ja) エンジンの制御装置
JPH02108860A (ja) 複数気筒エンジンの電子式制御装置
JP2006002591A (ja) 内燃機関の制御装置
JP3980424B2 (ja) 内燃機関の空燃比制御装置
JP2007120392A (ja) 内燃機関の空燃比制御装置
JP4978749B2 (ja) 内燃機関の燃料噴射量制御装置
JP5337140B2 (ja) 内燃機関の空燃比制御装置
JP4387384B2 (ja) 内燃機関の制御装置
JP5776532B2 (ja) 内燃機関の制御装置
JP2011157852A (ja) 内燃機関の制御装置
JP6876503B2 (ja) 内燃機関の制御装置
JP2012077719A (ja) 内燃機関の制御装置
JP5605317B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2009250164A (ja) 内燃機関の制御装置
JP5511504B2 (ja) 内燃機関の制御装置
JP4770589B2 (ja) 内燃機関の空燃比制御装置
JPH0828328A (ja) 内燃機関の気筒別空燃比推定装置
JP2013007278A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2759917B2 (ja) 内燃エンジンの空燃比制御方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

R150 Certificate of patent or registration of utility model

Ref document number: 4298769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees