JP4293673B2 - 複数のインバータを有する電源システムの運転方法 - Google Patents

複数のインバータを有する電源システムの運転方法 Download PDF

Info

Publication number
JP4293673B2
JP4293673B2 JP11245399A JP11245399A JP4293673B2 JP 4293673 B2 JP4293673 B2 JP 4293673B2 JP 11245399 A JP11245399 A JP 11245399A JP 11245399 A JP11245399 A JP 11245399A JP 4293673 B2 JP4293673 B2 JP 4293673B2
Authority
JP
Japan
Prior art keywords
inverter
power
inverters
output
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11245399A
Other languages
English (en)
Other versions
JP2000305633A (ja
Inventor
圭吾 鬼塚
正樹 萬里小路
功 森田
康弘 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11245399A priority Critical patent/JP4293673B2/ja
Priority to US09/514,767 priority patent/US6285572B1/en
Priority to DE60036150T priority patent/DE60036150T2/de
Priority to EP00301630A priority patent/EP1047179B1/en
Priority to CNB001067648A priority patent/CN1185782C/zh
Priority to KR1020000020577A priority patent/KR100686281B1/ko
Publication of JP2000305633A publication Critical patent/JP2000305633A/ja
Application granted granted Critical
Publication of JP4293673B2 publication Critical patent/JP4293673B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池、風力発電、燃料電池など発電量が変化する直流電源の直流出力を複数のインバータで交流出力に変換して系統に供給する電源システムに係り、インバータを高効率で運転するための技術に関する。
【0002】
【従来の技術】
このような電源システムとして、太陽電池を用いた太陽光発電システムが一般に知られている。図6は、従来の太陽光発電システムのシステム概要図であり、家屋の屋根上に複数の太陽電池(直流電源)101を設置し、これらの太陽電池101で発電される直流出力は接続箱102で1つにまとめられた後インバータ103を介して交流出力に変換される。この後、分電盤104を介して家庭内の屋内配線と商用の電力系統106に電力が供給されるように構成されている。尚105は屋内配線に接続された家庭内負荷である。
【0003】
一般にインバータは低出力時にその効率が極端に低下するという特性があり、太陽光発電システムの予想最大発電量に合わせて単一のインバータで直流/交流の変換を行うと、低出力時に直流/交流の変換効率が低下する課題があった。斯かる課題を解決するために、たとえば特開平6−165513号公報には少出力のインバータを複数台並列接続して太陽電池の発電量に合わせて運転するインバータの数を変え、低出力時の変換効率の低下を抑制するものでが記載されていた。
【0004】
【発明が解決しようとする課題】
斯かる従来の方法では単に出力電流に応じてインバータの運転台数を決定しているに過ぎず、運転するインバータの選択に関しては何ら考慮されていない。このため、低出力時には特定のインバータのみが運転され、他のインバータは出力が増大したときのみ運転されることとなるため、上記特定のインバータの運転時間が他のインバータに比べて長時間に及ぶことになる。このため、運転時間が長時間に至る特定のインバータの寿命が他のインバータに比べて早くつきることとなるこという課題があった。
【0005】
さらには、複数のインバータのうち、上記特定のインバータが故障すると、システム全体が動作しなくなる、という課題があった。
【0006】
【課題を解決するための手段】
このような問題を解決するために本発明は、発電量が変化する直流電源の出力を周波数の制御された交流電力に変換して系統電源へ出力する複数台のインバータが並列接続された電源システムにおいて、前記複数台のインバータの内親機に設定された1台のインバータが、子機とされた残りのインバータの運転/停止を前記直流電源の発電量の増減またはインバータからの出力電力の増減に基づいて制御し、前記子機とされたインバータの停止時に該インバータの運転時間ないし出力電力の積算値を取得して、前記親機とされたインバータの停止時に、各インバータの運転時間ないし出力電力量に基づいて、次に親機とするインバータを設定する、ことを特徴とする。
【0008】
また、本発明は、前記インバータの夫々は、運転/停止を含む動作の遠隔操作指示を行うリモートコントローラを備え、これらのモートコントローラが相互に信号を授受可能に接続されて、リモートコントローラを介して各インバータ運転/停止が行われることを特徴とする。
【0010】
さらに、前記子機とされたインバータの運転順位は運転時間の少ないものから順に運転されるように設定されることを特徴とする。
【0011】
さらに、前記子機とされたインバータの運転順位は出力電力量の少ないものから順に運転されるように設定されることを特徴とする。
【0012】
【発明の実施の形態】
以下に、本発明の実施の形態を説明する。図1には電源システム12の概略構成を示している。この電源システム12は、直流電源1(例えば複数のモジュールから構成された太陽電池など)に複数(一例として3台のインバータ14A〜14C)が並列接続されている。
【0013】
夫々のインバータ14の入力側は、切片の開閉が交互に切り替わるラッチ式のマグネットスイッチ18(18A、18B、18C)を介して直流電源1に接続されている。
【0014】
出力側は、系統電源16に接続されている。これにより、電源システム12は、直流電源1から出力された直流電力をインバータ14によって系統電源16と同じ周波数の交流電力に変換して、系統電源16へ出力する系統連系発電システムを形成している。なお、本実施の形態では、一例として最大出力電力が12kWの直流電源1に対して4.0kW出力の3台のインバータ14A、14B、14C(特に区別しないときは「インバータ14」とする)を用いた例を示している。
【0015】
図2に示されるように、インバータ14は、インバータ回路20及びインバータ回路20を制御するマイコン22を備えている。マグネットスイッチ18を介してインバータ14に入力され直流電力は、ノイズフィルタ26を介してインバータ回路20へ供給される。
【0016】
インバータ回路20に入力される直流電力は、インバータ回路20で系統電源16とほぼ同じ周波数の交流電力に変換されて出力される。このとき、インバータ回路20は、直流電力をPWM理論に基づいてスイッチングして系統電源16とほぼ同じ周波数の擬似正弦波を出力する。インバータ回路20から出力される交流電力は、フィルタ回路28、ノイズフィルタ29及び解列コンタクタ30を介してトランスレス方式で系統電源16のラインへ供給される。
【0017】
マイコン22には、インバータ回路20に入力される直流電圧を検出するアイソレーションアンプからなる入力電圧検出部32、直流電流を検出する変流器(CT)からなる入力電流検出部34、インバータ回路20から出力される交流電流を検出する変流器(CT)からなる出力電流検出部38、変圧器(PT)によって系統電源16の系統電圧と電圧波形を検出する電圧波形検出部40が接続されている。
【0018】
マイコン22は、入力電圧検出部32及び入力電流検出部34によって検出する直流電力と、電圧波形検出部40によって検出した電圧に基づいて、インバータ回路20の図示しないスイッチング素子を駆動するスイッチング信号のデューティ比を制御する。
【0019】
これにより、インバータ14は、位相及び周波数が系統電源16と一致した交流電力を出力する。なお、インバータ回路20から出力される交流電力はノコギリ波状となっており、フィルタ回路28が、このインバータ回路20の出力電力から高調波成分を除去することにより、インバータ14から正弦波の交流電力が出力される。
【0020】
一方、解列コンタクタ30は、マイコン22で制御され、マイコン22は、この解列コンタクタ30によってインバータ14と系統電源16の接続及び切り離しを行なう。
【0021】
これにより、例えば、マイコン22は、太陽電池モジュールによる発電電力が少ないか発電していないために、直流電源1からの出力電力が少ないために、インバータ14の作動が停止しているときには、インバータ14と系統電源16とを切り離し、また、インバータ14が作動を開始する直前に、インバータ14と系統電源16を接続する。
【0022】
また、マイコン22は、電圧波形検出部40の検出する電圧波形から系統電源16が停電状態と判断されるときには、解列コンタクタ30によって速やかにインバータ14を系統電源16から切り離して、インバータ14の単独運転等を防止するようにしている。さらに、マイコン22は、過電圧(OVR)、不足電圧(UVR)、周波数上昇(OFR)、周波数低下(UFR)及び単独運転に対するインバータ14の保護を行う。なお、インバータ14は、従来公知の構成及び制御方法を適用でき、本実施の形態では詳細な説明を省略する。
【0023】
ところで、図1に示されるように、電源システム12では、インバータ14の夫々にリモートコントローラ50(50A、50B、50C)が接続されている。
【0024】
図3に示されるように、リモートコントローラ50は、マイクロコンピュータを備えたコントロール部52及びLCD等を用いた表示部54と共に電源回路56が設けられており、表示部54及び電源回路56がコントロール部52に接続されている。また、リモートコントローラ50には、設定スイッチ部58及び通信コネクタ60が設けられており、これらがコントロール部52に接続されている。
【0025】
電源回路56は、図示しないバックアップ用のバッテリーが設けられていると共に、系統電源16に接続されており、系統電源16から供給される電力によってリモートコントローラ50が動作するようになっている。すなわち、リモートコントローラ50は、直流電源1から直流電力が入力されずに、インバータ14が停止状態であっても、動作可能となっている。
【0026】
このリモートコントローラ50の通信コネクタ60には、インバータ14のマイコン22が接続される。これにより、リモートコントローラ50では、インバータ14が出力する出力電力量の積算等の動作管理が可能となっている。また、インバータ14が単独運転停止のために動作を停止すると、この情報がマイコン22からリモートコントローラ50に入力されるようになっている。
【0027】
また、図1に示されるように、リモートコントローラ50の夫々は、マグネットスイッチ18をオン/オフ駆動する駆動回路62に接続されている。
【0028】
インバータ14は、マグネットスイッチ18がオフされることにより、直流電力が入力されずに停止し、マグネットスイッチ18がオンして直流電力が供給されることにより作動が可能になる。
【0029】
夫々のリモートコントローラ50は、インバータ14のマイコン22に運転停止を指示する制御信号を出力するときに、マグネットスイッチ18をオフし、運転開始を指示する信号を出力するときに、マグネットスイッチ18をオンする。なお、リモートコントローラ50からマイコン22に入力される運転/停止の指示に基づいて、マイコン22がマグネットスイッチ18をオン/オフするものであってもよい。
【0030】
夫々のリモートコントローラ50の通信コネクタ60には、他のリモートコントローラ50が通信ケーブル64を介して接続される。このとき、リモートコントローラ50は、例えばループを形成するように専用の通信ケーブル64によって接続される。
【0031】
これにより、リモートコントローラ50A、50B、50Cの間で、夫々が接続されているインバータ14A,14B、14Cの運転情報の交換が可能となっている。
【0032】
このように構成されている電源システム12では、何れか1台のリモートコントローラ50が親機となって、親機が接続されているインバータ14と共に、子機となる他のリモートコントローラ50が接続されているインバータ14の運転/停止を制御するようになっている。なお、親機、子機の設定は、リモートコントローラ50の設定スイッチ部58に設けられている図示しないディップスイッチによって設定が可能となっているが、以下の本実施の形態では親機が特定されない実施例について説明する。尚、このときは、ディップスイッチはリモートコントローラ50を特定するアドレスを設定のスイッチとして用いる。
【0033】
親機となるリモートコントローラ50は、マグネットスイッチ18A、18B、18Cを閉じて、直流電源1から供給される電力によっていずれのインバータ14も動作可能な状態で設置する。この後、直流電源1である太陽電池モジュールが発電を開始したときに、最初に動作を開始したインバータ14のリモートコントローラ50が親機となり、このリモートコントローラ50が親機の宣言を、信号線を介して他のリモートコントローラに行うことによって親機、子機が決まる。
【0034】
この後に、親機として設定されたリモートコントローラ50は、接続されているインバータ14を常に運転状態とすると共に、直流電源1の出力電力の増加、減少に合わせて、子機としているリモートコントローラ50が接続されているインバータ14を運転/停止させる。
【0035】
一方、電源システム12では、例えば1日の稼動停止時に、インバータ14A〜14Cの出力電力の積算値(出力電力量)や、運転時間の積算値等の運転情報に基づいて、次に親機とするリモートコントローラ50を設定することにより、インバータ14A〜14Cの間で、出力電力量ないし運転時間の積算値が平均化するようにしている。
【0036】
すなわち、次に親機となるリモートコントローラ50は、出力電力量ないし運転時間が最も少なくなっているインバータ14に接続されているものを用いる。
【0037】
このために、子機となっているリモートコントローラ50は、接続されているインバータ14が停止すると、このインバータ14の出力電力の積算値(出力電力量)を、親機となっているリモートコントローラ50へ出力する。
【0038】
親機となっているリモートコントローラ50は、直流電源1からの直流電力が停止すると、接続されているインバータ14を停止すると共に、このインバータ14の出力電力量を算出する。この後、各インバータ14の出力電力量を比較して、最も少ないインバータ14のリモートコントローラ50を次の親機として設定した後に、処理を終了する。
【0039】
尚、次の親機の設定方法としては乱数を用いてランダムに設定するように構成しても良い。
【0040】
これにより、次に電源システム12が立ち上がるときには、新たに親機として設定されたリモートコントローラ50が各インバータ14の作動を制御する。
【0041】
一方、親機に設定されたリモートコントローラ50に接続されているインバータ14では、入力される直流電力の変化に追従して、最大出力を取り出す最大電力追従制御(MPPT:Maximum Power Point Tracking)を行う。また、子機として設定されているリモートコントローラ50に接続されているインバータ14は、常に最大出力となる定電力制御を行う。親機として設定されているリモートコントローラ50は、子機のインバータ14が定電力制御を行えるように直流電源1の出力の変化に基づいて運転/停止と共にマグネットスイッチ18の開閉を行う。
【0042】
このとき、図1に示されるように、インバータ14には、充電電流抑制回路66が設けられており(図2では図示省略)、マグネットスイッチ18をオンしたときに、インバータ14の直流側に設けられている大容量のコンデンサが充電されることによる過渡的な直流電源1の電圧変動を防止するようにしている。
【0043】
また、電源システム12では、親機として設定されたリモートコントローラ50が、単独運転防止と共に過電圧(OVR)、不足電圧(UVR)、周波数低下(UFR)、周波数上昇(OFR)に対する連系保護を一括して行い、夫々のインバータ14が個々に連系保護を行うことによる干渉や誤動作を防止するようにしている。
【0044】
以下に本実施の形態の作用を説明する。
【0045】
この電源システム12では、最初にリモートコントローラ50の親機の設定を行う。この親機の設定は、夫々のリモートコントローラ50に設けている設定スイッチ部58のディップスイッチによってアドレスを設定する。尚、初期値として1台の親機を設定するようにしても良い。
【0046】
また、自動的に親機/子機を設定する場合は、直流電源1の出力が停止している状態で、マグネットスイッチ18A〜18Cをオンして、インバータ14が動作可能な状態とする。この状態で例えば、日の出と共に直流電源1が直流電力の出力を開始すると、わずかながらの時間差を持ってインバータ14A〜14Cが運転を開始することになる。このとき、何れかのインバータ14が運転を開始すると、運転を開始したことを示す信号がリモートコントローラ50へ出力される。
【0047】
最初に運転を開始したインバータ14が接続されているリモートコントローラ50は、他のインバータバー14が作動を開始しないように、夫々のリモートコントローラ50へ制御信号を出力する。これにより、最初に運転したインバータ14のリモートコントローラ50が親機となり、他のリモートコントローラ50が子機として設定される。
【0048】
このように、リモートコントローラ50A〜50Cの間で親機/子機の設定がなされると、直流電源1から出力される直流電力に応じインバータ14A〜14Cの作動を制御する。
【0049】
図3のフローチャートには、親機に設定されたリモートコントローラ50によるインバータ14A〜14Cの制御の概略を示している。
【0050】
なお、以下では、リモートローラ50Aが親機に設定され、インバータ50A、50B、50Cの出力電力量a0kWh、b0kWh、c0kWhが、a0<b0<c0として説明する。これにより、リモートコントローラ50Aは、直流電源1が出力する直流電力(出力電力Q)が増加することにより、インバータ14B、14Cの順に立ち上げ、出力電力Qが減少すると、インバータ14C、14Bの順に停止するように制御する。また、リモートコントローラ50Aを「親機」とし、リモートコントローラ50B、50Cを夫々「子機b」、「子機c」として説明し、フローチャートのステップを番号によって表示する。
【0051】
親機は、マグネットスイッチ18Aをオンし、インバータ14Aを運転可能な状態にする(ステップ200)。これにより、日の出に合わせて直流電源1が直流電力の出力を開始すると、インバータ14が動作し、交流電力を出力する。
【0052】
親機は、インバータ14Aが運転を開始したことを確認(ステップ202で肯定判定)すると、インバータ14の入力電力、すなわち出力電力Qを読み込み(ステップ204)、出力電力Qが、次のインバータ14Bを運転する電力Q1に達したか否か(ステップ206)、または、直流電源1が停止し、直流電力が出力されなくなったか否か(ステップ208)、を確認する。
【0053】
直流電源1の出力電力Qが増加し、インバータ14Bを動作させる電力Q1に達する(ステップ206で肯定判定)と、子機bをオンする(ステップ210)。子機bは、オンされることにより、マグネットスイッチ18Bをオンしてインバータ14Bの運転を開始させる。
【0054】
これにより、図5(B)に示されるように、電源システム12では、インバータ14A、14Bが運転して、直流電源1の出力電力Qを交流電力に変換する。
【0055】
図4に示されるフローチャートでは、次に、直流電源1からの出力電力Qを読み込み(ステップ212)、この出力電力Qが次のインバータ14Cを運転する電力Q2に達したか否か(ステップ214)、または、インバータ14Bを停止させる電力Q1まで低下したか(ステップ216)、を確認する。
【0056】
ここで、直流電源1の出力電力Qが、インバータ14Cを運転する電力Q2に達すると(ステップ214で肯定判定)、子機cをオンする(ステップ218)。子機cは、オンされることにより、マグネットスイッチ18Cをオンしてインバータ14Cの運転を開始する。
【0057】
これにより、図5(B)に示されるように、電源システム12では、インバータ14A、14B、14Cによって、直流電源1からの出力電力Qを交流電力に変換して出力する。
【0058】
この後、図4に示されるフローチャートでは、直流電源1の出力電力Qを読み込み(ステップ220)、この出力電力Qが、インバータ14Cを運転させる電力Q2よりも下回ったか否かを確認し(ステップ222)、インバータ14を運転する電力よりも下がると(ステップ222で肯定判定)、子機cをオフする(ステップ224)。
【0059】
子機cは、オフされることにより、マグネットスイッチ18Cをオフして、インバータ14Cを停止させる。この後、子機cは、インバータ14Cが出力した出力電力量を親機へ出力する。
【0060】
これにより、親機は、停止した子機cから出力されるインバータ14Cの出力電力量を読み込んで(ステップ226)、ステップ212へ移行する。
【0061】
また、直流電源1の出力電力Qがさらに低下して、インバータ14Bを運転する電力Q1よりも低下すると(ステップ216で肯定判定)、子機bもオフする(ステップ228)。
【0062】
子機bは、オフされることによりマグネットスイッチ18Bをオフしてインバータ14Bを停止させると共に、インバータ14の出力電力量を親機で出力する。
【0063】
これにより、親機は、停止した子機bから出力されるインバータ14Bの出力電力量を読み込んで(ステップ230)、直流電源1の出力電力Qの確認を継続する(ステップ204〜ステップ208)。
【0064】
このようにして、直流電源1が出力電力Qを徐々に低下させて停止すると(ステップ208で肯定判定)、マグネットスイッチ18Aをオフして、インバータ14Aを停止させる(ステップ232)。この後、インバータ14Aのマイコン22からインバータ14Aの出力電力量を読み込み(ステップ234)、インバータ14A、14B、14Cの出力電力量を比較し(ステップ236)、次の親機と子機の立ち上がり順序を設定する(ステップ238)。
【0065】
すなわち、インバータ14A,14B、14Cの出力電力量a1、b1、c1が、b1<c1<a1となっていた場合、最も出力電力量の最も少ないインバータ14Bのリモートコントローラ50Bを次の親機として設定すると共に、リモートコントローラ50A、50Bを子機として設定する。さらに、インバータ14Aよりインバータ14Cの出力電力量が少なければ、先にインバータ14Cが立ち上がるように設定し、この設定結果を次の親機に設定されているリモートコントローラ50Bへ出力する。
【0066】
このようにして、次の親機に設定されたリモートコントローラ50Bは、マグネットスイッチ18Bをオンして、インバータ14Bが運転可能な状態として待機する。
【0067】
このように、親機/子機及び子機の立ち上がり順序を設定することにより、複数のインバータ14の出力電力量を略均一にすることができる。また、運転時間に基づいて親機/子機の設定を行うことにより、複数のインバータ14の間で運転時間を略均一にでき、電源システム12の寿命を延ばすことができる。
【0068】
特に、インバータ14に設けられている電解コンデンサや冷却用のファン等の電子部品は、インバータ14の運転時間が寿命に大きく影響するが、この運転時間を略均一にすることにより、長期にわたって安定して動作させることができる。
【0069】
また、何れかのインバータ14に故障が生じているときには、このインバータ14が接続されているリモートコントローラ50を親機/子機の設定時に除外することにより、インバータ14をマグネットスイッチ18によって直流電源1から切り離すことができる。これにより、故障の生じているインバータ14を運転させてしまうことがないとともに、故障の生じていないインバータ14を用いた系列連系が可能となる。
【0070】
このとき、故障が生じているインバータ14が接続されているリモートコントローラ50の表示部54に、その旨を表示することにより、電源システム12の故障の有無を明確に判別することができる。
【0071】
一方、電源システム12では、親機に設定されているリモートコントローラ50に接続されているインバータ14でのみMPPT制御を行い、子機として設定されているリモートコントローラ50に接続されているインバータ14が常に定電力制御を行うようにしている。
【0072】
すなわち、図5(A)に示されるように、インバータ14Bは、運転されている時間t2〜時間t5の範囲で常に定電力制御が行われ、インバータ14Cは、運転されている時間t3〜時間t4の範囲で常に定電力制御が行われることにより、定格電力である4kwの交流電力を夫々出力する。
【0073】
これに対して、インバータ14Aは、直流電源1から直流電力が出力されている時間t1〜時間t6の範囲で、常にMPPT制御によって出力電力Qの変化に応じて最大電力を出力するように動作する。
【0074】
これにより、複数のインバータ14がMPPT制御を行うことにより、一つのインバータ14の出力電力の変化が他のインバータ14の動作に影響を与えてしまうのを防止でき、複数のインバータ14を用いた場合でも、電源システム12を安定して動作させることができる。
【0075】
一方、、複数のインバータ14が個々に保護動作を行うと、検出タイミングのずれなどによって、複数のインバータ14の間で動作が不揃いとなり、一つのインバータ14の保護動作が他のインバータ14の保護動作に影響を与えて、適切な保護が不可能となってしまうことがある。
【0076】
これに対して、電源システム12では、親機として設定されているリモートコントローラ50によって電源システム12の単独運転と共に過電圧、不足電圧、周波数上昇及び周波数低下を監視し、この監視結果に基づいて、複数のインバータ14を一括して保護する。これにより、複数のインバータ14の保護を速やかにかつ確実に行うことができる。
【0077】
また、インバータ14から系統電源16に交流電力を回生する場合、インバータ14から系統電源16に逆潮流する。この逆潮流により系統電源16に電圧上昇を生じさせてしまうことがある。このとき、電源システム12では、親機として設定されているリモートコントローラ50が、先ず、子機のリモートコントローラ50が接続されているインバータ14の出力を順に抑制し、最後に親機となっているリモートコントローラ50に接続されているインバータ14の出力を抑制する。
【0078】
このように、電源システム12では、複数のインバータ14を並列接続しているときに、親機となるリモートコントローラ50を設定し、この親機となっているリモートコントローラ50が、複数のインバータ14を一括して制御することにより、インバータ14の動作にばらつきを生じさせることなく運転させることができる。
【0079】
また、システム構成としても上述した2kWのシステムに限らず、1kW、3kW等他の出力のシステムについても適用できることは言うまでもない。
【0080】
子機の運転/停止制御の他の実施例としてはまず、直流電源1から出力される直流電力を、例えば数msec〜数十msecのサンプリング周波数でサンプリングする。
【0081】
次に、過去数分間のこのサンプリングした直流電力の微分係数を求め、この微分係数が増加方向にあるかどうかを判別する。ここで、微分係数を使用することで、雲による一瞬のかげりや突風等瞬間的な天候の変化に伴う瞬間的な出力電力の変化の影響を抑制できる。
【0082】
次いで、上記微分係数が増加方向にある場合、運転するインバータを増加させる必要があるかどうかを判別する。この判別は、具体的には上記微分係数から次のサンプリング時における直流電力を予測し、この予測値が現在運転しているインバータで対応可能な直流電力を越えた場合に、増加させる必要があると判別される。
【0083】
例えば、現在の出力電力が950Wで運転しているインバータの台数が2台の場合、上記の微分係数から予測される次回のサンプリング時の出力電力が1050Wと予測される場合には、500W対応のインバータ2台では対応できないので1台増加させる必要ありと判別される。また、次回のサンプリング時の出力電力が980Wと予測される場合には、2台のインバータで対応可能であるので増加させる必要なしと判別される。
【0084】
次に、運転させるインバータを増加させる必要がある場合、現在運転していないインバータのリストから、新たに運転するインバータを乱数により選択する。
【0085】
以上でルーチンが終了し、また最初のステップから同じルーチンが繰り返される。尚、運転させるインバータを増加させる必要がない場合にも最初のステップに戻る
また、過去数分間における直流電力の微分係数が増加方向にない場合、運転するインバータを減少させる必要があるかどうかを判別する。この判別についても前述したと同様に、上記微分係数から次のサンプリング時における直流電力を予測し、この予測値が現在よりも少ない台数のインバータで運転可能である場合に、減少させる必要があると判別される。
【0086】
例えば、現在の出力電力が1050Wで運転しているインバータの台数が3台の場合、上記の微分係数から次回のサンプリング時の出力電力が980Wと予測される場合には、500W対応のインバータ2台でも対応可能であるので1台減少させる必要ありと判別される。また、次回のサンプリング時の出力電力が1020Wと予測される場合には3台のインバータが必要であるので減少させる必要なしと判別される。
【0087】
そして、運転するインバータを減少させる必要がある場合には、現在運転しているインバータのリストから、停止させるべきインバータを乱数により選択する。
【0088】
以上でルーチンが終了し、また最初から同じルーチンが繰り返される。尚、運転させるインバータを減少させる必要がない場合にも最初に戻る。
【0089】
制御方法としてはこれに限るものではなく、直流電力の変化値及びこの値の変化値からファジー推論を用いて運転する台数を制御してもよく、また、単に直流電力の値と設定値とを比較して運転台数を制御するようにしてもよい。
【0090】
さらに、本発明は単相、三相に限らず如何なる形態の直交変換器に対しても適用することができる。
【0091】
【発明の効果】
以上説明した如く、本発明によれば、複数のインバータのうち、特定のインバータに偏ることなく全てのインバータを略同程度の頻度で運転できるので、特定のインバータの寿命が早期につきることを抑制でき、従ってシステム全体の寿命を長くすることができる。
【0092】
これにより、本発明では、複数のインバータの夫々を略同程度の頻度で運転可能なので、寿命の長い電源システムを提供することが可能となる。
【図面の簡単な説明】
【図1】本実施の形態に係る電源システムのブロック図である。
【図2】本実施の形態に適用したインバータの概略構成を示すブロック図である。
【図3】本実施の形態に適用したリモートコントローラを示すブロック図である。
【図4】本実施の形態に係る電源システムの制御ルーチンを示すフローチャートである。
【図5】(A)は、直流電源の出力電力の変化の一例を示す線図、(B)は図5(A)に基づいたインバータの運転/停止を示すタイミングチャートである。
【図6】従来の太陽光発電システムのシステム構成図である。
【符号の説明】
1 直流電源
2 制御部
3 負荷
4 測定手段
5 演算部
6 選択部
7 乱数発生部
8 記憶部
I1〜I4 インバータ
S1〜S4 切換スイッチ
12 電源システム
14(14A〜14C) インバータ
22 マイコン(制御手段)
50(50A〜50C) リモートコントローラ(制御手段、通信手段)

Claims (4)

  1. 発電量が変化する直流電源の出力を周波数の制御された交流電力に変換して系統電源へ出力する複数台のインバータが並列接続された電源システムにおいて、
    前記複数台のインバータの内親機に設定された1台のインバータが、
    子機とされた残りのインバータの運転/停止を前記直流電源の発電量の増減またはインバータからの出力電力の増減に基づいて制御し、
    前記子機とされたインバータの停止時に該インバータの運転時間ないし出力電力の積算値を取得して、
    前記親機とされたインバータの停止時に、各インバータの運転時間ないし出力電力量に基づいて、次に親機とするインバータを設定する、
    ことを特徴とする複数のインバータを有する電源システムの運転方法。
  2. 前記インバータの夫々は、運転/停止を含む動作の遠隔操作指示を行うリモートコントローラを備え、
    該リモートコントローラが相互に信号を授受可能に接続されて、リモートコントローラを介して各インバータの運転/停止が行われることを特徴とする請求項1に記載の複数のインバータを有する電源システムの運転方法。
  3. 前記子機とされたインバータの運転順位、運転時間の少ないものから順に運転されるように設定されることを特徴とする請求項2に記載の複数のインバータを有する電源システムの運転方法。
  4. 前記子機とされたインバータの運転順位は、出力電力量の少ないものから順に運転されるように設定されることを特徴とする請求項2に記載の複数のインバータを有する電源システムの運転方法。
JP11245399A 1999-04-20 1999-04-20 複数のインバータを有する電源システムの運転方法 Expired - Lifetime JP4293673B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11245399A JP4293673B2 (ja) 1999-04-20 1999-04-20 複数のインバータを有する電源システムの運転方法
US09/514,767 US6285572B1 (en) 1999-04-20 2000-02-28 Method of operating a power supply system having parallel-connected inverters, and power converting system
DE60036150T DE60036150T2 (de) 1999-04-20 2000-02-29 Verfahren zum Betrieb einer Stromversorgungsanlage mit parallelgeschalteten Wechselrichtern und Stromwandlersystem
EP00301630A EP1047179B1 (en) 1999-04-20 2000-02-29 Method of operating a power supply system having parallel-connected inverters, and power converting system
CNB001067648A CN1185782C (zh) 1999-04-20 2000-04-17 具有并联连接的逆变器的供电系统的操作方法和功率转换系统
KR1020000020577A KR100686281B1 (ko) 1999-04-20 2000-04-19 병렬 접속된 인버터를 갖는 전원 시스템을 동작시키는방법 및 전력 변환 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11245399A JP4293673B2 (ja) 1999-04-20 1999-04-20 複数のインバータを有する電源システムの運転方法

Publications (2)

Publication Number Publication Date
JP2000305633A JP2000305633A (ja) 2000-11-02
JP4293673B2 true JP4293673B2 (ja) 2009-07-08

Family

ID=14587027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11245399A Expired - Lifetime JP4293673B2 (ja) 1999-04-20 1999-04-20 複数のインバータを有する電源システムの運転方法

Country Status (1)

Country Link
JP (1) JP4293673B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547254B2 (en) 2016-04-29 2020-01-28 Lsis Co., Ltd. Apparatus for controlling multiple inverters and inverter system including the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177284B2 (ja) 2004-04-28 2008-11-05 株式会社ダイヘン インバータ装置の制御方法
JP2006006019A (ja) * 2004-06-17 2006-01-05 Daihen Corp インバータ装置の制御方法
JP2006187071A (ja) * 2004-12-27 2006-07-13 Daihen Corp インバータ装置の運転方法
JP4606887B2 (ja) * 2005-01-21 2011-01-05 株式会社ダイヘン インバータ装置の運転方法
JP4847058B2 (ja) * 2005-07-11 2011-12-28 株式会社ダイヘン インバータ装置の並列運転方法
US9172296B2 (en) 2007-05-23 2015-10-27 Advanced Energy Industries, Inc. Common mode filter system and method for a solar power inverter
JP5942079B2 (ja) * 2011-02-28 2016-06-29 パナソニックIpマネジメント株式会社 系統連系システム
CN104025409A (zh) * 2011-12-23 2014-09-03 株式会社Kd动力 多逆变器光伏发电系统
JP5924524B2 (ja) 2012-03-13 2016-05-25 オムロン株式会社 蓄電池制御装置、蓄電池制御方法、プログラム、蓄電システム、および電源システム
JP5978292B2 (ja) 2012-03-30 2016-08-24 東芝三菱電機産業システム株式会社 電力変換装置
EP2833540B1 (en) 2012-03-30 2017-05-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
JP2015027210A (ja) * 2013-07-29 2015-02-05 株式会社 日立産業制御ソリューションズ 並列型電源装置
JP6424565B2 (ja) * 2014-10-28 2018-11-21 株式会社ノーリツ パワーコンディショナ
JP6404758B2 (ja) * 2015-03-27 2018-10-17 京セラ株式会社 電力変換装置及び電力管理装置
KR102572424B1 (ko) * 2016-04-08 2023-08-29 엘에스일렉트릭(주) 인버터 시스템의 제어 방법
JP6969630B2 (ja) * 2018-07-10 2021-11-24 住友電気工業株式会社 電源装置、分配システム、及び電力変換装置
JP2018152145A (ja) * 2018-07-10 2018-09-27 住友電気工業株式会社 電源装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135366A (ja) * 1984-12-05 1986-06-23 Kyocera Corp 電力変換装置の制御方式
JPH0833211A (ja) * 1994-07-20 1996-02-02 Sharp Corp インバータ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547254B2 (en) 2016-04-29 2020-01-28 Lsis Co., Ltd. Apparatus for controlling multiple inverters and inverter system including the same

Also Published As

Publication number Publication date
JP2000305633A (ja) 2000-11-02

Similar Documents

Publication Publication Date Title
KR100686281B1 (ko) 병렬 접속된 인버터를 갖는 전원 시스템을 동작시키는방법 및 전력 변환 시스템
JP4293673B2 (ja) 複数のインバータを有する電源システムの運転方法
EP2061143B1 (en) Method and system to convert direct current (DC) to alternating current (AC) using a photovoltaic inverter
US8537581B2 (en) Power converter system and methods of operating a power converter system
KR101454299B1 (ko) 다수의 에너지저장장치용 인버터를 이용한 독립형 마이크로그리드의 제어방법
KR102379687B1 (ko) 에너지를 집약 및 공급하기 위한 장치 및 방법
WO2013121618A1 (ja) 電力変換装置
TWI774142B (zh) 交流負荷供電系統和方法
CN105556779A (zh) 用于提供电源接口的设备和方法
AU2019262602B2 (en) Systems and methods of DC power conversion and transmission for solar fields
KR100716537B1 (ko) 분산전원용 제어장치 및 제어방법
KR101646170B1 (ko) 계통연계운전 및 독립운전을 수행하는 전력시스템 제어 방법
CN103986155A (zh) 微型电网控制系统
KR20110074370A (ko) 발전량에 따른 전력제어방법 및 그 전력변환장치
CN108899926B (zh) 光伏离并网储能逆变器
JP2019198203A (ja) 全負荷対応型分電盤および全負荷対応型分電盤に対応した蓄電システム
JP5895143B2 (ja) 蓄電装置
JPWO2014024731A1 (ja) 連系系統切替装置及び電力制御システム
JP2009247185A (ja) 系統連系インバータ装置およびその自立運転方法
JP4624717B2 (ja) 電源システム
JP2000305634A (ja) 系統連系システム
JPH08182343A (ja) 太陽光発電システム
WO2022219872A1 (ja) 電力変換システム、電力変換装置
US11916511B1 (en) Solar-battery integrated DC system
Pham Direct storage hybrid (DSH) inverter: A new concept of intelligent hybrid inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

EXPY Cancellation because of completion of term