JP6969630B2 - 電源装置、分配システム、及び電力変換装置 - Google Patents

電源装置、分配システム、及び電力変換装置 Download PDF

Info

Publication number
JP6969630B2
JP6969630B2 JP2020083042A JP2020083042A JP6969630B2 JP 6969630 B2 JP6969630 B2 JP 6969630B2 JP 2020083042 A JP2020083042 A JP 2020083042A JP 2020083042 A JP2020083042 A JP 2020083042A JP 6969630 B2 JP6969630 B2 JP 6969630B2
Authority
JP
Japan
Prior art keywords
solar cell
converters
power
output
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020083042A
Other languages
English (en)
Other versions
JP2020115747A (ja
Inventor
健志 阿比留
貴司 文野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018130926A external-priority patent/JP2018152145A/ja
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2020083042A priority Critical patent/JP6969630B2/ja
Publication of JP2020115747A publication Critical patent/JP2020115747A/ja
Application granted granted Critical
Publication of JP6969630B2 publication Critical patent/JP6969630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、太陽光発電システムを構成する電源装置、分配システム、及び電力変換装置に関する。
太陽光発電システムは、家庭用、事業用、大規模発電所用等、広く普及しつつある。例えば家庭用の場合、家屋の屋根に太陽電池モジュールが設置される。また、屋内にはパワーコンディショナが設置され、太陽電池モジュールと接続される。パワーコンディショナは、DC/DCコンバータ及びインバータを搭載している。DC/DCコンバータには、太陽電池モジュールの最大出力電力に対応した入力電力容量が必要である。
パワーコンディショナには、DC/DCコンバータを1つだけ搭載する典型的なシングル入力タイプの他、例えば3つのDC/DCコンバータを搭載するマルチ入力タイプのものがある(例えば、特許文献1の図1参照。)。マルチ入力タイプのパワーコンディショナにおける1つのDC/DCコンバータの入力電力容量は、家庭用の場合、例えば2kWであり、2kW×3で、6kWの太陽電池モジュールに対応することができる。
特許第4205071号公報
図12は、切妻形の屋根に、最大出力電力2kWの太陽電池モジュールを3ストリング搭載した家庭用の電源装置(太陽光発電システム)の一例を示す図である。太陽電池モジュールM21,M22,M23はそれぞれ、例えば2本の単芯ケーブルC21,C22,C23によってパワーコンディショナ150と接続されている。パワーコンディショナ150は、太陽電池モジュールM21,M22,M23に対応した3つのDC/DCコンバータ151,152,153を内蔵している。個々のDC/DCコンバータの入力電力容量は2kWである。この場合、合計6本のケーブルを接続する電気工事が必要となる。
図13は、寄棟形の屋根に、最大出力電力2kWの太陽電池モジュールを3ストリング搭載した家庭用の電源装置の他の例を示す図である。太陽電池モジュールM24,M25,M26はそれぞれ、例えば2本の単芯ケーブルC24,C25,C26によってパワーコンディショナ150と接続されている。パワーコンディショナ150は、太陽電池モジュールM24,M25,M26に対応した3つのDC/DCコンバータ151,152,153を内蔵している。個々のDC/DCコンバータの入力電力容量は2kWである。この場合も、合計6本のケーブルを接続する電気工事が必要となる。
このように、従来の電源装置では、太陽電池モジュールとパワーコンディショナとを互いに接続するケーブル数が多く、そのため、電気工事の施工に時間がかかり、また、ケーブルの費用が装置全体のコストを高くする一因となる。なお、太陽電池モジュールの設置場所を減らせばケーブル数は減るが、できるだけ多くの発電量を得るべく屋根の面積を有効利用したいため、設置場所を減らすことは使用者のニーズに合わない。
また、従来の電源装置において、1ストリングの出力が2kWを超える場合、屋根の面積に余裕があっても1ストリングは2kW以下に抑える必要がある。
かかる従来の問題点に鑑み、本発明は、太陽電池モジュールの出力を複数のDC/DCコンバータによって受ける電源装置において、電気工事の施工を容易にするとともに、限られた設置面積を無駄なく有効利用して、太陽電池モジュールの全体量を確保することを目的とする。
本発明は、太陽電池モジュールの出力を複数のDC/DCコンバータによって受ける電源装置であって、前記太陽電池モジュールのうち、最大電力点の電圧値が近似する太陽電池の集合体については、出力を一纏めにして引き出す出力線路部と、前記出力線路部が搬送する電力を、個々のDC/DCコンバータの入力電力容量の範囲内に収まるように分配して配電する入力線路部とを備えている。
本発明の電源装置によれば、電気工事の施工が容易で、限られた設置面積を、より有効に利用して、太陽電池モジュールの全体量を確保することができる。
家屋の屋根に設置された太陽電池モジュールを発電要素とする電源装置の概略を示す図である。 参考例としての電源装置の回路図である。 本発明の第1実施形態に係る電源装置の概略を示す図である。 図3の電源装置の回路図である。 第2実施形態に係る電源装置の概略を示す図である。 図5の電源装置の回路図である。 第3実施形態に係る電源装置の概略を示す図である。 図7の電源装置の回路図である。 第4実施形態に係る電源装置の概略を示す図である。 第5実施形態に係る電源装置の概略を示す図である。 第6実施形態に係る電源装置の概略を示す図である。 切妻形の屋根に、太陽電池モジュールを3ストリング搭載した電源装置の一例を示す図である。 寄棟形の屋根に、太陽電池モジュールを3ストリング搭載した電源装置の他の例を示す図である。
[実施形態の要旨]
本発明の実施形態の要旨としては、少なくとも以下のものが含まれる。
(1)これは、太陽電池モジュールの出力を複数のDC/DCコンバータによって受ける電源装置であって、前記太陽電池モジュールのうち、最大電力点の電圧値が近似する太陽電池の集合体については、出力を一纏めにして引き出す出力線路部と、前記出力線路部が搬送する電力を、個々のDC/DCコンバータの入力電力容量の範囲内に収まるように分配して配電する入力線路部とを備えている。
なお、最大電力点(Maximum Power Point)とは、最大電力点追従制御(MPPT(Maximum Power Point Tracking)制御)における目標点である。
上記のように構成された電源装置では、出力線路部により、最大電力点の電圧値が近似する太陽電池の集合体については、出力を一纏めにして引き出す。従って、最大電力点の電圧値が近似する太陽電池の集合体について別々の出力線路部(例えばケーブル)を設けてDC/DCコンバータまで配線する必要がない。そのため、出力線路部は最小限数で足り、当該電源装置の電気工事の施工が容易となる。また、入力線路部で分配して配電を行うことができるので、出力線路部が搬送する電力は個々のDC/DCコンバータの入力電力容量を超えてもよい。これにより、入力電力容量の制約から太陽電池モジュールの設置面積を抑える必要がなくなる。すなわち、限られた設置面積を、より有効に利用して、太陽電池モジュールの全体量を確保することができる。
なお、DC/DCコンバータの動作上は、DC/DCコンバータの入力電力容量に合わせて太陽電池モジュールの設置面積を抑える必要は、必ずしもない。
但し、DC/DCコンバータの入力電力容量を超える太陽電池モジュールを設置した場合、太陽電池モジュールの発電量を最大限に引き出せないので、余分に設置した太陽電池モジュール分は無駄となる。従って、DC/DCコンバータの入力電力容量程度の太陽電池モジュールを接続する場合が多い。
(2)また、前記(1)の電源装置において、前記入力線路部による配電によって電力の分配入力を受ける複数のDC/DCコンバータは、互いに同期して最大電力点追従制御を行うことが好ましい。
この場合、共通の出力線路部に合流して搬送されてきた電力については、並列の関係にある複数のDC/DCコンバータが互いに同期して最大電力点追従制御を行うことにより、太陽電池の集合体全体から、その時点の最大電力を引き出すことができる。
(3)また、前記(1)又は(2)の電源装置では、前記設置場所は家屋の屋根であり、前記出力線路部によって出力を一纏めにする対象は、一平面及びその平行面にそれぞれ設置されている前記太陽電池の集合体である。
この場合、屋根の一平面のみならず、それと平行な面も日射条件は近似するので、最大電力点の電圧値が近似する。そこで、これらの面の太陽電池の集合体については、一旦一纏めにして扱い、DC/DCコンバータへの入力時に必要に応じて配電することにより、複雑な形状の屋根の面積を最大限に利用した太陽電池の設置が可能となる。
(4)また、前記(1)〜(3)のいずれかの電源装置は、蓄電池を備え、前記複数のDC/DCコンバータのうち、少なくとも1つは双方向性であり、前記蓄電池が接続される構成であってもよい。
この場合、直流電源として、太陽電池と蓄電池とを併用することができる。また、商用電力系統から夜間電力による蓄電池の充電、又は、太陽光発電の余剰電力による蓄電池の充電を行うことができる。
(5)また、前記(1)〜(3)のいずれかの電源装置は、蓄電池を備え、前記複数のDC/DCコンバータは双方向性であり、前記入力線路部は、前記複数のDC/DCコンバータの各々を、前記出力線路部及び前記蓄電池のいずれか一方に接続するスイッチを備えているものであってもよい。
この場合の電源装置は、太陽電池モジュールからDC/DCコンバータへの電力供給、蓄電池からDC/DCコンバータへの電力供給、商用電力系統から夜間電力による蓄電池の充電、及び、太陽光発電の余剰電力による蓄電池の充電、のいずれでも行うことができる。
[実施形態の詳細]
以下、図面を参照して説明する。まず、本発明の実施形態に係る電源装置の基礎となる参考例から説明する。
《参考例》
図1は、家屋の屋根に設置された太陽電池モジュールを発電要素とする電源装置の概略を示す図である。この屋根は寄棟形であり、4面のうちの3面が、陽当たりがよく、太陽電池モジュール(太陽光発電パネル)の設置に適している。そこで、例えば3ストリングの太陽電池モジュールM1,M2,M3が3面に設けられている。
太陽電池モジュールM1,M2,M3の最大出力は共に同じであり、例えば2kWである。但し、設置場所(位置、角度等)の観点から3面に設置された太陽電池モジュールM1,M2,M3に対する日射条件は互いに常に近似するとは言えない。太陽電池モジュールM1,M2,M3はそれぞれ、例えば2本の単芯のケーブルC1,C2,C3を介して、パワーコンディショナ50と接続されている。この場合のケーブル本数は、合計6本となる。パワーコンディショナ50は、屋外又は屋内に設けられる。
図2は、参考例としての電源装置100の回路図である。太陽電池モジュールM1,M2,M3はそれぞれ、出力線路部C(ケーブルC1,C2,C3に相当する。)を介してパワーコンディショナ50と接続されている。パワーコンディショナ50は、太陽電池モジュールM1,M2,M3の直流出力を統合し、交流に変換して出力することにより、商用電力系統20との系統連系や、家屋内への電力供給をすることができる。
パワーコンディショナ50は、マルチ入力タイプであり、太陽電池モジュールM1,M2,M3に対応した3つのDC/DCコンバータ3,5,7を備えている。すなわち、太陽電池モジュールM1,M2,M3は、3つのDC/DCコンバータ3,5,7と一対一に対応している。ここで、DC/DCコンバータ3,5,7の入力電力容量はそれぞれ、太陽電池モジュールM1,M2,M3の最大出力を入力することができる値となっており、例えば、2kWである。
太陽電池モジュールM1の出力は、パワーコンディショナ50内において入力線路部1及びコンデンサ2を介して、DC/DCコンバータ3に入力される。DC/DCコンバータ3は、DCリアクトルLb、スイッチング素子Qb及びダイオードDbを図示のように接続して成る昇圧チョッパ回路である。スイッチング素子Qbは例えばFET(Field Effect Transistor)であり、制御部12により、オン/オフ制御される。制御部12によって制御されるDC/DCコンバータ3は、太陽電池モジュールM1から入力される電圧・電流に対して調整を施すことにより最大電力点追従制御(MPPT(Maximum Power Point Tracking)制御)を行う。
なお、制御部12は、例えばCPU、メモリ等を内蔵し、ソフトウェア主体で動作するものであってもよいし、また、ソフトウェアに依存せずハードウェアのみで構成されたものであってもよい。
同様に、太陽電池モジュールM2の出力は、パワーコンディショナ50内において入力線路部1及びコンデンサ4を介して、DC/DCコンバータ5に入力される。DC/DCコンバータ5は、DC/DCコンバータ3と同じ構成であり、制御部12により、オン/オフ制御される。制御部12によって制御されるDC/DCコンバータ5は、太陽電池モジュールM2から入力される電圧・電流に対して調整を施すことによりMPPT制御を行う。
また同様に、太陽電池モジュールM3の出力は、パワーコンディショナ50内において入力線路部1及びコンデンサ6を介して、DC/DCコンバータ7に入力される。DC/DCコンバータ7は、DC/DCコンバータ3と同じ構成であり、制御部12により、オン/オフ制御される。制御部12によって制御されるDC/DCコンバータ7は、太陽電池モジュールM3から入力される電圧・電流に対して調整を施すことによりMPPT制御を行う。
このように、設置場所の異なる太陽電池モジュールM1,M2,M3に対してそれぞれのDC/DCコンバータ3,5,7がMPPT制御を行うことにより、日射条件に応じた最適な制御を行い、その時点での最大電力を引き出すことができる。
上記3つのDC/DCコンバータ3,5,7の出力は共通のDCバス8に接続され、統合される。DCバス8の直流出力は、コンデンサ9を経て、インバータ10により交流出力に変換される。インバータ10は、スイッチング素子Q1,Q2,Q3,Q4を図示のようなフルブリッジ状に接続したものである。スイッチング素子Q1,Q2,Q3,Q4は、制御部12によりオン/オフ制御される。ACリアクトルLf1,Lf2及びコンデンサCfによって構成されるフィルタ11は、インバータ10の出力に含まれる高周波成分を除去する。こうして、商用電力系統20と系統連系可能な交流電圧・電流が、パワーコンディショナ50から出力される。
なお、制御部12は、DC/DCコンバータ3,5,7の一部でもあり、また、インバータ10の一部でもある。
《第1実施形態》
図3は、本発明の第1実施形態に係る電源装置の概略を示す図である。この屋根は寄棟形であり、例えば4面のうちの2面が、陽当たりがよく、太陽電池モジュールの設置に適している。そこで、2ストリングの太陽電池モジュールM4,M5が、2面に設けられている。
ここで、例えば、太陽電池モジュールM4の最大出力は4kW、太陽電池モジュールM5の最大出力は2kWである。設置場所(位置、角度等)の観点から2面に設置された太陽電池モジュールM4,M5に対する日射条件は互いに常に近似するとは言えない。従って、太陽電池モジュールM4,M5について、それらの最大電力点の電圧値が近似する、とは言えない。但し、太陽電池モジュールM4について、これが仮に、複数枚に分かれていたとしても、それらの最大電力点の電圧値は近似する。太陽電池モジュールM5についても同様である。
太陽電池モジュールM4,M5はそれぞれ、例えば2本の単芯のケーブルC4,C5を介して、パワーコンディショナ50と接続されている。この場合のケーブル本数は、合計4本となる。パワーコンディショナ50は、通常は、屋内に設けられる。ケーブルC4からパワーコンディショナ50内に入った電路は、2つに分かれている。
図4は、電源装置100の回路図である。図2との違いは、太陽電池モジュールのストリング構成、及び、入力線路部1であり、その他は、図2と同様である。
太陽電池モジュールM4,M5はそれぞれ、出力線路部C(ケーブルC4,C5に相当する。)を介してパワーコンディショナ50と接続されている。太陽電池モジュールM4からの入力は、入力線路部1で分配され、それぞれコンデンサ2及び4を介して、DC/DCコンバータ3及び5に配電される。従って、4kWは2kWずつに分けられ、DC/DCコンバータ3,5のそれぞれの入力電力容量として受け入れ可能となる。
DC/DCコンバータ3,5は、制御部12により、オン/オフ制御され、かつ、互いに同期して制御される。制御部12によって制御されるDC/DCコンバータ3,5は、太陽電池モジュールM4から入力される電圧・電流に対して調整を施すことによりMPPT制御を行う。こうして、個々のDC/DCコンバータの入力電力容量を超える4kWの太陽電池モジュールM4の出力について、2つのDC/DCコンバータ3,5により同期してMPPT制御を実行することができる。
一方、太陽電池モジュールM5の出力は、パワーコンディショナ50内において入力線路部1及びコンデンサ6を介して、DC/DCコンバータ7に入力される。DC/DCコンバータ7は、制御部12により、オン/オフ制御される。制御部12によって制御されるDC/DCコンバータ7は、太陽電池モジュールM5から入力される電圧・電流に対して調整を施すことによりMPPT制御を行う。
このように、設置場所も出力も異なる太陽電池モジュールM4,M5に対してそれぞれのDC/DCコンバータ3及び5並びに7がMPPT制御を行うことにより、日射条件に応じた最適な制御を行い、その時点での最大電力を引き出すことができる。
上記3つのDC/DCコンバータ3,5,7の出力は共通のDCバス8に接続され、統合される。DCバス8の直流出力は、コンデンサ9を経て、インバータ10により交流出力に変換される。ACリアクトルLf1,Lf2及びコンデンサCfによって構成されるフィルタ11は、インバータ10の出力に含まれる高周波成分を除去する。こうして、商用電力系統20と系統連系可能な交流電圧・電流が、パワーコンディショナ50から出力される。
《第2実施形態》
図5は、第2実施形態に係る電源装置の概略を示す図である。この屋根は切妻形であり、例えば2面のうちの1面が、陽当たりがよく、太陽電池モジュールの設置に適している。そこで、太陽電池モジュールM6は、1ストリングで1面に設けられている。この場合、太陽電池モジュールM6は1ストリングであるので、最大電力点の電圧値は1つである。但し、太陽電池モジュールM6について、これが仮に、複数枚に分かれていたとしても、それらの最大電力点の電圧値は近似する。
ここで、例えば、太陽電池モジュールM6の最大出力は6kWである。太陽電池モジュールM6は、例えば2本の単芯のケーブルC6を介して、パワーコンディショナ50と接続されている。この場合のケーブル本数は、合計2本となる。パワーコンディショナ50は、通常は、屋内に設けられる。ケーブルC6からパワーコンディショナ50内に入った電路は、3つに分かれている。
図6は、電源装置100の回路図である。図2との違いは、太陽電池モジュールのストリング構成、及び、入力線路部1であり、その他は、図2と同様である。
太陽電池モジュールM6は、出力線路部C(ケーブルC6に相当する。)を介してパワーコンディショナ50と接続されている。太陽電池モジュールM6からの入力は、入力線路部1で3分配され、それぞれコンデンサ2,4,6を介して、DC/DCコンバータ3,5,7に配電される。従って、6kWは2kWずつに分けられ、DC/DCコンバータ3,5,7のそれぞれの入力電力容量として受け入れ可能となる。
DC/DCコンバータ3,5,7は、制御部12により、オン/オフ制御され、かつ、互いに同期して制御される。制御部12によって制御されるDC/DCコンバータ3,5,7は、太陽電池モジュールM6から入力される電圧・電流に対して調整を施すことによりMPPT制御を行う。こうして、個々のDC/DCコンバータの入力電力容量を超える6kWの太陽電池モジュールM6の出力について、3つのDC/DCコンバータ3,5,7により同期してMPPT制御を実行することができる。
このように、太陽電池モジュールM6に対して3つのDC/DCコンバータ3,5,7が同期してMPPT制御を行うことにより、日射条件に応じた最適な制御を行い、その時点での最大電力を引き出すことができる。
上記3つのDC/DCコンバータ3,5,7の出力は共通のDCバス8に接続され、統合される。DCバス8の直流出力は、コンデンサ9を経て、インバータ10により交流出力に変換される。ACリアクトルLf1,Lf2及びコンデンサCfによって構成されるフィルタ11は、インバータ10の出力に含まれる高周波成分を除去する。こうして、商用電力系統20と系統連系可能な交流電圧・電流が、パワーコンディショナ50から出力される。
《第3実施形態》
図7は、第3実施形態に係る電源装置の概略を示す図である。この屋根は寄棟形の複合タイプであり、例えば、6面のうちの3面が、陽当たりがよく、太陽電池モジュールの設置に適している。そこで、3ストリングの太陽電池モジュールM7,M8,M9が、3面に設けられている。太陽電池モジュールM7とM8とは、面は異なるが、互いに平行な面である。従って、太陽電池モジュールM7とM8とは、日射条件が互いに近似する。
ここで、例えば、太陽電池モジュールM7の最大出力は3kW、太陽電池モジュールM8の最大出力は1kW、太陽電池モジュールM9の最大出力は2kWである。設置場所(位置、角度等)の観点から太陽電池モジュールM9と、太陽電池モジュールM7,M8とでは、日射条件が互いに常に近似するとは言えない。しかし、太陽電池モジュールM7とM8とは、日射条件が常に互いに近似している。従って、太陽電池モジュールM7,M8について、それらの最大電力点の電圧値は、互いに近似している。
そこで、太陽電池モジュールM7,M8の出力を一纏めにする。一纏めにする手段としては、例えば、合流点Jで電路を合流させる集電ケーブルを使用するか、又は、合流点Jに接続箱を使用する。
こうして、太陽電池モジュールM7及びM8は例えば2本の単芯の集電ケーブルC7を介して、また、太陽電池モジュールM9は例えば2本の単芯のケーブルC9を介して、それぞれパワーコンディショナ50と接続される。この場合のケーブル本数は、合計4本となる。パワーコンディショナ50は、通常は、屋内に設けられる。集電ケーブルC7からパワーコンディショナ50内に入った電路は、2つに分かれている。
図8は、電源装置100の回路図である。図2との違いは、太陽電池モジュールのストリング構成、出力線路部C、及び、入力線路部1であり、その他は、図2と同様である。
太陽電池モジュールM7,M8は、出力線路部C(集電ケーブルC7に相当する。)を介してパワーコンディショナ50と接続されている。また、太陽電池モジュールM9は、出力線路部C(ケーブルC9に相当する。)を介してパワーコンディショナ50と接続されている。太陽電池モジュールM7,M8からの入力は、入力線路部1で分配され、それぞれコンデンサ2及び4を介して、DC/DCコンバータ3及び5に配電される。従って、4kW(3kW+1kW)は2kWずつに分けられ、DC/DCコンバータ3,5のそれぞれの入力電力容量として受け入れ可能となる。
DC/DCコンバータ3,5は、制御部12により、オン/オフ制御され、かつ、互いに同期して制御される。制御部12によって制御されるDC/DCコンバータ3,5は、太陽電池モジュールM7,M8から入力される電圧・電流に対して調整を施すことによりMPPT制御を行う。こうして、個々のDC/DCコンバータの入力電力容量を超える合計4kWの太陽電池モジュールM7,M8の出力について、2つのDC/DCコンバータ3,5により同期してMPPT制御を実行することができる。
一方、太陽電池モジュールM9の出力は、パワーコンディショナ50内において入力線路部1及びコンデンサ6を介して、DC/DCコンバータ7に入力され、制御部12により、オン/オフ制御される。制御部12によって制御されるDC/DCコンバータ7は、太陽電池モジュールM9から入力される電圧・電流に対して調整を施すことによりMPPT制御を行う。
このように、設置場所も出力も異なる太陽電池モジュールM7及びM8並びにM9に対してそれぞれのDC/DCコンバータ3及び5並びに7がMPPT制御を行うことにより、日射条件に応じた最適な制御を行い、その時点での最大電力を引き出すことができる。
上記3つのDC/DCコンバータ3,5,7の出力は共通のDCバス8に接続され、統合される。DCバス8の直流出力は、コンデンサ9を経て、インバータ10により交流出力に変換される。ACリアクトルLf1,Lf2及びコンデンサCfによって構成されるフィルタ11は、インバータ10の出力に含まれる高周波成分を除去する。こうして、商用電力系統20と系統連系可能な交流電圧・電流が、パワーコンディショナ50から出力される。
《第1〜3実施形態のまとめ》
以上詳述したように、図4,図6,図8に示した電源装置100では、出力線路部Cにより、同一面又は平行面にあることによって日射条件が近似している太陽電池の集合体(太陽電池モジュール)については、出力を一纏めにして引き出す。より正確且つ普遍的に言えば、最大電力点の電圧値が近似する太陽電池の集合体については、出力を一纏めにして引き出す、ということである。従って、最大電力点の電圧値が近似する太陽電池の集合体について別々の出力線路部Cを設けてDC/DCコンバータ3,5,7まで配線する必要はない。そのため、出力線路部C(ケーブル数)は最小限数で足り、当該電源装置100の電気工事の施工が容易となる。
また、入力線路部1で分配して配電を行うことができるので、出力線路部Cが搬送する電力は個々のDC/DCコンバータ3,5,7の入力電力容量を超えてもよい。これにより、入力電力容量の制約から太陽電池モジュールの設置面積を抑える必要がなくなる。すなわち、限られた設置面積を、より有効に利用して、太陽電池モジュールの全体量を確保することができる。
また、前述のように、入力線路部1による配電によって電力の分配入力を受ける複数のDC/DCコンバータは、互いに同期して最大電力点追従制御を行う。この場合、共通の出力線路部に合流して搬送されてきた電力については、並列の関係にある複数のDC/DCコンバータが互いに同期して最大電力点追従制御を行うことにより、その時点の最大電力を引き出すことができる。
そして、出力線路部Cによって出力を一纏めにする対象は、一平面及びその平行面にそれぞれ設置されている太陽電池の集合体である。つまり、屋根の一平面のみならず、それと平行な面も日射条件は近似していて、最大電力点の電圧値は近似するので、一旦一纏めにして扱い、DC/DCコンバータへの入力時に必要に応じて配電することにより、複雑な形状の屋根の面積を最大限に利用した太陽電池の設置が可能となる。
なお、太陽電池の入力接続パターン(出力線路部Cの態様)に応じて、3つのDC/DCコンバータ3,5,7を用いてMPPT制御をする場合は、上述の例を含めて以下のようになる。
Figure 0006969630
表1において、図1,図2に示す「3入力」の場合(参考例)、3つのDC/DCコンバータ3,5,7がそれぞれMPPT制御を行う。図3,図4又は図7,図8に示すパターンを「2入力−1」とすると、この場合は、2つのDC/DCコンバータ3,5が同期したMPPT制御を行い、1つのDC/DCコンバータ7は単独でMPPT制御を行う。また、「2入力−2」として、2つのDC/DCコンバータ5,7が同期したMPPT制御を行い、1つのDC/DCコンバータ3が単独でMPPT制御を行うようにしてもよい。さらに、「2入力−3」として、2つのDC/DCコンバータ3,7が同期したMPPT制御を行い、1つのDC/DCコンバータ5が単独でMPPT制御を行うようにしてもよい。
3つのDC/DCコンバータ3,5,7の入力電力容量が互いに同じであれば、2入力を3パターンに分ける意義は乏しいが、入力電力容量が異なる場合は、太陽電池モジュールからの出力に応じて受け側のDC/DCコンバータ3,5,7の組み合わせを考える意義がある。
また、図5,図6に示す「1入力」の場合、3つのDC/DCコンバータ3,5,7が互いに同期してMPPT制御を行う。
パワーコンディショナ50に、このようなMPPT制御のパターンの切り替えを簡単に行うことができる設定機能を持たせることにより、太陽電池モジュールの配置に適したパターンを、施工時に容易に設定することができる。
《第4実施形態》
次に、太陽電池の他に、蓄電池を用いる電源装置について説明する。
図9は、第4実施形態に係る電源装置の概略を示す図である。この屋根は図7と同様、寄棟形の複合タイプであり、例えば、6面のうちの2面が、陽当たりがよく、太陽電池モジュールの設置に適している。そこで、2ストリングの太陽電池モジュールM11(1kW),M12(3kW)が、2面に設けられている。太陽電池モジュールM11とM12とは、面は異なるが、互いに平行な面である。従って、太陽電池モジュールM11とM12とは、日射条件が互いに近似する。
そこで、第3実施形態と同様に、太陽電池モジュールM11,M12については例えば集電ケーブルC11を用いて出力を一纏めにする。そして、一纏めにした出力は、パワーコンディショナ50内で2分配され、DC/DCコンバータ3,5へ入力される。もう一つのDC/DCコンバータ7Aは、双方向性であり、ここには、ケーブルC30を介して蓄電池30が接続されている。なお、双方向性とするには、例えば図8のDC/DCコンバータ7におけるダイオードDbを、スイッチング素子に置き換えればよい(以下、双方向性と言う場合は同様である。)。
3つのDC/DCコンバータ3,5,7の出力はインバータ10により交流出力に変換され、商用電力系統20と系統連系可能な交流電圧・電流が、パワーコンディショナ50から出力される。また、交流出力は、家屋内で使用される電力にもなる。パワーコンディショナ50内の各部は、制御部12によって制御される。インバータ10は、AC/DCコンバータとして逆方向に使用することもできる。
このような電源装置では、1台のパワーコンディショナ50に2種類の直流電源(太陽電池、蓄電池)を接続し、併用することができる。例えば、太陽電池モジュールM11,M12の発電電力を家屋内の負荷で使用する場合は、その余剰電力を蓄電池30に充電することができる。また、商用電力系統20から夜間電力を蓄電池30に充電しておき、昼間に蓄電池30から負荷に電力を提供することができる。なお、夜間電力を蓄電池30に充電する際は、インバータ10が整流回路となり、DC/DCコンバータ7Aが降圧回路となる。
《第5実施形態》
図10は、第5実施形態に係る電源装置の概略を示す図である。この屋根及び太陽電池モジュールM7,M8,M9の配置は、図7(第3実施形態)と同様である。そこで、第3実施形態と同様に、太陽電池モジュールM7,M8については例えば集電ケーブルC7を用いて出力を一纏めにする。そして、一纏めにした出力は、スイッチSW1を介して、パワーコンディショナ50内で2分配され、双方向性のDC/DCコンバータ3A,5Aへ入力される。もう一つのDC/DCコンバータ7Aも、双方向性であり、ケーブルC9からスイッチSW2を介して、太陽電池モジュールM9の出力が与えられる。太陽電池モジュールM7〜M9からパワーコンディショナ50への入力電圧は、電圧センサ13,14により検知される。なお、電圧センサに代えて電流センサでもよい。
DC/DCコンバータ3,5,7の入力側にはそれぞれ、スイッチSW3,SW4,SW5を介して蓄電池30が接続されている。
3つのDC/DCコンバータ3,5,7の出力はインバータ10により交流出力に変換され、商用電力系統20と系統連系可能な交流電圧・電流が、パワーコンディショナ50から出力される。また、交流出力は、家屋内で使用される電力にもなる。パワーコンディショナ50内の各部(スイッチSW1〜SW5も含む。)は、制御部12によって制御される。電圧センサ13,14の出力信号は制御部12に提供される。なお、スイッチSW1〜SW5は、入力線路部1を構成している。インバータ10は、AC/DCコンバータとして逆方向に使用することもできる。
このような電源装置では、日中はスイッチSW3〜SW5を開き、スイッチSW1,SW2を閉じる。これにより、蓄電池30を切り離した状態で、太陽電池モジュールM7〜M9とパワーコンディショナ50とを接続し、系統連系をすることができる。逆に、夜間は、スイッチSW1,SW2を開き、スイッチSW3〜SW5を閉じて、太陽電池モジュールM7〜M9を切り離し、夜間電力を蓄電池30に蓄えることができる。
また、雨天等で、太陽電池モジュールM7〜M9が発電しないときは、これを電圧センサ13,14によって検知する。電圧センサ13,14の出力信号を受けた制御部12は、スイッチSW1,SW2を開き、スイッチSW3〜SW5を閉じて、太陽電池モジュールM7〜M9を切り離し、蓄電池30の放電により負荷に電力を供給する。なお、この制御は、ケーブルC7,C9単位で行うことができる。例えば、ケーブルC9の電圧すなわち、太陽電池モジュールM9が発電していないときは、DC/DCコンバータ7Aの入力のみ、太陽電池モジュールM9から蓄電池30に切り替えることもできる。但し、蓄電池30の放電により電力を提供するときは、系統連系はせず、家屋内の負荷への電力供給のみとなる。
《第6実施形態》
図11は、第6実施形態に係る電源装置の概略を示す図である。図10との違いは、3モジュールの蓄電池31,32,33がDC/DCコンバータ3,5,7にそれぞれ対応して設けられた点であり、それ以外は図10と同じである。動作も、第5実施形態と同様であるので、ここでは説明を省略する。
《その他》
なお、上記各実施形態では、マルチ入力の例として3つのDC/DCコンバータを備えたパワーコンディショナ50を示したが、3以外の複数であっても同様に、入力線路部1による分配、あるいは、出力線路部Cによる一纏め、を適用することができる。
なお、上記各実施形態は、一般家庭の家屋の屋根に太陽電池モジュールを設置する場合について述べたが、事業用の小規模太陽光発電や、大規模太陽光発電(メガソーラー)においても、設置場所によっては同様な日射条件の違いが生じる場合がある。このような場合にも、上述の電源装置と同様に、日射条件が近似する太陽電池の集合体については、出力を一纏めにして引き出す出力線路部を設け、出力線路部が搬送する電力を、個々のDC/DCコンバータの入力電力容量の範囲内に収まるように分配して配電する入力線路部とを設けることができる。
なお、上記各実施形態では、日射条件が近似するという一事例を挙げたが、前述のように、より正確且つ普遍的に言えば、最大電力点の電圧値が近似する太陽電池の集合体について出力を一纏めにする、ということである。すなわち、共通のMPPT制御ができる太陽電池の集合体については、その出力を一纏めにし、かつ、必要に応じてパワーコンディショナ側で分配し、複数のDC/DCコンバータにて、電力変換を行うことができる。
また、上記各実施形態ではDC/DCコンバータを複数備えたマルチ入力タイプのパワーコンディショナ50を示したが、シングル入力タイプのパワーコンディショナを複数個並べて同様な制御を行うことは可能である。但し、この場合は、分配して配電された入力を受けるDC/DCコンバータ間で同期制御を行うべく、1つのパワーコンディショナの枠を超えた共通の制御部が必要である。
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1 入力線路部
2 コンデンサ
3,3A DC/DCコンバータ
4 コンデンサ
5,5A DC/DCコンバータ
6 コンデンサ
7,7A DC/DCコンバータ
8 DCバス
9 コンデンサ
10 インバータ
11 フィルタ
12 制御部
13,14 電圧センサ
20 商用電力系統
30,31〜33 蓄電池
50 パワーコンディショナ
100 電源装置
150 パワーコンディショナ
151〜153 DC/DCコンバータ
C 出力線路部
C1〜C6,C9,C21〜C26,C30 ケーブル
C7,C11 集電ケーブル
Cf コンデンサ
Db ダイオード
J 合流点
Lb DCリアクトル
Lf1,Lf2 ACリアクトル
M1〜M9,M11,M12,M21〜M26 太陽電池モジュール
Q1〜Q4,Qb スイッチング素子
SW1〜SW5 スイッチ

Claims (6)

  1. 太陽電池モジュールの出力を複数のDC/DCコンバータによって受ける電源装置であって、
    最大電力点の電圧値が近似し、個々の前記DC/DCコンバータの入力電力容量を上回る電力を発電可能な太陽電池モジュールについては、出力を一纏めにして引き出す出力線路部と、
    前記出力線路部が出力を一纏めにして引き出す前記太陽電池モジュールに基づいて選択される複数個のDC/DCコンバータに対して、前記出力線路部が搬送する電力を分配して配電する入力線路部と、
    前記複数のDC/DCコンバータに対して最大電力点追従制御を行う制御部と、
    互いに同期した最大電力点追従制御を行うDC/DCコンバータの組合せを切替える切替部と、を備え、
    前記制御部は、前記切替部による切替え設定に応じて、前記入力線路部による分配入力を受ける前記複数個のDC/DCコンバータに対して、互いに同期した最大電力点追従制御を行う電源装置。
  2. 前記太陽電池モジュールの設置場所は家屋の屋根であり、
    前記出力線路部は、前記家屋の屋根の一平面に設置されている前記太陽電池モジュールの出力を一纏めにして引き出す請求項1に記載の電源装置。
  3. 蓄電池をさらに備え、
    前記複数のDC/DCコンバータのうち、少なくとも1つは双方向性であり、前記蓄電池が接続される請求項1又は請求項2に記載の電源装置。
  4. 蓄電池をさらに備え、
    前記複数のDC/DCコンバータは双方向性であり、
    前記入力線路部は、前記複数のDC/DCコンバータの各々を、前記出力線路部及び前記蓄電池のいずれか一方に接続するスイッチを備えている請求項1又は請求項2に記載の電源装置。
  5. 太陽電池モジュールの出力を複数のDC/DCコンバータに分配する分配システムであって、
    最大電力点の電圧値が近似し、個々の前記DC/DCコンバータの入力電力容量を上回る電力を発電可能な太陽電池モジュールについては、出力を一纏めにして引き出す出力線路部と、
    前記出力線路部が出力を一纏めにして引き出す前記太陽電池モジュールに基づいて選択される複数個のDC/DCコンバータに対して、前記出力線路部が搬送する電力を分配して配電する入力線路部と、
    前記入力線路部が分配して配電するDC/DCコンバータに基づいて、互いに同期した最大電力点追従制御を行うDC/DCコンバータの組合せを切替える切替部と、を備える、分配システム。
  6. 太陽電池モジュールの出力を変換する複数のDC/DCコンバータと、
    最大電力点の電圧値が近似し、個々の前記DC/DCコンバータの入力電力容量を上回る電力を発電可能な太陽電池モジュールについては、出力を一纏めにして引き出す出力線路部と接続され、前記出力線路部が出力を一纏めにして引き出す前記太陽電池モジュールに基づいて選択される複数個のDC/DCコンバータに対して、前記出力線路部が搬送する電力を分配して配電する入力線路部と、
    互いに同期した最大電力点追従制御を行うDC/DCコンバータの組合せを切替える切替部と、
    前記切替部による切替え設定に応じて、前記入力線路部による分配入力を受ける前記複数個のDC/DCコンバータに対して、互いに同期した最大電力点追従制御を行う制御部と、を備える、電力変換装置。
JP2020083042A 2018-07-10 2020-05-11 電源装置、分配システム、及び電力変換装置 Active JP6969630B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020083042A JP6969630B2 (ja) 2018-07-10 2020-05-11 電源装置、分配システム、及び電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018130926A JP2018152145A (ja) 2018-07-10 2018-07-10 電源装置
JP2020083042A JP6969630B2 (ja) 2018-07-10 2020-05-11 電源装置、分配システム、及び電力変換装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018130926A Division JP2018152145A (ja) 2018-07-10 2018-07-10 電源装置

Publications (2)

Publication Number Publication Date
JP2020115747A JP2020115747A (ja) 2020-07-30
JP6969630B2 true JP6969630B2 (ja) 2021-11-24

Family

ID=71778756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020083042A Active JP6969630B2 (ja) 2018-07-10 2020-05-11 電源装置、分配システム、及び電力変換装置

Country Status (1)

Country Link
JP (1) JP6969630B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293673B2 (ja) * 1999-04-20 2009-07-08 三洋電機株式会社 複数のインバータを有する電源システムの運転方法
US8624439B2 (en) * 2007-06-06 2014-01-07 Power-One Italy S.P.A. Delivery of electric power by means of a plurality of parallel inverters and control method based on maximum power point tracking
JP5412297B2 (ja) * 2010-01-08 2014-02-12 田淵電機株式会社 電力変換装置
JP5530737B2 (ja) * 2010-02-10 2014-06-25 田淵電機株式会社 太陽光発電システム
KR101116430B1 (ko) * 2010-06-07 2012-02-27 삼성에스디아이 주식회사 에너지 저장 시스템
JP2012137830A (ja) * 2010-12-24 2012-07-19 Ntt Facilities Inc 太陽光発電システム
JP5648497B2 (ja) * 2011-01-26 2015-01-07 株式会社デンソー 分散型電源設備
WO2013018507A1 (ja) * 2011-07-29 2013-02-07 三洋電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP2020115747A (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
US11817699B2 (en) Power converter for a solar panel
US8053929B2 (en) Solar power array with maximized panel power extraction
US9231405B2 (en) System and method for operating a distributed energy generating plant using a renewable source of energy
Walker et al. PV string per-module maximum power point enabling converters
CN105515033A (zh) 一种光储微电网系统的功率协调控制方法
JP6369154B2 (ja) 電源装置
US10027277B2 (en) Short-string parallel-DC optimizer for photovoltaic systems
JP2000089841A (ja) 太陽光発電装置
Tulasi et al. Droop Control of Bi-Directional DC-DC Converter for Improved Voltage Regulation and Load Sharing in DC Microgrid.
JP6969630B2 (ja) 電源装置、分配システム、及び電力変換装置
WO2018126551A1 (zh) 光伏阵列的最大功率点跟踪控制系统及光伏空调系统
JP2018152145A (ja) 電源装置
WO2017197437A1 (en) Solar energy collection system
Prathiba et al. Design and Development of Portable Stand-Alone Solar Power Generator
Minai et al. Optimum sizing and estimation of a 30 kWp hybrid solar photovoltaic system with multilevel inverter
Wu et al. Development of an efficient low-cost low-voltage DC microgrid with power array conversion (PAC) for a commercial building application
WO2018222373A1 (en) Energy storage system with string balance function
CN106602605B (zh) 光伏阵列的最大功率点跟踪控制系统及光伏空调系统
Elanchezhian et al. Design of two-stage soft-switched module Inverter for Photovoltaic applications
CN201608554U (zh) 光伏并网逆变器人机界面的不间断供电系统
CN202026096U (zh) 太阳光发电系统
Dewangan et al. An Implementation of Renewable Energy based Modeling and Control of Three Phase Hybrid–Microgrid System
Arora et al. High Gain Module Integrated Converter Combating Partial Shading on PV Panel
Zhang et al. An energy storage integrated dual-input PV system with distributed maximum power point tracking
SEKHAR et al. Transformer-less Inverter with Virtual DC Bus Concept for Cost-Effective Grid-Connected PV Power Systems

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150