WO2018126551A1 - 光伏阵列的最大功率点跟踪控制系统及光伏空调系统 - Google Patents

光伏阵列的最大功率点跟踪控制系统及光伏空调系统 Download PDF

Info

Publication number
WO2018126551A1
WO2018126551A1 PCT/CN2017/079885 CN2017079885W WO2018126551A1 WO 2018126551 A1 WO2018126551 A1 WO 2018126551A1 CN 2017079885 W CN2017079885 W CN 2017079885W WO 2018126551 A1 WO2018126551 A1 WO 2018126551A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
photovoltaic array
maximum power
power point
point tracking
Prior art date
Application number
PCT/CN2017/079885
Other languages
English (en)
French (fr)
Inventor
方聪聪
黄猛
唐文强
刘霞
王健
廖俊豪
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2018126551A1 publication Critical patent/WO2018126551A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to the technical field of photovoltaic power generation, in particular to a maximum power point tracking control system and a photovoltaic air conditioning system of a photovoltaic array.
  • photovoltaic power generation has achieved rapid development under the guidance of various countries and policy guidance.
  • the general form of photovoltaic power generation is that the direct current generated by the photovoltaic array is converted into qualified alternating current into the mains through the grid-connected inverter, and the MPPT link only serves as a photovoltaic array.
  • the maximum power point of the form is optimized, so it is only necessary to design the MPPT from the perspective of photovoltaic power generation.
  • the electricity generated by the PV array is not only to supply electricity to the mains, but also to supply air-conditioning loads.
  • the maximum power point tracking control system of the single-channel photovoltaic array is difficult to meet the flexible switching of the multi-mode system, and the photovoltaic array always maintains the maximum power output in different modes.
  • the maximum power point tracking control system for the photovoltaic array in the related art is difficult to meet the flexible switching of the multi-mode system, so that the problem that the photovoltaic array always maintains the maximum power output in different modes cannot be guaranteed, and an effective solution has not been proposed yet.
  • the main object of the present invention is to provide a maximum power point tracking control system and a photovoltaic air conditioning system for a photovoltaic array, so as to solve the problem that the maximum power point tracking control system of the photovoltaic array in the related art is difficult to meet the flexible switching of the multi-mode system, thereby failing to ensure The PV array always maintains the problem of maximum power output in different modes.
  • a maximum power point tracking control system for a photovoltaic array comprises: a photovoltaic array for converting solar energy into a direct current; a combiner box connected to the photovoltaic array for converging the direct current converted by the photovoltaic array; the converter, one end and The combiner box is connected, and the other end is connected to the mains.
  • the DC current used for converging the combiner box is converted into AC current and transmitted to the mains.
  • the inverter is connected to the combiner box at one end and connected to the electrical load at the other end.
  • the DC current of the combiner box is converted into AC current and transmitted to the electrical load; and the upper control module is connected to the converter and connected to the inverter for controlling the maximum power point tracking of the PV array. Or, control the inverter to perform maximum power point tracking of the photovoltaic array.
  • the maximum power point tracking control system of the photovoltaic array further includes: a first current monitoring module, connected Connected between the combiner box and the inverter for monitoring the current at the inverter end; a second current monitoring module connected between the combiner box and the converter for monitoring the current at the converter end.
  • the maximum power point tracking control system of the photovoltaic array has a first operating mode.
  • the upper control module controls the current converter to output current to the inverter to supply current to the electrical load.
  • the first current monitoring module in the first operating mode monitors that the current at the inverter end is equal to the value of the current monitored by the second current monitoring module to the converter, and the current direction is opposite.
  • the maximum power point tracking control system of the photovoltaic array has a second operation mode.
  • the upper layer control module controls the alternating current converted by the converter to be transmitted to the commercial power, and performs the photovoltaic array through the converter.
  • the maximum power point tracking wherein the second current monitoring module detects that the current at the inverter end is equal to zero, and the second current monitoring module monitors that the current at the converter end is greater than zero.
  • the maximum power point tracking control system of the photovoltaic array has a third operation mode.
  • the upper layer control module controls the AC current converted by the converter to be transmitted to the electrical load, and performs the photovoltaic array through the inverter.
  • the maximum power point tracking wherein the first current monitoring module monitors that the current at the inverter end is greater than zero in the third operating mode, and the second current monitoring module monitors that the current at the converter end is equal to zero.
  • the maximum power point tracking control system of the photovoltaic array has a fourth operation mode.
  • the upper control module controls the AC current converted by the converter to be transmitted to the electrical load, and controls the converter to the inverter.
  • Output current so that the current of the utility power is supplied to the electrical load, and the maximum power point tracking of the photovoltaic array is performed by the inverter, wherein the first current monitoring module monitors that the current at the inverter end is greater than that in the fourth operating mode Zero, the current at the converter end is less than zero, and the value of the current at the inverter end is greater than the value of the current at the converter end.
  • the maximum power point tracking control system of the photovoltaic array has a fifth operation mode.
  • the upper layer control module controls the AC current converted by the converter to be transmitted to the electrical load and the commercial power, and is performed by the converter.
  • the maximum power point tracking of the photovoltaic array wherein the first current monitoring module monitors that the current at the inverter end is greater than zero in the fifth operating mode, and the second current monitoring module monitors that the current at the converter end is greater than zero.
  • the electrical load is an air conditioner.
  • the utility power is the power grid.
  • a photovoltaic air conditioning system includes a maximum power point tracking control system for a photovoltaic array of any one.
  • a photovoltaic array for converting solar energy into a direct current
  • a combiner box connected to the photovoltaic array for converging the direct current converted by the photovoltaic array
  • a converter having one end connected to the combiner box, The other end is connected to the mains and is used to convert the DC current converged by the combiner box into AC current and transmit it to the city.
  • the inverter has one end connected to the combiner box and the other end connected to the electrical load for converting the DC current converged by the combiner box into an alternating current and transmitting it to the electrical load; and the upper control module is connected to the converter.
  • the tracking control system is difficult to meet the flexible switching of the system multi-mode, so that the photovoltaic array can not always maintain the maximum power output in different modes.
  • the maximum power point tracking of the PV array is controlled by controlling the converter, or the inverter is controlled to perform the maximum power point tracking of the PV array, thereby achieving the use of two-way maximum power point tracking instead of the single-channel maximum power point tracking control.
  • the maximum power point tracking of the PV array can be performed in different working modes.
  • FIG. 1 is a schematic diagram of a maximum power point tracking control system of a photovoltaic array according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a maximum power point tracking control system of a photovoltaic array operating in a first mode of operation in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a maximum power point tracking control system of a photovoltaic array operating in a second mode of operation in accordance with an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a maximum power point tracking control system of a photovoltaic array operating in a third mode of operation in accordance with an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a maximum power point tracking control system of a photovoltaic array operating in a fourth mode of operation in accordance with an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a maximum power point tracking control system of a photovoltaic array operating in a fifth mode of operation in accordance with an embodiment of the present invention.
  • the MPPT controller's full name "Maximum Power Point Tracking" solar controller is an upgraded product of the traditional solar charge and discharge controller.
  • the MPPT controller detects the solar panel's generated voltage in real time and tracks the highest voltage and current value (VI), allowing the system to charge the battery with maximum power output. It is the brain of photovoltaic system used in solar photovoltaic systems to coordinate the work of solar panels, batteries and loads.
  • V voltage and current value
  • the electrical system capable of outputting more electric energy by the photovoltaic panel can effectively store the direct current generated by the solar panel in the storage battery, and can effectively solve the life in remote areas and tourist areas that cannot be covered by the conventional power grid. And industrial electricity, no environmental pollution.
  • the output power of a photovoltaic cell is related to the operating voltage of the MPPT controller. Only when operating at the most suitable voltage will its output power have a unique maximum.
  • a maximum power point tracking control system for a photovoltaic array is provided.
  • FIG. 1 is a schematic diagram of a maximum power point tracking control system for a photovoltaic array in accordance with an embodiment of the present invention.
  • the maximum power point tracking control system of the photovoltaic array includes the following components:
  • Photovoltaic array for converting solar energy into direct current.
  • a combiner box connected to the photovoltaic array, for converging the DC current converted by the photovoltaic array.
  • the converter has one end connected to the combiner box and the other end connected to the mains, and is used to convert the DC current converged by the combiner box into an alternating current and transmit it to the mains.
  • the inverter has one end connected to the combiner box and the other end connected to the electrical load for converting the direct current of the combiner box into an alternating current and transmitting it to the electrical load.
  • the upper control module is connected to the converter and is connected to the inverter for controlling the converter to perform maximum power point tracking of the photovoltaic array, or controlling the inverter to perform maximum power point tracking of the photovoltaic array.
  • the maximum power point tracking control of the photovoltaic array of the system is realized by the inverter and the converter. That is to say, in the present application, the two-way maximum power point tracking control (MPPT) replaces the single-channel MPPT control, so that the system can perform the maximum power point tracking of the photovoltaic array in different working modes.
  • MPPT maximum power point tracking control
  • the maximum power point tracking control system of the photovoltaic array further includes: a first current monitoring module connected between the combiner box and the inverter, The current at the inverter end is monitored; a second current monitoring module is connected between the combiner box and the converter for monitoring the current at the converter end.
  • the two branch currents are detected by the current detecting link (including the first current monitoring module and the second current monitoring module), for example, the current monitored by the first current monitoring module to the inverter end is recorded as i1; the second current monitoring The current monitored by the module to the converter terminal is recorded as i2.
  • the monitored current signals (i1 and i2) are sent to the upper control module, and the upper control module determines the magnitude and direction of the two branch currents (i1 and i2) to determine the operating mode of the system, thereby outputting the signal to the inverse according to the operating mode.
  • the transformer and the converter, the inverter and the converter realize the maximum power point tracking control of the photovoltaic array of the system.
  • the maximum power point tracking control system of the photovoltaic array has a first operating mode, and in the first operating mode, the upper control module controls the converter to The inverter outputs a current to supply the current of the mains to the electrical load, wherein the first current monitoring module monitors the current at the inverter end and the second current monitoring module monitors the converter end in the first operating mode
  • the values of the currents are equal and the current directions are opposite.
  • FIG. 2 is a schematic diagram of a maximum power point tracking control system of a photovoltaic array operating in a first mode of operation in accordance with an embodiment of the present invention.
  • the maximum power point tracking control system of the array is disconnected.
  • the maximum power point tracking control system of the PV array works in the power mode of the electrical load, and the upper control module gives the inverter and the converter signal without maximum power point tracking (MPPT). )control.
  • MPPT maximum power point tracking
  • the maximum power point tracking control system of the photovoltaic array has a second operation mode, and in the second operation mode, the upper layer control module controls the converter conversion.
  • the alternating current is transmitted to the mains, and the maximum power point tracking of the photovoltaic array is performed by the converter.
  • the first current monitoring module detects that the current at the inverter end is equal to zero, and the second current monitoring module The current at the converter end is monitored to be greater than zero.
  • FIG. 3 is a diagram showing a maximum power point tracking control system of a photovoltaic array operating in a second operation according to an embodiment of the present invention Schematic diagram of the pattern.
  • the converter is equivalent to the photovoltaic grid-connected inverter, the photovoltaic array output power is all integrated into the grid, the upper control module gives the inverter and the converter signal, the inverter does not work, and the converter (MPPT2) Achieve maximum power point tracking of the photovoltaic array.
  • the maximum power point tracking control system of the photovoltaic array has a third operating mode, and in the third operating mode, the upper control module controls the converter conversion.
  • the alternating current is transmitted to the electrical load, and the maximum power point tracking of the photovoltaic array is performed by the inverter.
  • the first current monitoring module monitors that the current at the inverter end is greater than zero
  • the second current monitoring The module monitors that the current at the converter end is equal to zero.
  • FIG. 4 is a schematic diagram of a maximum power point tracking control system of a photovoltaic array operating in a third mode of operation in accordance with an embodiment of the present invention.
  • the load is not supplied to the mains, the upper control module gives the inverter and the converter signal, the converter does not work, and the inverter (MPPT1) realizes the maximum power point tracking of the photovoltaic array.
  • the maximum power point tracking control system of the photovoltaic array has a fourth operating mode, and in the fourth operating mode, the upper control module controls the converter conversion.
  • the alternating current is transmitted to the electrical load, and the control converter outputs a current to the inverter to supply the current of the commercial power to the electrical load, and the maximum power point tracking of the photovoltaic array is performed by the inverter, wherein the fourth operation
  • the first current monitoring module monitors that the current at the inverter end is greater than zero, the current at the converter end is less than zero, and the value of the current at the inverter end is greater than the value of the current at the converter end.
  • FIG. 5 is a schematic diagram of a maximum power point tracking control system of a photovoltaic array operating in a fourth mode of operation in accordance with an embodiment of the present invention.
  • the current detection and the upper control module determine that i1>0, i2 ⁇ 0, and
  • the power generated by the PV array is insufficient to meet the power consumption of the electrical load.
  • the power is supplied by the grid to the load, the upper control module gives the inverter and the converter signal, and the inverter (MPPT1) completes the maximum power of the PV array. Point tracking, the MPPT2 module of the converter does not start.
  • the maximum power point tracking control system of the photovoltaic array has a fifth operating mode, and in the fifth operating mode, the upper control module controls the converter conversion.
  • the alternating current is transmitted to the electrical load and the mains, and the maximum power point tracking of the photovoltaic array is performed by the converter, wherein the first current monitoring module monitors that the current at the inverter end is greater than zero in the fifth operating mode, The two current monitoring module monitors that the current at the converter end is greater than zero.
  • FIG. 6 is a schematic diagram of a maximum power point tracking control system of a photovoltaic array operating in a fifth mode of operation in accordance with an embodiment of the present invention.
  • the current detection and the upper control module determine that i1>0, i2>0, the state is the photovoltaic electric appliance load generation mode, and the photovoltaic array emits sufficient electric energy.
  • the upper control module gives the inverter and the converter signal, the inverter MPPT1 module does not start, and the photovoltaic array is completed by the converter (MPPT2).
  • the maximum power point tracking while meeting the electrical load power, delivers the maximum power to the mains.
  • the electrical load is an air conditioner.
  • the electrical load in the present application is an air conditioner, that is, by replacing the single-channel MPPT control with the two-way maximum power point tracking control (MPPT) in the present application, the maximum power supply to the commercial power is simultaneously satisfied when the air conditioning load is used. Electrical energy. That is, the system can perform maximum power point tracking of the photovoltaic array in different working modes.
  • MPPT maximum power point tracking control
  • the electrical load in the present application is not limited to the air conditioner, and may be any other load.
  • the utility power is a power grid.
  • the electrical load in the present application is a power grid. It should be noted that the utility power in the present application is not limited to the power grid, and may be any type of AC bus, and any system that uses dual-channel mode at the same time may adopt the two systems. Road MPPT control mode.
  • the maximum power point tracking control system of the photovoltaic array includes the following components: the photovoltaic array converts the solar energy into a direct current; the combiner box is connected to the photovoltaic array to merge the DC current converted by the photovoltaic array.
  • the converter is connected to the combiner box at one end and connected to the mains at the other end.
  • the DC current converged by the combiner box is converted into AC current and transmitted to the mains;
  • the inverter is connected to the combiner box at one end and connected to the electrical load at the other end.
  • the maximum power point tracking of the PV array is controlled by controlling the converter, or the inverter is controlled to perform the maximum power point tracking of the PV array, thereby achieving the use of two-way maximum power point tracking instead of the single-channel maximum power point tracking control.
  • the maximum power point tracking of the PV array can be performed in different working modes.
  • a photovoltaic air conditioning system includes a maximum power point tracking control system for a photovoltaic array of any one.
  • a photovoltaic air conditioning system is provided.
  • the photovoltaic air conditioning system has five working modes, and when one mode is switched to another mode, the upper layer is identified and controlled.
  • the system can realize the maximum power point tracking of the photovoltaic array output, improve the photoelectric conversion efficiency of the photovoltaic module, and maximize the photovoltaic array power output.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in a storage device by a computing device, or they may be fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种光伏阵列的最大功率点跟踪控制系统及光伏空调系统,该光伏阵列的最大功率点跟踪控制系统包括:光伏阵列,用于将太阳能转换为直流电流;汇流箱,用于将光伏阵列转换的直流电流进行汇合;变流器,用于将汇流箱汇合的直流电流转化为交流电流并传输至市电;逆变器,用于将汇流箱汇合的直流电流转化为交流电流并传输至电器负载;以及上层控制模块,用于控制变流器进行光伏阵列的最大功率点跟踪或控制逆变器进行光伏阵列的最大功率点跟踪。通过该控制系统,解决了相关技术中的光伏阵列的最大功率点跟踪控制系统难以满足系统多模式的灵活切换的问题。

Description

光伏阵列的最大功率点跟踪控制系统及光伏空调系统 技术领域
本发明涉及光伏发电技术领域,具体而言,涉及一种光伏阵列的最大功率点跟踪控制系统及光伏空调系统。
背景技术
近年光伏发电在各国的重视以及政策引导下在获得飞速发展,光伏发电的一般形式是光伏阵列发出的直流电经过并网逆变器转化为合格的交流电并入市电使用,MPPT环节只作为光伏阵列发电形式的最大功率点寻优,因此只需从光伏发电一个角度去设计MPPT。随着光伏空调技术的实现,光伏阵列发出的电不单单只是为市电输送电能,还供给空调负载。这种发用电一体化的光伏系统中,单路的光伏阵列的最大功率点跟踪控制系统很难满足系统多模式的灵活切换,保证光伏阵列在不同模式下始终保持最大功率输出。
针对相关技术中的光伏阵列的最大功率点跟踪控制系统难以满足系统多模式的灵活切换,从而不能保证光伏阵列在不同模式下始终保持最大功率输出的问题,目前尚未提出有效的解决方案。
发明内容
本发明的主要目的在于提供一种光伏阵列的最大功率点跟踪控制系统及光伏空调系统,以解决相关技术中的光伏阵列的最大功率点跟踪控制系统难以满足系统多模式的灵活切换,从而不能保证光伏阵列在不同模式下始终保持最大功率输出的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种光伏阵列的最大功率点跟踪控制系统。该光伏阵列的最大功率点跟踪控制系统包括:光伏阵列,用于将太阳能转换为直流电流;汇流箱,与光伏阵列相连,用于将光伏阵列转换的直流电流进行汇合;变流器,一端与汇流箱相连,另一端与市电相连,用于将汇流箱汇合的直流电流转化为交流电流,传输至市电;逆变器,一端与汇流箱相连,另一端与电器负载相连,用于将汇流箱汇合的直流电流转化为交流电流,传输至电器负载;以及上层控制模块,与变流器相连接,并且与逆变器相连接,用于控制变流器进行光伏阵列的最大功率点跟踪,或,控制逆变器进行光伏阵列的最大功率点跟踪。
进一步地,光伏阵列的最大功率点跟踪控制系统还包括:第一电流监测模块,连 接在汇流箱和逆变器之间,用于监测逆变器端处的电流;第二电流监测模块,连接在汇流箱和变流器之间,用于监测变流器端处的电流。
进一步地,光伏阵列的最大功率点跟踪控制系统具有第一运行模式,在第一运行模式下,上层控制模块控制变流器向逆变器输出电流,以使市电的电流向电器负载供电,其中,第一运行模式下第一电流监测模块监测到逆变器端处的电流与第二电流监测模块监测到变流器端处的电流的数值相等,且电流方向相反。
进一步地,光伏阵列的最大功率点跟踪控制系统具有第二运行模式,在第二运行模式下,上层控制模块控制变流器转化的交流电流传输至市电,并通过变流器进行光伏阵列的最大功率点跟踪,其中,第二运行模式下第一电流监测模块监测到逆变器端处的电流等于零,第二电流监测模块监测到变流器端处的电流大于零。
进一步地,光伏阵列的最大功率点跟踪控制系统具有第三运行模式,在第三运行模式下,上层控制模块控制变流器转化的交流电流传输至电器负载,并通过逆变器进行光伏阵列的最大功率点跟踪,其中,第三运行模式下第一电流监测模块监测到逆变器端处的电流大于零,第二电流监测模块监测到变流器端处的电流等于零。
进一步地,光伏阵列的最大功率点跟踪控制系统具有第四运行模式,在第四运行模式下,上层控制模块控制变流器转化的交流电流传输至电器负载,并且控制变流器向逆变器输出电流,以使市电的电流向电器负载供电,并通过逆变器进行光伏阵列的最大功率点跟踪,其中,第四运行模式下第一电流监测模块监测到逆变器端处的电流大于零,变流器端处的电流小于零,且逆变器端处的电流的数值大于变流器端处的电流的数值。
进一步地,光伏阵列的最大功率点跟踪控制系统具有第五运行模式,在第五运行模式下,上层控制模块控制变流器转化的交流电流传输至电器负载和市电,并通过变流器进行光伏阵列的最大功率点跟踪,其中,第五运行模式下第一电流监测模块监测到逆变器端处的电流大于零,第二电流监测模块监测到变流器端处的电流大于零。
进一步地,电器负载为空调器。
进一步地,市电为电网。
根据本发明的一个方面,提供了一种光伏空调系统,该光伏空调系统包括任一项的光伏阵列的最大功率点跟踪控制系统。
通过本发明,包括以下组件:光伏阵列,用于将太阳能转换为直流电流;汇流箱,与光伏阵列相连,用于将光伏阵列转换的直流电流进行汇合;变流器,一端与汇流箱相连,另一端与市电相连,用于将汇流箱汇合的直流电流转化为交流电流,传输至市 电;逆变器,一端与汇流箱相连,另一端与电器负载相连,用于将汇流箱汇合的直流电流转化为交流电流,传输至电器负载;以及上层控制模块,与变流器相连接,并且与逆变器相连接,用于控制变流器进行光伏阵列的最大功率点跟踪,或,控制逆变器进行光伏阵列的最大功率点跟踪,解决了相关技术中的光伏阵列的最大功率点跟踪控制系统难以满足系统多模式的灵活切换,从而不能保证光伏阵列在不同模式下始终保持最大功率输出的问题。通过控制变流器进行光伏阵列的最大功率点跟踪,或,控制逆变器进行光伏阵列的最大功率点跟踪,进而达到了使用两路最大功率点跟踪代替单路最大功率点跟踪控制,实现了在不同工作模式下均能进行光伏阵列最大功率点跟踪的效果。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统的示意图;
图2是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统工作在第一运行模式的示意图;
图3是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统工作在第二运行模式的示意图;
图4是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统工作在第三运行模式的示意图;
图5是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统工作在第四运行模式的示意图;以及
图6是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统工作在第五运行模式的示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领 域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,以下对本申请实施例涉及的部分名词或术语进行说明:
MPPT控制器的全称“最大功率点跟踪”(Maximum Power Point Tracking)太阳能控制器,是传统太阳能充放电控制器的升级换代产品。MPPT控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最大功率输出对蓄电池充电。应用于太阳能光伏系统中,协调太阳能电池板、蓄电池、负载的工作,是光伏系统的大脑。通过调节电气模块的工作状态,使光伏板能够输出更多电能的电气系统能够将太阳能电池板发出的直流电有效地贮存在蓄电池中,可有效地解决常规电网不能覆盖的偏远地区及旅游地区的生活和工业用电,不产生环境污染。光伏电池的输出功率与MPPT控制器的工作电压有关,只有工作在最合适的电压下,它的输出功率才会存在唯一的最大值。
根据本发明的实施例,提供了一种光伏阵列的最大功率点跟踪控制系统。
图1是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统的示意图。如图1所示,该光伏阵列的最大功率点跟踪控制系统包括以下组件:
光伏阵列,用于将太阳能转换为直流电流。
汇流箱,与光伏阵列相连,用于将光伏阵列转换的直流电流进行汇合。
变流器,一端与汇流箱相连,另一端与市电相连,用于将汇流箱汇合的直流电流转化为交流电流,传输至市电。
逆变器,一端与汇流箱相连,另一端与电器负载相连,用于将汇流箱汇合的直流电流转化为交流电流,传输至电器负载。
上层控制模块,与变流器相连接,并且与逆变器相连接,用于控制变流器进行光伏阵列的最大功率点跟踪,或,控制逆变器进行光伏阵列的最大功率点跟踪。
综上,通过光伏阵列、电器负载和市电,这三者之间的换流,实现了系统工作模式的相互切换。根据上层控制模块输出信号至逆变器和变流器,由逆变器和变流器实现系统的光伏阵列的最大功率点跟踪控制。也即,在本申请中两路最大功率点跟踪控制啊(MPPT)代替单路MPPT控制,实现系统在不同工作模式下均能进行光伏阵列最大功率点跟踪。
可选地,在本申请提供的光伏阵列的最大功率点跟踪控制系统中,光伏阵列的最大功率点跟踪控制系统还包括:第一电流监测模块,连接在汇流箱和逆变器之间,用于监测逆变器端处的电流;第二电流监测模块,连接在汇流箱和变流器之间,用于监测变流器端处的电流。
通过电流检测环节(包括第一电流监测模块和第二电流监测模块)检测两条支路电流,例如,将第一电流监测模块监测到逆变器端处的电流记为i1;第二电流监测模块监测到变流器端处的电流记为i2。将监测到的电流信号(i1和i2)送至上层控制模块,上层控制模块判断两条支路电流(i1和i2)的大小和方向,确定系统的工作模式,从而根据工作模式输出信号至逆变器和变流器,由逆变器和变流器实现系统的光伏阵列的最大功率点跟踪控制。
可选地,在本申请提供的光伏阵列的最大功率点跟踪控制系统中,光伏阵列的最大功率点跟踪控制系统具有第一运行模式,在第一运行模式下,上层控制模块控制变流器向逆变器输出电流,以使市电的电流向电器负载供电,其中,第一运行模式下第一电流监测模块监测到逆变器端处的电流与第二电流监测模块监测到变流器端处的电流的数值相等,且电流方向相反。
图2是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统工作在第一运行模式的示意图。当光伏阵列的最大功率点跟踪控制系统工作于第一运行模式下,经过电流检测和上层控制模块判断可以得到i1>0,且i1=-i2,光伏阵列输出电流为0,即光伏发电与光伏阵列的最大功率点跟踪控制系统断开,光伏阵列的最大功率点跟踪控制系统工作于电器负载的用电模式,上层控制模块给逆变器和变流器信号,不进行最大功率点跟踪(MPPT)控制。
可选地,在本申请提供的光伏阵列的最大功率点跟踪控制系统中,光伏阵列的最大功率点跟踪控制系统具有第二运行模式,在第二运行模式下,上层控制模块控制变流器转化的交流电流传输至市电,并通过变流器进行光伏阵列的最大功率点跟踪,其中,第二运行模式下第一电流监测模块监测到逆变器端处的电流等于零,第二电流监测模块监测到变流器端处的电流大于零。
图3是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统工作在第二运行 模式的示意图。当光伏阵列的最大功率点跟踪控制系统工作于第二运行模式下,经过电流检测和上层控制模块判断得到i1=0,i2>0,此状态下电器负载与光伏阵列的最大功率点跟踪控制系统断开,变流器相当于光伏并网逆变器,光伏阵列输出电能全部并入电网,上层控制模块给逆变器和变流器信号,逆变器不工作,由变流器(MPPT2)实现光伏阵列的最大功率点跟踪。
可选地,在本申请提供的光伏阵列的最大功率点跟踪控制系统中,光伏阵列的最大功率点跟踪控制系统具有第三运行模式,在第三运行模式下,上层控制模块控制变流器转化的交流电流传输至电器负载,并通过逆变器进行光伏阵列的最大功率点跟踪,其中,第三运行模式下第一电流监测模块监测到逆变器端处的电流大于零,第二电流监测模块监测到变流器端处的电流等于零。
图4是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统工作在第三运行模式的示意图。当光伏阵列的最大功率点跟踪控制系统工作于第三运行模式下,经过电流检测和上层控制模块判断得到i1>0,i2=0,此状态为电器负载模式,光伏阵列发出的电全部供给电器负载,不供给市电,上层控制模块给逆变器和变流器信号,变流器不工作,由逆变器(MPPT1)实现光伏阵列最大功率点跟踪。
可选地,在本申请提供的光伏阵列的最大功率点跟踪控制系统中,光伏阵列的最大功率点跟踪控制系统具有第四运行模式,在第四运行模式下,上层控制模块控制变流器转化的交流电流传输至电器负载,并且控制变流器向逆变器输出电流,以使市电的电流向电器负载供电,并通过逆变器进行光伏阵列的最大功率点跟踪,其中,第四运行模式下第一电流监测模块监测到逆变器端处的电流大于零,变流器端处的电流小于零,且逆变器端处的电流的数值大于变流器端处的电流的数值。
图5是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统工作在第四运行模式的示意图。当光伏阵列的最大功率点跟踪控制系统工作于第四运行模式下,经过电流检测和上层控制模块判断得到i1>0,i2<0,且|i1|>|i2|,此状态为光伏电器负载用电模式,光伏阵列发出的电能不足以满足电器负载功率消耗,由电网提供部分功率给负载,上层控制模块给逆变器和变流器信号,由逆变器(MPPT1)完成光伏阵列最大功率点跟踪,变流器的MPPT2模块不启动。
可选地,在本申请提供的光伏阵列的最大功率点跟踪控制系统中,光伏阵列的最大功率点跟踪控制系统具有第五运行模式,在第五运行模式下,上层控制模块控制变流器转化的交流电流传输至电器负载和市电,并通过变流器进行光伏阵列的最大功率点跟踪,其中,第五运行模式下第一电流监测模块监测到逆变器端处的电流大于零,第二电流监测模块监测到变流器端处的电流大于零。
图6是根据本发明实施例的光伏阵列的最大功率点跟踪控制系统工作在第五运行模式的示意图。当光伏阵列的最大功率点跟踪控制系统工作于第五运行模式下,经过电流检测和上层控制模块判断得到i1>0,i2>0,此状态为光伏电器负载发电模式,光伏阵列发出电能很充足,在满足电器负载用电的同时,还有富余的电能并入电网,上层控制模块给逆变器和变流器信号,逆变器MPPT1模块不启动,由变流器(MPPT2)完成光伏阵列的最大功率点跟踪,在满足电器负载用电同时,给市电输送最大的电能。
可选地,在本申请提供的光伏阵列的最大功率点跟踪控制系统中,电器负载为空调器。
在本申请中的电器负载为空调器,也即,通过在本申请中两路最大功率点跟踪控制啊(MPPT)代替单路MPPT控制,在满足空调负载用电同时,给市电输送最大的电能。也即,实现系统在不同工作模式下均能进行光伏阵列最大功率点跟踪。
需要说明的是,在本申请中的电器负载不局限空调器,也可以为其它任意的负载。
可选地,在本申请提供的光伏阵列的最大功率点跟踪控制系统中,市电为电网。
在本申请中的电器负载为电网,需要说明的是,在本申请中的市电不局限电网,可以为任意一种交流母线,同时任意发用电双路模式的系统,均可采用此两路MPPT控制模式。
综上所述,本发明实施例提供的光伏阵列的最大功率点跟踪控制系统,包括以下部件:光伏阵列将太阳能转换为直流电流;汇流箱,与光伏阵列相连将光伏阵列转换的直流电流进行汇合;变流器,一端与汇流箱相连,另一端与市电相连将汇流箱汇合的直流电流转化为交流电流,传输至市电;逆变器,一端与汇流箱相连,另一端与电器负载相连将汇流箱汇合的直流电流转化为交流电流,传输至电器负载;以及上层控制模块,与变流器相连接,并且与逆变器相连接控制变流器进行光伏阵列的最大功率点跟踪,或,控制逆变器进行光伏阵列的最大功率点跟踪,解决了相关技术中的光伏阵列的最大功率点跟踪控制系统难以满足系统多模式的灵活切换,从而不能保证光伏阵列在不同模式下始终保持最大功率输出的问题。通过控制变流器进行光伏阵列的最大功率点跟踪,或,控制逆变器进行光伏阵列的最大功率点跟踪,进而达到了使用两路最大功率点跟踪代替单路最大功率点跟踪控制,实现了在不同工作模式下均能进行光伏阵列最大功率点跟踪的效果。
根据本发明的一个方面,提供了一种光伏空调系统,该光伏空调系统包括任一项的光伏阵列的最大功率点跟踪控制系统。
根据本发明的一个方面,提供了一种光伏空调系统,根据上述的描述,光伏空调系统有五种工作模式,在其中一种模式切换到另外一种模式时,经过上层识别控制, 系统均能实现光伏阵列输出的最大功率点跟踪,提高光伏组件的光电转化效率,使光伏阵列电能输出最大化。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种光伏阵列的最大功率点跟踪控制系统,包括:
    光伏阵列,用于将太阳能转换为直流电流;
    汇流箱,与所述光伏阵列相连,用于将所述光伏阵列转换的直流电流进行汇合;
    变流器,一端与所述汇流箱相连,另一端与市电相连,用于将所述汇流箱汇合的直流电流转化为交流电流,传输至所述市电;
    逆变器,一端与所述汇流箱相连,另一端与电器负载相连,用于将所述汇流箱汇合的直流电流转化为交流电流,传输至所述电器负载;以及
    上层控制模块,与所述变流器相连接,并且与所述逆变器相连接,用于控制所述变流器进行所述光伏阵列的最大功率点跟踪,或,控制所述逆变器进行所述光伏阵列的最大功率点跟踪。
  2. 根据权利要求1所述的光伏阵列的最大功率点跟踪控制系统,其中,所述的光伏阵列的最大功率点跟踪控制系统还包括:
    第一电流监测模块,连接在所述汇流箱和所述逆变器之间,用于监测所述逆变器端处的电流;
    第二电流监测模块,连接在所述汇流箱和所述变流器之间,用于监测所述变流器端处的电流。
  3. 根据权利要求2所述的光伏阵列的最大功率点跟踪控制系统,其中,所述光伏阵列的最大功率点跟踪控制系统具有第一运行模式,在所述第一运行模式下,所述上层控制模块控制所述变流器向所述逆变器输出电流,以使所述市电的电流向所述电器负载供电,其中,所述第一运行模式下所述第一电流监测模块监测到所述逆变器端处的电流与所述第二电流监测模块监测到所述变流器端处的电流的数值相等,且电流方向相反。
  4. 根据权利要求2所述的光伏阵列的最大功率点跟踪控制系统,其中,所述光伏阵列的最大功率点跟踪控制系统具有第二运行模式,在所述第二运行模式下,所述上层控制模块控制所述变流器转化的交流电流传输至所述市电,并通过所述变流器进行所述光伏阵列的最大功率点跟踪,其中,所述第二运行模式下所述第一电流监测模块监测到所述逆变器端处的电流等于零,所述第二电流监测模块监测到所述变流器端处的电流大于零。
  5. 根据权利要求2所述的光伏阵列的最大功率点跟踪控制系统,其中,所述光伏阵 列的最大功率点跟踪控制系统具有第三运行模式,在所述第三运行模式下,所述上层控制模块控制所述变流器转化的交流电流传输至所述电器负载,并通过所述逆变器进行所述光伏阵列的最大功率点跟踪,其中,所述第三运行模式下所述第一电流监测模块监测到所述逆变器端处的电流大于零,所述第二电流监测模块监测到所述变流器端处的电流等于零。
  6. 根据权利要求2所述的光伏阵列的最大功率点跟踪控制系统,其中,所述光伏阵列的最大功率点跟踪控制系统具有第四运行模式,在所述第四运行模式下,所述上层控制模块控制所述变流器转化的交流电流传输至所述电器负载,并且控制所述变流器向所述逆变器输出电流,以使所述市电的电流向所述电器负载供电,并通过所述逆变器进行所述光伏阵列的最大功率点跟踪,其中,所述第四运行模式下所述第一电流监测模块监测到所述逆变器端处的电流大于零,所述变流器端处的电流小于零,且所述逆变器端处的电流的数值大于所述变流器端处的电流的数值。
  7. 根据权利要求2所述的光伏阵列的最大功率点跟踪控制系统,其中,所述光伏阵列的最大功率点跟踪控制系统具有第五运行模式,在所述第五运行模式下,所述上层控制模块控制所述变流器转化的交流电流传输至所述电器负载和所述市电,并通过所述变流器进行所述光伏阵列的最大功率点跟踪,其中,所述第五运行模式下所述第一电流监测模块监测到所述逆变器端处的电流大于零,所述第二电流监测模块监测到所述变流器端处的电流大于零。
  8. 根据权利要求1所述的光伏阵列的最大功率点跟踪控制系统,其中,所述电器负载为空调器。
  9. 根据权利要求1所述的光伏阵列的最大功率点跟踪控制系统,其中,所述市电为电网。
  10. 一种光伏空调系统,其中,包括上述权利要求1至权利要求9中任一项所述的光伏阵列的最大功率点跟踪控制系统。
PCT/CN2017/079885 2017-01-03 2017-04-10 光伏阵列的最大功率点跟踪控制系统及光伏空调系统 WO2018126551A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710001645.0 2017-01-03
CN201710001645.0A CN106602605B (zh) 2017-01-03 2017-01-03 光伏阵列的最大功率点跟踪控制系统及光伏空调系统

Publications (1)

Publication Number Publication Date
WO2018126551A1 true WO2018126551A1 (zh) 2018-07-12

Family

ID=58582281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079885 WO2018126551A1 (zh) 2017-01-03 2017-04-10 光伏阵列的最大功率点跟踪控制系统及光伏空调系统

Country Status (2)

Country Link
CN (1) CN106602605B (zh)
WO (1) WO2018126551A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398418A (zh) * 2020-11-18 2021-02-23 北京能高自动化技术股份有限公司 一种离网光伏储热系统的最大功率点跟踪电路和方法
CN115719964A (zh) * 2022-09-06 2023-02-28 新至储能科技(浙江)有限公司 一种基于负载跟踪的储能电池自动充放系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11430698B2 (en) * 2020-05-19 2022-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. In-situ formation of metal gate modulators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040207366A1 (en) * 2003-04-21 2004-10-21 Phoenixtec Power Co., Ltd. Multi-mode renewable power converter system
CN203586455U (zh) * 2013-12-11 2014-05-07 珠海格力电器股份有限公司 光伏空调系统
CN104734177A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 并网连接设备及其控制方法和并网供电系统
CN206370697U (zh) * 2017-01-03 2017-08-01 珠海格力电器股份有限公司 光伏阵列的最大功率点跟踪控制系统及光伏空调系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993108B1 (ko) * 2008-05-30 2010-11-08 군산대학교산학협력단 전력품질개선 및 절전기능을 갖는 계통연계형 태양광발전시스템
CN101951011B (zh) * 2010-08-25 2013-01-23 南京航空航天大学 太阳能光伏与市电联合供电系统的控制方法
CN107658900B (zh) * 2013-12-24 2020-12-22 珠海格力电器股份有限公司 光伏并网系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040207366A1 (en) * 2003-04-21 2004-10-21 Phoenixtec Power Co., Ltd. Multi-mode renewable power converter system
CN203586455U (zh) * 2013-12-11 2014-05-07 珠海格力电器股份有限公司 光伏空调系统
CN104734177A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 并网连接设备及其控制方法和并网供电系统
CN206370697U (zh) * 2017-01-03 2017-08-01 珠海格力电器股份有限公司 光伏阵列的最大功率点跟踪控制系统及光伏空调系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398418A (zh) * 2020-11-18 2021-02-23 北京能高自动化技术股份有限公司 一种离网光伏储热系统的最大功率点跟踪电路和方法
CN115719964A (zh) * 2022-09-06 2023-02-28 新至储能科技(浙江)有限公司 一种基于负载跟踪的储能电池自动充放系统及方法

Also Published As

Publication number Publication date
CN106602605B (zh) 2024-05-03
CN106602605A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
US9906038B2 (en) Smart renewable power generation system with grid and DC source flexibility
JP6227885B2 (ja) 電力制御システム、電力制御装置、電力制御システムの制御方法
TWI565175B (zh) 配電系統與電氣系統
CN105515167A (zh) 一种不间断电源ups装置及其供电方法
WO2015035727A1 (zh) 一种多能源供电电机驱动系统
CN109193803B (zh) 多能源智能控制一体化系统及多能源智能控制方法
US10284115B2 (en) Inverter system
WO2018126551A1 (zh) 光伏阵列的最大功率点跟踪控制系统及光伏空调系统
CN105552878A (zh) 直流微电网结构
CN107658900B (zh) 光伏并网系统
CN205004822U (zh) 户用太阳能微电网与市政电力协同工作控制器
TW201111941A (en) DC power system using HCPV and BIPV
CN206370697U (zh) 光伏阵列的最大功率点跟踪控制系统及光伏空调系统
KR20200079360A (ko) 건물 에너지 관리 시스템 및 이를 적용한 에너지 독립형 건물
CN113193755A (zh) 一种基于拓扑集成的多端口变换器、控制方法及系统
Xu et al. Energy management and control strategy for DC micro-grid in data center
CN105048505A (zh) 一种用于智能小区的风光互补型微电网系统
WO2019184609A1 (zh) 一种基于新能源和市电供电的家庭灵活供电系统
Seo et al. Stand-alone operation with a centralized controller for multiple PV module converters
CN104539223A (zh) 一种家用太阳能风能供电系统
CN211830317U (zh) 多功能电源供电系统及供电设备
CN106655273A (zh) 一种智能混合储能供电终端
Balal et al. Design a multiport DC-DC converter for hybrid renewable nano-grid system
CN103633725A (zh) 一种ups太阳能供电接入设备及其实现方法
CN111313528A (zh) 多功能电源供电系统及供电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890077

Country of ref document: EP

Kind code of ref document: A1