JP2009247185A - 系統連系インバータ装置およびその自立運転方法 - Google Patents
系統連系インバータ装置およびその自立運転方法 Download PDFInfo
- Publication number
- JP2009247185A JP2009247185A JP2008093627A JP2008093627A JP2009247185A JP 2009247185 A JP2009247185 A JP 2009247185A JP 2008093627 A JP2008093627 A JP 2008093627A JP 2008093627 A JP2008093627 A JP 2008093627A JP 2009247185 A JP2009247185 A JP 2009247185A
- Authority
- JP
- Japan
- Prior art keywords
- inverter
- voltage
- grid
- capacitor
- inverter unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Inverter Devices (AREA)
Abstract
【課題】複数台の単相インバータを直列に接続した系統連系インバータ装置において、連系運転から自立運転への切り替えに際し、負荷が軽負荷であっても、母線電圧の低いインバータが過充電となるのを抑止すること。
【解決手段】入力された直流電圧を交流電圧に変換して出力する単相インバータ6a〜6cの各発生電圧による総和電圧を出力するインバータユニット6と、各単相インバータ6a〜6cの直流側端子に繋がる直流母線間にそれぞれ接続されるコンデンサ5、およびコンデンサ24b,24cと、インバータユニット6の動作時に最も高い電圧を維持するコンデンサ5の両端に接続される抵抗26と、インバータユニット6と系統17および負荷18との接続先を切り替える開閉器12a,12bと、コンバータ4、インバータユニット6、および開閉器12a,12bの動作を制御する制御部9と、を備える。
【選択図】 図2
【解決手段】入力された直流電圧を交流電圧に変換して出力する単相インバータ6a〜6cの各発生電圧による総和電圧を出力するインバータユニット6と、各単相インバータ6a〜6cの直流側端子に繋がる直流母線間にそれぞれ接続されるコンデンサ5、およびコンデンサ24b,24cと、インバータユニット6の動作時に最も高い電圧を維持するコンデンサ5の両端に接続される抵抗26と、インバータユニット6と系統17および負荷18との接続先を切り替える開閉器12a,12bと、コンバータ4、インバータユニット6、および開閉器12a,12bの動作を制御する制御部9と、を備える。
【選択図】 図2
Description
本発明は、複数のインバータを直列に接続した系統連系インバータ装置に関するものであり、特に、系統連系インバータ装置の出力を系統から負荷に切り替えた運転(以下「自立運転」という)を可能とする系統連系インバータ装置およびその自立運転方法に関するものである。
商用電力系統(以下単に「系統」という)に連系する系統連系インバータ装置として、例えば、下記特許文献1に示されたものがある。この特許文献1に示された系統連系インバータ装置(同文献では「電力変換装置」として開示)では、太陽光エネルギーによって発電された直流電力を交流電力に変換して負荷あるいは系統に供給する構成において、第1〜第3のコンデンサによって供給される各直流電力を入力とする複数の単相インバータの交流側端子を直列接続し、各単相インバータの発生電圧の総和が出力電圧となるように構成され、第1のコンデンサの電圧は、太陽電池モジュールの出力電圧を降圧コンバータおよび昇圧チョッパを介して所望電圧に調整され、第2、第3のコンデンサの電圧は、第1のコンデンサに接続されるDC/DCコンバータによって、第1のコンデンサの電圧よりも小さい所望電圧となるように調整される。
ここで、太陽光発電システムに用いられる系統連系インバータ装置は、複数の太陽電池モジュールによって発電された直流電力を交流電力に変換するとともに、電力会社から提供される一般の商用電源と連系することで、余剰電力は系統側へ回生し、不足電力は系統側から供給されるように動作する。このため、系統連系を前提とする太陽光発電システムでは、例えば日射量が多く、太陽光エネルギーによる発電電力が大きい場合、負荷に対する電力供給は、系統連系インバータ装置、または系統連系インバータ装置および系統の双方から行われる。また、例えば日射量が少なく、太陽光エネルギーによる発電電力が小さい場合、負荷に対する電力供給は、系統のみから行われる。
ところで、系統連系インバータ装置の中には、例えば停電等により系統からの電力供給が絶たれた場合に、電力の供給元を系統連系インバータ装置側に切り替えて動作できるものがある。このような運転動作は、上述した「自立運転」と呼ばれるものである。
自立運転が可能な系統連系インバータ装置の場合、インバータ回路から出力される電圧の大きさが問題となることがある。具体的に、連系運転を行う際の出力電圧は200[V]であるのに対し、自立運転を行う際の出力電圧は、特別な家電製品を除き、100[V]である。このため、連系運転時と自立運転時とにおいて、必要となる母線電圧の大きさは異なり、連系運転時または連系運転直後は、母線電圧が高くなっている。
従来の、例えば単一のインバータからなる系統連系インバータ装置の場合、自立運転時において、母線電圧が高い状態であっても、インバータ回路のスイッチング素子に付与するPWM信号の信号幅を調整することにより、出力電圧を調整することが可能となる。
一方、本発明の前提となるインバータ、すなわち複数台(本説明では、3台を想定)のインバータが直列に接続された構成(以下「インバータユニット」という)では、母線電圧が高い状態で自立運転を開始した場合、第1のインバータから出力される高電圧で、第2、第3のインバータが過充電になる場合があるという課題があった。なお、本課題が生じる理由は、つぎのとおりである。
(1)まず、母線電圧が高い状態で自立運転を開始した場合、第1のインバータ(3台のインバータのうち最も大きな電圧を発生)から出力される高電圧で、第2、第3のインバータに対する充電が開始されてしまう。
(2)この場合、出力が開放ならば出力電流がほとんど流れないため、第2、第3のインバータに対する充電量はわずかであり、過充電とならない。
(3)また、出力の負荷が大きい場合には、第2、第3のインバータに流れる電流も大きくなるが、第2、第3のインバータから負荷に流れる電流も大きくなる。すなわち、第2、第3のインバータに対する充電量も大きくなるが、第2、第3のインバータからの放電量も大きくなるので、過充電とはならない。
(4)一方、出力の負荷が小さい場合には、充電と放電による電力収支のバランスが崩れて充電量が過剰となるので、第2、第3のインバータが過充電となってしまう。
(2)この場合、出力が開放ならば出力電流がほとんど流れないため、第2、第3のインバータに対する充電量はわずかであり、過充電とならない。
(3)また、出力の負荷が大きい場合には、第2、第3のインバータに流れる電流も大きくなるが、第2、第3のインバータから負荷に流れる電流も大きくなる。すなわち、第2、第3のインバータに対する充電量も大きくなるが、第2、第3のインバータからの放電量も大きくなるので、過充電とはならない。
(4)一方、出力の負荷が小さい場合には、充電と放電による電力収支のバランスが崩れて充電量が過剰となるので、第2、第3のインバータが過充電となってしまう。
本発明は、上記に鑑みてなされたものであって、複数台の単相インバータを直列に接続した系統連系インバータ装置において、連系運転から自立運転への切り替えに際し、負荷が軽負荷であっても、母線電圧の低いインバータが過充電となるのを抑止することができる系統連系インバータ装置およびその自立運転方法を提供することを目的とする。
上述した課題を解決し、目的を達成するため、本発明にかかる系統連系インバータ装置は、商用電力系統に連系可能であり、負荷に対し自ら生成した交流電力を供給可能な系統連系インバータ装置において、入力された直流電圧を交流電圧に変換して出力する単相インバータの交流側端子を複数台直列に接続し、当該複数台の単相インバータの各発生電圧による総和電圧を出力するインバータユニットと、前記各単相インバータの直流側端子に繋がる直流母線間にそれぞれ接続され、当該各単相インバータの直流電源として機能するコンデンサと、前記各コンデンサのうち、前記インバータユニットの動作時に最も高い電圧を維持する第1のコンデンサの両端に接続される抵抗と、前記インバータユニットと前記商用電力系統および前記負荷との接続先を切り替える開閉器と、前記コンバータ、前記インバータユニット、前記開閉器の動作を制御する制御部と、を備えたことを特徴とする。
本発明にかかる系統連系インバータ装置によれば、インバータユニットを構成する各単相インバータの直流側端子に繋がる各直流母線間にそれぞれ接続され、各単相インバータの直流電源として機能するコンデンサのうち、インバータユニットの動作時に最も高い電圧を維持する第1のコンデンサの両端に接続される抵抗によって、第1のコンデンサに蓄積された電荷の放電が可能となるので、連系運転から自立運転への切り替えに際し、負荷が軽負荷であっても、母線電圧の低いインバータが過充電となるのを抑止することができるという効果を奏する。
以下に添付図面を参照して、本発明に好適な系統連系インバータ装置およびその自立運転方法にかかる実施の形態を詳細に説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
(太陽光発電システムの構成)
図1は、本発明にかかる系統連系インバータ装置を太陽光発電システムに適用した場合の一例を示す図である。
図1は、本発明にかかる系統連系インバータ装置を太陽光発電システムに適用した場合の一例を示す図である。
図1において、系統連系インバータ装置3の直流入力端である入力端14には、太陽電池モジュール2が接続され、交流出力端の一方である出力端15には、50Hzあるいは60Hzの電力を供給する単相3線式の配電系統である系統17が接続され、交流出力端の他方である出力端16には、例えば電気機器である負荷18が接続されている。このように構成された太陽光発電システム1では、太陽電池モジュール2によって発電された直流電力は、系統連系インバータ装置3によって交流電力に変換されて負荷18に供給される。この際、系統17との連系によって、余剰電力は系統17側に回生され、不足電力は系統17側から供給される。
(系統連系インバータ装置の構成)
つぎに、以下の各実施の形態に共通する系統連系インバータ装置3の構成について説明する。図1において、系統連系インバータ装置3は、コンバータ4、コンデンサ5、インバータユニット6、電圧検出部8、制御部9、DC/DCコンバータ10、フィルタ回路11、および開閉器12a,12bを備えている。また、インバータユニット6は、複数台(図1では3台を例示)の単相インバータ回路であるインバータ6a〜6cを備えている。
つぎに、以下の各実施の形態に共通する系統連系インバータ装置3の構成について説明する。図1において、系統連系インバータ装置3は、コンバータ4、コンデンサ5、インバータユニット6、電圧検出部8、制御部9、DC/DCコンバータ10、フィルタ回路11、および開閉器12a,12bを備えている。また、インバータユニット6は、複数台(図1では3台を例示)の単相インバータ回路であるインバータ6a〜6cを備えている。
(系統連系インバータ装置の接続構成および機能)
つぎに、系統連系インバータ装置3の接続構成および機能について説明する。コンバータ4は、入力端が系統連系インバータ装置3の入力端14に接続され、入力端14を通じて供給される太陽電池モジュール2の出力電圧(直流電圧)を昇圧または降圧してインバータユニット6およびDC/DCコンバータ10に出力する。インバータユニット6は、複数台の単相インバータであるインバータ6a〜6cを備えている。これらの複数台の単相インバータのうち、インバータ6aは、コンバータ4から供給される直流入力により動作し、インバータ6b,6cは、DC/DCコンバータ10から供給される直流入力により動作する。すなわち、インバータユニット6は、対応する供給源から印加される直流電圧を交流電圧に変換して出力する。
つぎに、系統連系インバータ装置3の接続構成および機能について説明する。コンバータ4は、入力端が系統連系インバータ装置3の入力端14に接続され、入力端14を通じて供給される太陽電池モジュール2の出力電圧(直流電圧)を昇圧または降圧してインバータユニット6およびDC/DCコンバータ10に出力する。インバータユニット6は、複数台の単相インバータであるインバータ6a〜6cを備えている。これらの複数台の単相インバータのうち、インバータ6aは、コンバータ4から供給される直流入力により動作し、インバータ6b,6cは、DC/DCコンバータ10から供給される直流入力により動作する。すなわち、インバータユニット6は、対応する供給源から印加される直流電圧を交流電圧に変換して出力する。
電圧検出部8は、コンバータ4の出力端に接続されるコンデンサ5の両端電圧(インバータ6aの入力電圧でもある)を検出する。フィルタ回路11は、インバータユニット6の出力端に接続され、インバータユニット6による交流出力を平滑して出力する。開閉器12aは、フィルタ回路11と系統17との間に挿入され、フィルタ回路11の出力を系統17に伝達するか否かの切り換え動作を実行する。開閉器12bは、フィルタ回路11と負荷18との間に挿入され、フィルタ回路11の平滑出力を負荷18に出力するか否かの切り換え動作を実行する。制御部9は、コンバータ4およびインバータユニット6を制御し、コンバータ4およびインバータユニット6から出力される電圧を好適な値に調整するとともに、コンバータ4の出力電圧の状態に応じて開閉器12a,12bを制御し、インバータユニット6と系統17とを接続させた連系運転を行うのか、インバータユニット6と負荷18とを接続させた自立運転を行うのかの切替制御を行う。
<実施の形態1>
(系統連系インバータ装置の構成)
つぎに、実施の形態1にかかる系統連系インバータ装置の構成について、図2を参照して説明する。なお、図2は、実施の形態1にかかる系統連系インバータ装置3の主要構成部であるインバータユニット6のより詳細な構成を示す図であり、図1に示した構成において、コンデンサ5から負荷18までの間の回路構成を示した図である。
(系統連系インバータ装置の構成)
つぎに、実施の形態1にかかる系統連系インバータ装置の構成について、図2を参照して説明する。なお、図2は、実施の形態1にかかる系統連系インバータ装置3の主要構成部であるインバータユニット6のより詳細な構成を示す図であり、図1に示した構成において、コンデンサ5から負荷18までの間の回路構成を示した図である。
図2において、インバータユニット6は、単相インバータであるインバータ6a〜6cの交流側端子間が直列に接続されており、インバータ6a〜6cは、ダイオードを逆並列に接続した複数個の、例えばIGBTである自己消弧型半導体スイッチング素子を備えている。
第1の単相インバータであるインバータ6aの直流端子側では、第1のコンデンサであるコンデンサ5と、コンデンサ5の蓄積電荷を放電することができる抵抗26とが、インバータ6aの直流側端子に繋がる直流母線間にそれぞれ接続されている。なお、コンデンサ5は第1の直流電源として機能し、抵抗26はコンデンサ5の電圧を降下させる際の放電用抵抗として機能する。
一方、インバータ6aの交流側端子では、交流側端子の一方に第2の単相インバータであるインバータ6bが接続され、交流側端子の他方に第3の単相インバータであるインバータ6cが接続される。また、インバータ6aの交流側端子間を短絡させる短絡用スイッチとして、ダイオードを逆並列に接続した2個の、例えばIGBTである自己消弧型半導体スイッチング素子が互いに逆極性に直列接続されたスイッチ回路19が設けられ、このスイッチ回路19は、インバータ6aに並列に接続される。
また、第2の単相インバータであるインバータ6bの直流端子側では、第2のコンデンサであるコンデンサ24bがインバータ6bの直流側端子に繋がる直流母線間に接続され。コンデンサ24bは、第2の直流電源として機能する。同様に、第3の単相インバータであるインバータ6cの直流端子側では、第3のコンデンサであるコンデンサ24cがインバータ6cの直流側端子に繋がる直流母線間に接続される。コンデンサ24cは第3の直流電源として機能する。
一方、インバータ6bおよびインバータ6cの各交流側端子では、つぎのような構成が採られる。まず、インバータ6bの交流側端子では、交流側端子の一方にインバータ6aが接続され、交流側端子の他方にフィルタ回路11の入力側端子の一方が接続される。また、インバータ6cの交流側端子では、交流側端子の一方にインバータ6aが接続され、交流側端子の他方にフィルタ回路11の入力側端子の他方が接続される。
ここで、インバータ6aの入力となるコンデンサ5の電圧は、他の単相インバータであるインバータ6b,6cの各入力となるコンデンサ24bおよびコンデンサ24cの電圧よりも通常大きい。一方、コンデンサ24bの電圧と、コンデンサ24cの電圧とについては、何れが大きくてもよいし、両者の電圧が等しくてもよい。なお、ここでは、便宜上、コンデンサ24bの電圧と、コンデンサ24cの電圧とは、概略等しいと仮定する。つまり、インバータユニット6が動作しているときのコンデンサ5、およびコンデンサ24b,24cの各電圧(各単相インバータの母線電圧に等しい)をV1,V2,V3とすると、これらの電圧間には、V1>V2=V3の関係がある。
これらのインバータ6a〜6cは、出力として正負およびゼロの電圧を発生することができ、インバータ6a〜6cは、これらの発生電圧を組み合わせた総和としての電圧を出力する。この出力電圧は、例えばリアクトルおよびコンデンサを組み合わせた平滑フィルタ回路としてのフィルタ回路11によって平滑され、所望の交流電圧が系統17に供給される。なお、これより詳細な動作については、上記した特許文献1の公報に適切に開示されているので、ここでのさらに詳細な説明は省略する。
(系統連系インバータ装置の要部動作)
つぎに、連系運転から自立運転への切り替えを行う際の実施の形態1にかかる系統連系インバータ装置の要部動作について、図2および図4の図面を参照して説明する。ここで、図4は、実施の形態1にかかる要部動作を説明するための図であり、詳細には、実施の形態1のインバータ6aにおける入力電圧、インバータ制御、出力リレー動作の時間的変化を示す図である。なお、以下に示す動作は、制御部9の制御下で実行される。
つぎに、連系運転から自立運転への切り替えを行う際の実施の形態1にかかる系統連系インバータ装置の要部動作について、図2および図4の図面を参照して説明する。ここで、図4は、実施の形態1にかかる要部動作を説明するための図であり、詳細には、実施の形態1のインバータ6aにおける入力電圧、インバータ制御、出力リレー動作の時間的変化を示す図である。なお、以下に示す動作は、制御部9の制御下で実行される。
まず、インバータユニット6は停止しており、開閉器12a,12bの出力リレーはオフに制御される(t=t0)。なお、コンバータ4は、起動していても停止していても構わない。ただし、自立運転時の母線電圧の目標電圧よりも実際の母線電圧が高い状態であるため、コンバータ4は起動していても実際には、待機状態と同じ状態となる。開閉器12a,12bの出力リレーがオフに制御された後、コンバータ4の入力側に設けられる開閉器(図示省略)のリレーがオフに制御され、インバータ6a(インバータ(#1))の入力電圧(Vii)は、徐々に下がり始める(t=t1)。電圧検出部8は、インバータ6aの入力電圧(Vii)を検出し、インバータ6aの入力電圧(Vii)と、インバータ6b,6cの過充電を防止するする観点に基づいて定められた所定の電圧レベル(以下「電圧判定レベル」という)(Vt)とを比較する。
インバータ6aの入力電圧(Vii)が、電圧判定レベル(Vt)よりも高い場合には、インバータ6aに接続された抵抗26により、インバータ6aの入力電圧(Vii)が電圧判定レベル(Vt)を下回るようになるまで待機する。一方、インバータ6aの入力電圧(Vii)が、電圧判定レベル(Vt)よりも小さくなった場合には、コンバータ4が待機状態であれば起動するとともに、インバータユニット6を起動し、開閉器12bの出力リレーをオンに制御し(t=t2)、負荷18に電力を供給する(t=t2〜t3)。
このように、本実施の形態にかかる系統連系インバータ装置およびその自立運転方法では、連系運転から自立運転への切り替えに際し、第1の単相インバータであるインバータ6aの入力電圧が、所定の電圧判定レベル以下に低下した後に、インバータユニット6を起動するようにしているので、負荷が軽負荷であっても、母線電圧の低いインバータ6b,6cに対する過充電を防止することが可能となる。
(補足説明)
なお、上記では、インバータ6aの直流母線間に接続される抵抗26の抵抗値については、特に言及していない。そこで、抵抗26の抵抗値について、若干の補足説明を行う。
なお、上記では、インバータ6aの直流母線間に接続される抵抗26の抵抗値については、特に言及していない。そこで、抵抗26の抵抗値について、若干の補足説明を行う。
抵抗26の抵抗値については、コンデンサ5の放電を速やかに行うという観点、およびインバータユニット6の起動中に抵抗26によって消費される電力が増大して電力変換効率に大きな影響を与えないという観点の双方に対して考慮を払うことが好ましい。
ここで、抵抗26の抵抗値をR1とし、抵抗26で消費する電力(損失)をP1とすると、
P1=(Vii^2)/R1 …(1)
で表される。
P1=(Vii^2)/R1 …(1)
で表される。
上記(1)式から明らかなように、運転時の損失は抵抗値に反比例して増加する。一方、コンデンサに蓄積された電荷は、コンデンサ5の容量値C1と抵抗26の抵抗値R1との積(C1×R1)を時定数として減少して行くので、抵抗値が小さくなれば放電時間は短くなる。なお、抵抗26で発生する損失は、系統連系インバータ装置の電力変換効率に影響するので、抵抗26の抵抗値と系統連系インバータ装置の電力変換効率とは、トレードオフの関係にある。したがって、抵抗26の抵抗値R1としては、電力変換効率に大きな影響を与えない範囲で、可能な限り小さいものを選定することが好ましい。
<実施の形態2>
(系統連系インバータ装置の構成)
図3は、本発明の実施の形態2にかかる系統連系インバータ装置3の主要構成部であるインバータユニット6のより詳細な構成を示す図である。実施の形態2のインバータユニット6では、抵抗28とスイッチ30との直列回路をコンデンサ24aに並列に接続するように構成している。なお、その他の構成部については、図2に示した実施の形態1の構成と同一または同等であり、同一の構成部には同一符号を付して示し、構成、機能および動作に関する重複した説明は省略する。
(系統連系インバータ装置の構成)
図3は、本発明の実施の形態2にかかる系統連系インバータ装置3の主要構成部であるインバータユニット6のより詳細な構成を示す図である。実施の形態2のインバータユニット6では、抵抗28とスイッチ30との直列回路をコンデンサ24aに並列に接続するように構成している。なお、その他の構成部については、図2に示した実施の形態1の構成と同一または同等であり、同一の構成部には同一符号を付して示し、構成、機能および動作に関する重複した説明は省略する。
(系統連系インバータ装置の要部動作)
つぎに、実施の形態2にかかる系統連系インバータ装置の要部動作について、図3および図5の図面を参照して説明する。ここで、図5は、実施の形態2にかかる要部動作を説明するための図であり、詳細には、実施の形態2のインバータ6aにおける入力電圧、インバータ制御、スイッチ動作、出力リレー動作の時間的変化を示す図である。
つぎに、実施の形態2にかかる系統連系インバータ装置の要部動作について、図3および図5の図面を参照して説明する。ここで、図5は、実施の形態2にかかる要部動作を説明するための図であり、詳細には、実施の形態2のインバータ6aにおける入力電圧、インバータ制御、スイッチ動作、出力リレー動作の時間的変化を示す図である。
まず、インバータユニット6は停止しており、開閉器12a,12bの出力リレーはオフに制御される(t=t0)。なお、コンバータ4は、起動していても停止していても構わない。ただし、自立運転時の母線電圧の目標電圧よりも実際の母線電圧が高い状態であるため、コンバータ4は起動していても実際には、待機状態と同じ状態となる。一方、開閉器12a,12bの出力リレーがオフに制御された後、抵抗28に直列に接続されたスイッチ30をオンに制御することにより、インバータ6a(インバータ(#1))の入力電圧(Vii)は、徐々に下がり始める(t=t1)。電圧検出部8は、インバータ6aの入力電圧(Vii)を検出し、インバータ6aの入力電圧(Vii)と、電圧判定レベル(Vt)とを比較する。
インバータ6aの入力電圧(Vii)が、電圧判定レベル(Vt)よりも高い場合には、インバータ6aに接続された抵抗28により、インバータ6aの入力電圧(Vii)が電圧判定レベル(Vt)を下回るようになるまで待機する。一方、インバータ6aの入力電圧(Vii)が、電圧判定レベル(Vt)よりも小さくなった場合には、スイッチ30をオフに制御するとともに、コンバータ4が待機状態であれば起動し、インバータユニット6を起動し、開閉器12bの出力リレーをオンに制御し(t=t2)、負荷18に電力を供給する(t=t2〜t3)。
このように、本実施の形態にかかる系統連系インバータ装置およびその自立運転方法では、連系運転から自立運転への切り替えに際し、第1の単相インバータであるインバータ6aの入力電圧が、所定の電圧判定レベル以下に低下した後に、インバータユニット6を起動するようにしているので、負荷が軽負荷であっても、母線電圧の低いインバータ6b,6cに対する過充電を防止することが可能となる。
また、本実施の形態では、インバータユニット6の起動とともに、コンデンサ5に並列に接続された抵抗28を回路から切り離すように制御しているので、実施の形態1にかかる系統連系インバータ装置よりも、小さな抵抗値のものを選定することができ、定常運転時の損失を低減することが可能となる。
<実施の形態3>
つぎに、実施の形態3にかかる系統連系インバータ装置3について説明する。実施の形態3にかかる系統連系インバータ装置では、実施の形態1の構成から抵抗26を省略することが可能であり、その要旨とするところは、制御部9からインバータユニット6を構成する各スイッチング素子を効果的に制御することにより、各スイッチング素子にスイッチング損失を与えてインバータ6aの入力電圧(Vii)を降下させることにある。
つぎに、実施の形態3にかかる系統連系インバータ装置3について説明する。実施の形態3にかかる系統連系インバータ装置では、実施の形態1の構成から抵抗26を省略することが可能であり、その要旨とするところは、制御部9からインバータユニット6を構成する各スイッチング素子を効果的に制御することにより、各スイッチング素子にスイッチング損失を与えてインバータ6aの入力電圧(Vii)を降下させることにある。
(系統連系インバータ装置の要部動作)
つぎに、実施の形態3にかかる系統連系インバータ装置の要部動作について、図6を参照して説明する。なお、図6は、実施の形態3にかかる要部動作を説明するための図であり、詳細には、インバータ6aにおける入力電圧、インバータ制御、出力リレー動作の時間的変化を示す図である。
つぎに、実施の形態3にかかる系統連系インバータ装置の要部動作について、図6を参照して説明する。なお、図6は、実施の形態3にかかる要部動作を説明するための図であり、詳細には、インバータ6aにおける入力電圧、インバータ制御、出力リレー動作の時間的変化を示す図である。
まず、インバータユニット6は停止しており、開閉器12a,12bの出力リレーはオフに制御される(t=t0)。なお、コンバータ4は、起動していても停止していても構わない。ただし、自立運転時の母線電圧の目標電圧よりも実際の母線電圧が高い状態であるため、コンバータ4は起動していても実際には、待機状態と同じ状態となる。一方、開閉器12a,12bの出力リレーがオフに制御された後、インバータ6aを構成する各スイッチング素子に対し、例えばインバータ6aの上アーム側のスイッチング素子のみ、下アーム側のスイッチング素子のみを交互にオン/オフする制御を開始する(t=t1)。この制御により、インバータ6aの内部でスイッチング損失が発生し、インバータ6aの入力電圧(Vii)は徐々に降下する(t=t1〜t2)。このスイッチング制御と並行し、電圧検出部8によって検出されたインバータ6aの入力電圧(Vii)と、電圧判定レベル(Vt)との比較処理が行われる。
インバータ6aの入力電圧(Vii)が、電圧判定レベル(Vt)よりも高い場合には、上アーム側および下アーム側のスイッチング素子を交互にオン/オフする制御を継続するとともに、インバータユニット6の起動を行わずに待機する。一方、インバータ6aの入力電圧(Vii)が、電圧判定レベルVtよりも小さくなった場合には、インバータ6aに対するスイッチング制御を一旦停止するとともに、コンバータ4が待機状態であれば起動し(t=t2〜t3)、開閉器12bの出力リレーのオン制御に合わせて、インバータユニット6を起動し(t=t3)、負荷18に電力を供給する(t=t3〜t4)。
なお、上記では、インバータ6aの上アーム側および下アーム側のスイッチング素子を交互にオン/オフする制御について例示したが、このようなスイッチング制御に限定されるものではなく、インバータ6aの内部で電流ループが形成されないようなスイッチング制御を行うことにより、スイッチング損失を発生させることができるので、インバータ6aの入力電圧(Vii)を降下させることができる。
以上説明したように、本実施の形態にかかる系統連系インバータ装置の制御手法では、連系運転から自立運転への切り替えに際し、第1の単相インバータであるインバータ6aの上アーム側および下アーム側のスイッチング素子を交互にオン/オフする制御を行うことで、インバータ6aの入力電圧を、所定の電圧判定レベル以下に低下させ、その後に、インバータユニット6を起動するようにしているので、負荷が軽負荷であっても、母線電圧の低いインバータ6b,6cに対する過充電を防止することが可能となる。
なお、本実施の形態では、実施の形態1のように定常時の運転に損失を与えることがないので、電力変換効率の低下を抑制することができる。
また、本実施の形態では、実施の形態1,2のように、回路要素を追加する必要がないので、コストの増加を抑制することができる。
<実施の形態4>
つぎに、実施の形態4にかかる系統連系インバータ装置3について説明する。なお、実施の形態4にかかる系統連系インバータ装置の構成や動作波形については、実施の形態3と同一または同等である。また、実施の形態4にかかる系統連系インバータ装置の制御手法の要旨とするところは、インバータユニット6の各スイッチング素子を効果的に制御することにより、各スイッチングおよび内部回路に損失成分を発生させてインバータ6aの入力電圧(Vii)を降下させることにある。すなわち、インバータ6aのスイッチング損失だけでなくインバータ6b,6cのスイッチング損失および他の回路要素の電力損失を利用する点が実施の形態3と異なっている。
つぎに、実施の形態4にかかる系統連系インバータ装置3について説明する。なお、実施の形態4にかかる系統連系インバータ装置の構成や動作波形については、実施の形態3と同一または同等である。また、実施の形態4にかかる系統連系インバータ装置の制御手法の要旨とするところは、インバータユニット6の各スイッチング素子を効果的に制御することにより、各スイッチングおよび内部回路に損失成分を発生させてインバータ6aの入力電圧(Vii)を降下させることにある。すなわち、インバータ6aのスイッチング損失だけでなくインバータ6b,6cのスイッチング損失および他の回路要素の電力損失を利用する点が実施の形態3と異なっている。
(系統連系インバータ装置の要部動作)
つぎに、実施の形態4にかかる系統連系インバータ装置の要部動作について説明する。実施の形態4の制御手法では、開閉器12a,12bの出力リレーがオフの状態のまま自立運転を行う。なお、通常の自立運転と異なる点は、負荷18との接続が切り離され、インバータユニットの出力が開放状態となっている点のみである。
つぎに、実施の形態4にかかる系統連系インバータ装置の要部動作について説明する。実施の形態4の制御手法では、開閉器12a,12bの出力リレーがオフの状態のまま自立運転を行う。なお、通常の自立運転と異なる点は、負荷18との接続が切り離され、インバータユニットの出力が開放状態となっている点のみである。
このような運転制御により、インバータユニットの各スイッチング素子および他の回路要素に損失を発生させ、当該損失成分によりコンデンサ5の電圧、すなわちインバータ6aの入力電圧(Vii)を降下させることが可能となる。
このように、本実施の形態にかかる系統連系インバータ装置の制御手法では、連系運転から自立運転への切り替えに際し、系統連系インバータ装置3と系統17および負荷18との各接続を切り離した状態で、インバータユニット6の運転を行い、インバータ6aの入力電圧を、所定の電圧判定レベル以下に低下させ、その後に、系統連系インバータ装置3と負荷18とを接続するようにしているので、負荷が軽負荷であっても、母線電圧の低いインバータ6b,6cに対する過充電を防止することが可能となる。
なお、本実施の形態では、実施の形態1のように定常時の運転に損失を与えることがないので、電力変換効率の低下を抑制することができる。
また、本実施の形態では、実施の形態1,2のように、回路要素を追加する必要がないので、コストの増加を抑制することができる。
また、本実施の形態では、インバータ6aのスイッチング損失だけでなく、インバータ6b,6cのスイッチング損失および他の回路要素による電力損失をも利用しているので、実施の形態4よりも短時間のうちにインバータ6aの入力電圧(Vii)を降下させることが可能となる。
なお、実施の形態1〜4を通じて、太陽電池モジュールの発電電力を用いて系統と連系する場合を一例として示したが、発電電力を供給するエネルギー源として、燃料電池等を用いてもよい。
また、実施の形態1〜4では、3台の単相インバータを備える構成について例示したが、この態様に限定されるものではなく、2台もしくは4台以上の単相インバータを備える構成であっても構わない。
以上のように、本発明にかかる系統連系インバータ装置およびその自立運転方法は、連系運転から自立運転への切り替えに際し、負荷が軽負荷であっても、母線電圧の低いインバータが過充電となるのを抑止することができる発明として有用である。
1 太陽光発電システム
2 太陽電池モジュール
3 系統連系インバータ装置
4 コンバータ
5 コンデンサ
6 インバータユニット
6a,6b,6c インバータ
8 電圧検出部
9 制御部
10 DC/DCコンバータ
11 フィルタ回路
12a,12b 開閉器
14 入力端
15,16 出力端
17 系統
18 負荷
19 スイッチ回路
24b,24c コンデンサ
26,28 抵抗
30 スイッチ
2 太陽電池モジュール
3 系統連系インバータ装置
4 コンバータ
5 コンデンサ
6 インバータユニット
6a,6b,6c インバータ
8 電圧検出部
9 制御部
10 DC/DCコンバータ
11 フィルタ回路
12a,12b 開閉器
14 入力端
15,16 出力端
17 系統
18 負荷
19 スイッチ回路
24b,24c コンデンサ
26,28 抵抗
30 スイッチ
Claims (6)
- 商用電力系統に連系可能であり、負荷に対し自ら生成した交流電力を供給可能な系統連系インバータ装置において、
入力された直流電圧を交流電圧に変換して出力する単相インバータの交流側端子を複数台直列に接続し、当該複数台の単相インバータの各発生電圧による総和電圧を出力するインバータユニットと、
前記各単相インバータの直流側端子に繋がる直流母線間にそれぞれ接続され、当該各単相インバータの直流電源として機能するコンデンサと、
前記各コンデンサのうち、前記インバータユニットの動作時に最も高い電圧を維持する第1のコンデンサの両端に接続される抵抗と、
前記インバータユニットと前記商用電力系統および前記負荷との接続先を切り替える開閉器と、
前記コンバータ、前記インバータユニット、前記開閉器の動作を制御する制御部と、
を備えたことを特徴とする系統連系インバータ装置。 - 前記抵抗に直列に接続され、前記制御部によってオン/オフが制御されるスイッチをさらに具備し、
前記抵抗と前記スイッチとの直列回路が前記第1のコンデンサの両端に接続されていることを特徴とする請求項1に記載の系統連系インバータ装置。 - 商用電力系統に連系可能であり、負荷に対し自ら生成した交流電力を供給可能な系統連系インバータ装置の自立運転方法であって、
入力された直流電圧を交流電圧に変換して出力する単相インバータの交流側端子を複数台直列に接続し、当該複数台の単相インバータの各発生電圧による総和電圧を出力するインバータユニットを具備し、
前記インバータユニットと、前記負荷および前記商用電力系統との接続を切り離す第1ステップと、
前記各単相インバータの直流側端子に繋がる直流母線間にそれぞれ接続され当該各単相インバータの直流電源として機能するコンデンサのうち、前記インバータユニットの動作時に最も高い電圧を維持する第1のコンデンサに蓄積された電荷を前記第1のコンデンサの両端に接続される抵抗によって放電する第2ステップと、
前記第1のコンデンサの電圧が所定電圧以下に降下した後に、前記インバータユニットを起動して前記負荷に対する電力供給を開始する第3ステップと、
を含むことを特徴とする系統連系インバータ装置の自立運転方法。 - 前記抵抗と、当該抵抗に直列に接続されるスイッチと、の直列回路が前記第1のコンデンサの両端に接続されるとき、
前記第1ステップと前記第2ステップとの間に前記スイッチをオンに制御するステップが含まれ、
前記第2ステップと前記第3ステップとの間に、前記スイッチをオフに制御するステップが含まれる
ことを特徴とする請求項3に記載の系統連系インバータ装置の自立運転方法。 - 商用電力系統に連系可能であり、負荷に対し自ら生成した交流電力を供給可能な系統連系インバータ装置の自立運転方法であって、
入力された直流電圧を交流電圧に変換して出力する単相インバータの交流側端子を複数台直列に接続し、当該複数台の単相インバータの各発生電圧による総和電圧を出力するインバータユニットを具備し、
前記インバータユニットと、前記負荷および前記商用電力系統との接続を切り離す第1ステップと、
前記インバータユニットを構成する単相インバータの各直流側端子に繋がる直流母線間にそれぞれ接続されるコンデンサのうち、前記インバータユニットの動作時に最も高い電圧を維持する第1のコンデンサを接続する単相インバータのスイッチング素子を当該単相インバータの内部で電流ループが生じないようなスイッチング制御を行うことにより当該第1のコンデンサに蓄積された電荷を放電する第2ステップと、
前記第1のコンデンサの電圧が所定電圧以下に降下した後に、前記インバータユニットを再起動して前記負荷に対する電力供給を開始する第3ステップと、
を含むことを特徴とする系統連系インバータ装置の自立運転方法。 - 商用電力系統に連系可能であり、負荷に対し自ら生成した交流電力を供給可能な系統連系インバータ装置の自立運転方法であって、
入力された直流電圧を交流電圧に変換して出力する単相インバータの交流側端子を複数台直列に接続し、当該複数台の単相インバータの各発生電圧による総和電圧を出力するインバータユニットを具備し、
前記インバータユニットと、前記負荷および前記商用電力系統との接続を切り離す第1ステップと、
前記インバータユニットを構成する各単相インバータの各スイッチングを制御して、前記インバータユニットを構成する単相インバータの各直流側端子に繋がる直流母線間にそれぞれ接続されるコンデンサのうち、前記インバータユニットの動作時に最も高い電圧を維持する第1のコンデンサに蓄積された電荷を放電する第2ステップと、
前記第1のコンデンサの電圧が所定電圧以下に降下した後に、前記インバータユニットを再起動して前記負荷に対する電力供給を開始する第3ステップと、
を含むことを特徴とする系統連系インバータ装置の自立運転方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008093627A JP2009247185A (ja) | 2008-03-31 | 2008-03-31 | 系統連系インバータ装置およびその自立運転方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008093627A JP2009247185A (ja) | 2008-03-31 | 2008-03-31 | 系統連系インバータ装置およびその自立運転方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009247185A true JP2009247185A (ja) | 2009-10-22 |
Family
ID=41308483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008093627A Pending JP2009247185A (ja) | 2008-03-31 | 2008-03-31 | 系統連系インバータ装置およびその自立運転方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009247185A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011136280A1 (ja) * | 2010-04-27 | 2011-11-03 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
JP2017192284A (ja) * | 2016-04-15 | 2017-10-19 | エルエス産電株式会社Lsis Co., Ltd. | 太陽光電圧制御装置 |
RU2641007C2 (ru) * | 2013-06-26 | 2018-01-15 | Сименс Акциенгезелльшафт | Силовой элемент на печатной монтажной плате |
JPWO2018025449A1 (ja) * | 2016-08-04 | 2019-01-17 | 株式会社日立製作所 | 電力変換装置および電力変換システム |
-
2008
- 2008-03-31 JP JP2008093627A patent/JP2009247185A/ja active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011136280A1 (ja) * | 2010-04-27 | 2011-11-03 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
JP2011234507A (ja) * | 2010-04-27 | 2011-11-17 | Hitachi Automotive Systems Ltd | 電力変換装置 |
CN102859857A (zh) * | 2010-04-27 | 2013-01-02 | 日立汽车系统株式会社 | 电力转换装置 |
RU2641007C2 (ru) * | 2013-06-26 | 2018-01-15 | Сименс Акциенгезелльшафт | Силовой элемент на печатной монтажной плате |
US11437922B2 (en) | 2013-06-26 | 2022-09-06 | Siemens Aktiengesellschaft | Printed circuit board power cell |
JP2017192284A (ja) * | 2016-04-15 | 2017-10-19 | エルエス産電株式会社Lsis Co., Ltd. | 太陽光電圧制御装置 |
US10651729B2 (en) | 2016-04-15 | 2020-05-12 | Lsis Co., Ltd. | Apparatus for controlling solar light voltage |
JPWO2018025449A1 (ja) * | 2016-08-04 | 2019-01-17 | 株式会社日立製作所 | 電力変換装置および電力変換システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8379418B2 (en) | Power converter start-up circuit | |
JP6190059B2 (ja) | 無停電電源装置 | |
JP5809329B2 (ja) | 電力変換システム | |
WO2018127946A1 (ja) | 無停電電源システムおよび無停電電源装置 | |
JP2011120449A (ja) | 発電システム、制御装置および切替回路 | |
WO2015198448A1 (ja) | 無停電電源装置 | |
JP2014063282A (ja) | パワーコンディショナ及びその制御方法 | |
JP2007166783A (ja) | 電力変換装置 | |
JP5284447B2 (ja) | 分散電源システム | |
WO2012128252A1 (ja) | 蓄電システム | |
JP2013543193A5 (ja) | ||
US10014687B2 (en) | Grid-tied photovoltaic power generation system | |
WO2017169665A1 (ja) | パワーコンディショナ、電力供給システム及び電流制御方法 | |
JP4293673B2 (ja) | 複数のインバータを有する電源システムの運転方法 | |
JP2011172485A (ja) | 電力変換装置 | |
JP3829846B2 (ja) | 無停電電源装置 | |
JP2018019481A (ja) | 電力変換装置 | |
JP5398162B2 (ja) | 系統連系インバータ装置 | |
JP2009247185A (ja) | 系統連系インバータ装置およびその自立運転方法 | |
JP5294759B2 (ja) | 系統連系インバータ装置 | |
WO2022003954A1 (ja) | 無停電電源システム | |
JP5895143B2 (ja) | 蓄電装置 | |
CN112994055A (zh) | 存储介质、光伏发电系统及其控制方法 | |
JP2011193704A (ja) | 直流−交流電力変換装置 | |
JP2000323365A (ja) | 直流給電装置 |