JP4283047B2 - 分子汚染モニタリングシステムおよび分子汚染モニタリング方法 - Google Patents

分子汚染モニタリングシステムおよび分子汚染モニタリング方法 Download PDF

Info

Publication number
JP4283047B2
JP4283047B2 JP2003178805A JP2003178805A JP4283047B2 JP 4283047 B2 JP4283047 B2 JP 4283047B2 JP 2003178805 A JP2003178805 A JP 2003178805A JP 2003178805 A JP2003178805 A JP 2003178805A JP 4283047 B2 JP4283047 B2 JP 4283047B2
Authority
JP
Japan
Prior art keywords
fluid
monitoring system
port
molecular
molecular contaminant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003178805A
Other languages
English (en)
Other versions
JP2004069686A (ja
JP2004069686A5 (ja
Inventor
エイ. ノーレンバーグ ブライアン
ロジャー ダニエル
ワイサネン スコット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Particle Measuring Systems Inc
Original Assignee
Particle Measuring Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Particle Measuring Systems Inc filed Critical Particle Measuring Systems Inc
Publication of JP2004069686A publication Critical patent/JP2004069686A/ja
Publication of JP2004069686A5 publication Critical patent/JP2004069686A5/ja
Application granted granted Critical
Publication of JP4283047B2 publication Critical patent/JP4283047B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/222Constructional or flow details for analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • G01N29/326Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise compensating for temperature variations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0255(Bio)chemical reactions, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0426Bulk waves, e.g. quartz crystal microbalance, torsional waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/117497Automated chemical analysis with a continuously flowing sample or carrier stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/117497Automated chemical analysis with a continuously flowing sample or carrier stream
    • Y10T436/118339Automated chemical analysis with a continuously flowing sample or carrier stream with formation of a segmented stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25125Digestion or removing interfering materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • Y10T436/255Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.] including use of a solid sorbent, semipermeable membrane, or liquid extraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25625Dilution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25875Gaseous sample or with change of physical state

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
(1.発明の分野)
本発明は、流体内の汚染をモニターすることに関し、特に、流れる流体内の分子汚染物および粒子汚染物をモニターすることに関する。
【0002】
【従来の技術】
(2.課題の記述)
表面分子汚染(「SMC」)は、広範な種類の製造分野において公知の現象である。SMCは、生成物もしくは成分または他の表面と接触する流体内における、種々の汚染物のいずれかの気相分子による、それらの表面の化学的汚染である。その分子汚染を有する流体は、気体でもあり得、液体でもあり得、代表的には、1つ以上の処理工程または製造工程の間の周囲の流体である。当業者は、粒子汚染と分子汚染(「MC」)とを区別し、本発明者らは、本明細書中でこの区別を行うべきである。この差異は、粒子汚染が表面に結合しないという点で、現象的に表現され得る。粒子汚染は、静電荷に起因してそれ自体が表面に付着し得るが、その静電荷が中和された場合に、例えば、加圧ガス流によってかまたは脱イオン水での洗浄によって、その粒子汚染は、容易に除去される。一方、分子汚染は、そのように容易には除去されない。なぜなら、分子汚染は、表面に化学的に結合し得るからである。この差異はまた、粒子汚染が、一般に、ほぼ10ナノメートル以上のサイズであり、一方、分子汚染は、一般に、ほぼ2〜3ナノメートル以下であるという点で、定量的に表され得る。この境界線は、はっきりとはしていない。なぜなら、一般に、この分野において、2〜3個以上の分子が一緒になって結合した場合、その汚染は、「粒子汚染」と呼ばれ、そしてその汚染物が「粒子」と呼ばれ、そしてその絶対的サイズは、それらの分子のサイズに依存するからである。分子汚染物による汚染は、当該分野において、粒子による汚染と区別されており、分子汚染物による汚染は、本明細書中でそのように区別される。粒子は、粒子計数器を使用して検出および計数される。この粒子計数器は、MCモニタリングとはかなり異なる技術を使用する。MC分子は、例えば1ナノメートルの代表的直径を有し、一方、代表的粒子直径は、100ナノメートルである。周囲空気(例えば、クリーンルームの空気)中に存在する分子汚染物の場合、この表面分子汚染は、時に、ガス分子による汚染(AMC)と呼ばれる。本開示において、SMCは、AMCを包含する。
【0003】
代表的な流体MC化合物は、SEMI F21−95 Class A、B、C、およびD内にある。けれども、いくつかは、特定のクラスではない。MCに起因して生じるSMCの有害な影響としては、例えば、その表面の化学的品質の変化、電気的品質の変化、および光学的品質の変化が挙げられる。これらは、最終製品において、その性能および信頼性の減少、ならびに製造検査を通過する低いパーセンテージを含むがそれに限定されない要因に起因する、その価格の増加として表される。例えば、半導体の処理および製造において、SMCは、いくつかの有害な影響を有する。これらの影響としては、レジストのT−トッピング、欠損性エピタキシャル成長、意図的でないドーピング、一様でない酸化物成長、表面特性の変化、腐食、および減少した金属パッド付着が挙げられる。これらのうちの多くは、0.18ミクロン未満の線幅が使用されている場合、特に有害になる。光学産業において、SMCは、光学表面の曇りの周知の原因である。SMCはまた、特定の機械的デバイスにおける摩擦の問題を引き起こす。なぜなら、SMC汚染表面は、非汚染表面より有意に高い摩擦計数を有し得るからである。SMCはまた、ハードディスクドライブおよびフラットパネルディスプレイの製造に影響する。これらの製造は、当該分野で公知の理由のために、代表的には、複数の「ミニ」クリーンルームにおいて実行される。
【0004】
MCの原因としては、再循環空気の不十分な濾過、交差プロセス化学汚染、クリーンルーム材料(例えば、フィルター、ゲルシーラント、および構築材料)のガス放出、ならびにヒトにより保有されそして排出される汚染物が挙げられる。その流体が、戸外「構成」空気である場合、MCの原因としては、自動車排気、植物からの蒸発散、および種々の産業的排出、ならびに一次原因内の分子化学的分解およびその分子間の相互作用から生じる多くの化合物および蒸気が挙げられる。
【0005】
AMC/SMCの他の原因としては、区画内または設備間の交差プロセス化学汚染、ならびに換気が不十分な再循環空気が挙げられる。なお他の原因としては、クリーンルーム材料(例えば、フィルター、ゲルシーラント、および構築材料(特に、新しい布地)によるガス放出、ならびに産業設備(例えば、ポンプ、モーター、ロボット、およびコンテナ)から発する種々の汚染物が挙げられる。別の原因は、事故(化学汚染、ならびに温度制御および湿度制御における不調を包含する)である。なお別の原因は、ヒト(その身体、衣服、および個人医療製品を包含する)である。
【0006】
SMCが分類される1つの挙動特徴は、SMCが「可逆的である」かまたは「不可逆的である」かである。MCが表面の周囲環境に存在する場合には、可逆的SMCは増加または蓄積するが、その表面が、原因となるMCにもはや曝露されない場合は、可逆的SMCは、減少または蒸発する。可逆的SMCは、例えば、低沸点のMC化学物質から生じるか、またはその表面と化学的に反応も結合もしない汚染化学物質から生じる。そのようなMC型に曝露された表面は、代表的には、その周囲流体内のMC化学物質密度を迅速に再平衡化する。例示的MCとして水を使用すると、露が、可逆的SMCの例である。
【0007】
一方、不可逆的SMCは、そのMCが低下した後でさえ、その表面上に残る。不可逆的SMCの例は、新しい自動車の窓の内側表面上に代表的には形成される曇りであり、これは、その自動車の内側にある新しいプラスチック成分からのガス放出に起因する。この不可逆性は、一般的には、その表面と反応性であるMC化学物質および/または非常に高い沸点(例えば、150℃を超える沸点)を有するMC化学物質に起因する。
【0008】
図1は、半導体ウェーハ上での集積回路の製造において使用されるフォトレジストツール付近の計測表面上のSMCの例示的プロットである。水平軸は、時間を示し、その単位は日であり、垂直軸は、SMC密度(ng/m)を示す。図1の例は、高揮発性物質の沈着事象から生じるMCの結果として生じる、第1の可逆的SMC(HVと表示)を示す。このMCの高い揮発性に起因して、これらの事象から生じるSMCは、スパイクとして示される。図1はまた、中程度の揮発性物質の沈着から生じるMCから生じる、第2の可逆的SMC(MVと表示)を示す。示されるように、MV種のSMCの時間遅延は、高揮発性HV SMCの時間遅延よりも遅い。低揮発性または測定表面への結合のいずれかを有するMC化学物質から生じる、不可逆的SMCの着実に増加するレベル(トレンドラインLVとして表示)もまた、図1に示される。
【0009】
図1から理解されるように、SMCは、頻繁に、複数の原因および同時の原因から生じる。例えば、フォトレジストツール付近で実施されるツールメンテナンスは、可逆的SMCスパイクを引き起こす事象である。別の原因は、ツール化学物質の詰め替え操作である。この原因は、SMC事象の時期と相関させることによって、かなりの部分が決定される。このSMC事象の時期は、このグラフの水平軸により示され、活動(例えば、上記で同定したツールメンテナンス)の時期を伴う。この理由により、リアルタイムSMC測定は、SMCを生じる事象を同定する際に非常に有益であり得る。
【0010】
【発明が解決しようとする課題】
上記のMCおよびSMCの源、型および原因、ならびにそれらの影響を考慮すると、多くの要件が、MC/SMCモニタリングシステムに課される。これらの要件としては、センサの信頼性、化学的選択性、感度、提示するMCレベルの正確性、およびMC事象とMC/SMCレベルの変化に関する警告が生成される時期との間の時間遅延が、挙げられる。
【0011】
なお別の有意な要件は、流れる気体または液体内のMCのモニタリングについての要件である。純粋な流体を有する流れは、製造プロセスにおいて頻繁に必要とされる。
【0012】
当該分野で公知の多数のMCモニタリングシステムおよびSMCモニタリングが存在し、上記で同定した目標および要件のうちの1つ以上を満たすが、すべてが、有意な欠点を有する。これらとしては、試験を実施するための価格、複雑性および時間の要件、ヒューマン・エラーに対する感度、検出可能なMC種に関する制限、および乏しい時間分解能が挙げられる。さらに、既存のシステムは、代表的には、連続的流れ内の流体をモニターできない。代わりに、既存のシステムは、代表的には、その流れが生じるレザバータンクをモニターする。さらに、MCを測定するための既存のデバイスおよび方法(例えば、試験ウェーハ法)の多くは、数日までの時間遅延を有する。これは、いくつかの適用のために許容可能であり得るが、このような時間遅延が許容可能でない他の適用が存在する。
【0013】
MCを測定するための1つの既知のシステムは、「吸着管サンプリングおよびガスクロマトグラフィー/質量分析」法である。このシステムは、本明細書中で「GC/MS」と呼ばれる。例えば、空気中のMCを測定するために、GC/MSモニタリングシステムは、吸着管を通してその空気の多量のサンプルを吸引する。この吸着管は、その汚染物を予備濃縮する。その後、この吸着管は、熱脱着され、そしてこのサンプルは、GC/MSシステム中に流される。この吸着管、またはGC/MSシステムは、いくつかの低沸点有機化合物および中沸点有機化合物を検出するために十分であり得、代表的には、どのMC化学物質が検出されるべきかに関していくらかの感度を提供し、そして比較的高い感度を有する。しかし、GC/MSは、リアルタイムではなく、このことは、GC/MSが、原因事象の直後にMC読取りを提供することができないことを、意味する。GC/MSにはまた、時間がかかり、複雑な操作を包含し、そしてサンプル装置にて生じる化学反応に対して感受性である。GC/MSはまた、代表的には、無機MC化学物質を検出する際および高沸点を有するMC化学物質を検出する際に不十分である。
【0014】
MCを測定するための他の公知のシステムは、「バブラーサンプリングおよびインピンジャーイオンクロマトグラフィー」システム(本明細書中で「IC」と呼ばれる)、ならびに「原子吸収分光法」(本明細書中で「AAS」と呼ばれる)である。AASまたはICを使用する、例えば、空気の代表的な測定は、その空気の大量のサンプルを、液体バブラーを通して吸引することによって開始される。このことは、その液体において、その空気のMCの予備濃縮を与える。その後、この液体は、ICシステムまたはAASシステム中に注入され、これらのシステムは、特定のクラスの無機MC分子を検出する。このAAS法およびIC法は、どのMCが検出されるべきかに関して、良好な感度および選択性を有する。しかし、吸着管法と同様に、AAS法およびIC法は、時間がかかり、そしてリアルタイム測定を提供しない。AAS法およびIC法はまた、サンプル装置において化学反応を生じやすい。さらに、これらの方法は、代表的には、有機MC化学物質を検出することが非常に良好であるわけではない。
【0015】
なお別の公知のMC測定システムは、「イオン移動度分光計」(本明細書中で「IMS」と呼ばれる)である。IMSを使用する、例えば、空気の代表的な測定において、その空気が、特定の化学物質のみを通す膜を越えて吸引される。その後、この膜を通過する化学物質が、ニッケル63によってイオン化される。その後、このイオンが、電界におけるそれらのイオンの移動度により分離される。
【0016】
化学発光は、別の公知のMC測定システムである。代表的な化学発光システムは、モニター内のオゾンを使用し、このオゾンは、アンモニア/アミンと反応して、不安定な中間体分子を形成する。この中間体分子は、崩壊し、そしてそうする際に、検出される光を生じる。化学発光は、リアルタイムMCモニタリング技術であり、これは、良好な選択性および感度を有する。しかし、化学発光は、アンモニアおよびアミンのみを検出し、そして化学発光は、特定のSMC条件にそのMCデータを関連付ける際に問題を有する。
【0017】
上記に同定したシステムの各々が、対象流体のサンプル内に浮遊するMCを直接測定する。別のクラスのMC測定システムおよびMC測定技術は、その流体から生じるMCに対して曝露された表面上の表面分子汚染(すなわち、SMC)を測定する。
【0018】
1つの公知のSMC測定システムは、試験ウェーハ法であり、この方法は、試験ウェーハを、長期の間(代表的には、3日〜7日の範囲)流体に曝露し、そのウェーハを取り出し、そしてそのウェーハを、熱脱着GC/MS分析によってか、または飛行時間二次イオン質量分光法(すなわち、TOF/SIMS)によって、測定する。
【0019】
この試験ウェーハ法は、上記に列挙した問題のうちのいくつか(特に、その方法が検出するMC化学物質の範囲)を解決する。基本的には、この試験ウェーハ法は、その試験表面上に位置するいかなるものも、理論上はいかようにも検出し得る。しかし、この試験ウェーハ法は、リアルタイムではなく、そしてこの試験ウェーハ法は、検出されるSMCにMC事象の時期を相関付ける際に、非常に乏しい分解能しか有さない。この試験GC/MS分析法はまた、その試験表面と反応するMC種を検出することを、原理的に欠損している。この方法はまた、低沸点を有するMC種を検出する際に欠点を有する。なぜなら、このような種についのSMCは、可逆的にであり、従って、そのウェーハが試験され得る前に蒸発するからである。また、TD−GC/MS検出が、この試験ウェーハを分析するために使用される場合、無機化合物は、十分には検出されない。
【0020】
別の公知のSMC測定システムは、水晶結晶微量天秤システムである。このシステムは、振動性回路におけるバルク圧電性結晶を使用し、このシステムにおいて、振動数が、汚染物がその結晶表面上に吸着する際に変化する。さらに、この結晶表面は、いくつかの製品表面を模倣し、それにより、結晶表面汚染が、汚染物を同定するために、TOF/SIMSまたは試験ウェーハを使用して経時的にモニターされ得る。しかし、この水晶結晶微量天秤システムの感度は、汚染物により生じる振動数変化に関して、低い。従って、このシステムは、代表的なSMC検出のためには十分ではない。
【0021】
なお別の公知のSMC測定システムは、表面弾性波(「SAW」)センサシステムである。例示的SAWセンサは、Particle Measuring Systems,Inc.から市販されている「AiM」モニターである。このAiM SAWベースモニターは、2つのSAW結晶を含み、その結晶の1つは、露出した表面を有し、もう一方は、密封されている。この露出したSAW結晶表面は、目的のほとんどのMCと、MCへの曝露が関係する表面と同じ様式で、相互作用する。各SAWは、共振回路内にあり、この回路は、そのSAWの特徴により、部分的に決定された共鳴振動数を有する。このSAW結晶表面上のSMCは、その特徴を変化させ、その後、共鳴振動数を変化させる。この露出したSAWを有する回路の共鳴振動数を密封SAWを有する回路と比較することによって、そのSAW表面上のSMCの量を反映するシグナルが、得られる。
【0022】
SAWセンサシステム(例えば、AiMモニター)は、現在の見込まれる産業上の需要に関するMC/SMCモニターシステムに必要とされる目標のうちのいくつか(しかし、すべてではない)を満足させる。例えば、AiMモニターは、良好な感度を有し、そしてリアルタイムSMCデータを提供する。なぜなら、SAW振動数は、SMCがその表面上に蓄積するにつれて変化するからである。しかし、このAiMモニターは、連続的な流体流れ内のMCを測定することができない。
【0023】
【課題を解決するための手段】
本発明によると、以下の項目1〜84が提供され、上記目的が達成される。
【0024】
(項目1.)分子汚染物モニタリングシステム(10、120、130、150、160、170、180、190、600、700、800)であって、以下:
拡散チャンバ(19)を形成する、ハウジング(11);
該ハウジングを通って延在する、拡散チャンバ入口通路(32);
該ハウジングを通って延在する、拡散チャンバ出口通路(24、46);
該拡散チャンバの内部に曝される、検出表面(61);および
センサ(81)であって、該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ、
を備え、
分子汚染物および粒子を含む流体が所定の流速よりも上で該入口通路を通って流れる場合、該入口通路を通る粒子の大部分が、該出口通路内に向けられ、一方、該入口通路を通る分子汚染物の部分が、該拡散チャンバ内に拡散するように、該拡散チャンバ入口通路および該拡散チャンバ出口通路が適合されそして配置され、該分子汚染物の部分が、該センサによって検知されるほど十分に大きい、
システム。
【0025】
(項目2.)項目1に記載の分子汚染物モニタリングシステムであって、ここで、該センサが、表面弾性波(SAW)デバイス(56)を備える、システム。
【0026】
(項目3.)項目1に記載の分子汚染物モニタリングシステムであって、さらに、以下:
密閉参照チャンバ(62);
参照表面(71)であって、前記検出表面と実質的に同一であり、該密閉参照チャンバの内部に曝される、参照表面、
を備え、そしてここで、検出器回路が、以下:
検出器回路(56、84)であって、該検出表面と関連し、そして該検出表面の状態を反映する検出シグナルを生成する、検出器回路;
参照回路(58、84)であって、該参照表面と関連し、そして該参照表面の状態を反映する参照シグナルを生成する、参照回路;および
比較回路(84)であって、該検出シグナルおよび該参照シグナルを受信し、そして該検出シグナルと該参照シグナルとの間の違いを反映する前記センサ出力シグナルを生成する、比較回路、
を備える、システム。
【0027】
(項目4.)項目3に記載の分子汚染物モニタリングシステムであって、ここで、前記検出器回路が、前記検出表面に接続された振動性回路をさらに備え、その結果、その振動シグナル周波数が、該検出表面上の分子汚染に従って変化し、そして前記参照回路が、前記参照表面の条件を反映する振動周波数を有する参照シグナルを生成する参照振動性回路を備える、システム。
【0028】
(項目5.)項目1に記載の分子汚染物モニタリングシステムであって、さらに、以下:
拡散チャンバ内に流れる外的に生成された流体の温度および湿度の少なくとも1つを検出し、応答して環境シグナル(103)を生成するための、環境センサ(102);および
該環境シグナルおよび該センサ出力シグナルを受信し、修正したセンサ出力シグナルを生成する、補償器プロセッサ(86)、
を備える、システム。
【0029】
(項目6.)項目1に記載の分子汚染物モニタリングシステムであって、ここで、前記拡散チャンバ入口通路が、拡散チャンバ入口ポート(38B)および該チャンバ入口ポートを取り囲むノズル(38A)を備え、そして該拡散チャンバ出口通路が、拡散チャンパ出口ポート(22)および該チャンバ出口ポートを取り囲むファンネル(22A)を備える、システム。
【0030】
(項目7.)項目6に記載の分子汚染物モニタリングシステムであって、ここで、前記ノズルが、テーパーTを有し、そして前記ファンネルがまた、同じテーパーTを有し、ここで、該ノズルおよびファンネルが、共通軸上で実質的に整列している、システム。
【0031】
(項目8.)項目7に記載の分子汚染物モニタリングシステムであって、ここで、前記ノズルおよびファンネルが、互いに対して間隔を有しており、そして前記テーパーTおよび該間隔が、前記流体の流速の所定範囲内において、該入口通路を通過する実質的に全ての該粒子が、前記出口通路に向けられる、システム。
【0032】
(項目9.)項目1に記載の分子汚染物モニタリングシステムであって、前記出口ポートに接続された粒子計数器(400)をさらに備える、システム。
【0033】
(項目10.)項目1に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ出口通路に接続された減圧供給源(306、402、710)をさらに備える、システム。
【0034】
(項目11.)項目1に記載の分子汚染物モニタリングシステムであって、前記流体を加熱するための加熱器(812)をさらに備える、システム。
【0035】
(項目12.)項目11に記載の分子汚染物モニタリングシステムであって、ここで、前記加熱器が、加熱チャンバ(812)、加熱チャンバ受容ポート(811)、および加熱チャンバ出口ポート(813)を備え、該加熱チャンバ出口ポートが、前記拡散チャンバ入口通路に接続されている、システム。
【0036】
(項目13.)項目12に記載の分子汚染物モニタリングシステムであって、さらに、以下:
前記加熱流体出口ポートに接続された第1受容ポート(808B)を有する、バルブ(802)、
外部サンプル流体供給源に接続された第2受容ポート(808A)、
バルブ出力ポート(802A)、
を備え、そして該バルブが、外的に生成されたバルブコントロールシグナルに応答して、該バルブ出力ポートに、該第1受容ポートおよび該第2受容ポートから選択された1つを接続するために適合されている、システム。
【0037】
(項目14.)項目1に記載の分子汚染物モニタリングシステムであって、該拡散チャンバ入口通路に接続された、複数の流体入口ポート(300A、300B、502)をさらに備える、システム。
【0038】
(項目15.)項目14に記載の分子汚染物モニタリングシステムであって、アンサンブルマニホルド(500)をさらに備え、該アンサンブルマニホルドが、前記複数の入口ポート(502)と前記拡散チャンバ入口通路との間に接続される、システム。
【0039】
(項目16.)項目15に記載の分子汚染物モニタリングシステムであって、前記出口ポートに接続された粒子計数器(400)をさらに備える、システム。
【0040】
(項目17.)項目14に記載の分子汚染物モニタリングシステムであって、ここで、前記複数の流体入口ポートが、第1入口ポート(300A)および第2入口ポート(300B)を備え、そして該システムが、該第1入口ポートに接続された第1流体流れレギュレータ(302)および該第2入口ポートに接続された第2流体流れレギュレータ(304)をさらに備える、システム。
【0041】
(項目18.)項目17に記載の分子汚染物モニタリングシステムであって、ここで、前記第1流体流れレギュレータおよび第2流体流れレギュレータが、調節可能な計量デバイスを備える、システム。
【0042】
(項目19.)項目18に記載の分子汚染物モニタリングシステムであって、ここで、前記調節可能計量デバイスが、調節可能オリフィスを備える、システム。
【0043】
(項目20.)項目17に記載の分子汚染物モニタリングシステムであって、前記汚染物を実質的に含まない流体の供給源(308)をさらに備え、該供給源が、前記第1入口ポートに接続されている、システム。
【0044】
(項目21.)項目20に記載の分子汚染物モニタリングシステムであって、ここで、前記汚染物を実質的に含まない流体の供給源が、ケミカルフィルタを備える、システム。
【0045】
(項目22.)項目21に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ出口通路に接続された減圧供給源(306、402)をさらに備える、システム。
【0046】
(項目23.)項目14に記載の分子汚染物モニタリングシステムであって、ここで、前記複数の流体入口ポートが、第1入口ポート(808A)および第2入口ポート(808B)を備え、該システムが、該第1入口ポートおよび第2入口ポートと前記拡散チャンバ入口通路との間に接続されるポート選択バルブ(802)をさらに備える、システム。
【0047】
(項目24.)項目23に記載の分子汚染物モニタリングシステムであって、前記汚染物を実質的に含まない流体の供給源(810)をさらに備え、該供給源が、前記第1入口ポートおよび第2入口ポートのうちの1つに接続され、これによって、該ポート選択バルブを操作することにより、ユーザが、入口通路に対する通過のための、周囲流体および汚染物を含まない流体を二者択一的に選択し得る、システム。
【0048】
(項目25.)項目24に記載の分子汚染物モニタリングシステムであって、前記汚染物を実質的に含まない流体の供給源と前記ポート選択バルブとの間で接続される流体加熱器(812)をさらに備える、システム。
【0049】
(項目26.)項目24に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ出口通路に接続された、第1減圧供給源(816)をさらに備える、システム。
【0050】
(項目27.)項目26に記載の分子汚染物モニタリングシステムであって、前記減圧供給源と前記拡散チャンバ出口通路との間に接続された、流体流れレギュレータ(818)をさらに備える、システム。
【0051】
(項目28.)項目26に記載の分子汚染物モニタリングシステムであって、前記ポート選択バルブに接続された第2減圧供給源(806)をさらに備え、前記第1減圧供給源が前記第1入口ポートおよび第2入口ポートのうちの1方に接続される場合、該第2減圧供給源が、該第1入口ポートおよび第2入口ポートのうちの他方に接続されるように、該ポート選択バルブが配置される、システム。
【0052】
(項目29.)項目28に記載の分子汚染物モニタリングシステムであって、前記第1減圧供給源と第2拡散チャンバ出口通路との間に接続された第1流体流れレギュレータ(818)、および前記第2減圧供給源と前記ポート選択バルブとの間に接続された第2流体流れレギュレータ(804)をさらに備える、システム。
【0053】
(項目30.)項目29に記載の分子汚染物モニタリングシステムであって、前記汚染物を実質的に含まない流体の供給源と前記ポート選択バルブとの間に接続された流体加熱器(812)をさらに備える、システム。
【0054】
(項目31.)項目1に記載の分子汚染物モニタリングシステムであって、さらに、以下:
第1受容ポート(808A)、第2受容ポート(808B)、混合流体出口ポート(802A)を有する、分配バルブ(802)、
を備え、該分配バルブが、外的に生成された分配シグナルに接続され、そして該混合流体出力ポートから出る流体が、該分配シグナルによって決定される比を含み、該比が該第1受容ポートに入る流体および該第2受容ポートに入る流体の比であるように、該第1受容ポートと該第2受容ポートと該混合流体出力ポートとの間の流れ経路を確立する、システム。
【0055】
(項目32.)項目1に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ出口通路に接続された収集アセンブリ(705)をさらに備える、システム。
【0056】
(項目33.)項目32に記載の分子汚染物モニタリングシステムであって、ここで、前記収集アセンブリが、以下:吸収剤材料、インピンジャー、COTSサンプラー、およびバイパス可能ポンプ送り経路のうちの1つ以上を備える、システム。
【0057】
(項目34.)項目33に記載の分子汚染物モニタリングシステムであって、第1出口ポート(706A)および第2出口ポート(706C)をさらに備え、そして前記収集アセンブリが、前記拡散チャンバ出口通路と前記出口ポートとの間に配置される出口ポート選択バルブ(702)、および該第2出口ポートに接続されるコレクター(714)を備える、システム。
【0058】
(項目35.)項目34に記載の分子汚染物モニタリングシステムであって、前記センサ出力シグナルに応答して、選択バルブコントロールシグナルを生成するためのサンプラーコントローラー(86)をさらに備える、システム。
【0059】
(項目36.)項目35に記載の分子汚染物モニタリングシステムであって、ここで、前記サンプラーコントローラーが、所定の出力シグナル閾値を越える前記センサ出力シグナル、または所定の変化速度の閾値を越える該センサ出力シグナルの変化速度に応答して、該コレクターに流体を向けるための選択バルブを制御する、システム。
【0060】
(項目37.)項目1に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ入口通路に接続されたガス加圧器(602)をさらに備える、システム。
【0061】
(項目38.)項目37に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ出口通路に接続された流体流れレギュレータ(604)をさらに備える、システム。
【0062】
(項目39.)項目1に記載の分子汚染物モニタリングシステムであって、前記分子汚染物を収集するために適合され、そして前記検出表面と同じ流体をサンプリングするために配置された、試験表面(152)をさらに備える、システム。
【0063】
(項目40.)項目39に記載の分子汚染物モニタリングシステムであって、さらに、以下:
前記試験表面を通過するために前記ハウジングを通る、ポータル(153);および
該試験表面を囲うための、該ポータル上の除去可能カバー(154)、
を備える、システム。
【0064】
(項目41.)項目39に記載の分子汚染物モニタリングシステムであって、前記試験表面および前記検出表面が、同じ表面材料を含む、システム。
【0065】
(項目42.)項目39に記載の分子汚染物モニタリングシステムであって、ここで、前記試験表面および前記検出表面が、異なる表面材料を含む、システム。
【0066】
(項目43.)項目1に記載の分子汚染物モニタリングシステムであって、ここで、前記検出表面が、圧電結晶の表面である、システム。
【0067】
(項目44.)項目1に記載の分子汚染物モニタリングシステムであって、前記検出チャンバ入口通路と前記検出表面との間に配置された、化学選択性膜(122)をさらに備える、システム。
【0068】
(項目45.)分子汚染物モニタリングシステム(10)であって、以下:
流体流路(32);
検出表面;
該流路中の該流体中の粒子が該検出表面に到達するのを防ぎつつ、該流路中の該流体からの分子汚染物が該検出表面に拡散することを可能にする、拡散構造体(38A、22A);および
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ、
を備える、システム。
【0069】
(項目46.)項目45に記載の分子汚染物モニタリングシステムであって、ここで、前記流体が、気体を含む、システム。
【0070】
(項目47.)項目46に記載の分子汚染物モニタリングシステムであって、ここで、前記拡散構造体が、前記検出表面を備える拡散チャンバ;および該拡散チャンバと連絡する流体流路中に開口部を備える、システム。
【0071】
(項目48.)項目46に記載の分子汚染物モニタリングシステムであって、ここで、前記拡散構造体が、前記流体流路と前記検出表面との間に位置する、化学選択性膜を備える、システム。
【0072】
(項目49.)分子汚染物モニタリングシステム(10、120、130、150、160、170、180、190、600、700、800)であって、以下:
拡散チャンバを形成する、ハウジング;
該ハウジングを通って延在する、拡散チャンバ入口通路(32)であって、該拡散チャンバに対して外部の受容ポート(39)、および該拡散チャンバに対して内部のチャンバ入口ポート(38A)を有する、拡散チャンバ入口通路;
該ハウジングを通って延在する、拡散チャンバ出口通路(24、46)であって、該拡散チャンバに対して内部のチャンバ出口ポート(22)、および該拡散チャンバに対して外部の出口ポート(47)を有する、拡散チャンバ出口通路;
該拡散チャンバの内部に曝される、検出表面(61);
センサ(81)であって、該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナル(SMC[t])を提供する、センサ、
を備える、システム。
【0073】
(項目50.)項目49に記載のシステムであって、前記出口ポートに接続された粒子検出器をさらに備える、システム。
【0074】
(項目51.)分子汚染物モニタリングシステム(10)であって、該システムは、以下:
流体流路(32);
検出表面(61);
該流路中の該流体中の粒子が該検出表面に到達するのを防ぎつつ、該流路中の該流体からの分子汚染物が該検出表面に拡散することを可能にする拡散構造体(38A、22A);
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ(81);
密閉参照チャンバ(62);ならびに
該検出表面と実質的に同一の参照表面(71)であって、該密閉参照チャンバの内部に曝されている、参照表面(71)、
を備え、
該センサは、以下:
該検出表面に付随し、該検出表面の状態を反映する検出シグナルを生成する、検出器回路(56);
該参照表面に付随し、該参照表面の状態を反映する参照シグナルを生成する、参照回路(58);
該検出シグナルおよび該参照シグナルを受信し、該検出シグナルと該参照シグナルとの間の差異を反映する該センサ出力シグナルを生成する、比較回路(84)、を備える、
システム。
【0075】
(項目52.)分子汚染物モニタリングシステムであって、該システムは、以下:
流体流路;
検出表面;
該流路中の該流体中の粒子が該検出表面に到達するのを防ぎつつ、該流路中の該流体からの分子汚染物が該検出表面に拡散することを可能にする拡散構造体;
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ;
拡散チャンバ内に流れる外的に生成された流体の温度および湿度の少なくとも1つを検出し、応答して環境シグナルを生成するための、環境センサ(102);および
該環境シグナルおよび該センサ出力シグナルを受信し、修正したセンサ出力シグナルを生成する、補償器プロセッサ、
を備える、システム。
【0076】
(項目53.)分子汚染物モニタリングシステムであって、該システムは、以下:
流体流路;
検出表面;
該流路中の該流体中の粒子が該検出表面に到達するのを防ぎつつ、該流路中の該流体からの分子汚染物が該検出表面に拡散することを可能にする拡散構造体;
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ;および
該流体流路に接続された粒子計数器(400)、
を備える、システム。
【0077】
(項目54.)分子汚染物モニタリングシステムであって、該システムは、以下:
流体流路;
検出表面;
該流路中の該流体中の粒子が該検出表面に到達するのを防ぎつつ、該流路中の該流体からの分子汚染物が該検出表面に拡散することを可能にする拡散構造体;
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ;および
該流体を加熱するための加熱器、
を備える、システム。
【0078】
(項目55.)分子汚染物モニタリングシステムであって、該システムは、以下:
流体流路;
検出表面;
該流路中の該流体中の粒子が該検出表面に到達するのを防ぎつつ、該流路中の該流体からの分子汚染物が該検出表面に拡散することを可能にする拡散構造体;
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ;
該流体流路に接続された複数の流体入口ポート;および
流体混合マニホルドであって、該複数の入口ポートと該流体流路との間に接続される、マニホルド、
を備える、システム。
【0079】
(項目56.)分子汚染物モニタリングシステムであって、該システムは、以下:
流体流路;
検出表面;
該流路中の該流体中の粒子が該検出表面に到達するのを防ぎつつ、該流路中の該流体からの分子汚染物が該検出表面に拡散することを可能にする拡散構造体;
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ;および
該流路中の流体を、該汚染物を実質的に含まない希釈流体で希釈するための、希釈アセンブリ、
を備える、システム。
【0080】
(項目57.)分子汚染物モニタリングシステムであって、該システムは、以下:
流体流路;
検出表面;
該流路中の該流体中の粒子が該検出表面に到達するのを防ぎつつ、該流路中の該流体からの分子汚染物が該検出表面に拡散することを可能にする拡散構造体;
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ;および
該検出表面に該流体および該汚染物を実質的に含まない参照流体を交互にサンプリングするための、参照サンプラーサブシステム、
を備える、システム。
【0081】
(項目58.)分子汚染物モニタリングシステムであって、該システムは、以下:
流体流路;
検出表面;
該流路中の該流体中の粒子が該検出表面に到達するのを防ぎつつ、該流路中の該流体からの分子汚染物が該検出表面に拡散することを可能にする拡散構造体;
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ;および
該流体流路に接続された汚染物収集アセンブリ、
を備える、システム。
【0082】
(項目59.)項目58に記載の分子汚染物モニタリングシステムであって、該システムは、収集コントローラサブシステムをさらに備え、該収集コントローラサブシステムは、所定の出力シグナル閾値を越える前記センサ出力シグナルまたは変化閾値の所定の速度を超える該センサ出力シグナルの変化速度のいずれかに応答して、該収集を開始する、システム。
【0083】
(項目60.)分子汚染物モニタリングシステムであって、該システムは、以下:
流体流路;
検出表面;
該流路中の該流体中の粒子が該検出表面に到達するのを防ぎつつ、該流路中の該流体からの分子汚染物が該検出表面に拡散することを可能にする拡散構造体;
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ;および
該分子汚染物を収集するように適合され、そして該検出表面と同じ流体をサンプリングするように配置された、試験表面、
を備える、システム。
【0084】
(項目61.)分子汚染物モニタリングシステムであって、該システムは、以下:
流体流路;
検出表面;
該流路中の該流体中の粒子が該検出表面に到達するのを防ぎつつ、該流路中の該流体からの分子汚染物が該検出表面に拡散することを可能にする拡散構造体;
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ;および
該流体流路と該検出表面との間に位置する、化学選択性膜、
を備える、システム。
【0085】
(項目62.)分子汚染物モニタリングシステムであって、該システムは、以下:
拡散チャンバを形成するハウジング;
該ハウジングを通って延在する拡散チャンバ入口通路;
該ハウジングを通って延在する拡散チャンバ出口通路;
該拡散チャンバの内側に曝された検出表面;および
該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ、
を備え、
該拡散チャンバ入口通路は、拡散チャンバ入口ポートおよび該チャンバ入口ポートを取り囲むノズルを備え、そして該拡散チャンバ出口通路は、拡散チャンバ出口ポートおよび該チャンバ出口ポートを取り囲むファンネルを備える、
システム。
【0086】
(項目63.)項目62に記載の分子汚染物モニタリングシステムであって、前記ノズルが、テーパーTを有し、そして前記ファンネルもまた、同一のテーパーTを有し、そして該ノズルおよびファンネルが、実質的に共通の軸状で整列される、システム。
【0087】
(項目64.)第1の流体中の分子汚染物をリアルタイムでモニタリングする方法であって、該方法は、以下:
該流体を、流路を通して流す工程;
該流体が該流路を通って流れる間、該流れている流体の流速の所定の範囲内で、該拡散チャンバ内の該分子汚染物のレベルが該流体内の該分子汚染物のレベルとの既知の関係に従うような拡散速度で、該流路中の流体内の分子汚染物を拡散チャンバ中へ拡散する、工程;
該拡散チャンバ中に拡散された該分子汚染物を検出する工程;および
該流体中の該分子汚染物のレベルに特徴的なセンサシグナルを生成する工程、を包含する、方法。
【0088】
(項目65.)項目64に記載の方法であって、前記検出する工程が、以下:
前記汚染物に曝された検出器圧電性結晶の表面上に検出器音波を生成する工程;および
該表面上の汚染物に起因する該検出器音波の変化を決定する工程、
を包含する、方法。
【0089】
(項目66.)項目65に記載の方法であって、前記決定する工程は、以下:
前記検出器圧電性結晶と実質的に同一であり、参照流体に曝された表面を有する参照圧電性結晶の表面上に参照音波を生成する工程;および
該参照音波および該検出器音波のパラメーターを比較して、前記センサシグナルを提供する工程、
を包含する、方法。
【0090】
(項目67.)項目64に記載の方法であって、前記生成する工程は、以下:
前記流体の温度および湿度の少なくとも1つを検出し、そして該温度および湿度に特徴的な状態シグナルを提供する、工程;および
該状態シグナルに基づいて前記センサシグナルを調節する工程、
を包含する、方法。
【0091】
(項目68.)項目64に記載の方法であって、以下:
前記流体中の粒子を検出する工程;および
該粒子に特徴的な粒子シグナルを生成する工程、
をさらに包含する、方法。
【0092】
(項目69.)前記流体が、気体である、項目64に記載の方法。
【0093】
(項目70.)項目69に記載の方法であって、前記検出する工程が、前記拡散チャンバ内の表面上の前記汚染物を検出する工程を包含し、該方法が、該表面上の汚染物の状態を逆転させる工程をさらに包含する、方法。
【0094】
(項目71.)項目70に記載の方法であって、前記逆転させる工程が、前記流体に少なくとも一部を加熱する工程を包含する、方法。
【0095】
(項目72.)項目71に記載の方法であって、前記逆転させる工程が、前記流体の加熱された部分および前記流体の加熱されていない部分を、前記流路に交互に方向付ける工程を包含する、方法。
【0096】
(項目73.)項目69に記載の方法であって、前記分子汚染物を実質的に含まない第2の流体を提供する工程、および前記第1の流体および該第2の流体を、前記流路を通して交互に流す工程、をさらに包含する、方法。
【0097】
(項目74.)項目69に記載の方法であって、前記第1の流体を、前記汚染物を実質的に含まない第2の流体で希釈する工程をさらに包含する、方法。
【0098】
(項目75.)項目74に記載の方法であって、前記希釈する工程が、以下:
前記第1の流体および前記第2の流体の所定の割合を示す希釈シグナルを提供する工程;および
該第1の流体および該第2の流体を、該希釈シグナルに従って組み合わせる工程、
を包含する、方法。
【0099】
(項目76.)項目69に記載の方法であって、移動可能コレクター中に前記汚染物を収集する工程をさらに包含する、方法。
【0100】
(項目77.)項目76に記載の方法であって、前記収集する工程が、前記汚染物を予め濃縮する工程を包含する、方法。
【0101】
(項目78.)項目69に記載の方法であって、以下:
それぞれが異なる流体を収容する複数のサンプルポートを提供する工程;および
該サンプルポートを通して収容した該流体を合わせ、そして得られた該合わせた流体を、前記流路に排出する工程、
をさらに包含する、方法。
【0102】
(項目79.)項目69に記載の方法であって、以下:
前記流体を前記流路に流す前に、該流体を加圧する工程;および
該流路を出る該加圧された流体の流れを、該流路中で所定の圧力レベルを提供するように制限する工程、
をさらに包含する、方法。
【0103】
(項目80.)項目69に記載の方法であって、試験表面を前記拡散チャンバと流体連絡して除去可能に固定する工程をさらに包含する、方法。
【0104】
(項目81.)項目69に記載の方法であって、以下:
前記流体中の粒子を検出する工程;および
該粒子に特徴的な粒子シグナルを生成する工程、
をさらに包含する、方法。
【0105】
(項目82.)項目69に記載の方法であって、前記拡散する工程が、前記分子汚染物を化学選択性膜に選択的に通過させる工程を包含する、方法。
【0106】
(項目83.)流れている流体中の分子汚染物をモニタリングする方法であって、該方法は、以下:
該流路から拡散チャンバまで拡散するための、該流体内の該分子汚染物のための拡散経路を使用して、該流れている流体を、流路を通して移送する工程、および
該拡散チャンバの内側に曝された表面を有する汚染物センサを提供する工程、を包含する、方法。
【0107】
(項目84.)項目83に記載の方法であって、前記流体内の粒子汚染物が、任意の実質的な統計的確率で前記拡散チャンバに入らないように、前記拡散経路が提供される、方法。
【0108】
【発明の実施の形態】
(解決法)
本発明は、流体流れ内の分子汚染のリアルタイムモニタリングを提供することによって、当該技術を進歩させ、そして上記の問題を克服する。本発明は、粒子の汚染物が検出器に到達するのを妨げながら、流体流れ中の分子汚染が検出器に到達するのを可能にするシステムを提供する。好ましい実施形態において、SAWデバイスの表面が、この分子汚染に供され、そして検出器シグナルを提供し、その汚染に曝されていない参照SAWが、参照シグナルを提供し、そしてこの検出器シグナルと参照シグナルとを比較して、流体中の汚染物に特徴的なセンサ出力シグナルを生成する。このセンサシグナルは、好ましくは、温度および湿度について補正される。好ましくは、この分子汚染モニターは、粒子検出器と組み合わされて、流体中の分子汚染と粒子の両方をリアルタイムで検出する。
【0109】
本発明は、分子汚染物モニタリングシステムを提供し、このシステムは、以下を備える:流体流路;検出表面;拡散構造体(この流路中の流体中の粒子がこの検出表面に到達するのを妨げながら、この流路中の流体由来の分子汚染物が、この検出表面に拡散するのを可能にする);およびこの検出表面をモニターし、そしてこの検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ。好ましくは、この流体は、気体を含む。好ましくは、この拡散構造体は、以下を備える:この検出表面を含む、拡散チャンバ;およびこの拡散チャンバと連絡する、この流体流路中の開口部。好ましくは、1つの実施形態において、この拡散構造体は、この流体流路とこの検出表面との間に配置された、化学選択性膜を備える。好ましくは、本発明はまた、密閉した参照チャンバ;および検出表面と実質的に同一の参照表面(この密閉した参照チャンバの内側に曝される)を備え;そしてそのセンサは、以下を備える:この検出表面に関連し、そしてこの検出表面の状態を反映する検出シグナルを生成する、検出器回路;この参照表面に関連し、そしてこの参照表面の状態を反映する参照シグナルを生成する、参照回路;およびこの検出シグナルおよび参照シグナルを受信し、そしてこの検出シグナルと参照シグナルとの間の差異を反映するセンサ出力シグナルを生成する、比較回路。
【0110】
1つの局面において、このシステムは、好ましくは、拡散チャンバに流入する外的に生成された流体の温度および湿度の少なくとも一方を検出するため、およびそれに応答して環境シグナルを生成するための、環境センサ;ならびにこの環境シグナルおよびセンサ出力シグナルを受け取り、そして補正されたセンサ出力シグナルを生成する、補償器プロセッサ、もまた備える。
【0111】
好ましくは、別の局面において、このシステムはまた、この流体流路に接続された粒子検出器を備える。
【0112】
さらなる局面において、このシステムは、好ましくは、この流体を加熱するための加熱器もまた備える。
【0113】
なおさらなる局面において、好ましくは、このシステムは、この流体流路に接続された複数の流体入口ポート、および流体混合マニホルドを備え、この流体混合マニホルドは、この複数の流体入口ポートと流体流路との間に接続される。
【0114】
なお別の局面において、このシステムは、好ましくは、この流路中の流体を、この汚染物を実質的に含まない希釈流体で希釈するための、希釈アセンブリを備える。
【0115】
なお別の局面において、このシステムは、好ましくは、その流路中の流体と、その汚染物を実質的に含まない参照流体とを、その検出表面に交互にサンプリングするための、参照サンプラーサブシステムもまた備える。
【0116】
なおさらなる局面において、このシステムは、流体流路に接続された、汚染物収集アセンブリを備える。好ましくは、この局面において、このシステムは、収集コントローラサブシステムを備え、この収集コントローラサブシステムは、予め決定した出力シグナル閾値を超えるセンサ出力シグナルか、または予め決定した変化率閾値を超えるセンサ出力シグナルの変化率のいずれかに応答して、収集を開始する。
【0117】
さらなる局面において、このシステムは、分子汚染物を収集するように適合され、そして検出表面と同じ流体をサンプルするために配置された、試験表面を備える。
【0118】
好ましい実施形態において、本発明は、分子汚染物モニタリングシステムを提供し、このシステムは、拡散チャンバを形成する、ハウジング;このハウジングを通って延びる、拡散チャンバ入口通路;このチャンバを通って延びる、拡散チャンバ出口通路;この拡散チャンバの内側に曝される、検出表面;およびこの検出表面をモニターし、そしてこの検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ、を備え;この拡散チャンバ入口通路は、拡散チャンバ入口ポートと、このチャンバ入口ポートを取り囲むノズルとを備え、そしてこの拡散チャンバ出口通路は、拡散チャンバ出口ポートと、このチャンバ出口ポートを取り囲むファンネルとを備える。この実施形態において、このノズルは、好ましくは、テーパーTを有し、そしてこのファンネルもまた、同じテーパーTを有し、そしてこのノズルおよびファンネルは、実質的に共通の軸上に整列される。
【0119】
本発明はまた、第1の流体中の分子汚染物をリアルタイムでモニタリングする方法を提供し、この方法は、以下の工程を包含する:この流体を流体の通路に流す工程;この流体が、この通路中を流れている間に、この流体の通路中のこの流体内の分子汚染物を、拡散チャンバ内に拡散させる工程であって、この拡散は、この流れている流体の予め決定した流速の範囲内で、拡散チャンバ内のこの分子汚染物のレベルが、その流体内のその分子汚染物のレベルとの既知の関係に従うような、拡散率で行う、工程;この拡散チャンバ内に拡散された分子汚染物を検出する工程;およびこの流体中の分子汚染物のレベルに特徴的なセンサシグナルを生成する工程。好ましくは、この検出工程は、以下を含む:この汚染物に曝された検出器圧電性結晶の表面上に、検出器音波を生成させること;およびこの表面上の汚染物に起因する検出器音波における変化を、決定すること。好ましくは、この検出工程は、以下を含む:検出器圧電性結晶に実質的に同一であり、そして参照流体に曝される表面を有する参照圧電性結晶の表面上に、参照音波を生成させること;およびこの参照音波のパラメーターとこの検出器音波のパラメーターとを比較して、センサシグナルを提供すること。好ましくは、1つの実施形態において、その生成する工程は、以下を含む:この流体の温度および湿度の少なくとも一方を検出し、そしてその温度および湿度の少なくとも一方に特徴的な状態シグナルを提供すること;および、この状態シグナルに基づいて、このセンサシグナルを調整すること。好ましくは、この流体は、気体である。
【0120】
1つの局面において、この方法は、好ましくは、その粒子に特徴的な粒子シグナルを生成する工程を包含する。
【0121】
別の局面において、この検出工程は、好ましくは、この拡散チャンバ内の表面上の汚染物を検出することを含み、そしてこの方法は、この表面上の汚染物の状態を逆転させる工程をさらに包含する。好ましくは、この逆転させる工程は、この流体の少なくとも一部をさらに加熱することを含む。好ましくは、この逆転させる工程は、この流体の加熱された部分とこの流体の加熱されていない部分とを、この流体の通路内に交互に方向付けることを含む。好ましくは、この方法はまた、この分子汚染物を実質的に含まない第2の流体を提供する工程、ならびにこの流体の通路中に第1の流体および第2の流体を交互に流す工程を包含する。
【0122】
さらなる局面において、この方法は、好ましくは、この第1の流体を、この汚染物を実質的に含まない第2の流体で希釈する工程を包含する。好ましくは、この希釈する工程は、以下を含む:この予め決定した比の第1の流体と第2の流体を示す、希釈シグナルを提供すること;およびこの希釈シグナルに従って、この第1の流体と第2の流体とを合わせること。
【0123】
なおさらなる局面において、この方法は、好ましくは、取り外し可能なコレクター中にこの汚染物を収集する工程を包含する。好ましくは、この収集する工程は、この汚染物を予め濃縮することを含む。
【0124】
なお別の局面において、この方法は、好ましくは、以下の工程を包含する:複数のサンプルポートを提供する工程であって、このサンプルポートの各々は、異なる流体を受け取る、工程;ならびにこのサンプルポートを通して受け取られたこれらの流体を合わせ、そしてその合わせて得られた流体をこの流体の通路に流し出す工程。
【0125】
なお別の局面において、この方法は、好ましくは、以下の工程を包含する:流体の通路に流体を流す前に、この流体を加圧する工程;およびこの流体の通路から出るこの加圧した流体の流れを制限して、この流体の通路中に予め決定した圧力レベルを提供する工程。
【0126】
なおさらなる局面において、この方法は、好ましくは、試験表面を、拡散チャンバと流体連絡させて、取り外し可能に固定する工程を包含する。
【0127】
本発明の多くの他の特徴、目的および利点は、添付の図面と組み合わせて読んだ場合に、以下の説明を参照して明らかとなる。
【0128】
(好ましい実施形態の詳細な説明)
(1.概要)
本発明を、図2〜16を用いて、以下に説明する。
【0129】
用語「FTA」とは、本明細書中では、流れている流体内のMCを検知しない先行技術のMCセンサとは対照的な、フロースルーMCセンサアセンブリ10をいうために使用される。このアセンブリは、本発明に従う、基本的な分子汚染物モニタリングシステム10を備え;本発明に従う他の分子汚染物モニタリングシステム、100、120、130、150、160、170、180、190、600、700および800を、図6〜16に示す。本明細書中に記載されるFTAの種およびバリエーションの特定の1つは、固有の部品番号によって言及される。「FTA」の参照表示は、図2〜7および9のいずれかに従うFTA、またはこれらのいずれかに対する言及において記載されるようなFTAを意味し、これらには、各々について記載される種々の任意の特徴を含むかまたは含まない、これらの各々または両方の全てのバリエーションおよび局面が含まれる。
【0130】
用語「流体」は、液体または気体、あるいは蒸気混合物として本明細書中で規定され、これらには、空気、基本的な気体(例えば、窒素およびアルゴン)、およびそれらの混合物が挙げられる。例示的な操作が説明される場合、その説明に使用される特定の流体は、他のように示されず、その文脈からも明確でない限り、本発明の範囲または操作に対する限定として意図されない。
【0131】
用語「上流」および「下流」は、流体がFTAを通って流れる(流体流れが生じる場合の)方向に対する位置関係を特定および規定するために使用される。位置の規定は、FTAを通る流体流れが開始する前、およびその流れが終了した後にも同様に、規定されたままである。
【0132】
(2.詳細な説明)
図2は、本発明に従う例示的FTA10の上面図を示し、そして図3は、図2の面3−3を通る、その示された例の前方断面図を示す。図3を参照して、この例示的なFTA10は、主本体12を有するハウジング11を備え、この主本体12は、主ボア14を有し、この主ボアは、ねじ山付きの流入受容部16、およびねじ山付きの流出受容部18を有する。拡散チャンバ19は、主本体の底面12Aから主ボア14内に延びる。拡散チャンバ出口通路24を提供する、中心管20は、例えば、圧縮締まりばめ(pressed−in interference fit)によって、主本体14と整列される。中心管20は、拡散チャンバ出口ポート22、通路24、および中心管出口ポート26を有する。出口ポート22は、好ましくは、テーパー状またはファンネル型の領域22Aを有し、このテーパーは、角度Tを有する。Tの例示的な値は、20°である。テーパー状領域22Aの内側は、好ましくは、以下にさらにより詳細に記載されるように、流体流れの目的のため、および粒子汚染物の外側への流れをもたらすために、滑らかな仕上げを有する。同様に、外側のテーパー状の末端またはノズル26Aは、例えば、Tと等しいテーパーの角度(示さず)を有し、好ましくは、中心管20の出口ポート26を取り囲む。
【0133】
中心管20は、拡散チャンバ出口ポート22の内側の端部が主本体12の面12BからL1間隔をあけられるように配置される。この面12Bは、ねじ山付きの流入ポート16を有する面である。中心管20は、ノズル26Aの遠位端が主本体面12Cから内向きにL2間隔をあけられるように延びる。この主本体面12Cは、ねじ山付きの流出レセプタクル18が開く面である。
【0134】
図3を参照して、ねじ山付きの流入レセプタクル16が主本体面12Bに対して開く凹部16Aが形成され、凹部16Aは、第1の「O」リング28を適応させる。流入部材30は、ねじ山付きの流入レセプタクル16に差し込まれ、この流入部材は、受け側ポート39、入口流体通路32、外部雄型接続部34、ねじ山付きの肩部36(これは、ねじ山付きの流入レセプタクル16と差込み可能に係合する部分である)、主ボア14内に突出し、かつ拡散チャンバ入口ポート38Bで終わる伸長部38を有する。示した例の流入部材30がねじ山付きの流入レセプタクル16に差し込まれかつ固定される場合、第1の「O」リング28は、凹部16Aと流入部材面30Aとの間で圧縮され、それによって、流入部材30を固定し、そして漏れ防止し、密封させる。
【0135】
流入部材30(これは、拡散チャンバ入口通路32を提供する)は、テーパー状の外部ノズル38Aによって取り囲まれる拡散チャンバ入口ポート38Bを有する。テーパー状ノズル38Aの形状は、中心管20のテーパー状ノズル26Aの形状と同一であり得る。図3に示されるように、テーパー状ノズル38Aおよび出口ポート38Bは、好ましくは12B面の内側にL1延び、中心管20の拡散チャンバ出口ポート22の最も右側または最も上流末端で、実質的に一致した位置になる。
【0136】
本発明は、流路中の流体中の粒子が検出表面に達することを防止しながら、流路中の流体から検出表面に分子汚染物が拡散するのを可能にする拡散構造を提供する。この構造は、好ましくは、ノズル38Aおよびファンネル22Aによって提供される。テーパー状の角度Tおよび表面22Aの滑らかな仕上げを伴って、テーパー状ノズル38Aおよび中心管入口ポート22のテーパー状ファンネル部分22Aの一致した配置は、粒子汚染物がチャンバ通路19に入ることを阻止し、むしろその粒子汚染物を中心管20の通路24を通してFTA10の外へ導きながら、チャンバ通路19へのMCの拡散を提供する。粒子は分子汚染物よりも数百倍大きいと規定されるので、粒子は数百倍の慣性を有し、そして大多数の粒子は出口通路24へとファンネル部分を通り抜け、FTAの外に出る。好ましくは、流体の予め決定された範囲の流速において、この入口通路32を通過する実質的に全ての粒子が、出口通路24に導かれる。好ましくは、この流速の範囲は、0.0001cfm(1分あたりの立方フィート)と100cfmとの間である。すなわち、粒子汚染物が拡散チャンバに入るという実質的な統計学的確率は存在しない。好ましくは、10nm以上のサイズの粒子がこの拡散チャンバに入る確率は、0.1%未満であり、最も好ましくは0.001%未満である。拡散チャンバに入る粒子の制限は、検出表面61上に堆積され得る粒子物体のng/平方/日によって良好に規定される。好ましくは、1日当たり0.05ng以下の粒子物体、より好ましくは0.01ng以下の粒子物体が、表面上に堆積される。分子汚染物の大きさのオーダーである任意の粒子汚染物が、分子汚染物をマスクする傾向があり;従って、受容可能である粒子汚染物の範囲は、検出器の位置に依存して変化する。一般的に、通常の環境下で、表面61上での分子汚染物の堆積は、0.15ng/平方/日のオーダーであるが、これは当然、汚い環境下ではより大きく、そして非常にきれいな環境(例えば、高レベルのクリーンルーム)でははるかに小さいものであり得る。これと同時に、拡散構造は、分子汚染物の拡散チャンバ19への十分な拡散を可能にし、その結果、SAWセンサシステム81は、表面61における汚染を検出し得る。さらに、テーパー状ノズル38Aと中心管入口ポート22のテーパー状部分22Aの上記の構造は、FTAを通る流体の流れを妨害することなく、分子汚染物が拡散チャンバ通路19に拡散されることを可能にする。この拡散に起因して、拡散チャンバ通路内の分子汚染物の濃縮物は、流体内の分子汚染物の濃縮物と実質的に平衡して通過する。以下により詳細に記載されるように、センサは、拡散チャンバ19中の分子汚染物のリアルタイム検出を実行する。従って、本発明は、連続して流れる流体内の分子汚染物の連続したリアルタイム検出を提供する。このことは、先行技術よりも優れた本発明の有意な利点のうちの1つである。
【0137】
別の有意な特徴および利点は、テーパー状角度Tがノズル38Aにて流入管32を出る流体流れ中の粒子物体に力を与えて、この粒子物体が拡散チャンバ通路19に入るために表面22Aに当たった後にほぼ90度で戻るようにすることである。しかし、粒子の質量および速度ならびに表面20Aの滑らかさに起因して、粒子の運動量は、実質的に、この粒子がこのように戻ることを妨げる。その代わりこの粒子は、表面22Aによって導かれて中心管20の通路24に入りそして通過し続け、そして流出管46を介して出口ポート47を出る。従って、この粒子は、FTA10内のMC検出手段を汚染することなく、FTA10を通過し、このことは以下に記載される。本発明のさらなる局面を参照してさらに記載されるように、粒子汚染物計数器が、FTAの下流に取り付けられ得、それによって粒子汚染物を通過させるFTAの特徴を開発する。
【0138】
ノズル38Aおよびポート領域22A、ならびにテーパー状角度Tの間の位置関係は、それぞれ、中心管20の流入通路32および流出通路24の直径(表示していない)に一部依存し、そしてノズル38Aを介して流入管32に入る流体の圧力および/または速度に依存することが理解される。ノズル38Aとポート領域22Aとの間の間隔が長すぎる場合、流体流れは妨害されるかまたは中断され、そして粒子汚染物は、表面22Aによって効率的にFTA10の外に導かれない。この間隔が非常に短すぎる場合、拡散速度は非常に遅くなり、これは、そのリアルタイムモニタリングの性能を低下させる傾向がある。
【0139】
図3を参照して、外部雄型接続部34の外郭は、可撓性の管(図示せず)またはこれと同等のものが取り付けられる接続部に対する、公知の設計実務に従う。さらに、主ボア14の直径(番号付けしていない)と流入部材30の伸長部38の外径(番号付けしていない)との間の関係は、好ましくは、ぴったりとした適合性を提供するように選択され、伸長部38の外面と主ボア14の内面との間(ここに流体が蓄積し得る)に実質的な容積はない。
【0140】
図2および図3の例示的なFTA10はさらに、通過孔または通路46、出口ポート47、および外部雄型接続部44を有する流出部材40を備え、そして流出管46は、ねじ山付きの外部48を有する。ねじ山付きの外部48は、ねじ山付きの流出レセプタクル18と係合する。ねじ山付きの流出レセプタクル18が主本体面12Cに開く凹部18Aが形成され、凹部18Aは、第2の「O」リング50を適応させる。固定された場合、流出部材40の面40Aは、凹部18Aに対して第2の「O」リング50を圧縮する。図3に示される例において、流出管46は、テーパー状開口部48Aを有する入口ポート48を有する。テーパー状開口部48Aの例示的なテーパー(表示していない)は、中心管20の入口ポート22Aのテーパー状角度Tと同じテーパー状である。流出管46は、主本体面12Cから内向きにL2間隔をあけられるように延び、流れ方向Fで中心管20のノズル26Aと実質的に共通境界である。
【0141】
外部雄型接続部の各々(34および44)の外郭(表示していない)は、当該分野で公知である、管接続部についての標準的な設計実務に従う。外部雄型接続部34および外部雄型接続部44は、本発明を基本的な例を用いて記載するために、同じ直径を有するとして記載している。しかし、これは、本発明を実行し得る構造に対するいなかる限定としても意図されない。互いに等しくないそれぞれの直径を有する外部接続部34および44を使用する、本発明の応用も意図される。
【0142】
主本体12の好ましい材料は、「316」ステンレス鋼である。アルミニウムもまた、製造が簡単であり、かつ重量が低いので使用され得る。好ましくは、この主本体の材料は、アルミニウムなどで形成される場合、例えば、金でめっきされ、不活性な腐食耐性表面を提供する。
【0143】
図3を参照すると、ベースプレート54は、主本体12の底12Aに取り付けられる。図4は、図3の表示線4−4から観察した、主本体12の底12Aの図であり、これに対して、ベースプレート54が取り付けられる。図5は、図3の切断線5−5から観察される、ベースプレート54の上面図である。ベースプレート54は、測定SAW56および参照SAW58を支持する(図3)。SAW56、58は、以下により詳細に記載される。第1の凹部60が、主本体12に形成され、これは、図4に示されるように、拡散チャンバ通路19と整列される。第1の凹部60は、測定SAW56と適合し、その結果、このSAWの上面61が、拡散チャンバ通路19に曝される。参照チャンバ62を形成する第2の凹部は、参照SAW58に適合する。図3および5を参照して、ベースプレート54中の孔64を通る複数の隙間は、測定SAW56から延びる複数のピン66に適合する。同様に、複数の隙間孔68は、参照SAW58から延びる複数のピン70と適合する。
【0144】
1つの実施形態において、ベースプレート54は、複数のねじ山付きの孔72を有し、これが、主本体12に形成された複数の隙間孔74の所定の位置に対応する。この実施形態において、ベースプレート54は、主本体12を通って延びるねじによって、主本体12の底12Aに固定され、例示的なねじの頭部を、図2において部品76として表示する。別の実施形態(示さず)において、ベースプレート54および主本体12は、単一の回転ノブによって一緒に保持され、このノブは、その外側の縁の周りにランプを有する。ノブを回転させると、ランプは、ベースプレートおよび主本体を一緒に締め付けるように作用する。これは、FTAのより迅速かつ容易な開閉を可能にする。
【0145】
図4および5を参照して、溝78が、第1の凹部60の周りの主本体12の底面12Aに形成され、そして対応するリッジ80が、ベースプレート54において、ピン隙間孔64が形成される領域の周辺で形成され、この領域で、測定SAW56が支持される。リッジ80および溝78は、ベースプレート54が主本体の表面12Aに取り付けられる場合に、それらの間で圧搾されるTeflonTMガスケットによって一緒に嵌め合い、拡散チャンバ通路19の内外への漏れを防止する。
【0146】
図2〜5に示される例示的FTA10の構造は、単に例示目的のものであることが理解される。添付の特許請求の範囲内の種々の代替的構造が、本発明によって企図され、そして本開示を参照して認識される。例えば、中心管20の出口ポート上のノズル26Aは、実質的に、流出部材40のテーパー状の入口ポート48A内に延び得る。別のバリエーションでは、中心管20と流出部材40が別々の構造であることに代えて、これら2つが、単一部材として合わせられ得る(示さず)。なお別のバリエーションでは、流入管38が流入部材30と一体型であることに代えて、流入管が、雄型接続部34の等価物を通って延びる別の部品(示さず)であり得る。このような雄型接続部34の等価物は、例えば、ねじ付き管締め付け具(示さず)として機能する、2部分単位(示さず)であり、これは、締め付けられた場合に、この分かれた流入管(示さず)を軸方向の動きから固定する。
【0147】
流入部材30および流出部材40について好ましい材料は、「316」型のステンレス鋼である。代替的な材料は、一般的な選択基準(コスト、機械加工の容易性、ならびに本発明の機能によって示される化学的特性および機械的特性)を用いて当業者によって選択され得る。
【0148】
拡散チャンバ通路19内の分子汚染物の検出は、好ましくは、表面61が拡散チャンバ通路19に曝されている結晶を有する、圧電性結晶要素(例えば、SAW56)を有する電子センサ回路81によって行われる。その拡散チャンバおけるMCの結果として、圧電性結晶(例えば、SAW56)のその曝された表面上に蓄積するSMCは、その圧電性結晶の電気的特性を変化させ、これが、その電子回路において検出可能な変化を生じる。しかし、本発明は、拡散チャンバ通路19内のMCを検出するためのいかなる特定の方法にも限定されない。
【0149】
拡散チャンバ通路19内のMCを検出するための例示的センサ81は、SAW56および58を有するSAWシステム、周波数発生/検出回路84、ならびにコントローラ86を含む。SAWデバイス56および回路84は、検出表面61と連結された検出回路を含む。SAW58および回路84は、参照表面71と連結された参照回路を含む。回路84内の比較回路は、検出シグナルと参照シグナルとの間の差異を反映する、センサ出力シグナルSMC(t)を発生する。従って、このシグナルは、流体中の汚染物のレベルに特徴的である。周波数発生/検出回路84は、本発明が属する当業者に公知の回路および技術を使用して、SAW56、58の各々において振動を励起する。部品84に使用され得る周波数発生/検出回路の例は、Bowersらに対して発行された米国特許第5,476,002号において部品29および31として記載される。時間tでの測定SAW56の振動周波数を表すシグナルは、FM(t)として示され、そして時間tでの参照SAW58の振動周波数を表すシグナルは、FR(t)として示される。関連分野の当業者に公知のように、SAW56、58が振動する周波数(すなわち、FM(t)およびFR(t))は、SAWの物理的特性、ならびにその結晶の年数および温度に依存する。SAW56、58は、好ましくは、同じ規格のものである。従って、年数および温度に起因するそれぞれの振動周波数における変化は、実質的に同じである。当業者にまた公知であるように、部品56のようなSAWの表面弾性波の周波数は、SMCがその表面に現れる場合に変化する。しかし、参照SAW58は、密閉されているので、その表面は、MCによって汚染され得ない。これに対して、測定SAW56の表面は、拡散チャンバ通路19の内側に曝されている。従って、拡散チャンバ通路19に拡散された分子汚染物は、SAW56のその曝された表面上にSMCを生じる。振動周波数FM(t)は、このSMCの結果として変化する。検出回路84は、FM(t)とFR(t)とを比較することによって、この変化を検出し、そしてそれらの差異を表すSMC(t)シグナルを発生し、そして従って、SAW56の表面上のSMCを表す。
【0150】
センサ回路81はまた、SMC(t)および他のセンサデータ(例えば、以下に記載する温度および湿度センサ102からのデータなど)を受け取り、そして保存するための、汎用性プログラム可能コンピュータ86を備える。ブロック84および86が、そのそれぞれの機能を記載する目的のためにのみ別個のブロックとして示されることが、さらに理解される。この開示を読めば、当業者は、ブロック84および86の機能が、単一回路および/または回路パッケージに合わされ得ることを理解する。さらに、ブロック84および86の機能は、種々の配置のハードウェア回路に分散され得る。
【0151】
例えば、コンピュータ86は、標準的なIntel(登録商標)Pentium(登録商標)に基づく汎用性プログラム可能コンピュータであり得、このコンピュータは、シグナル(例えば、FM(t)、FR(t)、SMC(t)およびFTAからの他のセンサデータ)を受け取り、そしてフォーマットするための標準的な市販のインターフェースカードを有し、そして例えば、Windows(登録商標)XPオペレーティングシステム下で作動する。
【0152】
設計上の選択に存して、コンピュータ86は、SMC(t)に基づいてアラーム(示さず)を発生し得る。好ましくは、このアラームは、SMC(t)の大きさとその変化速度との組み合わせに基づく。図1を参照して、アラームが、少なくとも一部、SMC(t)の変化速度に基づくべき根拠は、特定のMCが、例えば、SAW56の表面上の不可逆的なSMCを引き起こすことである。このような場合、図1で見られるように、SMC(t)値は、目的の流体における受容可能なレベルのMCの存在下でさえ、時間と共に徐々に増加する。従って、好ましくは、このアラームは、SMC(t)の固定された閾値のみに単に基づくわけではない。その代わりに、このアラームは、好ましくは、SMC(t)の大きさと変化速度との組み合わせに基づき、標準的なソフトウェアコード化方法を使用してコンピュータ86によって容易に実行される。
【0153】
アラームの媒体はまた、設計上の選択であり得る。好ましくは、アラームを示すデータは、コンピュータ86の試験記録保存媒体(示さず)に保存される。音声アラームが発生され得、このアラームは、例えば、FTAを通って流れる流体に関連する製造処理の手動の遮断およびアラームの原因となる事象の即座の調査の、通告または合図を行うことがまた、意図される。
【0154】
図6は、本発明に従うFTA100の代替の実施形態を示す。FTA100は、図2〜5に示されるFTA実施形態との類似性を有し、従って、同じ構造は、同じ参照番号が付けられる。図6を参照して、アイテム100のFTAの重要な特徴は、好ましくは温度/湿度センサ102である環境センサ102である。センサ102は、FTAを通る流体の温度および湿度を検出し、そして環境シグナルTEMP(t)およびHUM(t)103を出力し、これらのシグナルは、時間tでの温度および湿度をそれぞれ反映する。センサ102の根拠は、SAW56の曝露表面での温度レベルおよび湿度レベルが、MCの分子が流体と表面との間で分配される様式に影響を与えるということである。より詳細には、流体の温度レベルおよび湿度レベルは、代表的に、流体と表面との平衡をシフトさせる。結果として、拡散チャンバ通路19内のMCから得られる、表面上のSMC量は、一部、流体の温度/湿度に依存し得る。従って、温度および湿度の効果を補償するために、補償プロセッサ86は、センサ102のシグナルTEMP(t)およびHUM(t)の一方または両方を受け得、そしてSMC(t)シグナルを較正または調整する際に、これらのシグナルの一方または両方を使用し得る。
【0155】
図6の例の構造は、中心本体(表示12’)を有し、この中心本体は、第二の拡散チャンバ通路(表示19’)および第三の凹部(アイテム60’として表示)を備える、より長い主ボア(表示14’)を有する点が、図3および4の中心本体12とは異なる。ベースプレート54’は、センサ102を支持するための領域(番号なし)を有し、そしてセンサピン104を収納するための通過孔を有する点で、図5のベースプレート54とは異なる。センサ102が、FTAを通る流れと流体接続する経路を提供するために、第一の中心管(表示20’)および第二の中心管(20”)が、図3に示される単一の中心管20を置換する。本発明の目的のために、中心管20’および20”は、互いに同一であり得る。第一の中心管20’のテーパー状入口ポート22A’と、流入管38の出口ポートを取り囲むテーパー状ノズル38Aとの間の構造的関係は、図3を参照して記載されるテーパー状ノズル38Aと入口22Aとの間の記載される関係と同じであり得る。テーパー状ノズル26A’と第一の中心管20’の出口および第二の中心管20”のテーパー状入口ポート22A”との間の構造的関係は、アイテム38Aと22A’との間の関係と同じであり得る。これらの構造的関連における類似性の根拠は、テーパー状ノズル26A’とテーパー状入口ポート22A”との間の関係が、好ましくは、粒子汚染物が、第二の拡散通路19’内に進入および増加することを防ぎつつ、FTAを通る流体流れを妨害することなく、センサ102との流体連絡を可能にするということである。
【0156】
図6を参照して、温度/湿度センサ102が、拡散チャンバ19から隔離されない位置に位置し得ることが本発明によって意図されるが、この温度/湿度センサ102は、拡散チャンバ通路19(ここに、SAW56の曝露表面が位置する)から実質的に隔離されたチャンバ内に位置することが好ましい。この隔離についての重要な根拠は、汚染物分子が、センサ102から生じ得るということである。センサ102および測定SAW56の曝露表面は、共通のチャンバに位置し、このような分子は、おそらく、サンプル流体から拡散した汚染物と間違われ得た。従って、温度/湿度センサ102は、図6の例において、ベースプレート54’が取り付けられた後に、第三の凹部60’によって形成される第二のチャンバ19’内に位置する。温度/湿度センサ102は、拡散チャンバ19およびセンサ56の下流に位置することが示されている。温度/湿度センサ102はまた、センサ56の上流、または任意の他の簡便な位置にも位置し得る。
【0157】
図7は、本発明に従う別のFTA120を示す。図7を図2〜6と比較すると、図7は、図2〜6に記載されかつ示される構造を省略した、単純化した図であり、そしてこの記載のために、FTA120に特徴的な細部のみを示す。図7を参照して、FTA120の重要な特徴は、拡散チャンバ通路19と凹部60との間に介在する化学選択性膜122であり、この間において、測定SAW56の検出表面が曝される。SAW56それ自体は、代表的にはどの型のSMCがその表面上にあるかを識別しないが、化学選択性膜122は、本発明のFTAについて汚染物特異的検出特徴を提供する。
【0158】
化学選択性膜122は、図3および5のベースプレート54と中心本体12との間、または図6の膜プレート54’と中心本体12’との間に、中間プレート124を挿入することによって、FAT120内に取り外し可能に固定される。中間プレート124は、ベースプレート54(または54’)上に支持された各SAWについての通過孔126ならびに任意のセンサ(例えば、図6のアイテム102)を有する。中間プレート124は、図4および5を参照して記載されるように、ネジまたは回転ノブによって、ベースプレート54と本体12との間に取りつけられ得る。あるいは、プレート54’は、ベースプレート54からプレートを分離し得、そして中間プレート124は、4つのボルト128によって取り付けられ得、このボルト128は、図7に示されるように膜プレート54’と中心本体12’との間に中間プレート124を取り付け、それによって、測定SAW56上に、化学選択性膜122を取り付ける。図7の例の、化学選択性膜122を取り外し可能に固定するための構造は、同種の別の膜または異なる型の分子を通過もしくはブロックする膜のいずれかによる、膜の容易な交換を可能にする。
【0159】
アイテム122に適切な化学選択性膜材料は、多数の業者から市販される。従って、これらの材料、化学的選択性特徴および操作の詳細な記載は、必要ない。しかし、一般に概観されるように、最も化学選択性膜が気体分子を通過させるかさせないかは、膜材料中の分子の溶解性に基づくことが、当業者によって理解される。例えば、非極性(疎水性)材料は、炭化水素のような非極性分子を通過させる。極性(親水性)材料は、極性有機(一般に低分子)分子および無機分子のような極性化合物を通過させる。さらに、イオン交換膜が、極性化合物のために使用され得る。特定の添加剤(例えば、キレート剤、例えば窒素化合物と複合体を形成する金属)もまた、膜中に組み込まれ得る。
【0160】
図8は、本発明に従う分子汚染モニタリングシステム130中のFTAの例示的適用を示し、この分子汚染モニタリングシステム130は、調節されない流体流れ内のMCをモニタリングするために、外部流体ラインとインライン接続される。図8を参照して、示された例は、第一の外部流入管131に接続された流入コネクタ34を備える、本発明に従うFTAを含み、この第一の外部流入管131は、外部流体源ライン134へと、従来のチューブコネクタ132を介して接続される。FTA流出コネクタ44は、第一の外部流出管136へと接続され、この第一の外部流出管136は、別の従来のチューブコネクタ138を介して、外部流体供給ライン140へと接続する。測定SAW56および参照SAW58(図8には示さず)、ならびに使用される場合、温度/湿度センサ102からの出力は、データプロセッサ(示さず)(例えば、図2のコンピュータ86)によって受け取られる。
【0161】
図9は、本発明に従うFTAモニタリングシステム150の別のバリエーションを示す。図9のFTAのさらなる特徴は、湿性表面または試験表面152であり、これは、取り外し可能なカバー154を有するポータル153を通って、FTA中へと挿入される。図9のFTAは、第三のチャンバ(示さず)内で試験表面152を曝し、この第三のチャンバは、通路(示さず)によって、図3の拡散チャンバ通路19(図9においては示さず)へか、または図6の第二の拡散チャンバ通路19’へか、または通路19および19’について記載されたような構造の別の拡散チャンバ通路(示さず)へと接続されて、測定SAW56の表面に接触するその流体と、流体接触する。
【0162】
次いで、図7の化学選択性膜122が含まれる場合、好ましくは、試験表面152は、測定SAW56と同じ拡散チャンバ通路内または別個の拡散チャンバ(示さず)においてかのいずれかで、膜後の流体に曝されることが理解されるべきである。好ましくは、試験表面152の曝露表面は、少なくとも、目的の種類のMCとの相互作用に関して、化学的特性および物理的特性を有し、これらは、測定SAW56の曝露表面の特性と同一である。このような特性を有するので、SAW56の表面上でSMCを引きおこすMCは、試験表面152の曝露表面上に、実質的に同じSMCを引き起こす。このことは、図9のFTAのユーザが、多くの例において、SMC(t)シグナルの増加を引き起こすMC、およびアラームが使用される場合にはそのアラームを発生させるMCの種類を決定することを可能にする。
【0163】
図9のFTAの例示的操作を記載する。この例について、外部流れ(示さず)が、外部流入コネクタ34に接続されることが想定される。また、流体内のMCが、受容可能なレベルであるが、不可逆的SMCが、測定SAW56の表面上に蓄積することが想定される。従って、SMC(t)シグナルは、ある期間(例えば、5日間)にわたって、実質的に単調なレベルの増加を示した。次いで、本明細書中でtと称される時間にて、流入管38に入る流体のMCレベルの顕著な増加を引き起こす事象が生じることが想定される。増加したMCは、ノズル38Aと中心管20の入口ポート22Aとの間の間隔によって、拡散チャンバ通路19に迅速に拡散し、そして拡散チャンバ通路19内のMCの同様の増加を引き起こす。次に、これは、SAW56の表面上のSMCの高速の増加として示され、実施的に増加した速度での周波数FM(t)の変化を引き起こす。従って、上記のように、アラームは、コンピュータ86によって発生される。対応して、FTA150を通る流れは、設計上の選択に依存して、自動的にか手動でかのいずれかで遮断され得、試験表面152が取り除かれる。次いで、試験表面152を分析して、MCを同定し得る。同定および特徴づけをさらに補助するために、上記のように記録される場合、物理的事象(湿度センサシグナル(HUM(t))および温度センサシグナル(TEMP(t)))をまた、時間tについて獲得し得る。
【0164】
本発明のFTAは、流入管38への、および流出管46を通って外への連続的な流体流れに関して、上に記載されてきた。しかし、本発明のさらなる局面は、非圧縮または非流動性の周囲流体(例えば、空気)内のMCを測定する。図10を参照して、この局面および非圧縮周囲空気(すなわち、「AAMB」)内のMCの測定についての例示的な構造が記載される。
【0165】
図10の例の、モニタリングシステム160は、FTAを備え、このFTAは、オリフィス/フローコントロールユニット200および減圧供給源202と組み合わされた、上記のいずれかおよび本発明のFTAの示されたバリエーションであり得る。オリフィス/フローコントロールユニット200は、例えば、環状オリフィスであり得るか、または関連する分野で公知の、複数の市販のユニットの中から選択されるニードルバルブであり得る。例えばパスカルで測定される、供給源202によって提供される減圧レベルは、FTAを通るAAMBサンプルの流れの所望の圧力および/または粘度に基づいて選択される。
【0166】
FTAを、周囲空気AAMBの近位として、図10に示す。この表示は、説明のためのみであり、限定ではない。実際に、周囲空気AAMBが引かれるサンプル位置(示さず)に対するFTAの位置は、一部、物理的環境によって決定され、そしてさらに、設計上の選択事項であり得る。従って、剛性かまたは可撓性かのいずれかである拡張部分(示さず)は、FTA流入接続部34に装着され得ることが意図される。
【0167】
本発明の図10の局面の例示的操作は、以下の通りである。最初に、使用される任意のサンプリング拡張部分(示さず)は、任意の従来の装着手段を使用して、流入接続部34に装着される。次に、減圧供給源202は、オリフィス/フローコントロールユニット200に接続され、このオリフィス/フローコントロールユニット200は、次に、FTA流出コネクタ44に接続される。次いで、オリフィス/フローコントロールユニット200は、手動手段または自動化手段(示さず)のいずれかによって、開口に切り換えられ、そして予め決定された長さの時間にわたって開口したまま維持され、そしてスイッチを切られる。
【0168】
図11は、本発明のさらなる局面を示し、分子汚染モニタリングシステム170は、サンプル希釈特徴と組み合わせた、本発明のFTAの上記および示されたバリエーションのいずれかを含む。いくつかの例において、SAMPLE流体のMCレベルは、非常に高く、測定SAWまたはFTA内の他の圧電性結晶の寿命をかなり縮め得ることが予想される。図11の例は、FTAに進入する前に、MCおよび粒子汚染物を実質的に含まない希釈流体でSAMPLE流体を希釈することによって、上記の問題を解決する。このサンプル希釈局面は、代表的に、非圧縮SAMPLE流体内の汚染物を測定するための上記の局面と組み合わせて使用される。
【0169】
図11に示されるこのサンプル希釈局面(dilution aspect)の例は、FTAおよびフロースプリッタ300(サンプルポート300A、希釈供給源ポート300B、および混合物出力ポート300Cを有するフロースプリッタ300)を備える。フローコントロールオリフィス302を備えるサンプル流体流れレギュレータは、サンプル(第1)入口ポート300Aに連結され、そしてフローコントロールオリフィス304を備える希釈流体流れレギュレータは、希釈供給源(第2)入口ポート300Bの遠位端に連結される。オリフィス302、304の各々は、制御可能な流速オリフィスであり、この流速オリフィスは、手動により操作される流れ調整機構、またはサーボモーター機構のいずれかを有し、これらの型の各々は、周知であり、そして複数の市販の販売者から入手可能である。このオリフィスは、電気的に制御可能であり、汚染物を含まない気体とサンプルの気体との正確な比を提供し得る。
【0170】
図11に示されるように、減圧供給源306は、図10を参照して記載される減圧供給源202と実質的に同じ目的のために流出管の遠位端に連結されている。フロースプリッタ300のサンプルポート300Aは、サンプルが上記の図11の例の流入管22に連結される場合と実質的に同じ様式で、目的の流体サンプルの非加圧サンプルに連結される。
【0171】
コントロール供給源308は、希釈フローコントロールオリフィス304に連結される。コントロール供給源308は、希釈流体を流出し、この希釈流体は、サンプル流体と化学的に同一であっても、そうでなくてもいいが、好ましくは、実質的に全ての汚染物を取り除くために、ケミカルフィルタ(示さず)、または他の精製手段によって調整される。コントロール供給源308からの希釈流体の流出は、実質的にMCを含まないので、サンプルフローコントロールオリフィス302を通る流速と希釈フローコントロールオリフィス304を通る流速との比例的な差を調整することにより、同一の比例的な差によって、FTAに入る流体のMCレベルを下げる。
【0172】
図11を参照すると、フロースプリッタ300、ならびにフローコントロールオリフィス302、304の接続部および配置の、示されたYチューブ構造は、例示に過ぎず、この構造は、この特徴を記述する目的のために選択されたことが理解される。サンプル希釈のための他の構造および方法が、本発明によって企図される。例えば、統合されたフロー測定デバイス(示さず)を備えた複数経路のバルブ本体(示さず)は、Yチューブ300の換わりに、装着されたフローコントロールオリフィス302、304を用いて使用され得る。
【0173】
本発明が使用され得る多くの用途は、粒子汚染のモニタリングを必要とし、この用途は、製造処理においてそれ自体の効果を有する。図12を参照すると、粒子汚染のモニタリングは、本発明を用いて容易に達成され、単に、粒子汚染物計数器400をFTAの下流に連結することによって、別の例示的なモニタリングシステム180を提供する。上記で同定されるように、FTAは、図2〜7および9を参照して記載される、局面および特徴の組み合わせに従い、そしてその組み合わせを含む、FTAである。アイテム400のために使用され得る市販の粒子計数器の例は、Particle Measuring Systems,Inc.,Boulder CO.から市販されているAIRNETTMモデルである。あるいは、この粒子計数器は、FTAと統合され得る。
【0174】
図12に示されるような粒子計数器400は、図3を参照して説明される、テーパー状ノズル38Aおよびテーパー状ポート22Aの構造および操作、ならびに図6を参照して記載される類似のノズルポート配置(すなわち、FTAを通って粒子汚染物を導入する配置)を利用する一方で、拡散チャンバ経路19へのMCの拡散をもたらす。上記のように、テーパー状ノズル38Aおよびテーパー状ポート22A、ならびにテーパー状ノズル26A’およびテーパー状ポート22A”の形態および構造により、この粒子汚染物を、FTAによってモニタリングすることなく、FTAを実質的に通過させる。従って、粒子汚染計数器400をFTAに単に連結することによって、MCと粒子汚染との両方のための組み合わせ汚染モニタリングシステムが得られる。粒子計数器は、好ましくは、図12に示されるように、FTAに入るサンプル流体のMC汚染を避けるために、FTAの下流に連結される。
【0175】
図13は、本発明に従う、さらなるモニタリングシステム190を示し、このモニタリングシステム190は、アンサンブルマニホルド500と組み合わされた、図12の例示的なモニタリングシステム180を備える。図13に示される、本発明のこの局面の例は、上に記載された、粒子汚染計数器400を備える。しかし、計数器400は、省略され得る。好ましくは、アンサンブルマニホルド500は、2000年8月15日に出願された、同時係属中の米国仮出願番号09/638,366に従う。同時係属中の米国仮出願番号09/638,366に記載されるように、アンサンブルマニホルド500は、複数の流入サンプルポートまたは入口サンプルポート502、接合領域503(この接合領域において、全てのサンプル供給源からのサンプル流体が合わされる)、および出口ポートまたは送達ポート504(このポートを介して、この合わされたサンプルの流れが流動する)を有することが、他の複数の入口マニホルドとは異なる。本明細書中で、送達ポート504は、FTAの流入接続部34に連結される同時係属中の米国仮出願番号09/638,366に記載されるように、アンサンブルマニホルド500には、従来の複数ポート収集システムを越えた複数の利益および利点が存在する。代表的に、この従来の複数ポート収集システムは、連続的に、入口ポートを選択し、そしてサンプリングするための多重化ステッパーを1つずつ使用する。この利点としては、サンプルポート502に流入するサンプル流れの集合を連続的にモニタリングすること、および汲み上げられるが、モニタリングされるのではなく、排気部へ簡単にルート決定される、サンプル流体の量を減少させることが挙げられる。
【0176】
図13を参照すると、サンプルポート502の各々は、代表的に、モニタリングされた環境内のサンプルポイント(示さず)において、例えば、このサンプルポートおよび特定のサンプルプローブ(示さず)に連結される可撓性プラスチックチューブ(示さず)を介してサンプル流体を受容する。サンプルポート502からサンプルプローブへの流体伝導において、材料のガス放出の効果を避けるために、連結(例えば、例示的なプラスチックチューブ)が、保護材料を用いて一本化され得る。
【0177】
好ましくは、流体サンプルの汲み上げは、等速的に行われる。この理由のために、このサンプリングプローブは、好ましくは、等速性サンプリングプローブである。
【0178】
図13を参照すると、このFTAは、入口ポート502の各々を介して受容された流体の凝集を反映する、組み合わされた流体流れ内のMCを検出する際に、上記のように作動する。
【0179】
図14は、本発明に従うさらなるモニタリングシステム600を示し、このモニタリングシステム600は、ポンプ602と流体流れレギュレータ(例えば、FTA内のサンプル流体を加圧するための制限オリフィス604)とを組み合わせたFTAを備える。この加圧領域(PZと標識されている)は、制限オリフィス604に起因するFTA内の背圧から生じる。本発明者らは、SAW56の表面において増加した流体圧で、MC分子がより密にパックされ、分子とSAW56表面との間において増加した衝突頻度を生じることを確認した。これにより、MCがSAW56表面において、SMC蓄積を生じる速度が増加する。結果として、加圧なしで、検出可能な所定のサンプル期間内でSAW56表面上に十分なSMCを作製し得ないMCのレベルは、SAW56の頻度の検出可能な変化をもたらす。従って、図14のシステムは、例えば、周囲の流体内のMCを測定する場合、図10のシステムを越える増加した感度を提供する。
【0180】
図15は、本発明に従うさらなるモニタリングシステム700を示し、このモニタリングシステム(700)は、流体サンプルプレコンセントレータと組み合わされたFTAを備え、このFTAは、予め決められた変化速度の閾値を越える、センサ出力シグナルSMC(t)の閾値または変化速度を越えるMCレベルを検出した場合に、サンプルを取り込むことを誘発する。
【0181】
このFTAにより誘発されたサンプリング特徴の図15の例としては、サンプル流体および収集アセンブリ705を受容するように連結された流入コネクタ34を備えるFTAが挙げられる。収集アセンブリ705は、FTAの下流に連結された、ソレノイドで制御されたポート選択バルブ702、サンプルコレクタ716、フローレギュレータ716、および減圧供給源718を備える。ソレノイドで制御されたバルブ702は、FTA流出チューブコネクタ44に連結された入口ポート704、第1オリフィス708を備える流体流れレギュレータを介して第1減圧供給源710に連結された第1出口ポート706A、キャッププラグ712によってキャップされた第2出口ポート706B、およびサンプルコレクタまたはプレコンセントレータ714の入口714Aに連結された第3出口ポート706Cを有する。サンプルプレコンセントレータ714は、第2オリフィス716を備える第2流体流れレギュレータを介して、第2減圧供給源718に連結する。ソレノイドで制御された図15のバルブ702は、3つの状態を有する。第1の状態は、キャップされる、入口ポート704から第2出口ポート706Bへの流路である。この状態において、FTAを通る流れは存在しない。この第2の状態は、入口ポート704から第1出口ポート706Aへの流路である。この状態において、FTAを通過する流れは、図10を参照して記載される流れに従う。この第3の状態は、入口ポート704から第3出口ポート706Cへの流路である。この状態において、このサンプルは、プレコンセントレータ714をサンプリングするための入口である。
【0182】
同定されたシグナルの変化の大きさおよび速度に基づいた、標準的なトリガリングアルゴリズムを使用して、FTAからのSMC(t)シグナルを受容する、図3のコンピュータ86であり得るトリガーコントローラ720は、バルブコントロールシグナル720を発生する。図15の例において、バルブコントロールシグナル720は、上記の3つの状態間で、ソレノイドで制御されたバルブ702を切り換える。
【0183】
図15の例示的なシステムの代表的な操作は、ソレノイドで制御されたバルブ702を第2の状態に変換するためにバルブコントロールシグナル720を発生し、このサンプル流体を、FTA、第1オリフィスを通って、第1減圧供給源710へ流すことによって開始する。FTAを通過するサンプルフロー内のMCは、上記のように、SMC(t)シグナル内の変化を引き起こす。SMC(t)、またはその速度変化が、予め決定された閾値を越える場合、トリガーコントローラ720は、第3の状態にバルブ702を変換するバブルコントロールシグナル720を発生し、このサンプルをサンプルプレコンセントレータ714に流す。サンプルプレコンセントレータ714への、このサンプルフローの予め決められた数の繰り返しが、TFAによって誘発された後、その含有量が、従来の分析技術を使用して分析される。
【0184】
図15に示される構造701の代替物は、市販されている既製の、FTAの下流に接続された内蔵空気サンプラーである。この唯一の必要とされる改変は、FTAからのSMC(t)シグナル出力と、このような空気サンプラーのコントロール入力(示さず)との間のインターフェースである。サンプルコレクタ/プレコンセントレータ714は、他の市販されている既製のサンプラー(例えば、ポンプ、ソルベントチューブ、インピンジャー、種々の配管配置など)を備え得る。
【0185】
上記のようなFTAで誘発される空気サンプリングは、MC化学種の引き続く同定のための、流体サンプルの有向収集のためにFTAの感度を利用する。上記の化学的選択膜122が、サンプル収集およびプレコンセントレーションにおけるさらなる選択のために使用され得ることが、さらに意図される。
【0186】
図16は、本発明に従うモニタリングシステム800の例を示し、このモニタリングシステム800は、上記のFTAを制御されたサンプルの予熱特徴と組み合わせる。この特徴は、予熱供給源と非加熱供給源との間でのサンプル供給源の変換を提供する。この供給源を換えることによって、特定のMC化学的化合物の熱脱離を可能にする、FTAを通過するサンプルフローの温度が、変化する。このことは、次いで、測定SAWの表面上での、不可逆的SMC、または偽不可逆的SMCもたらす特定のMCの検出を可能にする。偽不可逆的SMCは、表面から(ゆっくりと)エバポレートする汚染であり;例えば、この汚染物供給源が除去される場合、一定の日または週にわたって、偽不可逆汚染は、室温で表面から除去される。
【0187】
図16によって示される例示的な構造は、上記の実施形態、局面および特徴に従い、かつこの実施形態、局面および特徴を有するFTAを、ソレノイドで制御されたバルブ802の第1出口ポート802Aに連結されたこの流入コネクタ34と共に備える。ソレノイドで制御された分配バルブ802の第2出口ポート802Bは、第1オリフィス804を通って、第1減圧供給源806に連結する。ソレノイドで制御された分配バルブ802は、第1および第2の受容ポートまたは流入ポート(それぞれ、808Aおよび808Bと標識されている)を有する。第1の入口ポート808Aは、非加熱のサンプル流体(この例の場合、フィルター処理されていないサンプル流体)を受容する。第2入口ポート808Bは、サンプル流体(このサンプル流体は、ケミカルフィルタ810および加熱器812によって調整される)を受容する。第2入口ポート808Bは、ケミカルフィルタ810および加熱器812によって調整されたサンプル流体を受容する。ケミカルフィルタ810は、好ましくは、サンプルガスから実質的に全ての汚染物を除去し、そして加熱チャンバ812のポート811を受容するようにこのサンプルガスを配向する。この加熱チャンバ入口ポート813は、バルブ812を介してFTA出口通路に連結される。第2減圧供給源812は、FTAの流出コネクタ44に連結する。
【0188】
バルブ802は、減圧供給源806がポート808Aまたは808Bの一方に連結される場合に、減圧供給源816が、ポート808Aおよび808Bの他方に連結されるように設計される。このことにより、測定の安定性を促進し、加熱器812、フィルター810、チュービング、ポート、またはこのシステムの他の部分に流体が停滞して、このバルブの位置が変えられる場合に、汚染物のスパイクにより検出表面に害を及ぼし得ることを防止する。
【0189】
ソレノイドで制御されたバルブ802を制御することによって、このFTAを通るサンプルフローは、加熱されたサンプルおよび/または化学的に濾過されたサンプルと非加熱のサンプルとの間で変換し得る。この温度を変えることにより、特定の場合において、偽不可逆的な表面相互作用が、SAW56の表面で可逆的な汚染物/表面相互作用を引き起こすか、またはSAWを交換した別の圧電性結晶の表面で引き起こす。この特徴は、アンモニア/アミン種のMCを標的化する、電荷移動センサコーティングのために有用であるかもしれないことが意図される。加熱器812は、1つの実施形態において任意であり、そしてケミカルフィルタ810は、別の実施形態において任意である。
【0190】
バルブ(例えば802)はまた、汚染物を実質的に含まないガスで、流入ポート808Aにおいて流入するサンプルを希釈するために使用され得る。上記のように、FTAに流れるガス中の汚染物の希釈は、センサの感度を低下させ、それと同時に、SAW表面61の寿命を増加させる。この特徴は、特に、高度に汚染された領域における測定のために有用である。
【0191】
加熱器812を用いないで使用した場合、このシステム800はまた、高度に揮発性の化合物(例えば、アンモニア)に対する感度を改善するために有用である。あるいは、このシステム800は、サンプル汚染物を含まない空気または制御された公知のクリーンガス供給源、およびもとのままの周囲の空気であり得る。このアプローチは、FTAにより、比較的短い時間フレームにわたる周囲の空気への曝露から発生されるシグナルと比較され得る、バックグラウンドまたは「ゼロ」レベルを決定することを可能にする。この循環頻度を十分な大きさに保つことによって、アンモニアを含む高度に揮発性の化合物が、低い揮発性の汚染物のより低い頻度の変動と区別され得る。このことによりまた、1つのFTAユニットが、有機濃縮物とアンモニアとを同時にモニタリングすることが可能となる。好ましくは、循環期間は、1日より短く、そして好ましくは、約1秒〜約7時間の範囲に及ぶ。より好ましくは、1時間未満である。
【0192】
図面に示され、そして本明細書中で記載される特定の実施形態が、例示の目的のためであり、上記の特許請求の範囲に記載される発明を限定するように解釈されるべきでないことが、理解されるべきである。
【0193】
流体流れ内の分子汚染を検出するためのフロースルーモニター(10、120、130、150、160、170、180、190、600、700、800)を提供する。このモニターは、入口ポート(32)および出口ポート(24、46)を有する拡散チャンバ(19)、ならびにこの入口ポートから出口ポートまで流体流れを支持するための構造体(38A、22A)を有する。この構造体は、ノズル38Aおよびポート22Aを備え、これらの間の隙間は、分子汚染物が拡散チャンバ中に拡散するのを可能にし、同時に、所定の大きさより上の流体流れの速度について、この流体内の粒子汚染物が拡散チャンバに入るのを実質的に防ぐ。SAWデバイス(56)は、拡散チャンバの内側の分子汚染物を検出する。このフロースルーモニターへの流体入力は、延長したモニター寿命の間、純粋な流体によって希釈され得る。凝集体のサンプリングのためのシステム(190)は、このフロースルーモニターの上流にアンサンブルマニホルド(500)を接続する。誘発されたサンプリングのためのシステム(700)は、サンプル予備濃縮機(714)を、このフロースルーモニターの下流に接続する。
【0194】
【発明の効果】
本発明は、上述した構成であるので、前述した課題が達成される。
【図面の簡単な説明】
【図1】図1は、フォトレジストツール付近の測定表面上の例示的なSMCを示す。
【図2】図2は、本発明に従う例示的なFTAの上面図を示す。
【図3】図3は、本発明に従う例示的なFTAの、図2の面3−3を通る、前方断面図を示す。
【図4】図4は、図2および3に従うFTAの中心本体の底面図を示す。
【図5】図5は、図2および3に示される例示的なFTAのベースプレートの上面図を示す。
【図6】図6は、温度/湿度センサおよび第2の拡散チャンバを備えることを除いては、図3のFTAに類似するFTAを備える、本発明の別の局面を示す。
【図7】図7は、図2〜5および6のいずれか1以上に従うFTAを備える、本発明の別の局面を示し、これは、化学選択性膜をさらに備える。
【図8】図8は、本発明のさらなる局面を示し、これは、加圧したガス流をモニターするためにガス線に接続された、本発明に従うFTAを有する。
【図9】図9は、図2〜5、6および7のいずれか1以上に従うFTAを備える、本発明の別の局面を示し、これは、目視ウインドウおよび試験ウェーハ特徴をさらに備える。
【図10】図10は、本発明の別の局面を示し、これは、周囲の空気または他の流体をモニターするために、本発明に従う任意のFTAの下流に減圧が接続されている。
【図11】図11は、サンプル希釈装置と組み合わせた本発明に従うFTAを備える、本発明のさらなる局面を示す。
【図12】図12は、本発明に従うFTAを備え、そして粒子汚染物計数器が下流に接続されている、本発明の別の局面を示す。
【図13】図13は、アンサンブルマニホルドと組み合わせた図12の例示的装置を備える、本発明のさらなる局面を示す。
【図14】図14は、サンプルの加圧のための空気ポンプと組み合わせた本発明に従うFTAを備える、本発明の別の局面を示す。
【図15】図15は、流体サンプル予備濃縮器ユニットと組み合わせた本発明のFTAを備える、本発明のさらなる局面を示し、この流体サンプル予備濃縮器ユニットは、FTAによって起動される。
【図16】図16は、選択的に制御されるサンプル予熱器と組み合わせた本発明に従うFTAを備える、本発明の別の局面を示す。
【符号の説明】
10:分子汚染物モニタリングシステム
11:ハウジング
19:拡散チャンバ
24:拡散チャンバ出口通路
32:拡散チャンバ入口通路
46:拡散チャンバ出口通路
56:表面弾性波(SAW)デバイス
61:検出表面
81:センサ
120:分子汚染物モニタリングシステム
130:分子汚染物モニタリングシステム
150:分子汚染物モニタリングシステム
160:分子汚染物モニタリングシステム
170:分子汚染物モニタリングシステム
180:分子汚染物モニタリングシステム
190:分子汚染物モニタリングシステム
600:分子汚染物モニタリングシステム
700:分子汚染物モニタリングシステム
800:分子汚染物モニタリングシステム

Claims (44)

  1. 分子汚染物モニタリングシステム(10、120、130、150、160、170、180、190、600、700、800)であって、以下:
    拡散チャンバ(19)を形成する、ハウジング(11);
    該ハウジングを通って延在する、拡散チャンバ入口通路(32);
    該ハウジングを通って延在する、拡散チャンバ出口通路(24、46);
    該拡散チャンバの内部に曝される、検出表面(61);および
    センサ(81)であって、該検出表面をモニタリングし、そして該検出表面上の分子汚染物に特徴的なセンサ出力シグナルを提供する、センサ、
    を備え、
    分子汚染物および粒子を含む流体が所定の流速よりも上で該入口通路を通って流れる場合、該入口通路を通る粒子の大部分が、該出口通路内に向けられ、一方、該入口通路を通る分子汚染物の部分が、該拡散チャンバ内に拡散するように、該拡散チャンバ入口通路および該拡散チャンバ出口通路が適合されそして配置され、該分子汚染物の部分が、該センサによって検知されるほど十分に大きい、
    システム。
  2. 請求項1に記載の分子汚染物モニタリングシステムであって、ここで、該センサが、表面弾性波(SAW)デバイス(56)を備える、システム。
  3. 請求項1に記載の分子汚染物モニタリングシステムであって、さらに、以下:
    密閉参照チャンバ(62);
    参照表面(71)であって、前記検出表面と実質的に同一であり、該密閉参照チャンバの内部に曝される、参照表面、
    を備え、そしてここで、該検出表面が、以下:
    検出器回路(56、84)であって、該検出表面と関連し、そして該検出表面の状態を反映する検出シグナルを生成する、検出器回路;
    参照回路(58、84)であって、該参照表面と関連し、そして該参照表面の状態を反映する参照シグナルを生成する、参照回路;および
    比較回路(84)であって、該検出シグナルおよび該参照シグナルを受信し、そして該検出シグナルと該参照シグナルとの間の違いを反映する前記センサ出力シグナルを生成する、比較回路、
    を備える、システム。
  4. 請求項3に記載の分子汚染物モニタリングシステムであって、ここで、前記検出器回路が、前記検出表面に接続された振動性回路をさらに備え、その結果、その振動シグナル周波数が、該検出表面上の分子汚染に従って変化し、そして前記参照回路が、前記参照表面の条件を反映する振動周波数を有する参照シグナルを生成する参照振動性回路を備える、システム。
  5. 請求項1に記載の分子汚染物モニタリングシステムであって、さらに、以下:
    拡散チャンバ内に流れる外的に生成された流体の温度および湿度の少なくとも1つを検出し、応答して環境シグナル(103)を生成するための、環境センサ(102);および
    該環境シグナルおよび該センサ出力シグナルを受信し、修正したセンサ出力シグナルを生成する、補償器プロセッサ(86)、
    を備える、システム。
  6. 請求項1に記載の分子汚染物モニタリングシステムであって、ここで、前記拡散チャンバ入口通路が、拡散チャンバ入口ポート(38B)および該チャンバ入口ポートを取り囲むノズル(38A)を備え、そして該拡散チャンバ出口通路が、拡散チャンパ出口ポート(22)および該チャンバ出口ポートを取り囲むファンネル(22A)を備える、システム。
  7. 請求項6に記載の分子汚染物モニタリングシステムであって、ここで、前記ノズルが、テーパーTを有し、そして前記ファンネルがまた、同じテーパーTを有し、ここで、該ノズルおよびファンネルが、共通軸上で実質的に整列している、システム。
  8. 請求項7に記載の分子汚染物モニタリングシステムであって、ここで、前記ノズルおよびファンネルが、互いに対して間隔を有しており、そして前記テーパーTおよび該間隔が、前記流体の流速の所定範囲内において、該入口通路を通過する実質的に全ての該粒子が、前記出口通路に向けられる、システム。
  9. 請求項1に記載の分子汚染物モニタリングシステムであって、前記出口ポートに接続された粒子計数器(400)をさらに備える、システム。
  10. 請求項1に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ出口通路に接続された減圧供給源(306、402、710)をさらに備える、システム。
  11. 請求項1に記載の分子汚染物モニタリングシステムであって、前記流体を加熱するための加熱器(812)をさらに備える、システム。
  12. 請求項11に記載の分子汚染物モニタリングシステムであって、ここで、前記加熱器が、加熱チャンバ(812)、加熱チャンバ受容ポート(811)、および加熱チャンバ出口ポート(813)を備え、該加熱チャンバ出口ポートが、前記拡散チャンバ入口通路に接続されている、システム。
  13. 請求項12に記載の分子汚染物モニタリングシステムであって、さらに、以下:
    前記加熱流体出口ポートに接続された第1受容ポート(808B)を有する、バルブ(802)、
    外部サンプル流体供給源に接続された第2受容ポート(808A)、
    バルブ出力ポート(802A)、
    を備え、そして該バルブが、外的に生成されたバルブコントロールシグナルに応答して、該バルブ出力ポートに、該第1受容ポートおよび該第2受容ポートから選択された1つを接続するために適合されている、システム。
  14. 請求項1に記載の分子汚染物モニタリングシステムであって、該拡散チャンバ入口通路に接続された、複数の流体入口ポート(300A、300B、502)をさらに備える、システム。
  15. 請求項14に記載の分子汚染物モニタリングシステムであって、アンサンブルマニホルド(500)をさらに備え、該アンサンブルマニホルドが、前記複数の入口ポート(502)と前記拡散チャンバ入口通路との間に接続される、システム。
  16. 請求項15に記載の分子汚染物モニタリングシステムであって、前記出口ポートに接続された粒子計数器(400)をさらに備える、システム。
  17. 請求項14に記載の分子汚染物モニタリングシステムであって、ここで、前記複数の流体入口ポートが、第1入口ポート(300A)および第2入口ポート(300B)を備え、そして該システムが、該第1入口ポートに接続された第1流体流れレギュレータ(302)および該第2入口ポートに接続された第2流体流れレギュレータ(304)をさらに備える、システム。
  18. 請求項17に記載の分子汚染物モニタリングシステムであって、ここで、前記第1流体流れレギュレータおよび第2流体流れレギュレータが、調節可能な計量デバイスを備える、システム。
  19. 請求項18に記載の分子汚染物モニタリングシステムであって、ここで、前記調節可能計量デバイスが、調節可能オリフィスを備える、システム。
  20. 請求項17に記載の分子汚染物モニタリングシステムであって、前記汚染物を実質的に含まない流体の供給源(308)をさらに備え、該供給源が、前記第1入口ポートに接続されている、システム。
  21. 請求項20に記載の分子汚染物モニタリングシステムであって、ここで、前記汚染物を実質的に含まない流体の供給源が、ケミカルフィルタを備える、システム。
  22. 請求項21に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ出口通路に接続された減圧供給源(306、402)をさらに備える、システム。
  23. 請求項14に記載の分子汚染物モニタリングシステムであって、ここで、前記複数の流体入口ポートが、第1入口ポート(808A)および第2入口ポート(808B)を備え、該システムが、該第1入口ポートおよび第2入口ポートと前記拡散チャンバ入口通路との間に接続されるポート選択バルブ(802)をさらに備える、システム。
  24. 請求項23に記載の分子汚染物モニタリングシステムであって、前記汚染物を実質的に含まない流体の供給源(810)をさらに備え、該供給源が、前記第1入口ポートおよび第2入口ポートのうちの1つに接続され、これによって、該ポート選択バルブを操作することにより、ユーザが、入口通路に対する通過のための、周囲流体および汚染物を含まない流体を二者択一的に選択し得る、システム。
  25. 請求項24に記載の分子汚染物モニタリングシステムであって、前記汚染物を実質的に含まない流体の供給源と前記ポート選択バルブとの間で接続される流体加熱器(812)をさらに備える、システム。
  26. 請求項24に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ出口通路に接続された、第1減圧供給源(816)をさらに備える、システム。
  27. 請求項26に記載の分子汚染物モニタリングシステムであって、前記減圧供給源と前記拡散チャンバ出口通路との間に接続された、流体流れレギュレータ(818)をさらに備える、システム。
  28. 請求項26に記載の分子汚染物モニタリングシステムであって、前記ポート選択バルブに接続された第2減圧供給源(806)をさらに備え、前記第1減圧供給源が前記第1入口ポートおよび第2入口ポートのうちの1方に接続される場合、該第2減圧供給源が、該第1入口ポートおよび第2入口ポートのうちの他方に接続されるように、該ポート選択バルブが配置される、システム。
  29. 請求項28に記載の分子汚染物モニタリングシステムであって、前記第1減圧供給源と第2拡散チャンバ出口通路との間に接続された第1流体流れレギュレータ(818)、および前記第2減圧供給源と前記ポート選択バルブとの間に接続された第2流体流れレギュレータ(804)をさらに備える、システム。
  30. 請求項29に記載の分子汚染物モニタリングシステムであって、前記汚染物を実質的に含まない流体の供給源と前記ポート選択バルブとの間に接続された流体加熱器(812)をさらに備える、システム。
  31. 請求項1に記載の分子汚染物モニタリングシステムであって、さらに、以下:
    第1受容ポート(808A)、第2受容ポート(808B)、混合流体出口ポート(802A)を有する、分配バルブ(802)、
    を備え、該分配バルブが、外的に生成された分配シグナルに接続され、そして該混合流体出力ポートから出る流体が、該分配シグナルによって決定される比を含み、該比が該第1受容ポートに入る流体および該第2受容ポートに入る流体の比であるように、該第1受容ポートと該第2受容ポートと該混合流体出力ポートとの間の流れ経路を確立する、システム。
  32. 請求項1に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ出口通路に接続された収集アセンブリ(705)をさらに備える、システム。
  33. 請求項32に記載の分子汚染物モニタリングシステムであって、ここで、前記収集アセンブリが、以下:吸収剤材料、インピンジャー、COTSサンプラー、およびバイパス可能ポンプ送り経路のうちの1つ以上を備える、システム。
  34. 請求項33に記載の分子汚染物モニタリングシステムであって、第1出口ポート(706A)および第2出口ポート(706C)をさらに備え、そして前記収集アセンブリが、前記拡散チャンバ出口通路と前記出口ポートとの間に配置される出口ポート選択バルブ(702)、および該第2出口ポートに接続されるコレクター(714)を備える、システム。
  35. 請求項34に記載の分子汚染物モニタリングシステムであって、前記センサ出力シグナルに応答して、選択バルブコントロールシグナルを生成するためのサンプラーコントローラー(86)をさらに備える、システム。
  36. 請求項35に記載の分子汚染物モニタリングシステムであって、ここで、前記サンプラーコントローラーが、所定の出力シグナル閾値を越える前記センサ出力シグナル、または所定の変化速度の閾値を越える該センサ出力シグナルの変化速度に応答して、該コレクターに流体を向けるための選択バルブを制御する、システム。
  37. 請求項1に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ入口通路に接続されたガス加圧器(602)をさらに備える、システム。
  38. 請求項37に記載の分子汚染物モニタリングシステムであって、前記拡散チャンバ出口通路に接続された流体流れレギュレータ(604)をさらに備える、システム。
  39. 請求項1に記載の分子汚染物モニタリングシステムであって、前記分子汚染物を収集するために適合され、そして前記検出表面と同じ流体をサンプリングするために配置された、試験表面(152)をさらに備える、システム。
  40. 請求項39に記載の分子汚染物モニタリングシステムであって、さらに、以下:
    前記試験表面を通過するために前記ハウジングを通る、ポータル(153);および
    該試験表面を囲うための、該ポータル上の除去可能カバー(154)、
    を備える、システム。
  41. 請求項39に記載の分子汚染物モニタリングシステムであって、前記試験表面および前記検出表面が、同じ表面材料を含む、システム。
  42. 請求項39に記載の分子汚染物モニタリングシステムであって、ここで、前記試験表面および前記検出表面が、異なる表面材料を含む、システム。
  43. 請求項1に記載の分子汚染物モニタリングシステムであって、ここで、前記検出表面が、圧電結晶の表面である、システム。
  44. 請求項1に記載の分子汚染物モニタリングシステムであって、前記検出チャンバ入口通路と前記検出表面との間に配置された、化学選択性膜(122)をさらに備える、システム。
JP2003178805A 2002-06-24 2003-06-23 分子汚染モニタリングシステムおよび分子汚染モニタリング方法 Expired - Lifetime JP4283047B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/178,818 US7208123B2 (en) 2002-06-24 2002-06-24 Molecular contamination monitoring system and method

Publications (3)

Publication Number Publication Date
JP2004069686A JP2004069686A (ja) 2004-03-04
JP2004069686A5 JP2004069686A5 (ja) 2006-07-06
JP4283047B2 true JP4283047B2 (ja) 2009-06-24

Family

ID=27662637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178805A Expired - Lifetime JP4283047B2 (ja) 2002-06-24 2003-06-23 分子汚染モニタリングシステムおよび分子汚染モニタリング方法

Country Status (4)

Country Link
US (1) US7208123B2 (ja)
JP (1) JP4283047B2 (ja)
DE (1) DE10328366A1 (ja)
GB (1) GB2390161B (ja)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ526815A (en) * 2003-07-03 2005-09-30 Agres Ltd A method of and means for detecting the presence of a biosecurity threat in a confined environment
US20050028593A1 (en) * 2003-08-04 2005-02-10 Particle Measuring Systems, Inc. Method and apparatus for high sensitivity monitoring of molecular contamination
US7328629B2 (en) * 2004-04-22 2008-02-12 Gas Technology Institute Method and apparatus for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling
US7866211B2 (en) * 2004-07-16 2011-01-11 Rosemount Inc. Fouling and corrosion detector for process control industries
JP4706269B2 (ja) * 2005-01-27 2011-06-22 凸版印刷株式会社 汚染物分析用捕集装置
US7586199B1 (en) 2005-03-23 2009-09-08 Marvell International Ltd. Structures, architectures, systems, methods, algorithms and software for configuring and integrated circuit for multiple packaging types
US8405220B1 (en) 2005-03-23 2013-03-26 Marvell International Ltd. Structures, architectures, systems, methods, algorithms and software for configuring an integrated circuit for multiple packaging types
DE102006013612B4 (de) * 2006-03-22 2012-10-18 Hydrometer Gmbh Einrichtung zur Erfassung des Durchflusses oder der Wärme- oder Energiemenge eines in einer Rohrleitung strömenden Mediums, insbesondere Wassers
DE102006013613A1 (de) * 2006-03-22 2007-10-04 Hydrometer Gmbh Einrichtung zur Erfassung des Vorhandenseins eines oder mehrerer Stoffe oder Verbindungen in einem in einer Rohrleitung strömenden Medium
DE102006015535A1 (de) * 2006-03-31 2007-10-04 Thermo Electron (Bremen) Gmbh Verfahren und Vorrichtung zur Analyse von Isotopenverhältnissen
EP2097731A4 (en) * 2006-12-28 2017-06-28 PECOFacet (US), Inc. Systems and methods for measurement and analysis of pipeline contaminants
US7854158B2 (en) * 2006-12-28 2010-12-21 Perry Equipment Corporation Systems and methods for measurement and analysis of pipeline contaminants
WO2008118769A1 (en) * 2007-03-23 2008-10-02 Particle Measuring Systems, Inc. Optical particle sensor with exhaust-cooled optical source
US7948621B2 (en) * 2007-06-28 2011-05-24 Perry Equipment Corporation Systems and methods for remote monitoring of contaminants in fluids
WO2009018305A1 (en) * 2007-07-30 2009-02-05 Particle Measuring Systems, Inc. Detection of analytes using ion mobility spectrometry
JP4831061B2 (ja) * 2007-12-26 2011-12-07 パナソニック株式会社 電子部品実装用装置および電子部品実装用装置の非常停止方法
WO2010013084A1 (en) * 2008-07-31 2010-02-04 Facet Iberica, S.A. Fuel quality traceable and remote system
US8292990B2 (en) * 2008-09-05 2012-10-23 Tsi, Incorporated Nebulizer waste pressure reducer for HPLC systems
DE102009022492A1 (de) 2009-05-25 2010-12-02 Sensaction Ag Vorrichtung zur Bestimmung der Eigenschaften eines Mediums in Form einer Flüssigkeit oder eines weichen Materials
JP5294124B2 (ja) * 2009-05-25 2013-09-18 清水建設株式会社 ガスモニタリング装置およびガスモニタリング方法
EP2470876B1 (en) 2009-08-24 2017-04-05 Particle Measuring Systems, Inc. Flow monitored particle sensor
US8474335B2 (en) * 2010-01-12 2013-07-02 Veltek Associates, Inc. Microbial air sampler
US10571369B2 (en) 2012-07-12 2020-02-25 Veltek Associates, Inc. Ergonomic microbial air sampler
US11787596B2 (en) 2012-07-12 2023-10-17 Veltek Associates, Inc. Ergonomic microbial air sampler
US9714887B2 (en) * 2012-09-04 2017-07-25 Taiwan Semiconductor Manufacturing Company, Ltd. Detection method for substance and system thereof
US12044611B2 (en) 2013-03-15 2024-07-23 Particles Plus, Inc. Particle counter with integrated bootloader
US9677990B2 (en) 2014-04-30 2017-06-13 Particles Plus, Inc. Particle counter with advanced features
US11579072B2 (en) 2013-03-15 2023-02-14 Particles Plus, Inc. Personal air quality monitoring system
US10983040B2 (en) 2013-03-15 2021-04-20 Particles Plus, Inc. Particle counter with integrated bootloader
US10352844B2 (en) 2013-03-15 2019-07-16 Particles Plus, Inc. Multiple particle sensors in a particle counter
CN103234881A (zh) * 2013-04-09 2013-08-07 安徽省安光环境光学工程技术研究中心有限公司 一种大气颗粒物监测仪
ITRM20130128U1 (it) 2013-07-23 2015-01-24 Particle Measuring Systems S R L Dispositivo per il campionamento microbico dell'aria
US9752965B2 (en) 2013-10-16 2017-09-05 Sensigent LLC Apparatus and method for fast sampling and measurement
WO2015148148A1 (en) 2014-03-14 2015-10-01 Particle Measuring Systems, Inc. Pressure-based airflow sensing in particle impactor systems
US9631222B2 (en) 2014-03-14 2017-04-25 Particle Measuring Systems, Inc. Filter and blower geometry for particle sampler
JP6362493B2 (ja) * 2014-09-19 2018-07-25 日本電波工業株式会社 感知センサ
WO2017127120A1 (en) * 2016-01-22 2017-07-27 Hewlett-Packard Development Company, L.P. Fluid sensing with control of particle aggregation in sensing zone
CN106370570B (zh) 2016-08-25 2020-07-10 北京小米移动软件有限公司 颗粒物测量值的校准方法及装置
DE102017106967A1 (de) * 2017-03-31 2018-10-04 Aixtron Se Vorrichtung und Verfahren zur Bestimmung der Konzentration eines Dampfes
US10410936B2 (en) * 2017-05-19 2019-09-10 Illinois Tool Works Inc. Methods and apparatuses for effluent monitoring for brush conditioning
EP3421947B1 (en) 2017-06-30 2019-08-07 Sensirion AG Operation method for flow sensor device
EP3258241B1 (en) 2017-09-14 2019-12-25 Sensirion AG Particulate matter sensor device
JP7326256B2 (ja) 2017-10-26 2023-08-15 パーティクル・メージャーリング・システムズ・インコーポレーテッド 粒子計測システム及び方法
JP2019090742A (ja) * 2017-11-16 2019-06-13 日立金属株式会社 固体微粒子質量測定装置
WO2020047457A1 (en) 2018-08-31 2020-03-05 Particle Measuring Systems, Inc. Fluid refractive index optimizing particle counter
KR20210052506A (ko) 2018-09-04 2021-05-10 파티클 머슈어링 시스템즈, 인크. 생산 장비 및 표면에서 나노입자 검출
US11181455B2 (en) 2018-11-12 2021-11-23 Particle Measuring Systems, Inc. Calibration verification for optical particle analyzers
US11385161B2 (en) 2018-11-12 2022-07-12 Particle Measuring Systems, Inc. Calibration verification for optical particle analyzers
WO2020102299A1 (en) 2018-11-16 2020-05-22 Particle Measuring Systems, Inc. Slurry monitor coupling bulk size distribution and single particle detection
WO2020102032A1 (en) 2018-11-16 2020-05-22 Particle Measuring Systems, Inc. Particle sampling systems and methods for robotic controlled manufacturing barrier systems
EP3657152B1 (de) 2018-11-26 2023-10-04 OHB System AG Probe zur partikelmessung, probenbehälter und verfahren zur partikelmessung
FR3092409B1 (fr) * 2019-02-05 2021-02-12 Pfeiffer Vacuum Procédé de réglage d’une station de mesure de la contamination moléculaire véhiculée par l’air et station de mesure
US10955318B2 (en) * 2019-04-23 2021-03-23 Pall Corporation Aircraft air contaminant analyzer and method of use
US11237095B2 (en) 2019-04-25 2022-02-01 Particle Measuring Systems, Inc. Particle detection systems and methods for on-axis particle detection and/or differential detection
WO2021041420A1 (en) * 2019-08-26 2021-03-04 Particle Measuring Systems, Inc Triggered sampling systems and methods
US11162933B2 (en) * 2019-09-11 2021-11-02 Haier Us Appliance Solutions, Inc. System and method for detecting heavy metals in a fluid
US10997845B2 (en) 2019-10-07 2021-05-04 Particle Measuring Systems, Inc. Particle detectors with remote alarm monitoring and control
JP2022550418A (ja) 2019-10-07 2022-12-01 パーティクル・メージャーリング・システムズ・インコーポレーテッド 抗菌粒子検出器
IT201900020248A1 (it) 2019-11-04 2021-05-04 Particle Measuring Systems S R L Dispositivo di monitoraggio mobile per aree a contaminazione controllata
CN114729868A (zh) 2019-11-22 2022-07-08 粒子监测系统有限公司 先进的用于干涉测量颗粒检测和具有小大小尺寸的颗粒的检测的系统和方法
TWI829492B (zh) 2020-01-21 2024-01-11 美商粒子監測系統有限公司 撞擊器及用於對來自一流體流之生物顆粒取樣之方法
DE102020205206A1 (de) 2020-04-08 2021-10-14 Vitesco Technologies GmbH Detektionsvorrichtung für Atemluft
US11988591B2 (en) 2020-07-01 2024-05-21 Particles Plus, Inc. Modular optical particle counter sensor and apparatus
CN111811980B (zh) * 2020-08-17 2021-02-02 苏州英柏检测技术有限公司 一种便携式柴油车尾气检测装置
US11674536B2 (en) 2020-12-14 2023-06-13 Caterpillar Inc. Guide element for hydraulic fluid
US11733144B2 (en) 2020-12-14 2023-08-22 Caterpillar Inc. Convertible housing assembly for a particle sensor
CN113063488A (zh) * 2021-03-22 2021-07-02 南京君之晔科技有限公司 一种超快速自动采样切换系统
CN112858118B (zh) * 2021-03-31 2022-11-08 华北电力大学(保定) 一种用于室内环境颗粒物检测装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172770A (en) * 1978-03-27 1979-10-30 Technicon Instruments Corporation Flow-through electrochemical system analytical method
US4312180A (en) * 1979-09-28 1982-01-26 Battelle Development Corporation Detecting particles
US4743954A (en) * 1985-06-07 1988-05-10 University Of Utah Integrated circuit for a chemical-selective sensor with voltage output
US4808813A (en) * 1986-05-05 1989-02-28 Hughes Aircraft Company Self contained surface contamination sensor for detecting external particulates and surface discontinuities
JPH0726683Y2 (ja) * 1989-06-12 1995-06-14 日本碍子株式会社 工業用ガス濃度測定装置
JP3109060B2 (ja) * 1991-09-26 2000-11-13 住友電気工業株式会社 表面弾性波素子
US5476002A (en) * 1993-07-22 1995-12-19 Femtometrics, Inc. High sensitivity real-time NVR monitor
JP3258488B2 (ja) * 1994-03-23 2002-02-18 日本碍子株式会社 酸素検出装置
US5795993A (en) * 1995-11-29 1998-08-18 Sandia Corporation Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent
US5918258A (en) * 1996-07-11 1999-06-29 Bowers; William D. High-sensitivity instrument to measure NVR in fluids
US5709040A (en) * 1996-12-04 1998-01-20 White Consolidated Industries, Inc. Exhaust air particulate contamination sensing for tumbler dryers
US6321588B1 (en) * 1998-09-11 2001-11-27 Femtometrics, Inc. Chemical sensor array
JP2000214140A (ja) * 1999-01-20 2000-08-04 Kubota Corp センサ
DE60026309T2 (de) * 1999-05-10 2006-12-14 California Institute Of Technology, Pasadena Verwendung eines räumlich-zeitlichen reaktionsverhaltens in sensor-arrays zur detektion von analyten in fluiden
EP1232380A2 (en) * 1999-11-17 2002-08-21 Femtometrics, Inc. Preconcentrator for chemical detection
US6615679B1 (en) * 2000-08-15 2003-09-09 Particle Measuring Systems, Inc. Ensemble manifold, system and method for monitoring particles in clean environments
JP2002333394A (ja) * 2001-05-09 2002-11-22 Fujitsu Ltd 分子汚染濃度計測方法及びその計測装置

Also Published As

Publication number Publication date
US20030235926A1 (en) 2003-12-25
GB2390161B (en) 2005-12-07
DE10328366A1 (de) 2004-02-05
US7208123B2 (en) 2007-04-24
JP2004069686A (ja) 2004-03-04
GB0314105D0 (en) 2003-07-23
GB2390161A (en) 2003-12-31

Similar Documents

Publication Publication Date Title
JP4283047B2 (ja) 分子汚染モニタリングシステムおよび分子汚染モニタリング方法
US7430893B2 (en) Systems and methods for detecting contaminants
KR101874651B1 (ko) 공중 분석 대상물들의 검출을 위한 유량 조절 시스템 및 상기 유량 조절 시스템을 포함하는 모니터링 장치
AU665446B2 (en) Vacuum dilution extraction gas sampling system and method
US6295864B1 (en) Analysis system and method for water-soluble contaminants in a cleanroom environment
US6096267A (en) System for detecting base contaminants in air
US5317930A (en) Constant flowrate controller for an aerosol sampler using a filter
US5753791A (en) Multisample dynamic headspace sampler
US7573573B1 (en) Method and particle measuring and counting apparatus with selectable channels of a specimen flow
US20060108221A1 (en) Method and apparatus for improving measuring accuracy in gas monitoring systems
US7092077B2 (en) System and method for monitoring contamination
JP2002535619A (ja) ガス試料中の塩基性汚染物質の検出
KR20060121858A (ko) 반응성 가스 필터
US3787122A (en) Light scattering particle analyzer
US20050120775A1 (en) Systems and methods for detecting contaminants
US6176120B1 (en) Methods of analyzing water soluble contaminants generated during microelectronic device manufacturing processes
US7087434B2 (en) Automatic portable formaldehyde analyzer
CN101839878A (zh) 高纯气(或电子气)中痕量气态杂质分析方法和装置
WO2023093203A1 (zh) 分形态大气汞监测设备及监测方法
EP2097731A1 (en) Systems and methods for measurement and analysis of pipeline contaminants
JPH11226341A (ja) 気体の浄化方法及び装置
EP0568610B1 (en) Feedback controlled gas mixture generator especially for an hygrometer reaction check
US11307186B2 (en) Integration and active flow control for environmental sensors
JP2002214116A (ja) ケミカルフィルタのガス除去率試験方法および試験装置
Schwab et al. Laboratory characterization of modified tapered element oscillating microbalance samplers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4283047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term