JP4256898B2 - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP4256898B2
JP4256898B2 JP2007111987A JP2007111987A JP4256898B2 JP 4256898 B2 JP4256898 B2 JP 4256898B2 JP 2007111987 A JP2007111987 A JP 2007111987A JP 2007111987 A JP2007111987 A JP 2007111987A JP 4256898 B2 JP4256898 B2 JP 4256898B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
catalyst
value
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007111987A
Other languages
English (en)
Other versions
JP2008267283A (ja
Inventor
英樹 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007111987A priority Critical patent/JP4256898B2/ja
Priority to US11/841,045 priority patent/US7661264B2/en
Priority to DE102007057632A priority patent/DE102007057632B4/de
Publication of JP2008267283A publication Critical patent/JP2008267283A/ja
Application granted granted Critical
Publication of JP4256898B2 publication Critical patent/JP4256898B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • F02D41/2458Learning of the air-fuel ratio control with an additional dither signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

この発明は、内燃機関の空燃比制御装置に関するものである。
内燃機関の排気通路には、一般的に排気ガス中のHC、CO、NOxを同時に浄化する3元触媒を備えた触媒コンバータが設置される。この触媒コンバータに於ける触媒では、理論空燃比付近でHC、CO、NOxの何れについても浄化率が高くなる。このため、通常、触媒の上流側にO2センサを設け、この上流側O2センサの検出値に基づいて空燃比を理論空燃比付近となるように制御している。
この触媒の上流側に設けられる上流側O2センサは、できるだけ内燃機関の燃焼室に近い排気系の個所、即ち触媒より上流である排気マニホールドの集合部分に設けられているが、高い排気温度に晒され、かつ種々の有毒物による被毒により、上流側O2センサの出力特性は大きく変動する。そこで、この出力特性の変動を補償するために、触媒の下流側に下流側O2センサを設け、上流側O2センサによる第1の空燃比フィードバック制御に加えて、下流側O2センサによる第2の空燃比フィードバック制御を行うダブルO2センサシステムが既に提案されている(例えば、特許文献1、特許文献2参照)。
この様な従来の内燃機関の空燃比制御装置に於いて、下流側O2センサは、上流側O2センサに比較して応答速度は低いが、以下のような長所がある。即ち、触媒の下流側では、排気温度は低いために熱による影響が少なく、又、種々の有毒物は触媒によってトラップされており被毒は少ないため、下流側O2センサの出力特性の変動は小さい。さらに、触媒の下流側では、排気ガスがより混合されているため、下流側O2センサの上流に位置する触媒の浄化状態を安定的に検出することができる。
又、前述の従来のダブルO2センサシステムを用いた内燃機関の空燃比制御装置によれば、触媒に対する上流側の空燃比を補正し、下流側O2センサの出力を目標値に維持することにより、上流側O2センサの出力特性の変動を補償することができ、又触媒の浄化状態を良好に保つことができる。
更に、触媒には、上流側空燃比の理論空燃比からの一時的な変動を吸収するために、酸素ストレージ能力が付加されており、空燃比が理論空燃比よりリーン側の場合には、触媒は排気ガス中の酸素を取り込んで蓄積する一方、リッチ側の場合は、触媒中に蓄積されている酸素を放出する。このように、触媒はフィルタ若しくは空燃比の平均化のような作用を持ち、上流側の空燃比の変動は触媒内で平均化されて触媒の下流側の空燃比となる。
又、酸素ストレージ量の上限値は、触媒の製造時に添付される酸素ストレージ能力を持つ物質の量により決まる。従って、酸素ストレージ量がその上限値、及び下限値「0」に到達すると、もはや上流側空燃比の変動を吸収できなくなり、触媒内の空燃比は理論空燃比から外れ、触媒の浄化能力は低下する。この時、下流側の空燃比は理論空燃比から大きく外れるため、酸素ストレージ量の上限値、下限値「0」への飽和を検出することができる。
理論空燃比付近で、排気ガス中のHC、CO、NOxのいずれもの浄化率が高くなるが、触媒の酸素ストレージ量が上限値の半分程度の量となっている場合に浄化率が最も高くなる。又、上限値から下限値の中間の触媒酸素ストレージ量は、下流側の空燃比の理論空燃比付近での微小変化により検出することができる。そのため、下流側O2センサの出力を目標値に制御することで、酸素ストレージ量を上限値の半分程度の量に制御し、触媒の浄化率を高く維持することができる。
一般に、内燃機関への燃料供給を停止する燃料カット中は、上流側の空燃比は大幅にリーンになるため、触媒の酸素ストレージ量は急速に増加してその上限値に到達し、触媒の浄化特性は大幅に悪化する。このため燃料供給の再開後はできるだけ早く触媒の酸素ストレージ量を上限値の半分程度の適切な量に復帰させ、触媒の浄化特性を回復する必要がある。
又、触媒コンバータに於ける触媒は、高温の排ガス温度下に晒されるため、車両を通常考えられる使用条件では、その機能が急激に低下しないように設計されている。しかし、内燃機関の運転中に何らかの原因、例えば失火により排ガス温度が異常に高くなった場合には、触媒の酸素ストレージ量の上限値は著しく低下してしまう。又、通常の使用条件でも走行距離が数万キロメートルにも達してくると触媒の経年劣化により、徐々に酸素ストレージ量の上限値が低下していく。従って、この触媒の劣化による酸素ストレージ量の上限値の低下と触媒の排ガス浄化性能の低下とは相関があり、酸素ストレージ量の上限値の低下を検出することにより触媒の劣化を検出することができる。触媒の劣化が進行すると、環境汚染を引き起こすため、許容範囲を超えた触媒の劣化を検出して警告灯等によりユーザに知らせ、触媒の交換を促す必要がある。
図19は、下流側O2センサの出力V2の変化を示す特性図で、(A)は触媒が正常な場合を示し、(B)は触媒が劣化した場合を示す。触媒が正常な場合の図19の(A)に比べて、図19の(B)に示す劣化した触媒の場合、触媒の劣化により、触媒の酸素ストレージ量の上限値が減少するにつれ、燃料供給をカットする燃料カット状態の解除の時点t1後に、下流側O2センサの出力V2が目標値に復帰するまでの時間が短くなる。これは、酸素ストレージ量の上限値の減少とともに、上限値から上限値の半分程度に復帰するまでに必要な酸素ストレージの変化量が減少するため、同じ空燃比制御を行なった場合、復帰するまでの時間が短くなるためである。このため、燃料カット解除の時点t1後に、下流側O2センサの出力V2が目標値に復帰するまでの復帰時間を計測することにより、触媒の劣化判定を行なうようにした装置が既に提案されている(例えば、特許文献3、特許文献4参照)。
これらの特許文献3、4に示された従来の装置は、燃料カットにより触媒酸素ストレージ量が上限値に到達することを利用し、劣化診断開始前の条件を揃えており、診断開始前に上流側空燃比をリーン化する等の特別な空燃比制御は必要ない。又、リーン化を行なう場合はNOx排出が増加する恐れがあるが、燃料カット中はNOx排出が増加する恐れがない利点がある。更に、第2の空燃比フィードバック制御により自動的に下流側O2センサの出力が目標値に復帰する挙動を利用して触媒劣化診断を行なっており、診断中に上流側空燃比をリッチ化する等の特別な空燃比制御の必要はない。又、リッチ化を行なうと触媒酸素ストレージ量が下限値まで飽和しHC、COの排出が増加する恐れがあるが、第2の空燃比フィードバック制御を利用しているため排ガスの悪化を招くことがない。
特開昭63−195351号公報 特開平6−42387号公報 特開平2−33408号公報 特開平2−136538号公報
しかし、このような従来の装置では、第2の空燃比フィードバック制御の挙動が毎回同じであるか、若しくは燃料カット解除後にアイドル運転条件が継続する等、同じ条件では触媒の劣化判定の精度は高いが、第2の空燃比フィードバック制御のゲインが変化した場合、若しくは燃料カット解除後に加速或いは減速を行う等運転条件が変動した場合には、触媒の劣化判定の精度は大幅に悪化するという課題があった。これは、時間計測だけでは触媒の酸素ストレージ量の挙動を精度良く表現できないために生じる。
又、触媒による酸素ストレージ量の変化速度は、上流側空燃比の理論空燃比からの偏差及び吸入空気量に比例する。このため、第2の空燃比フィードバック制御のゲインの変化により上流側空燃比の理論空燃比からの操作量が変化した場合には、酸素ストレージ量の変化速度が変化するため、復帰時間が増減し劣化判定精度が低下する。更に、加速又は減速により吸入空気量が変化した場合には、酸素ストレージ量の変化速度が変化するため、復帰時間が増減し劣化判定精度が低下する。
又、上流側O2センサとして理論空燃比付近で急激に出力が変化するλO2センサを用いた場合は、その2値的な特性により上流側空燃比の理論空燃比からの偏差が検出できないため、上流側の空燃比も考慮して触媒の酸素ストレージ量の挙動を演算できない等の課題があった。
この発明は、従来の内燃機関の空燃比制御装置における前述のような課題に鑑みて成されたもので、触媒の劣化を高精度に判定することができる内燃機関の空燃比制御装置を得ることを目的とするものである。
この発明による内燃機関の空燃比制御装置は、内燃機関の排気系に設置され前記内燃機関からの排気ガスを浄化する触媒と、前記触媒の上流側に設けられ上流側排気ガス中の空燃比を検出する第1の空燃比センサと、前記触媒の下流側に設けられ下流側排気ガス中の空燃比を検出する第2の空燃比センサと、前記第1の空燃比センサの出力値と所定の制御定数とに応じて前記内燃機関に供給する空燃比を調整して、前記触媒の上流側排気ガス中の空燃比を周期的にリッチ方向およびリーン方向に振動させる第1の空燃比フィードバック制御手段と、前記第2の空燃比センサの出力値と目標値とが一致するように前記制御定数を変化させ、前記周期的に振動する前記上流側排気ガス中の空燃比を平均化した平均空燃比を操作する第2の空燃比フィードバック制御手段とを備えた内燃機関の空燃比制御装置であって、前記内燃機関への燃料の供給が停止された燃料カットの状態を検出する燃料カット状態検出手段と、前記燃料カット状態検出手段が前記燃料カットの状態の解除を検出してから前記第2の空燃比センサの出力値が前記目標値付近の所定の復帰判定値に一致するまでの期間と前記第2の空燃比フォードバック制御手段による前記上流側の前記平均空燃比の操作量とに基づいて前記触媒の劣化を判定する触媒劣化判定手段とを備えたものである。
この発明による内燃機関の空燃比制御装置によれば、内燃機関への燃料の供給が停止された燃料カットの状態を検出する燃料カット状態検出手段と、燃料カット状態検出手段が燃料カットの状態の解除を検出してから第2の空燃比センサの出力値が目標値付近の所定の復帰判定値に一致するまでの期間と第2の空燃比フォードバック制御手段による上流側の前記平均空燃比の操作量とに基づいて触媒の劣化を判定する触媒劣化判定手段とを備えたので、触媒の劣化判定の精度を向上させることができる。
実施の形態1.
図1は、この発明の実施の形態1に係る内燃機関の空燃比制御装置を示す全体概略図である。図1において、内燃機関(エンジンとも称するが、以下の説明では、内燃機関と称する)を構成する機関本体1の吸気通路2にはエアフローセンサ3が設けられている。エアフローセンサ3は、機関本体1への吸入空気量を直接計測するためのホットワイヤーを内蔵しており、吸入空気量に比例した出力信号(アナログ電圧)を発生する。エアフローセンサ3の出力信号は、マイクロコンピュータからなる制御回路10内のマルチプレクサ内蔵型のアナログデジタル変換器(以下、A/D変換器と称する)101に供給される。
機関本体1には、複数気筒の点火制御に関連したディストリビュータ4が設けられており、ディストリビュータ4には、一対のクランク角センサ5、6が配設されている。その一方のクランク角センサ5は、例えばクランク角に換算して720°毎に基準位置検出用パルス信号を発生し、他方のクランク角センサ6は、クランク角に換算して30°毎に基準位置検出用パルス信号を発生する。これらのクランク角センサ5、6の各パルス信号は、制御回路10内の入出力インターフェイス102に供給され、クランク角センサ6の出力信号は、演算手段(以下、CPUと称する)103の割込み端子に供給される。
機関本体1の吸気通路2には、機関本体1の各気筒毎に燃料供給系20から加圧燃料を吸気ポートへ供給するための燃料噴射弁7が設けられている。又、機関本体1のシリンダブロックのウォータジャケット8には、冷却水の温度を検出するための水温センサ9が設けられている。水温センサ9は、冷却水の温度THWに応じた電気信号(アナログ電圧)を生成して出力する。この水温センサ9の出力信号は、制御回路10内のA/D変換器101に供給される。
機関本体1の排気マニホールド11より下流側の排気系には、排気ガス中の3つの有害成分HC、CO、NOxを同時に浄化するための3元触媒を収容した触媒コンバータ(以下、単に、触媒と称する)12が設けられている。触媒12の上流側に位置する排気マニホールド11には、上流側空燃比センサである上流側O2センサ13が設けられ、触媒12の下流側の排気管14には、下流側空燃比センサである下流側O2センサ15が設けられている。
夫々のO2センサ13、15は、排気ガス中の空燃比に応じた電気信号(電圧信号)を、夫々の出力値V1、V2として生成する。空燃比に応じて異なる夫々のO2センサ13、15の出力値V1、V2は、制御回路10内のA/D変換器101に入力されている。又、夫々のO2センサ13、15には、λO2センサが用いられている。図2は、λO2センサの出力特性を示すグラフである。図2に示すように、λO2センサは、理論空燃比付近でその出力Vが急激に変化する特性を有するものである。
制御回路10は、A/D変換器101、入出力インターフェイス102及びCPU103に加えて、リードオンリーメモリ(以下、ROMと称する)104、ランダムアクセスメモリ(以下、RAMと称する)105、バックアップRAM106、クロック発生回路107及び駆動装置108、109、110等を備えている。制御回路10には、機関本体1の運転条件を示すエアフローセンサ3、クランク角センサ5、6、温度センサ9等の各種センサからの検出情報が入力されている。各種センサには、吸気通路2内のスロットル弁の下流側に設けられた圧力センサ(図示せず)等も含まれる。
制御回路10に於いて、後述する燃料供給量Qfuelが演算されると、燃料供給量Qfuelに基づく信号が入出力インターフェイス102を介して駆動装置108、109、110に供給され、これらの駆動装置108、109、110により燃料噴射弁7が駆動され、燃料供給量Qfuelに応じた量の燃料が機関本体1の燃焼室に送り込まれる。尚、CPU103への割込み発生は、A/D変換器101によるアナログ信号からデジタル信号への変換(以下、A/D変換と称する)終了時、入出力インターフェイス102を介したクランク角センサ6のパルス信号受信時、クロック発生回路107からの割込信号受信時、等に行なわれる。
エアフローメータ3の吸入空気量Qa及び水温センサ9からの冷却水温THWは、A/D変換器101により所定時間毎に実行されるA/D変換ルーチンに従って取り込まれ、RAM105の所定領域に格納される。つまり、RAM105内に格納された吸入空気量Qa及び冷却水温THWは、所定時間毎に更新されている。又、内燃本体1の回転速度Neは、クランク角センサ6からのクランク角度30°毎の割込み信号によって演算されてRAM105の所定領域に格納される。
次に、制御回路10の構成について説明する。図3は、この発明の実施の形態1による制御回路10の基本構成を示す機能ブロックである。図3に於いて、制御回路10は、そのCPU103の処理機能の一部として、第1の空燃比フィードバック制御手段1011と、第2の空燃比フィードバック制御手段1021と、触媒劣化判定手段1031と、燃料カット状態検出手段1041とを備えている。
第1の空燃比フィードバック制御手段1011には、上流側O2センサ13の出力V1と、第2の空燃比フィードバック制御手段1021の出力が入力されている。第2の空燃比フィードバック制御手段1021には、下流側O2センサ15の出力V2が入力されている。触媒劣化判定手段1031には、第2の空燃比フィードバック制御手段1021の出力である平均空燃比の操作量ΔA/Fと、下流側O2センサ15の出力V2と、燃料カット状態検出手段1041の出力、及びエアフローセンサ3からの吸入空気量Qaの検出値が入力されている。
第1の空燃比フィードバック制御手段1011は、上流側O2センサ13の出力値V1及び所定の制御定数に応じて、駆動装置108、109、110を介して燃料噴射弁7の励磁駆動手段(図示せず)を制御することにより、機関本体1に供給する空燃比を、理論空燃比を跨いで周期的にリッチ方向及びリーン方向に振動させるように制御する。又、第1の空燃比フィードバック制御手段1011は、後述するように、第2の空燃比フィードバック制御手段1021からの指令信号を受け、その指令信号に基づいて燃料噴射弁7の励磁駆動手段を制御して上流側平均空燃比を補正し、下流側O2センサ15の出力V2を後述する第2の目標値VR2に一致させるように動作する。
第2の空燃比フィードバック制御手段1021は、下流側O2センサ15の出力V2を受け、その出力V2と第2の目標値VR2との偏差に応じて、比例演算及び積分演算により後述する上流側平均空燃比の操作量ΔA/Fを算出し、第1の空燃比フィードバック制御手段1011に上流側平均空燃比の操作量ΔA/Fに対応する指令信号を出力すると共に、触媒劣化判定手段1031に上流側平均空燃比の操作量ΔA/Fを入力する。触媒劣化判定手段1031は、比例演算による上流側平均空燃比の操作量ΔA/Fに基づき触媒酸素ストレージ変化量を演算する。
又、第2の空燃比フィードバック制御手段1021は、燃料カット状態が解除された時点から下流側O2センサ15の出力V2が第2の目標値VR2付近の所定電圧Xrhに到達するまでの触媒劣化診断中は、制御ゲインを所定設定値に変更する。即ち、第2の空燃比フィードバック制御手段1021は、比例演算及び積分演算により上流側の平均空燃比を操作し、燃料カット状態が解除された時点から下流側O2センサ15の出力V2が第2の目標値VR2付近の所定電圧Xrhに到達するまでの触媒劣化診断中は、比例演算の制御ゲインを所定設定に変更する。
更に、第2の空燃比フィードバック制御手段1021は、比例演算及び積分演算により上流側の平均空燃比を操作し、燃料カット状態が解除された時点から下流側O2センサ出力V2が目標値VR2付近の所定電圧Xrhに到達するまでの触媒劣化診断中は、積分演算値の更新を停止する。
そして、第2の空燃比フィードバック制御手段1021は、下流側O2センサ15の出力V2が第2の目標値VR2に一致するように上流側の目標平均空燃比を演算し、その目標平均空燃比に基づき第1の空燃比フィードバック制御手段1011の所定の制御定数を演算し、上流側平均空燃比を変更する。
触媒劣化判定手段1031は、燃料カット状態検出手段1041により検出される燃料カット状態が解除された時点から下流側O2センサ15の出力V2が第2の目標値VR2付近の所定電圧Xrhに到達するまでの期間、第2の空燃比フィードバック制御手段1021による上流側平均空燃比の操作量ΔA/F、及びエアフローセンサ3からの吸入空気量Qaに基づき、触媒12の酸素ストレージ量の変化量を演算して、変化量が所定値より小さいときは触媒12が劣化していると判定する。
又、触媒劣化判定手段1031は、燃料カット中及び燃料カット状態の解除後の所定期間内に、下流側O2センサ15の出力V2が後述する所定値Xrlを下回った期間が所定期間以上であるときに、触媒12が劣化したと判定する。
更に、触媒劣化判定手段1031は、下流側O2センサ15の出力V2と比較される所定電圧Xrhを、第2の目標値VR2よりリーン側に設定する。又、触媒劣化判定手段1031は、急な加速減速等の所定の運転条件となったとき、劣化診断を中止する。
後述するように、第2の空燃比フィードバック制御手段1021により、第1の空燃比フィードバック制御手段1011の制御定数、スキップ量RSR、RSL、積分定数KIR、KIL、遅延時間TDR、TDL、第1の目標値VR1を変更することにより、上流側平均空燃比が制御される。
図4は、上流側O2センサ13の出力に基づいて、空燃比補正系数FAFを演算する第1の空燃比フィードバック制御のルーチンの一部を示すフローチャートである。図5は、上流側O2センサ13の出力に基づいて、空燃比補正系数FAFを演算する第1の空燃比フィードバック制御のルーチンの残りの一部を示すフローチャートである。図4及び図5に示す第1の空燃比フィードバック制御のルーチン全体は、所定時間、例えば5[ms]毎に実行される。又、図4及び図5に於いて、夫々の判定処理からの分岐部の符号「Y」、「N」は、夫々、「Yes(肯定)」、「No(否定)」を示している。
先ず、図4に於いて、ステップ401では、上流側O2センサ13の出力V1を、A/D変換器101によりA/D変換して取り込みRAM105に格納する。ステップ402では、上流側O2センサ13による第1の空燃比フィードバック制御のための閉ループ条件が成立しているか否かを判定する。
例えば、機関本体1の始動中、低水温時のリッチ化制御中、高負荷パワー増量のリッチ化制御中、燃費向上のためのリーン化制御中、機関本体1の始動後のリーン化制御中、燃料カット中等の理論空燃比制御以外の空燃比制御条件では、閉ループ条件は不成立(N)となり、又、上流側O2センサ13の不活性状態時には閉ループ条件は不成立(N)となり、更に、上流側O2センサ13が故障している時には閉ループ条件は不成立(N)となる。その他の場合は、閉ループ条件は成立(Y)となる。
ステップ402に於いて判定の結果、閉ループ条件が不成立(N)と判定したときは、Aから図5のAに続いてステップ433に進み、空燃比補正係数FAFを「1.0」とする。尚、この場合、空燃比補正係数FAFは、閉ループ制御終了直前の値、若しくはRAM105に格納されている値である学習値としてもよい。次にステップ434に進み、ディレイカウンタCDLYを「0」にリセットする。次に、ステップ435にて上流側O2センサ13の出力V1が第1の目標値VR1以下か否かを判定し、V1≦VR1、即ち空燃比がリーンであれば(Y)、ステップ436に進む。ステップ436では、遅延前空燃比フラグF0をリーンを意味する「0」とし、次にステップ437に進んで遅延後空燃比フラグF1をリーンを意味する「0」とする。
他方、ステップ435に於いて判定の結果、V1>VR1、即ち空燃比がリッチであれば(N)、ステップ438に進んで遅延前空燃比フラグF0をリッチを意味する「1」とし、ステップ439に進んで遅延後空燃比フラグF1をリッチを意味する「1」とする。このようにしてステップ434からステップ439により閉ループ条件成立時の初期値を設定する。
図4に戻り、前述のステップ402に於いて、閉ループ条件成立と判定した場合(Y)は、ステップ403に進み、上流側O2センサ13の出力V1と第1の目標値VR1(例えば0.45[V])とを比較し、出力V1がその第1の目標値VR1以下か否かを判定する。ステップ403による判定に於いて、上流側O2センサ13の出力V1が第1の目標値VR1以下であれば空燃比はリーンであることを意味し、出力V1が第1の目標値VR1を超えてあれば空燃比はリッチであることを意味する。ステップ403に於いて、V1≦VR1、即ち空燃比がリーンであると判定すれば(Y)、ステップ404に進む。
ステップ404では、ディレイカウンタCDLYが最大値「TDR」以上であるか否かを判定し、CDLY≧TDRであれば(Y)、ステップ405に進み、ディレイカウンタCDLYを「0」とし、次にステップ406に進んで、遅延前空燃比フラグF0をリーンを意味する「0」とし、ステップ416に進む。ステップ404で、CDLY<TDRと判定すれば(N)、ステップ407にて遅延前空燃比フラグF0がリーンを意味する「0」であるか否かを判定し、F0=0であれば(Y)、ステップ408に進んでディレイカウンタCDLYを1カウントだけ減算し、F0=0でなければ(N)、ステップ409に進んでディレイカウンタCDLYを1カウントだけ加算し、ステップ416に進む。
他方、ステップ403で、V1>VR1、即ちリッチであると判定すれば(N)、ステップ410に進んで、ディレイカウンタCDLYが最小値「−TDL」以下であるか否かを判定し、CDLY≦−TDLであれば(Y)、ステップ411に進む。ステップ411では、ディレイカウンタCDLYを「0」とし、ステップ412に進んで遅延前空燃比フラグF0をリッチを意味する「1」とし、ステップ416に進む。
ステップ410に於いて、CDLY>−TDLであると判定すれば(N)、ステップ413に進み、遅延前空燃比フラグF0がリーンを意味する「0」であるか否かを判定し、F0=0であれば(Y)、ステップ414に進んでディレイカウンタCDLYを1カウントだけ減算し、F0=0でなければ(N)、ステップ415に進んでディレイカウンタCDLYを1カウントだけ加算し、ステップ416に進む。
ステップ416では、ディレイカウンタCDLYが最小値「−TDL」以下であるか否かを判定し、CDLY≦−TDLであれば(Y)、ステップ417に進む。ステップ417では、ディレイカウンタCDLYを最小値「−TDL」とする。即ち、ステップ416、417により、ディレイカウンタCDLYを最小値「−TDL」でガードするものである。この場合、ディレイカウンタCDLYが最小値「−TDL」に到達したときには、ステップ418に進んで遅延後空燃比フラグF1をリーンを意味する「0」とする。
尚、ディレイカウンタCDLYの最小値「−TDL」は、上流側O2センサ13の出力V1がリッチからリーンへ変化しても、リッチ状態であるとの判断を保持するためのリーン遅延時間であって、負の値で定義される。
次に、ステップ419に進み、ディレイカウンタCDLYが最大値「TDR」以上であるか否かを判定し、CDLY≧TDRであれば(Y)、ステップ420へ進み、ディレイカウンタCDLYを最大値「TDR」とする。即ち、ステップ419、420により、ディレイカウンタCDLYを最大値「TDR」でガードするものである。この場合、ディレイカウンタCDLYが最大値「TDR」に到達したときには、ステップ421に進んで遅延後空燃比フラグF1をリッチを意味する「1」とする。
尚、ディレイカウンタCDLYの最大値「TDR」は、上流側O2センサ13の出力V1がリーンからリッチへ変化しても、リーン状態であるとの判断を保持するためのリッチ遅延時間であって、正の値で定義される。
ステップ421の次に、図4のBから図5のBに続き、ステップ422へ進み、ステップ422では、遅延後空燃比フラグF1の符号が反転したか否か、即ち、遅延処理後の空燃比が反転したか否かを判定する。遅延処理後の空燃比が反転していれば(Y)、ステップ423に進み、遅延後空燃比フラグF1の値に基づいて、リッチからリーンへの反転か、或いはリーンからリッチへの反転か、を判定する。即ち、F1=0であればリッチからリーンへの反転であると判定し(Y)、ステップ424に進む。ステップ424では、空燃比補正係数FAFにリッチ側へのスキップ量RSRを加え、つまり、FAF←FAF+RSRとして、空燃比補正係数FAFをリッチ側へスキップ的に増大させる。
逆に、ステップ423に於いてF1=0でなければリーンからリッチへの反転であると判定し(N)、ステップ425に進んで空燃比補正係数FAFからリーン側へのスキップ量RSLを減じ、つまり、FAF←FAF−RSLとし、空燃比補正係数FAFをリーン側へスキップ的に減少させる。このように、ステップ423による判定結果に基づいて、ステップ424、又はステップ425によりスキップ処理を行う。
前述のステップ422により、遅延後空燃比フラグF1の符号が反転していないと判定すれば(N)、ステップ426、427、428により積分処理を行う。即ち、ステップ426に於いて、F1=0か否かを判定し、F1=0、即ちリーンであれば(Y)、ステップ427に進んで、空燃比補正係数FAFにリッチ側の積分定数KIRを加え、FAF←FAF+KIRとする。他方、ステップ426に於いて、F1=1、即ちリッチであると判定すれば、ステップ428に進んで空燃比補正係数FAFにリーン側の積分定数KILを加え、FAF←FAF−KILとする。
ここで、リッチ側の積分定数KIR、及びリーン側の積分定数KILは、夫々リッチ側のスキップ量RSR、及びリーン側のスキップ量RSLに比して十分小さく設定してあり、KIR<RSR、KIL<RSLである。従って、ステップ427では、リーン状態、即ちF1=0、で燃料噴射量を徐々に増大させ、ステップ428では、リッチ状態、即ちF1=1で燃料噴射量を徐々に減少させる。
ステップ424、425、427、428により演算された空燃比補正係数FAFは、ステップ429、430により最小値、例えば[0.8]にガードされ、又、ステップ431、432により最大値、例えば[1.2]にガードされる。即ち、ステップ429により空燃比補正係数FAFが[0.8]未満であると判定すれば(Y)、ステップ430に進んで、FAFを[0.8]にセットしてステップ431に進み、ステップ431にて空燃比補正係数FAFが[1.2]を超えていると判定すれば(Y)、ステップ432に進んでFAFを[1.2]にセットする。
これにより、何らかの原因で空燃比補正係数FAFが大きくなり過ぎ、若しくは小さくなり過ぎた場合に、その値で機関本体1の空燃比を制御してオーバリッチ、若しくはオーバリーンになるのを防ぐ。上述のごとく演算された空燃比補正係数FAFをRAM105に格納し、ステップ440にてこの第1の空燃比フィードバック制御ルーチンは終了する。
図6は、図4及び図5ののフローチャートによる動作を補足説明するタイミング図である。上流側O2センサ13の出力V1は、空燃比に対応して図6の(a)に示すように変化するが、その出力V1を第1の目標値VR1と比較することにより、第6図の(b)に示すように、リッチ「1」か、リーン「0」かの比較結果の信号Coが得られる。遅延前空燃比フラグF0は、図6の(c)に示すように比較信号Coに対応して、リッチ状態「1」、若しくはリーン状態「0」に変化する。
ディレイカウンタCDLYは、図6の(d)に示すごとく、遅延前空燃比フラグF0のリッチ状態「1」で最大値「TDR」までカウントアップされ、リーン状態「0」で最小値「−TDL」までカウントダウンされる。その結果、図6の(e)に示すように、遅延後空燃比フラグF1が形成される。例えば、時刻t1にて比較結果の信号Coがリーン「0」からリッチ「1」に反転しても、遅延後空燃比フラグF1は、リッチ遅延時間「TDR」だけリーン「0」に保持された後の時刻t2にてリッチ「1」に変化する。
次に、時刻t3にて比較結果の信号Coがリッチ「1」からリーン「0」に反転しても、遅延後空燃比フラグF1は、リーン遅延時間「TDL」相当だけリッチ「1」に保持された後の時刻t4にてリーン「0」に変化する。しかし、リッチ遅延処理の開始後、比較結果の信号Coが時刻t5、t6、t7のようにリッチ遅延時間「TDR」より短い期間で反転した場合は、ディレイカウンタCDLYがリッチ遅延時間「TDR」に到達するまでの遅延処理中の時間t5〜t8は、遅延前空燃比フラグF0は反転しない。
従って、遅延前空燃比フラグF0は、一時的な比較結果の信号Coの変動に影響されないため、遅延前空燃比フラグF0は、比較結果の信号Coに比べて安定となる。このように遅延処理による安定した遅延前空燃比フラグF0、及び遅延後空燃比フラグF1に基づいて図6の(f)に示す空燃比補正係数FAFが得られる。即ち、遅延後空燃比フラグF1がリーン「0」の間は、リッチ側の積分定数KIRに基づいて空燃比補正係数FAFは直線的に増大し、遅延後空燃比フラグF1がリーン「0」からリッチ「1」に反転する時点t2に於いてリーン側のスキップ量RSLが減じられる。
次に、その時点t2から、空燃比補正係数FAFはリーン側の積分定数KILに基づいて直線的に減少し、遅延後空燃比フラグF1がリッチ「1」からリーン「0」に反転する時点t4に於いてリッチ側のスキップ量RSRが加算される。次に、その時点t4から空燃比補正係数FAFはリッチ側の積分定数KIRに基づいて直線的に増大し、遅延後空燃比フラグF1がリーン「0」からリッチ「1」に反転する時点t8に至り、以降、同様に動作する。
前述のようにして設定される空燃比補正係数FAFに応じて、内燃機関本体1に供給する燃料供給量Qfuel1が次式(1)に基づいて調整され、内燃機関本体1の空燃比が制御される。
Qfuel1=Qfuel0×FAF 式(1)
ここで、Qfuel0は基本燃料量であり次式(2)に基づいて演算される。
Qfuel0=Qacyl/目標空燃比 式(2)
ここで、Qacylは、エアフローメータ3により検出される吸入空気量Qaに基づき演算される内燃機関本体1に供給される空気量である。
目標空燃比は、図7に示すように、機関本体1の回転数と負荷とにより構成される2次元マップに設定された空燃比A/Fに設定される。即ち、図7に於いて、理論空燃比制御Aの領域では、目標空燃比を、平均空燃比振動手段により演算される目標平均空燃比を「A/F≒14.35」として設定し、フィードフォワード的に反映させる。このようにすることで、目標値が変化した場合のフィードバック追従遅れの改善、及び、燃料補正係数FAFを「1.0」の中心付近に維持することができる。
尚、目標平均空燃比は、リッチ化制御Bの領域では「A/F=12〜13」として設定され、リーン化制御Cの領域では「A/F=16」として設定され、燃料カットDの領域では「A/F=∞」として設定される。
又、この燃料補正係数FAFを基に、前述の第1の空燃比フィードバック制御における構成要素の経時変化、生産バラツキを吸収するような学習制御が行なわれるため、フィードフォワード補正により燃料補正係数FAFが安定している方が、学習制御の精度が向上する。又、吸入空気量Qaは、吸気通路2内のスロットル弁下流に設定された圧力センサの出力及び機関の回転速度、若しくはスロットル弁開度及び機関の回転速度に応じて演算しても良い。
次に、下流側O2センサ15による第2の空燃比フィードバック制御について説明する。特許文献1にも開示されていように、第1の空燃比フィードバック制御に於ける制御定数としての、夫々のスキップ量RSR、RSL、夫々の積分定数KIR、KIL、夫々の遅延時間TDR、TDL、若しくは上流側O2センサ13の出力V1の第1の目標値VR1を、下流側O2センサ15の出力V2に応じて可変に制御する第2の空燃比フィードバック制御を用いるようにした空燃比制御装置がある。
このような空燃比制御装置に於ける第2の空燃比フィードバック制御に於いて、例えば、リッチ側へのスキップ量RSRを大きくすると、平均空燃比をリッチ側に移行でき、又、リーン側へのスキップ量RSLを小さくしても平均空燃比をリッチ側に移行できる。他方、リーン側へのスキップ量RSLを大きくすると、平均空燃比をリーン側に移行でき、又、リッチ側へのスキップ量RSRを小さくしてもリーン側に移行できる。
従って、下流側O2センサ15の出力V2に応じてリッチ側へのスキップ量RSR及びリーン側へのスキップ量RSLを補正することにより、平均空燃比を制御することができる。又、リッチ側の積分定数KIRを大きくすると、平均空燃比をリッチ側に移行でき、又、リーン側の積分定数KILを小さくしても平均空燃比をリッチ側に移行でき、他方、リーン積分定数KILを大きくすると、平均空燃比をリーン側に移行できる。更に、リッチ側の積分定数KIRを小さくしても平均空燃比をリーン側に移行できる。従って、下流側O2センサ15の出力に応じてリッチ側の積分定数KIR及びリーン側の積分定数KILを補正することにより、平均空燃比を制御することができる。
ディレイカウンタCDLYの最大値「TDR」と最小値「−TDL」の絶対値を、|TDR|>|TDL|に設定すれば、リッチ側の遅延時間TDRとリーン側の遅延時間TDLとの関係は、TDR>TDLとなり、平均空燃比はリッチ側に移行できる。逆に、ディレイカウンタCDLYの最大値TDRと最小値―TDLの絶対値を、|TDR|<|TDL|に設定すれば、リッチ側の遅延時間TDRとリーン側の遅延時間TDLとの関係は、TDR<TDLとなり、平均空燃比はリーン側に移行できる。
つまり、下流側O2センサ15の出力V2に応じて遅延時間TDR、TDLを補正することにより空燃比を制御することができる。更に、第1の目標値VR1を大きくすると平均空燃比をリッチ側に移行でき、上流側O2センサの出力V1と比較される第1の目標値VR1を小さくすると、平均空燃比をリーン側に移行できる。従って、下流側O2センサ15の出力に応じて第1の目標値VR1を補正することにより、空燃比を制御することができる。
このように、下流側O2センサ15の出力V2に応じて上述した第1の空燃比フィードバック制御の制御定数としての夫々のスキップ量RSR、RSL、夫々の積分定数KIR、KIL、夫々の遅延時間TDR、TDL、若しくは上流側O2センサ13の出力V1の第1の目標値VR1を、下流側O2センサ15の出力V2に応じて補正することにより、上流側の平均空燃比を制御することができる。又、第1の空燃比フィードバック制御の制御定数としての夫々の遅延時間TDR、TDL、夫々のスキップ量RSR、RSL、夫々の積分定数KIR、KIL、第1の目標値VR1のうちの2つ以上を同時に操作することにより平均空燃比の制御性を向上できることができる。
又、本願の発明者等らが既に提案しているように、第1の空燃比フィードバック制御の制御定数を2つ以上操作することによる不具合を解消するため、及び自由度を積極的に利用するために、第1の空燃比フィードバック制御の制御定数の操作を、平均空燃比で管理するようにした空燃比制御装置がある。この空燃比制御装置は、下流側O2センサ15の出力V2による第2の空燃比フィードバック制御により目標平均空燃比AFAVEobjを演算し、目標平均空燃比AFAVEobjから第1の空燃比フィードバック制御に於ける制御定数の操作量を演算する変換器を、第2の空燃比フィードバック制御内に設けるようにしたものである。
2つ以上の第1の空燃比フィードバック制御に於ける制御定数を操作すると、非線形的な相互作用により、平均空燃比のリッチ又はリーンの操作方向は管理できるが、操作量の管理が困難となり、第2の空燃比フィードバック制御の挙動が不安定になる不具合があったが、目標平均空燃比AFAVEobjの管理指標に応じて第1の空燃比フィードバック制御に於ける制御定数を設定することによりその不具合は解消できる。
又、第1の空燃比フィード縛制御に於ける制御定数の夫々に、平均空燃比を制御する上で、例えば、平均空燃比の制御精度、操作幅、若しくは制御周期、空燃比振幅等に関する利点、不利点があるが、目標平均空燃比AFAVEobjの動作点に応じて、第1の空燃比フィードバック制御に於ける制御定数の夫々を、きめ細かく設定することで、夫々の利点を生かすことができる。
この発明の実施の形態1による内燃機関の空燃比制御装置は、第1の空燃比フィードバック制御手段に加えて、下流側O2センサ15の出力V2に応じて目標平均空燃比AFAVEobjを演算し、この演算した目標平均空燃比AFAVEobjに基づいて、第1の空燃比フィードバック制御に於ける制御定数を演算する変換器を有する第2の空燃比フィードバック制御手段を備えるもので、所謂、ダブルO2センサシステムを用いるものである。
図8は、この発明の実施の形態1による内燃機関の空燃比制御装置の第2の空燃比フィードバック制御に於いて、下流側O2センサ15の出力V2に基づいて触媒12の上流側の目標平均空燃比AFAVEobjを演算する上流側目標平均空燃比の演算ルーチンのフローチャートを示し、所定時間、例えば5[ms]毎に実行される。以下、図7に基づいて、この演算ルーチンについて詳細に説明する。
図8に於いて、先ず、ステップ701により、下流側O2センサ15の出力V2をA/D変換器101によりA/D変換して取り込み、この取り込んだ下流側O2センサ15の出力V2に、フィルタ処理若しくは平均化処理等のなまし処理を行なってフィルタ値V2fltを得、このフィルタ値V2fltを制御に用いる。燃料カットによる触媒酸素ストレージ量の上限値への飽和状態の検出性能を向上するため、燃料カット中及び燃料カット状態の解除後の所定期間は、フィルタ効果を低減させるためにフィルタ値V2fltを実際の下流側O2センサ15の出力V2に近づけて制御に用いる。
ステップ702により下流側O2センサ15による第2の空燃比フィードバック制御の領域か否か、即ち第2の空燃比フィードバック制御のための閉ループ条件が成立しているか否かを判定する。例えば、機関本体1の始動中、低水温時のリッチ化制御中、高負荷パワー増量のリッチ化制御中、燃費向上のためのリーン化制御中、始動後のリーン化制御中、燃料カット中等の理論空燃比制御以外の空燃比制御条件では、閉ループ条件は不成立(N)となり、又、下流側O2センサ15の不活性状態時、下流側O2センサ15が故障しているとき等は、いずれも閉ループ条件が不成立(N)であり、その他の場合は閉ループ条件成立(Y)である。
尚、下流側O2センサ15が活性状態であるか不活性状態であるかの判定は、期間1の始動後、所定時間経過したかどうか、或いは下流側O2センサ15の出力レベルが所定電圧を一度超過しているか否かを判定することによって行われる。
ステップ702に於いて第2の空燃比フィードバック制御による閉ループ条件が成立していないと判定されれば(N)、ステップ715に進んで目標平均空燃比AFAVEobjを、[空燃比初期値AFAVE0+積分演算値AFI]とし、第2の空燃比フードバック制御の演算処理を終了する。例えば、空燃比初期値AFAVE0は[14.53]である。積分演算値AFIは、閉ループ制御、つまり第2の空燃比フィードバック制御の終了直前値であり、バックアップRAM106に保持されている。空燃比初期値AFAVE0、積分演算値AFIは、運転条件毎、例えば回転数、負荷、水温で区分けされた運転ゾーン毎に保持されており、夫々バックアップRAM106に保持されている設定値である。
ステップ702に於いて第2の空燃比フィードバック制御による閉ループ条件が成立していると判定されれば(Y)、ステップ703に進み、下流側O2センサ15の出力V2の目標値となる第2の目標値VR2を設定する。第2の目標値VR2は、触媒12に於ける酸素ストレージ量が上限値の半分程度になり触媒の浄化状態が高くなる理論空燃比付近の下流側O2センサ15の所定出力値、例えば0.45[V]付近に設定される。この第2の目標値VR2は、触媒12のNOx浄化率が高くなるような高めの電圧、例えば0.75[V]付近、若しくはCO、HCの浄化率が高くなるような低めの電圧、例えば0.2[V]付近としてもよく、又、運転条件等により電圧を変更してもよい。運転条件により第2の目標値VR2を変更する場合は、変更時のステップ的な変化による空燃比変動を緩和するため、第2の目標値VR2に、なまし処理、例えば一次遅れフィルタ処理を加えても良い。
次に、ステップ704にて、第2の目標値VR2と、下流側O2センサ15の出力V2にフィルタ処理を施したフィルタ値V2fltとの偏差ΔV2を、[ΔV2=VR2―V2flt]として演算する。
次のステップ705からステップ711は、偏差ΔV2に応じて比例演算Pと、積分演算Iとを行なうPI制御の処理であり、この偏差ΔV2を無くすような下流側O2センサ15の出力V2を設定する。例えば、下流側O2センサ15の出力V2が第2の目標値VR2より小さい(リーン側)時、上流側の目標平均空燃比AFAVEobjはリッチ側に設定され第2の目標値VR2に復帰させるように作用する。
触媒12の上流側の目標平均空燃比AFAVEobjは、一般的なPI制御器により、次式(3)により演算される。
AFAVEobj=AFAVE0+Σ(Ki2(ΔV2))+Kp2(ΔV2)
式(3)
ここで、Ki2は積分ゲイン、Kp2は比例ゲインである。AFAVE0は前述した空燃比初期値であり、運転条件毎に設定された理論空燃比に相当する値とし、例えば「14.53」付近に設定されている。
積分演算Iは、偏差ΔV2を積分して積分演算値AFIを出力するため比較的ゆっくり動作し、又、上流側O2センサ13の特性変動に起因する下流側O2センサ15の出力V2に於ける定常的な偏差ΔV2を解消する効果がある。又、積分ゲインKi2を大きくすればするほど、操作量Σ(Ki2(ΔV2))の絶対値は大きくなり制御効果は大きくなるが、あまり大きくすると位相遅れが大きくなり制御系が不安定になりハンチングを生じるため、適切なゲイン設定が必要となる。
又、比例演算Pは、偏差ΔV2に比例して出力を生成するため早い応答性を示し、偏差ΔV2を早急に復帰させる効果がある。比例ゲインKp2を大きくすればするほど操作量Kp2×ΔV2の絶対値は大きくなり復帰速度が早くなるが、あまり大きくすると制御系が不安定になりハンチングを生じるため、適切なゲイン設定が必要となる。
さて、ステップ705にて、偏差ΔV2の積分値を更新する更新条件にあるか否かを判定する。更新条件にあるとは、燃料カット等の過渡運転時以外の時にあることを意味する。燃料カット等の過渡運転時とは、燃料カット等の過渡運転中の時、及びその過渡運転後の所定期間内での運転中の時のことである。燃料カット等の過渡運転中には、上流側空燃比が大きく乱れ、下流側空燃比も乱れ、このような状態で積分演算Iを実施すると、間違った値を積分していってしまう。又、積分演算Iは比較的ゆっくり動作するため、過渡運転後の所定期間内での運転中も間違った値を積分することとなり、制御性能が悪化してしまう。
このため、過渡運転中は、積分演算Iの更新を一時的に停止し、その時の積分値を保持することにより、このような誤った積分演算を防止することができる。更に、過渡運転後の所定期間内に於いても主に触媒12の酸素ストレージ作用による遅れによりしばらくは空燃比の乱れの影響が残るため、過渡運転後所定期間内も積分値の更新を禁止する。ここで、過渡運転後の所定期間は、過渡運転後の積算空気量が所定値に到達するまでの期間に設定される。これは、触媒12に於ける酸素ストレージ量が復帰する速度は、吸入空気量に比例するためである。燃料カット後の積算空気量の所定量は、新品触媒から劣化触媒まで収束性能を確保するため、復帰するまでの積算空気量が最大になる新品触媒にあわせて設定される。
更に、後述する触媒劣化判定手段による燃料カット状態解除後の劣化診断中は、前述した誤動作を生じる過渡運転時と同じ状態であるため、積分演算Iの更新を一時的に停止する。このようにして燃料カット状態解除後の積分演算の誤動作を防止することにより、下流側O2センサ15の出力V2に対する第2の目標値VR2の収束性能が安定し、後述する触媒劣化判定手段の劣化判定精度の悪化を防止することができる。
ステップ705に於いて積分演算値AFIの更新条件が成立していると判定すれば(Y)、ステップ706に進み、積分演算値AFIを次式(4)に基づいて更新する。
AFI=AFI+Ki2(ΔV2) 式(4)
ここで、積分演算値AFIは、運転条件毎にバックアップRAM106に保持されている値である。Ki2(ΔV2)は更新量であリ、所定の積分ゲインKi2を用いて単純に、[Ki2(ΔV)=Ki2×ΔV2]としても良いし、図9に示すような1次元マップを用い、偏差ΔV2に応じて更新量Ki2(ΔV2)を設定する、所謂、可変ゲインの設定としてもよい。
又、積分演算値AFIにより補償されるべき上流側O2センサ13の特性の変動は、排気温度、排気圧力等の運転条件により変化するため、積分演算値AFIを運転条件毎に設定してバックアップRAM106に保持させておき、運転条件が変化する毎にその運転条件に対応した積分演算値AFIをバックアップRAM106から読み出して切り替える。
更に、積分演算値AFIをバックアップRAM106に持たせることにより、機関本体1の停止、及び再始動毎に積分演算値AFIがリセットされ、制御性能が低下することを防げることができる。又、後述する触媒劣化診断は、第2の空燃比フィードバック制御の性能に依存するため、この運転条件毎の積分演算値AFIの保持及びバックアップRAM106によるバックアップ機構により、劣化診断の精度を向上することができる。
一方、図8のステップ705に於いて、積分値更新条件が不成立であると判定された場合(N)は、ステップ707に進み、積分値を更新しない。即ち、[AFI=AFI]とする。
ステップ706、又はステップ707から、次のステップ708に進む。ステップ708では、積分演算値AFIの上限制限処理及び下限制限処理(以下、これらの処理を総称して、上下限制限処理と称する)を行ない、[AFImin<AFI<AFImax]とする。ここで、AFIminは積分演算制限最小値、AFImaxは積分演算制限最大値である。上流側O2センサ15の特性変動幅は予め把握できるため、その変動幅を補償できるような適当な積分演算制限最小値AFImin、及び積分演算制限最大値AFImaxを設定する。このように処理することにより、過大な空燃比操作をすることが防止することができる。
次に、ステップ709に進み、比例演算処理[AFP=Kp2(ΔV2)]を実施する。ここで、AFPは前述したように比例演算値である。Ki2(ΔV2)は更新量であリ、所定の積分ゲインKi2を用いて単純に、[Ki2(ΔV)=Ki2×ΔV2]としても良いし、図8に示すような1次元マップを用い、偏差ΔV2に応じて更新量Ki2(ΔV2)を設定する、所謂、可変ゲインの設定としてもよい。
又、前述した積分値の更新を行なわない燃料カット等の過渡運転条件となった場合に於いて、過渡運転後の所定期間内は、比例ゲインKp2の絶対値を大きく設定し、燃料カットにより変動した触媒12による酸素ストレージ量の復帰速度を速める。過渡運転後の所定期間経過後は、比例ゲインKp2の絶対値を小さく設定し、目標空燃比の操作量が過大になりドライバビリティが悪化するのを防止する。
過渡運転後の所定期間内は、積分演算の場合と同様に、過渡運転後の積算空気量が所定値に到達するまでの期間とする。これは、触媒12による酸素ストレージ量が復帰する速度は、吸入空気量Qaに比例するためである。燃料カット後の積算空気量の所定量は、新品触媒から劣化触媒まで収束性能を確保するため、復帰するまでの積算空気量が最大になる新品触媒にあわせて設定される。
又、後述する触媒劣化判定手段による燃料カット状態の解除後の劣化診断中は、比例ゲインKp2を所定ゲインに変更してもよい。劣化診断中の第2の空燃比フィードバック制御は、その挙動を予め設計した所定挙動に揃え、若しくは劣化診断を行い易い所定挙動に揃えることができる。この場合、劣化判定の精度は向上する。例えば、比例ゲインKp2の大小、若しくは可変ゲインの設定値の変化により、下流側O2センサ15の出力V2の目標値である第2の目標値VR2へのオーバーシュート量、過渡挙動等が変化するため、下流側O2センサ15の出力V2を用いた劣化判定の精度が変化する。
後述する触媒劣化判定手段による触媒劣化の有無により、積分ゲインKi2、比例ゲインKp2の設定を変更してもよい。触媒劣化による酸素ストレージ量の上限値の変化に応じた適切なゲイン設定を行なうことができ、これにより下流側O2センサ15の出力V2の目標値である第2の目標値VR2に対するハンチングの防止、及び追従性能の維持を行なうことができ、第2の空燃比フィードバック制御の性能を維持できる。
次にステップ710に進み、比例演算値AFPの上下限制限処理[AFPmin<AFP<AFPmax]を行なう。ここで、AFPminは比例演算制限最小値であり、AFPmaxは比例演算制限最大値である。この上下限制限処理を行なうことにより、過大な空燃比操作をすることが防止できる。
次に、ステップ711に進み、比例・積分演算値(以下、PI演算値と称する)を合計し、目標平均空燃比AFAVEobjを次式(5)により演算する。
AFAVEojb=AFAVE0+AFP+AFI 式(5)
ここで、AFAVE0は上述された運転条件毎に設定された初期値であり、例えば「14.53」付近である。AFIはステップ705からステップ708で演算された積分演算値であり、AFPはステップ709、710で演算された比例演算値である。
次にステップ712に進み、目標平均空燃比AFAVEobjの上下限制限処理[AFAVEmin<AFAVEobj<AFAVEmax]を行なう。この処理により、過大な空燃比操作をすることが防止でき、ドライバビリティの悪化等を防ぐことができる。又、運転条件毎に上下限制限値を設定してもよく、運転条件により変化するドライバビリティ上の制限値に対応できる。
次にステップ713に進み、目標平均空燃比AFAVEobjを強制的に変動させる条件(以下、強制変動条件と称する)か否かを判定する。強制変動条件としては、下流側O2センサ15の故障診断中、触媒12の浄化特性の改善時等があり、燃料カット状態解除後の触媒劣化診断中の時は強制変動を禁止する。
強制変動条件が成立している場合(Y)は、ステップ714に進み、目標平均空燃比AFAVEobjに対して次式(6)に示すように平均空燃比の操作量ΔA/Fによる強制変動を加える。
AFAVEobj=AFAVEobj+ΔA/F 式(6)
ここで、平均空燃比の操作量ΔA/Fは、強制変動を行う変動振幅であり、所定絶対値の正の値、若しくは負の値に設定されており、所定周期で正の値、負の値が切り替えられる。例えば、所定の周期で、[ΔA/F=+0.25]、若しくは[ΔA/F=―0.25]に切り替えられる。この場合、図10の実線Aに示すようにステップ的に切り替えても良いし、点線B、若しくは一点鎖線Cに示すようにある所定の振幅、周期をもつ任意の波形としても良い。変動振幅、周期は運転条件毎に設定されており、運転条件により変化する要求条件、例えば制御対象の応答遅れ、ドライバビリティ上の制限、触媒の浄化特性を満たすことができる。以上の動作により、第2の空燃比フィードバック制御が終了する。
図11は、第2の空燃比フィードバック制御に於いて、上流側の目標平均空燃比AFAVEobjに応じて第1の空燃比フィードバック制御に於ける第1の制御定数である夫々のスキップ量RSR、RSL、及び夫々の積分定数KIR、KIL、及び夫々の遅延時間TDR、TDL、及び第1の目標値VR1を設定する変換器の演算ルーチンであって、所定時間、例えば5[ms]毎に実行される。
図11に於いて、先ず、ステップ1001により、目標平均空燃比AFAVEobjに応じて、リッチ側へのスキップ量RSRが演算される。この演算は、一次元マップRSRmapにより行なわれるが、目標平均空燃比AFAVEobjの値に対応するスキップ量RSRの設定値が後述する予め机上計算、若しくは実験に基づき設定されており、入力される目標平均空燃比AFAVEobjの値に対応したスキップ量RSRの設定値が、一次元マップRSRmapから検索され出力される。1次元マップRSRmapは、運転条件毎に設けられており、運転条件の変化に応じて1次元マップRSRmapを切り替えてマップ検索を行なう。例えば、機関本体1の所定の回転数、負荷、水温で区分けされた運転ゾーン毎に1次元マップRSRmapを保持する。
次に、ステップ1002にて、目標平均空燃比AFAVEobjに応じて、リーン側へのスキップ量RSLが演算される。この演算は、一次元マップRSLmapにより行なわれるが、目標平均空燃比AFAVEobjの値に対応するスキップ量RSLの設定値が後述する予め机上計算、若しくは実験に基づき設定されており、入力される目標平均空燃比AFAVEobjの値に対応したスキップ量RSLの設定値が、一次元マップRSLmapから検索され出力される。1次元マップRSLmapは、運転条件毎に設けられており、運転条件の変化に応じて1次元マップRSLmapを切り替えてマップ検索を行なう。例えば、機関本体1の所定の回転数、負荷、水温で区分けされた運転ゾーン毎に1次元マップRSLmapを保持する。
次に、ステップ1003にて、目標平均空燃比AFAVEobjに応じて、リッチ側の積分定数KIRが演算される。この演算は、一次元マップKIRmapにより行なわれるが、目標平均空燃比AFAVEobjの値に対応する積分定数KIRの設定値が後述する予め机上計算、若しくは実験に基づき設定されており、入力される目標平均空燃比AFAVEobjの値に対応した積分定数KIRの設定値が、一次元マップKIRmapから検索され出力される。1次元マップKIRmapは、運転条件毎に設けられており、運転条件の変化に応じて1次元マップKIRmapを切り替えてマップ検索を行なう。例えば、機関本体1の所定の回転数、負荷、水温で区分けされた運転ゾーン毎に1次元マップKIRmapを保持する。
次に進み、ステップ1004にて、目標平均空燃比AFAVEobjに応じて、リーン側の積分定数KILが演算される。この演算は、一次元マップKILmapにより行なわれるが、目標平均空燃比AFAVEobjの値に対応する積分定数KILの設定値が後述する予め机上計算、若しくは実験に基づき設定されており、入力される目標平均空燃比AFAVEobjの値に対応した積分定数KILの設定値が、一次元マップKILmapから検索され出力される。1次元マップKILmapは、運転条件毎に設けられており、運転条件の変化に応じて1次元マップKILmapを切り替えてマップ検索を行なう。例えば、機関本体1の所定の回転数、負荷、水温で区分けされた運転ゾーン毎に1次元マップKILmapを保持する。
次にステップ1005に進み、目標平均空燃比AFAVEobjに応じて、リッチ側の遅延時間TDRが演算される。この演算は、一次元マップTDRmapにより行なわれるが、目標平均空燃比AFAVEobjの値に対応する遅延時間TDRの設定値が後述する予め机上計算、若しくは実験に基づき設定されており、入力される目標平均空燃比AFAVEobjの値に対応した遅延時間TDRの設定値が、一次元マップKILmapから検索され出力される。1次元マップTDRmapは、運転条件毎に設けられており、運転条件の変化に応じて1次元マップTDRmapを切り替えてマップ検索を行なう。例えば、機関本体1の所定の回転数、負荷、水温で区分けされた運転ゾーン毎に1次元マップTDRmapを保持する。
ステップ1006にて、目標平均空燃比AFAVEobjに応じて、リーン側の遅延時間TDLが演算される。この演算は、一次元マップTDLmapにより行なわれるが、目標平均空燃比AFAVEobjの値に対応する遅延時間TDLの設定値が後述する予め机上計算、若しくは実験に基づき設定されており、入力される目標平均空燃比AFAVEobjの値に対応した遅延時間TDLの設定値が、一次元マップKILmapから検索され出力される。1次元マップTDLmapは、運転条件毎に設けられており、運転条件の変化に応じて1次元マップTDLmapを切り替えてマップ検索を行なう。例えば、機関本体1の所定の回転数、負荷、水温で区分けされた運転ゾーン毎に1次元マップTDLmapを保持する。
次に、ステップ1007にて、目標平均空燃比AFAVEobjに応じて、第1の目標値VR1が演算される。この演算は、一次元マップVR1mapにより行なわれるが、目標平均空燃比AFAVEobjの値に対応する第1の目標値VR1の設定値が後述する予め机上計算、若しくは実験に基づき設定されており、入力される目標平均空燃比AFAVEobjの値に対応した第1の目標値VR1の設定値が、一次元マップVR1mapから検索され出力される。1次元マップVR1mapは、運転条件毎に設けられており、運転条件の変化に応じて1次元マップVR1mapを切り替えてマップ検索を行なう。例えば、機関本体1の所定の回転数、負荷、水温で区分けされた運転ゾーン毎に1次元マップVR1mapを保持する。以上で、第2の空燃比フィードバック制御に於ける変換器演算ルーチンの処理を終了する。
尚、ステップ1001乃至ステップ1007に於ける演算は、必ずしも1次元マップでなくて良く、入力と出力の関係を表す手段、例えば、近似式でもよいし、より多くの入力に対応した、高次元のマップ、高次関数でもよい。
このように、目標平均空燃比AFAVEobjに応じて、第1の制御定数である、夫々のスキップ量RSR、RSL、及び夫々の積分定数KIR、KIL、及び夫々の遅延時間TDR、TDL、及び第1の目標値VR1が夫々演算される。夫々の制御定数の設定値は、実際の触媒上流の平均空燃比が、入力された目標平均空燃比AFAVEobjとなるように、予め、机上計算若しくは実験値に基づき設定されている。又、運転条件により第1の制御定数の設定値を変化させることにより、運転条件に係わらず目標平均空燃比AFAVEobjと実際の平均空燃比とが一致するように設定できる。
従って、上流側O2センサ13に実際の空燃比を検出できないλ型を用いた場合に於いても、上流側の平均空燃比の挙動を把握することが可能となる。後述する触媒劣化判定手段に於いて、この目標平均空燃比AFAVEobjを用いて触媒12での酸素ストレージ量の挙動を推定することができ、劣化判定の精度が向上する。
第12図は、燃料カット後の下流側O2センサ15の出力V2、及び第2の空燃比フィードバック制御による触媒12の上流側の平均空燃比の操作量、及び吸入空気量に基づき触媒12の劣化の有無を検出する触媒劣化検出手段の演算ルーチンであって、所定時間、例えば5ms]毎に実行される。
図12に於いて、ステップ1101にて、劣化判定の初期化条件が成立しているか否かを判定する。初期化条件が成立している場合(Y)は、ステップ1102に進み各種パラメータを初期値にリセットする。条件が成立していない場合(N)は、ステップ1102を実行せずステップ1103に進む。初期化条件としては、バッテリ再接続後の最初のコントローラ起動時、若しくはメンテナンス用の外部通信機器等からのリセット信号が入力された時、若しくは内燃機関始動時等がある。
ステップ1102では、劣化判定の各種パラメータを初期値にリセットし、ステップ1103に進む。例えば、劣化判定結果フラグFcatdetを未判定を示す「0」に設定し、又、全診断回数Jdgcntを「0」、劣化診断回数Detcntを「0」に設定し、又、劣化診断許可フラグFdetcndを許可中でないことを示す「0」に設定し、更に、診断許可タイマを「0」に設定する。
ステップ1103では、劣化判定がすでに終了しているか否かを判定する。劣化判定結果フラグFcatdetが「0」で、劣化判定が未であると判定した場合(Y)は、ステップ1104に進み、劣化判定結果フラグFcatdetが「1」若しくは「2」で、劣化判定が終了していると判定した場合(N)は、演算ルーチンを終了する。
ステップ1104では、燃料カット中若しくは燃料カット状態解除後所定期間内であるか判定し、条件が成立している場合はステップ1105に進み、成立していない場合はステップ1110に進む。燃料カット状態を検出する燃料カット状態検出手段により機関本体1に燃料が供給されているか検出し、供給されていない場合は燃料カット中とする。燃料供給を再開してから触媒12及び下流側O2センサ15に到達するまで遅れが存在するため、燃料カット状態解除後の所定期間も条件に含める。遅れには、内燃機関への燃料吸入から排出までの遅れ、排気管内での移動遅れ等がある。所定期間は単純に所定時間としても良いし、遅れに影響する運転条件、例えば吸入空気量若しくは回転数等により設定しても良い。
ステップ1105に進むと、触媒劣化を診断する演算指標である劣化度CatOSAを「0」にリセットし、ステップ1106に進む。ステップ1106では、下流側O2センサ15の出力V2が所定電圧Xrl以下であるか判定し、出力V2が所定電圧Xrl以下である場合(Y)は、ステップ1107に進み診断許可タイマTdetを更新周期「Dtdet」だけ増加させ、[Tdet=Tdet+Dtdet]とする。ここで、Dtdetは所定時間で、この演算ルーチンの更新周期である5[ms]に設定する。所定電圧Xrlは、下流側O2センサ15に用いられている図2に示すλO2センサの出力特性から、触媒12の下流の空燃比が理論空燃比から十分リーンとなる電圧、例えば0.07[v]に設定される。
ステップ1106にて判定の結果、下流側O2センサ15の出力V2が所定電圧Xrlを超えていると判定した場合(N)は、ステップ1107を実行せずにステップ1108に進む。
ステップ1106、又はステップ1107からステップ1108に進むと、診断許可タイマTdetが所定値Xdet以上であるか否かを判定する。ステップ1108により、診断許可タイマTdetが所定値Xdet以上であると判定した場合(Y)は、ステップ1109に進んで診断許可フラグFdetcndを「1」に設定し、次のステップ1120に進む。ステップ1108により、診断許可タイマTdetが所定値Xdet未満であると判定した場合(N)は、ステップ1109を実行せずにステップ1120に進む。
ステップ1106からステップ1109までの処理は、触媒12の酸素ストレージ量が上限に飽和している場合のみ劣化診断を許可する判定を行うものであり、診断を開始する前の触媒12による酸素ストレージ量の状態が試行毎に変動するのを防止し、診断の精度を向上させることができる。
燃料カット期間の長短、若しくは燃料カット前の触媒12による酸素ストレージ量の大小、若しくは触媒12の劣化により変化する酸素ストレージ容量の大小等により、酸素ストレージ量が上限に飽和しない場合があるが、触媒12の下流側の空燃比が燃料カット中の触媒12の上流側の空燃比と同様に十分リーンになったときは、触媒12の酸素ストレージ量が上限に飽和しているときである。
例えば、燃料カット時間が短い場合は、燃料カットによる触媒12による酸素ストレージの増加量が少なく上限に到達しない場合がある。又、新品の触媒は酸素ストレージ容量が大きく、同じ酸素ストレージの増加量でも上限に飽和しない場合がある。更に、燃料カット開始前の触媒12による酸素ストレージ量が少ないとき、同じ酸素ストレージの増加量でも上限に飽和しない場合がある。
又、ステップ1106に於いて下流側O2センサ15の出力V2が所定電圧Xrl以下であると判定され、更に、ステップ1108により、診断許可タイマTdetが所定値Xdet以上であると判定されて劣化診断が許可されることにより、触媒全体の酸素ストレージ量が完全に上限に飽和した場合のみ診断を実施できる。即ち、触媒12内の熱温度分布等により生じる酸素ストレージ劣化度合いの不均一(むら)等により、触媒12内の一部分の排ガス流路の酸素ストレージ量がその他の部分に比べ早く上限に飽和した場合でも触媒下流の空燃比がリーンになるが、所定時間経過するとその他の部分も上限に飽和するため、診断精度を向上させることができる。
一方、ステップ1104にて燃料カット中若しくは燃料カット状態解除後所定時間内でないと判定された場合(N)、ステップ1110に進んで診断許可タイマTdetを「0」にリセットする。次にステップ1111に進み、診断条件が成立しているか否かを判定し、成立していない場合(N)は、ステップ1112にて診断許可フラグFdetcndを「0」にリセットし、診断を中止する。
診断条件が成立する場合としては、第1及び第2の空燃比フィードバック制御の実施中である場合がある。これは、劣化診断は、空燃比フィードバック制御が実施されている前提で行われるよう設計されているためである。又、診断条件が成立する場合の別の例としては、バッテリの取り外しによりリセットされた各種学習値が十分再学習されたと判定された場合(例えば、バッテリ再接続後所定運転時間経過後)等がある。これは、各種学習値がリセットされた直後は、空燃比制御等の精度が低下しており、劣化診断の精度が低下するため、各種学習値がリセットされた直後の診断は不適当であるからである。
又、所定の運転条件となったときは、劣化診断を中止しても良い。例えば、車両の急な加速若しくは減速が生じた場合、若しくは機関の回転数、負荷が所定範囲となった場合等がある。車両に急な加速若しくは減速が生じた場合は、上流側空燃比の乱れが大きくなり、実平均空燃比が目標平均空燃比から逸脱し、後述する目標平均空燃比による酸素ストレージ量の演算精度が低下するためである。又、燃料カット状態解除後であっても、運転条件により第2の空燃比フィードバック制御のゲインを排出ガス悪化を抑制する設定にする必要があったり、ドライバビリティの悪化を抑制する設定にする必要があったりする場合があるが、このような場合は劣化診断の精度を確保できないので、劣化診断を中止してもよい。
ステップ1111による診断条件の判定の結果、診断条件が成立していないと判定した場合(N)は、後述するステップ1120に進む。一方、ステップ1111による診断条件の判定の結果、診断条件が成立していると判定した場合(Y)は、ステップ1113に進み、診断が許可されているか否かを判定する。その判定の結果、診断許可フラグFdetcndが「1」となっていて診断が許可されている場合(Y)は、ステップ1114に進み、触媒12の劣化度CatOSAを演算する。
劣化度CatOSAは、燃料カット状態を解除した時点から下流側O2センサ15の出力V2が目標値付近に復帰する時点までの触媒酸素ストレージ量の変化量[g]であり、ステップ1114に於いて次式(7)に基づいて演算される。
CatOSA=CatOSA+KO2×Qa×ΔA/F×Dtdet (式7)
ここで、KO2は酸素ストレージ量に変換するための所定係数、Qaは吸入空気量[g/sec]、ΔA/Fは平均空燃比の操作量、Dtdetは演算周期5[ms]である。
平均空燃比の操作量ΔA/Fは、目標平均空燃比AFAVEobjから求める。図13の(a)は、触媒12の上流側の空燃比の時間的変化を示し、(b)は、燃料カット状態解除後の実空燃比から演算した酸素ストレージ量の時間的変化を示し、(c)は、その平均空燃比から演算した酸素ストレージ量の時間的変化を示すグラフである。図13の(c)に示す平均空燃比からの酸素ストレージ量のグラフは、図13の(b)に示す実空燃比の酸素ストレージ量に於ける高周波の変動成分を表していないが、全体的な酸素ストレージ量の復帰挙動は表現できている。これは、空燃比振動の積分値が酸素ストレージ量となるため、その平均値が全体的な挙動を支配するためである。前述したように目標平均空燃比AFAVEobjは実際の平均空燃比に良く一致するように設計されているため、目標平均空燃比AFAVEobjで酸素ストレージ量を演算しても精度は保たれる。
平均空燃比の操作量ΔA/Fは、目標平均空燃比AFAVEobjと予め設定した理論空燃比AF0との偏差から、次式(8)に基づいて求める。
ΔA/F=AFAVEobj−AF0 (式8)
ここで、理論空燃比AF0は、運転条件毎に設定した値を用いても良いが、より精度を高めるために、前述の第2の空燃比フィードバック制御により学習された理論空燃比を用いる。即ち、次式(9)に示すように、運転条件毎に保持された初期値に積分演算値を加算して求める。
AF0=AFAVE0+AFI 式(9)
目標平均空燃比AFAVEobjの強制振動がない場合、平均空燃比の操作量ΔA/Fは、第2の空燃比フィードバック制御の比例演算値AFPと同じとなるため、次式(10)のように平均空燃比の操作量ΔA/Fを比例演算値AFPに設定可能である。
ΔA/F=AFP 式(10)
このように構成することにより、経年変化等により生じる上流側O2センサの検出空燃比の変動により劣化度CatOSAの演算精度が低下することを防止することができる。
次に、図12に於いて、ステップ1115に進んで、下流側O2センサ15の出力V2が所定電圧Xrh以上であるか否かを判定し、所定電圧Xrh以上であると判定した場合(Y)は、ステップ1116に進み触媒12の劣化診断を行なう。所定電圧Xrhは、第2の目標電圧VR2付近に設定される。燃料カット状態解除後、下流側O2センサ15の出力V2が目標値付近に復帰した時、燃料カットにより上限に飽和した状態から上限の半分程度の望ましい浄化状態に復帰したと判定できる。
又、所定電圧Xrhは、第2の目標電圧VR2よりリーン側に設定されても良い。これは、図14に示すように、下流側O2センサ15の出力V2が第2の目標電圧VR2に対して定常偏差を生じた場合、復帰判定が遅れ、劣化判定の誤差を生じる恐れがあるためである。
ステップ1116に進むと、劣化度CatOSAの絶対値が所定値Xcosa以下であるか否かを判定する。劣化度CatOSAの絶対値が所定値Xcosa以下であると判定した場合(Y)は、ステップ1117に進んで、劣化診断回数Detcntを「1」増加させて触媒12が劣化していると診断したことを示す。次にステップ1118に進んで、全診断回数Jdgcntを「1」増加し、ステップ1119に進んで、診断許可フラグFdetcndを「0」に設定し診断を終了する。
図15の(A)は、触媒12が正常である場合の下流側O2センサ15の出力V2時間的変化を示すグラフであり、図15の(B)は、触媒12が劣化している場合の下流側O2センサ15の出力V2の時間的変化を示すグラフである。図15の(B)に示すように、図15の(A)に示す触媒12の正常時の場合に較べて、触媒12が劣化して触媒酸素ストレージ量の上限値が減少してくると、上限値の半分程度となる下流側O2センサ15の出力V2が第2の目標電圧VR2付近に復帰した時の酸素ストレージ量も自動的に減少するため、劣化度CatOSAの大きさにより劣化診断ができる。
図12のステップ1115による判定の結果、下流側O2センサ15の出力V2が所定電圧Xrh未満であると判定した場合(N)は、診断タイミングでないため、ステップ1120に進む。
ステップ1120では、全診断回数Jdgcntが所定回数Xjdgであるか否かを判定する。ステップ1120に於いて全診断回数Jdgcntが所定回数Xjdgであると判定した場合(Y)は、ステップ1121に進み、全診断回数Jdgcntが所定回数Xjdgではないと判定した場合(N)は、演算ルーチンを終了する。ステップ1121に進むと、劣化診断回数Detcntが所定値Xdet以上であるか否かを判定し、その判定の条件が成立した場合(Y)は、ステップ1122に進み、触媒12が劣化していると判定したことを示す劣化判定結果フラグFcatdetを「1」に設定する。
ステップ1121で条件が不成立の場合(N)は、ステップ1123に進み、触媒12が正常であると判定したことを示す劣化判定結果フラグFcatdetを「2」に設定して演算ルーチンを終了する。劣化判定結果フラグFcatdetが「1」で、触媒12が劣化していると判定されたときは、警告灯を点灯し、ユーザーに触媒12の交換を促す。
次に、この発明の実施の形態1に係る内燃機関の空燃比制御装置の動作について説明する。図16は、正常触媒を用い、燃料カット状態の解除後にアイドル運転が継続する場合の、各種パラメータの時間的変化を示すグラフである。図16に於いて、車両の減速により(c)に示す吸入空気量Qaが減少する時刻t151に於いて、(a)に示す燃料供給を停止する燃料カットが開始されると、(d)に示す上流側空燃比が大幅にリーンとなるため、(e)に示す触媒による酸素ストレージ量が急激に増加し、上限値にて飽和する。
図16の(e)に示す触媒による酸素ストレージ量が、上限値にて飽和すると、触媒は上流側の空燃比のリーン変動を吸収できなくなり、下流側の空燃比も大幅にリーン化し、(f)に示す下流側O2センサの出力V2は、0[V]付近の大幅なリーン状態を示すことになる。時刻t152にて(f)に示す下流側O2センサ15の出力V2が所定値Xrlを下回ると、(g)に示す診断許可タイマTdetが増加を始め、時刻t153にて判定値Xtdetを上回った時、(h)に示す診断許可フラグFdetcndが診断の許可を示す「1」に設定される。
この診断許可の判定は、燃料カット状態の解除時刻t154から所定時間が経過する時刻t155まで実施される。時刻t154で燃料カット状態が解除されると、第1及び第2の空燃比フィードバック制御が開始され、第2の空燃比フィードバック制御により(i)に示す上流側の目標平均空燃比AFAVEobjが演算される。
又、第1の空燃比フィードバック制御により、(d)に示す上流側の空燃比は、リッチ方向とリーン方向に周期的に振動しながら、その平均値は、(i)に示す目標平均空燃比AFAVEobjに一致する。(i)に示す目標平均空燃比AFAVEobjは、下流側O2センサ15の出力V2と第2の目標値VR2との偏差に応じて演算され、その偏差は徐々に減少していく。触媒12の酸素ストレージ量は、下流側O2センサ15の出力V2により検出でき、その出力V2が第2の目標値VR2に収束した時、(e)に示すように触媒酸素ストレージ量の上限値の半分程度となる。
時刻t155にて、劣化診断が始まると、目標平均空燃比AVAVEobj及び吸入空気量Qaに基づき、燃料カット状態解除後の酸素ストレージ量の変化量を示す劣化度CatOSCの演算が(j)に示すように開始され、時刻t156にて下流側O2センサ15の出力V2が第2の目標値VR2よりリーン側に設定されている所定値Xrhに到達するまで継続される。このとき、(j)に示す劣化度CatOSAの挙動は、振動している上流側空燃比から演算した(e)に示す酸素ストレージ量の挙動とよく一致しており、演算精度は保たれている。
又、劣化診断タイミングである時刻t156にて(j)に示す劣化度CatOSAの絶対値が判定値Xcosaを上回ると触媒は正常と判定され、(k)に示す劣化診断回数Detcntを増加せずに、(l)に示す全診断回数Jdgcntを「1」増加させる。又、全診断回数Jdgcntが所定回数Xjdgに一致したときは、その時刻t156にて最終的な劣化判定を行なうが、(k)に示す劣化診断回数Detcntが所定値Xdetを下回っているので、(m)に示す劣化判定結果Fcatdetを正常を示す「2」に設定する。
次に、図17は、正常触媒を用い、燃料カット状態の解除後、劣化診断中に加速した場合の、各種パラメータの時間的変化を示すグラフである。この場合、図16の場合に比べ、時刻t167にて車両の加速により(c)に示す吸入空気量Qaが増加したため、(e)に示す触媒酸素ストレージ量の変化スピードが増加している。第2の空燃比フィードバック制御による上流側の平均空燃比の操作が同じでも、(d)に示す上流側空燃比の収束速度が増加しており、図16の場合に比べてより早い時刻t166で劣化診断が終了している。
図17の(c)に示す吸入空気量Qaの変化、及び目標空燃比の変化に応じて、(j)に示す劣化度CatOSAの演算値は変化しており、劣化診断終了時刻は早くなってはいるが、劣化度CatOSAの値は図16の場合とほぼ同じとなっている。従来のように単純に時間に基づき劣化判定を行なっていたのでは、吸入空気量及び上流側平均空燃比が変化した場合、劣化診断の精度が低下することが分かる。
このように、実施の形態1による内燃機関の空燃比制御装置によれば、触媒の酸素ストレージ量の挙動と相関のある上流側平均空燃比と吸入空気量に基づき劣化判定を行なっているので、時間に基づき劣化判定を行なう従来の装置に比べ判定精度が向上する効果がある。
図18は、劣化触媒を用い、燃料カット状態の解除後にアイドル運転が継続する場合の、各種パラメータの時間的変化を示すグラフである。この場合、触媒の劣化により(e)に示す触媒酸素ストレージ量の上限値が図16及び図17の場合に比べ半減している。触媒酸素ストレージ量の上限値が半減しため、(f)に示す下流側O2センサ15の出力V2が第2の目標値VR2に収束し、(e)に示す触媒酸素ストレージ量が上限値の半分程度に復帰するまでの時間が短縮している。
時刻t176にて劣化診断を終了し、(j)に示す劣化度CatOSAの値は、触媒の酸素ストレージ量の挙動と比例して半減している。(j)に示すように劣化度CatOSAが所定値Xcosaを下回っているため、劣化と判定され、(k)に示すように劣化診断回数Detcntを「1」増加させる。又、(k)に示す劣化診断回数Detcntが所定回数Xdetを上回っているため、(m)に示す最終劣化判定の結果は、劣化判定結果Fcatdetは、劣化判定を示す「1」に設定される。
実施の形態1の変形例
次に、実施の形態1の変形例について説明する。即ち、以上述べた実施の形態1に係る内燃機関の空燃比制御装置に於いて、下流側O2センサ15に代えて、触媒12の上流の浄化状態を検出できるセンサ、例えば、リニア空燃比センサ、NOxセンサ、HCセンサ、COセンサ等としてもよく、これらのセンサであっても触媒の浄化状態を制御できるため、O2センサ15と同様の効果を奏する。
又、上流側O2センサ13は、空燃比変化に対してリニアな出力特性を有するリニア型O2センサとしてもよく、このリニア型O2センサを用いた場合でも、第1の空燃比フィードバック制御により、上流側の空燃比を振動させながら、平均空燃比を制御できるため、前述の実施の形態1の場合と同様の効果を奏する。
又、上流側O2センサ13としてリニア型O2センサを用いる場合は、目標空燃比への追従性の良い制御も可能であるため、目標空燃比をリッチ方向、リーン方向に周期的に振動させることにより上流側の空燃比を振動させ、振動している目標空燃比の平均値を更にリッチ方向、リーン方向に周期的に振動させることで前述の実施の形態1の場合と同様の効果を奏する。
更に、前述の実施の形態1では、第2の空燃比フィードバック制御装置は、第2の目標値V2と下流側O2センサ15の出力V2の情報から比例演算と積分演算を用い目標空燃比を演算する構成としたが、その他のフィードバック制御、例えば現代制御理論の状態フィードバック制御、スライディングモード制御、オブザーバー、適応制御、H∞制御等により、第2の目標値V2と下流側O2センサ15の出力V2とから目標空燃比を演算しても、触媒の浄化状態を制御できるため、前述の実施の形態1の場合と同様の効果を奏する。
又、前述の実施の形態1では、1つの触媒12が取り付けられている構成としたが、複数個の触媒が直列若しくは並列して配置され、夫々の触媒の下流側にO2センサを用いることにより、内燃機関から下流側O2センサの間に位置する複数の触媒の劣化診断を行なうことができるため、前述の実施の形態1の場合と同様の効果を奏することができる。又、劣化診断に用いる下流側O2センサを、夫々の触媒の下流側に位置するO2センサに切り替えて実施しても、夫々の触媒の劣化診断を実施することができるため、前述と同様の効果を奏する。又、劣化診断に用いる下流側O2センサを、夫々の触媒の下流側に位置するO2センサに切り替える場合は、劣化判定値Xcosaを診断する触媒に応じて切り替え、又、第2の空燃比フィードバック制御の各種パラメータを、内燃機関と制御に用いる下流側O2センサとの間の触媒に応じて変更することにより、触媒劣化診断精度を向上することができるとともに、排出ガスの悪化を防止でき、前述と同様の効果を奏することができる。
この発明に係る内燃機関の空燃比制御装置の特徴を列記すれば、以下の通りである。
(1)内燃機関への燃料の供給が停止された燃料カットの状態を検出する燃料カット状態検出手段と、燃料カット状態検出手段が燃料カットの状態の解除を検出してから第2の空燃比センサの出力値が目標値付近の所定の復帰判定値に一致するまでの期間と第2の空燃比フォードバック制御手段による上流側の平均空燃比の操作量とに基づいて、触媒の劣化を判定する触媒劣化判定手段とを備えたことを特徴とする。
(2)前記(1)に記載の触媒劣化判定手段は、前記燃料カット状態検出手段が前記燃料カットの状態の解除を検出してから前記第2の空燃比センサの出力値が前記目標値付近の所定復帰判定値に一致するまでの前記内燃機関の吸入空気量と前記第2の空燃比フォードバック制御手段による前記上流側の前記平均空燃比の操作量とに基づいて前記触媒の劣化を判定することを特徴とする。
(3)前記(1)に記載の触媒劣化判定手段は、前記燃料カット状態検出手段が前記燃料カットの状態の解除を検出してから前記第2の空燃比センサの出力値が前記目標値付近の所定の復帰判定値に一致するまでの前記触媒の酸素ストレージ量の変化量を、前記内燃機関の吸入空気量と前記第2の空燃比フォードバック制御手段による前記上流側の前記平均空燃比の操作量とに基づいて演算し、前記変化量が所定値より小さい時に前記触媒の劣化を判定することを特徴とする。
(4)前記(1)に記載の触媒劣化判定手段は、前記燃料カット状態検出手段が前記燃料カットの状態を検出中に前記第2の空燃比センサの出力値が所定リーン判定値よりリーンな値となった時に前記触媒の劣化を判定をすることを特徴とする。
(5)前記(1)に記載の触媒劣化判定手段は、前記前記燃料カット状態検出手段が前記燃料カットの状態を検出中に前記第2の空燃比センサの出力値が所定リーン判定値よりリーンな値となった期間が所定期間以上となった時に前記触媒の劣化を判定をすることを特徴とする。
(6)前記(1)に記載の第2の空燃比センサの出力値と比較される前記目標値付近の所定の復帰判定値は、前記目標値付近よりリーン側に設定されることを特徴とする。
(7)前記(1)に記載の第2の空燃比フィードバック制御手段は、前記第2の空燃比センサの出力値と前記目標値とが一致するように、比例演算及び積分演算を用いて前記上流側の前記平均空燃比を操作するものであって、前記劣化判定手段は、前記比例演算による前記上流側の前記平均空燃比の操作量に応じて前記触媒の劣化を判定することを特徴とする。
(8)前記(1)に記載の触媒劣化判定手段による前記触媒の劣化判定中は、前記第2の空燃比フィードバック制御手段の制御ゲインを変更することを特徴とする。
(9)前記(1)に記載の第2の空燃比フィードバック制御手段は、前記第2の空燃比センサの出力値と前記目標値とが一致するように、比例演算及び積分演算を用いて前記上流側の前記平均空燃比を操作するものであって、前記触媒劣化判定手段による前記触媒の劣化判定中は前記比例演算のゲインを変更することを特徴とする。
(10)前記(1)に記載の第2の空燃比フィードバック制御手段は、前記第2の空燃比センサの出力値と前記目標値とが一致するように、比例演算及び積分演算を用いて前記上流側の前記平均空燃比を操作するものであって、前記触媒劣化判定手段による前記触媒の劣化判定中は前記積分演算を停止することを特徴とする。
(11)前記(1)に記載の触媒劣化判定手段は、前記内燃機関の所定の運転条件の場合にのみ前記触媒の劣化判定を行なうことを特徴とする。
(12)前記(1)に記載の第2の空燃比フィードバック制御手段は、前記第2の空燃比センサの出力値と前記目標値とが一致するように前記上流側の前記平均空燃比の目標値を設定し、前記平均空燃比の目標値に応じて前記制御定数を設定することを特徴とする。
(13)前記(1)に記載の平均空燃比の目標値に応じて設定される前記制御定数は、遅延時間、スキップ量、積分ゲイン、比較電圧のうちの少なくとも2つとすることを特徴とする。
この発明の実施の形態1に係る内燃機関の空燃比制御装置を示す全体概略図である。 λO2センサの出力特性を示すグラフである。 この発明の実施の形態1による制御回路の基本構成を示す機能ブロックである。 第1の空燃比フィードバック制御の動作の一部を説明するフローチャートである。 第1の空燃比フィードバック制御の動作の残りの一部を説明するフローチャートである。 図4及び図5に示すフローチャートを補足説明するためのタイミング図である。 運転条件によって変化する目標空燃比を説明するための特性図である。 第2の空燃比フィードバック制御の動作を説明するフローチャートである。 図8のフローチャートを補足説明するための特性図である。 図8のフローチャートを補足説明するための特性図である。 第2の空燃比フィードバック制御の動作を説明するためのフローチャートである。 触媒劣化判定手段の動作を説明するためのフローチャートである。 図12のフローチャートを補足説明するためのタイミング図である。 図12のフローチャートを補足説明するためのタイミング図である。 図12のフローチャートを補足説明するためのタイミング図である。 この発明の実施の形態1による空燃比制御装置の動作を説明するタイミング図である。 この発明の実施の形態1による空燃比制御装置の動作を説明するタイミング図である。 この発明の実施の形態1による空燃比制御装置の動作を説明するタイミング図である。 従来の空燃比制御装置の動作を説明するタイミング図である。
符号の説明
1 機関本体
2 吸気通路
3 エアフローセンサ
4 ディストリビュータ
5、6 クランク角センサ
7 燃料噴射弁
8 ウォータジャケット
9 水温センサ
10 制御回路
11 排気マニホールド
12 触媒コンバータ
13 上流側O2センサ
14 下流側の排気管
15 下流側O2センサ
20 燃料供給系
101 A/D変換器
102 入出力インターフェイス
103 CPU
104 ROM
105 RAM
106 バックアップRAM
107 クロック発生回路
108、109、110 駆動装置
1011 第1の空燃比フィードバック制御手段
1021 第2の空燃比フィードバック制御手段
1031 触媒劣化判定手段
1041 燃料カット状態検出手段

Claims (13)

  1. 内燃機関の排気系に設置され前記内燃機関からの排気ガスを浄化する触媒と、前記触媒の上流側に設けられ上流側排気ガス中の空燃比を検出する第1の空燃比センサと、前記触媒の下流側に設けられ下流側排気ガス中の空燃比を検出する第2の空燃比センサと、前記第1の空燃比センサの出力値と所定の制御定数とに応じて前記内燃機関に供給する空燃比を調整して、前記触媒の上流側排気ガス中の空燃比を周期的にリッチ方向およびリーン方向に振動させる第1の空燃比フィードバック制御手段と、前記第2の空燃比センサの出力値と目標値とが一致するように前記制御定数を変化させ、前記周期的に振動する前記上流側排気ガス中の空燃比を平均化した平均空燃比を操作する第2の空燃比フィードバック制御手段とを備えた内燃機関の空燃比制御装置であって、前記内燃機関への燃料の供給が停止された燃料カットの状態を検出する燃料カット状態検出手段と、前記燃料カット状態検出手段が前記燃料カットの状態の解除を検出してから前記第2の空燃比センサの出力値が前記目標値付近の所定の復帰判定値に一致するまでの期間と前記第2の空燃比フォードバック制御手段による前記上流側の前記平均空燃比の操作量とに基づいて前記触媒の劣化を判定する触媒劣化判定手段とを備えたことを特徴とする内燃機関の空燃比制御装置。
  2. 前記触媒劣化判定手段は、前記燃料カット状態検出手段が前記燃料カットの状態の解除を検出してから前記第2の空燃比センサの出力値が前記目標値付近の所定復帰判定値に一致するまでの前記内燃機関の吸入空気量と前記第2の空燃比フォードバック制御手段による前記上流側の前記平均空燃比の操作量とに基づいて前記触媒の劣化を判定することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  3. 前記触媒劣化判定手段は、前記燃料カット状態検出手段が前記燃料カットの状態の解除を検出してから前記第2の空燃比センサの出力値が前記目標値付近の所定の復帰判定値に一致するまでの前記触媒の酸素ストレージ量の変化量を、前記内燃機関の吸入空気量と前記第2の空燃比フォードバック制御手段による前記上流側の前記平均空燃比の操作量とに基づいて演算し、前記変化量が所定値より小さい時に前記触媒の劣化を判定することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  4. 前記触媒劣化判定手段は、前記燃料カット状態検出手段が前記燃料カットの状態を検出中に前記第2の空燃比センサの出力値が所定リーン判定値よりリーンな値となった時に前記触媒の劣化を判定をすることを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  5. 前記触媒劣化判定手段は、前記前記燃料カット状態検出手段が前記燃料カットの状態を検出中に前記第2の空燃比センサの出力値が所定リーン判定値よりリーンな値となった期間が所定期間以上となった時に前記触媒の劣化を判定をすることを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  6. 前記第2の空燃比センサの出力値と比較される前記目標値付近の所定の復帰判定値は、前記目標値付近よりリーン側に設定されることを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  7. 前記第2の空燃比フィードバック制御手段は、前記第2の空燃比センサの出力値と前記目標値とが一致するように、比例演算及び積分演算を用いて前記上流側の前記平均空燃比を操作するものであって、前記劣化判定手段は、前記比例演算による前記上流側の前記平均空燃比の操作量に応じて前記触媒の劣化を判定することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  8. 前記触媒劣化判定手段による前記触媒の劣化判定中は、前記第2の空燃比フィードバック制御手段の制御ゲインを変更することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  9. 前記第2の空燃比フィードバック制御手段は、前記第2の空燃比センサの出力値と前記目標値とが一致するように、比例演算及び積分演算を用いて前記上流側の前記平均空燃比を操作するものであって、前記触媒劣化判定手段による前記触媒の劣化判定中は前記比例演算のゲインを変更することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  10. 前記第2の空燃比フィードバック制御手段は、前記第2の空燃比センサの出力値と前記目標値とが一致するように、比例演算及び積分演算を用いて前記上流側の前記平均空燃比を操作するものであって、前記触媒劣化判定手段による前記触媒の劣化判定中は前記積分演算を停止することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  11. 前記触媒劣化判定手段は、前記内燃機関の所定の運転条件の場合にのみ前記触媒の劣化判定を行なうことを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  12. 前記第2の空燃比フィードバック制御手段は、前記第2の空燃比センサの出力値と前記目標値とが一致するように前記上流側の前記平均空燃比の目標値を設定し、前記平均空燃比の目標値に応じて前記制御定数を設定することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  13. 前記平均空燃比の目標値に応じて設定される前記制御定数は、遅延時間、スキップ量、積分ゲイン、比較電圧のうちの少なくとも2つとすることを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
JP2007111987A 2007-04-20 2007-04-20 内燃機関の空燃比制御装置 Expired - Fee Related JP4256898B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007111987A JP4256898B2 (ja) 2007-04-20 2007-04-20 内燃機関の空燃比制御装置
US11/841,045 US7661264B2 (en) 2007-04-20 2007-08-20 Air-fuel ratio control apparatus for internal combustion engine
DE102007057632A DE102007057632B4 (de) 2007-04-20 2007-11-30 Luft/Kraftstoff-Verhältnis-Steuervorrichtung für einen Verbrennungsmotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111987A JP4256898B2 (ja) 2007-04-20 2007-04-20 内燃機関の空燃比制御装置

Publications (2)

Publication Number Publication Date
JP2008267283A JP2008267283A (ja) 2008-11-06
JP4256898B2 true JP4256898B2 (ja) 2009-04-22

Family

ID=39777646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111987A Expired - Fee Related JP4256898B2 (ja) 2007-04-20 2007-04-20 内燃機関の空燃比制御装置

Country Status (3)

Country Link
US (1) US7661264B2 (ja)
JP (1) JP4256898B2 (ja)
DE (1) DE102007057632B4 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544163B2 (ja) * 2006-01-19 2010-09-15 トヨタ自動車株式会社 車両及びその制御方法
DE102008038677B4 (de) * 2008-08-12 2013-09-26 Continental Automotive Gmbh Verfahren und Vorrichtung zum Diagnostizieren eines Abgaskatalysators
JP5332708B2 (ja) * 2009-02-23 2013-11-06 日産自動車株式会社 内燃機関用排気センサの診断装置
JP5029718B2 (ja) * 2010-03-18 2012-09-19 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5543852B2 (ja) * 2010-06-28 2014-07-09 本田技研工業株式会社 内燃機関の空燃比制御装置
JP5104929B2 (ja) * 2010-09-27 2012-12-19 トヨタ自動車株式会社 異常判定装置
DE102010050055A1 (de) * 2010-10-29 2012-05-03 Daimler Ag Verfahren zur Diagnose eines Abgaskatalysators und/oder eines Abgassensors eines Kraftfahrzeugverbrennungsmotors
JP5097282B2 (ja) * 2011-02-01 2012-12-12 三菱電機株式会社 エンジンの制御装置
JP5759268B2 (ja) * 2011-05-31 2015-08-05 本田技研工業株式会社 内燃機関の判定装置
JP5216127B2 (ja) * 2011-08-29 2013-06-19 本田技研工業株式会社 内燃機関の空燃比制御装置
DE102011087300A1 (de) * 2011-11-29 2013-05-29 Volkswagen Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie zur Ausführung des Verfahrens eingerichtetes Steuergerät
DE102011087399B4 (de) 2011-11-30 2022-08-11 Volkswagen Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie zur Ausführung des Verfahrens eingerichtetes Steuergerät
FR2998515B1 (fr) * 2012-11-23 2016-06-10 Renault Sa Procede et systeme de surveillance de pression des pneumatiques d'un vehicule automobile
US8925300B2 (en) * 2012-12-17 2015-01-06 Chrysler Group Llc Zero ceria washcoat catalyst monitor
JP5951068B1 (ja) * 2015-04-14 2016-07-13 三菱電機株式会社 内燃機関の空燃比制御装置および空燃比制御方法
US10718286B2 (en) 2016-08-23 2020-07-21 Ford Global Technologies, Llc System and method for controlling fuel supplied to an engine
JP6733648B2 (ja) * 2017-12-12 2020-08-05 トヨタ自動車株式会社 触媒劣化検出装置
JP6637481B2 (ja) * 2017-12-26 2020-01-29 株式会社Subaru 車両用制御装置
JP7071245B2 (ja) * 2018-09-07 2022-05-18 日本碍子株式会社 触媒劣化診断方法および触媒劣化診断システム
DE102020206357A1 (de) * 2020-05-20 2021-11-25 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Recheneinheit zur Ermittlung eines Füllstandes einer Abgaskomponente in einem Katalysator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518247B2 (ja) 1987-02-07 1996-07-24 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2526999B2 (ja) 1988-07-21 1996-08-21 トヨタ自動車株式会社 内燃機関の触媒劣化判別装置
JPH02136538A (ja) 1988-11-14 1990-05-25 Nippon Denso Co Ltd 触媒劣化検出装置
JP2641827B2 (ja) 1992-07-22 1997-08-20 三菱電機株式会社 内燃機関の空燃比制御装置
JP3759567B2 (ja) * 1999-10-14 2006-03-29 株式会社デンソー 触媒劣化状態検出装置
JP4308396B2 (ja) * 2000-02-14 2009-08-05 本田技研工業株式会社 内燃機関の燃料供給制御装置
JP2003254129A (ja) * 2002-02-28 2003-09-10 Nissan Motor Co Ltd 排気浄化装置
US6892527B2 (en) * 2002-07-16 2005-05-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Catalyst deterioration suppressing apparatus and method
US6874313B2 (en) * 2003-02-18 2005-04-05 General Motors Corporation Automotive catalyst oxygen storage capacity diagnostic
JP2005009364A (ja) * 2003-06-17 2005-01-13 Honda Motor Co Ltd 多気筒内燃機関の気筒休止制御装置
JP2005248781A (ja) * 2004-03-03 2005-09-15 Toyota Motor Corp 内燃機関の燃料カット制御装置
JP4213148B2 (ja) * 2005-08-09 2009-01-21 三菱電機株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
DE102007057632B4 (de) 2012-08-09
US7661264B2 (en) 2010-02-16
US20080257325A1 (en) 2008-10-23
JP2008267283A (ja) 2008-11-06
DE102007057632A1 (de) 2008-10-30

Similar Documents

Publication Publication Date Title
JP4256898B2 (ja) 内燃機関の空燃比制御装置
JP4221026B2 (ja) 内燃機関の空燃比制御装置
JP4221025B2 (ja) 内燃機関の空燃比制御装置
JP4244237B2 (ja) 内燃機関の空燃比制御装置
US6481201B2 (en) Air-fuel ratio control apparatus of internal combustion engine
JP4198718B2 (ja) 内燃機関の空燃比制御装置
JP2007231844A (ja) 内燃機関の制御装置
JP6308150B2 (ja) 内燃機関の排気浄化装置
JP4185111B2 (ja) 内燃機関の空燃比制御装置
JP2007285288A (ja) 触媒劣化検出装置
US9037383B2 (en) Fuel injection amount control apparatus for internal combustion engine
JP2010007561A (ja) 空燃比制御装置及び空燃比制御方法
JP2019031958A (ja) 内燃機関の制御装置
JP2006177371A (ja) 内燃機関の制御装置
JP2003049685A (ja) エンジンの排気浄化装置
JP2015206273A (ja) 内燃機関の空燃比制御装置
JP5951068B1 (ja) 内燃機関の空燃比制御装置および空燃比制御方法
JPH07116931B2 (ja) 内燃機関の触媒劣化判別装置
JP7204426B2 (ja) 内燃機関の燃料噴射制御装置
JP2009074428A (ja) 内燃機関の空燃比制御装置
JP2006233775A (ja) 内燃機関の排気浄化装置
JP6282962B2 (ja) 内燃機関の空燃比制御装置
JPH05272384A (ja) 触媒下流側空燃比センサの異常検出装置
JP2008280901A (ja) 内燃機関の排気浄化装置
JPH04342848A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4256898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees