JP4245967B2 - レンズ軸上軸外点像観察装置および方法 - Google Patents

レンズ軸上軸外点像観察装置および方法 Download PDF

Info

Publication number
JP4245967B2
JP4245967B2 JP2003118343A JP2003118343A JP4245967B2 JP 4245967 B2 JP4245967 B2 JP 4245967B2 JP 2003118343 A JP2003118343 A JP 2003118343A JP 2003118343 A JP2003118343 A JP 2003118343A JP 4245967 B2 JP4245967 B2 JP 4245967B2
Authority
JP
Japan
Prior art keywords
lens
axis
point image
test
test lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003118343A
Other languages
English (en)
Other versions
JP2004325173A5 (ja
JP2004325173A (ja
Inventor
幸夫 江田
晃正 森田
規夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003118343A priority Critical patent/JP4245967B2/ja
Publication of JP2004325173A publication Critical patent/JP2004325173A/ja
Publication of JP2004325173A5 publication Critical patent/JP2004325173A5/ja
Application granted granted Critical
Publication of JP4245967B2 publication Critical patent/JP4245967B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レンズ点像を観察するレンズ軸上軸外点像観察装置および方法に係、例えば複数枚のレンズで構成される顕微鏡対物レンズなどのレンズ系において、各レンズ間の偏心によって発生するレンズ系の偏心コマ収差や各レンズ間の間隔ずれによって発生するレンズ系の収差(球面収差、軸外コマ収差など)を観察するためのレンズ軸上軸外点像観察装置および方法に関する。
【0002】
【従来の技術】
従来、厳しい仕様性能力が要求されるレンズは、複数枚のレンズから構成されるレンズ系となるのが一般的である。例えば、高NA、高倍率の顕微鏡対物レンズの中には、15枚前後の非常に多数のレンズから構成されるものもある。
【0003】
このように構成枚数の多いレンズ系の光学性能を保証するには、レンズ系を構成する各レンズの偏心によって発生する偏心コマ収差と各レンズ間の間隔ずれによって発生する球面収差、軸外コマ収差、非点収差などを高精度に調整することが要求される。特に、最近の高NA、高倍率の顕微鏡対物レンズなどでは、偏心コマ収差を抑えるため各レンズ間の偏心許容量は数μm以内のレベルを実現する必要があり、レンズやレンズ枠などの加工精度を上げるだけでは対処できず、レンズ系を組み立てた後にレンズ系の偏心調整を高精度に行う工程が必須となっている。また、間隔調整についても、レンズ肉厚加工精度、レンズ間隔を規定するレンズ枠厚さの加工精度の向上だけでは対処することができず、調整工程が必要となっている。
【0004】
そこで、このような各レンズの偏心によって発生する偏心コマ収差や各レンズ間の間隔ずれを調整する方法として、以下の方法が考えられている。
【0005】
この場合、実際の偏心調整工程においては、レンズ系(以下、被検レンズと称する。)を構成する全てのレンズの偏心調整をするのではなく、被検レンズの中で偏心調整に好適なレンズ(以下調整レンズと称する。)を選択し、その調整レンズを被検レンズ全体に対して偏心調整することによって、被検レンズの軸非対称収差を抑えるようにしている。この場合、調整レンズは、1枚とは限らないが、できるだけ少ない枚数であることが望まれる。
【0006】
このような偏心調整工程において、被検レンズの偏心コマ収差を観察あるいは計測することが前提となるが、一般に、数10μmから数100μmサイズの円形チャートなどを軸上付近においてランプ光源で透過照明し、被検レンズによるチャート像を観察または撮像する。ここで、被検レンズに偏心コマ収差があれば、チャート像が円形でなくなり、例えば卵型のように非対称に変形する。作業者は、このチャート像を観察しなから被検レンズを偏心調整し、チャート像が対称になるように追い込んでいく。
【0007】
図11(a)は、この様子を説明するための図で、ハロゲンランプなどの光源80からの光により照明レンズ81を介してチャート82を照明する。チャート82は、例えば図11(b)に示すような円形開ロパターンである。このチャート82により被検レンズ83によりチャート像を作り、これをCCDカメラ84などで撮像し観察する。ここでの被検レンズ83は、部組レンズ831、833と調整レンズ832から構成されている。
【0008】
こうすることで、被検レンズ83に軸非対称収差があれば、そのチャート像は図11(c)に示すように対称性が失われるので、このチャート像をみながら、被検レンズ83内の調整レンズ832の偏心調整を行い、最終的に図11(b)に示すような円形開口パターンに対応した対称性を得るようにする。
【0009】
この場合、チャート像をモニタ上で目視観察するようにしてもよいが、チャート像の非対称収差をコンピュータにより演算して偏心方向と調整量を作業者に表示し、それに基づいて作業者か調整レンズ832を偏心調整するようにしてもよい。さらに、被検レンズの生産量が非常に多い場合は、コンピュータにより数値化された偏心調整量に基づいて自動で偏心調整を行うようにしたものもある。このような考えに基づいたものとして、特許文献1に開示されたものがある。
【0010】
なお、チャートは、円形以外にスリットなどでもよい。このようなスリットの場合、被検レンズの軸非対称収差は1次元方向しか判別できなくなるので、スリットを様々な向きに回転させて観察する必要がある。
【0011】
一方、間隔調整は、一般に軸上においては球面収差、軸外においてはコマ収差、非点収差などに影響を与える。したがって、間隔調整を行なう場合は、軸外と軸上の収差状態をそれぞれ観察する必要がある。それを実現するため、従来は、複数の円形開口を有するチャートを使用し、軸上だけでなく軸外についても円形開口を有する像を観察しながら間隔調整を行っている。
【0012】
【特許文献1】
特開2000−121902号公報
【0013】
【発明が解決しようとする課題】
ところが、上記したように、透過照明によるチャート像の変形に基づいた方法(以下透過チャート像方式と称する)では、軸非対称収差の観察感度が不足する場面が生じることがある。例えば、前述した高NA、高倍率の顕微鏡対物レンズなどでは、偏心コマ収差の低減要求が非常に厳しくなっており、偏心コマ収差の観察の感度向上が課題となっている。
【0014】
このような要求に対して、従来の透過チャート像方式において、偏心コマ収差の観察感度を上げるには、透過円形チャートの直径(またはスリット幅)を小さくしてチャート像の変形を判別しやすくする方法か考えられる。この方法の原理は、チャートが小さくなると、チャートをそのまま透過した0次光強度に対するチャートエッジ部分での高次の回折波強度の割合が相対的に増加することにより、被検レンズの高いNA領域を通る光が相対的に強度が増加し、それにより偏心コマ収差が強調されることに基づいている。さらに言えば無限小のピンホールによる回折波は全方向に一様な強度で光を回折することから、理論上は最も理想的なチャートと言ってよい。
【0015】
しかし、あまりに微小なチャートになると、被検レンズに取り込まれる光量が大幅に減少し、チャート像が非常に暗いものになってしまう。現実的には被検レンズの開口数NA、波長λで決定されるエアリデイスク径φ_airyと同等程度のチャートが理想的である。例えば、NA=0.9、λ=0.55μmの顕微鏡対物レンズのエアリディスク径を計算してみると、φ_airy=1.22×λ/NA=1.22×0.55μm/0.9=0.74μmとなる。さらに、エッジが綺麗に加工され且つ形状の対称性が要求される。
【0016】
しかし、このような微細な透過チャートを入手するのは、非常に難しい。特に、NA=0.9、λ=0.3μm程度の紫外域対物レンズの場合には、φ_airy=0.4μmとなり、このような微細な透過チャートの入手は、不可能といってよかった。
【0017】
一方、近年、顕微鏡対物レンズがレーザ光学系に適用される例が増えている。この場合、レーザ光源で規定される狭スペクトルの特定波長において性能を確保できればよいが、レーザ波長においては厳しい光学性能が要求されるため、必然的に、対物レンズが使用されるレーザ光源を使って偏心調整をする必要がある。
【0018】
しかし、上述したような、透過照明によるチャート像の非対称変形に基づいた観察方法では、コヒーレントなレーザ光で、ある程度広い面積のチャートを照明することになり、チャート像にスペックルノイズが加わる。そうなると、スペックルノイズの中に偏心コマ収差が埋もれてしまい、偏心コマ収差を観察することは不可能である。この結果、レーザ光源を使用しても、高感度に偏心コマ収差を観察することも大きな課題となっている。
【0019】
スペックルノイズを無くし、かつ偏心コマ収差を高感度に観察する方法として、被検レンズのエアリディスク径φ_airy以下の透過チャートを準備する方法がある。しかし、すでに述べたように、そのようなチャートを準備するのは諦めざるをえない。
【0020】
チャートを使わない透過観察方式として、図12に示すような基準レンズ方式も考えられる。図12は、図11と同一部分には、同符号を付して示すもので、この場合、チャートに代えて無収差として扱える基準レンズ85を準備し、基準レンズ85の焦点と被検レンズ83の焦点を一致させる。
【0021】
このようにすると、基準レンズ85のNAが被検レンズ83のNAと同等以上であれば、基準レンズ85による点像を被検レンズ83で再結像させた場合、被検レンズ83による点像を観察したとみなしてよく、それを十分な画素分解能でCCD84で撮像することで被検レンズ83の偏心コマ収差を感度良く観察ですることができる。
【0022】
これにより、チャートを使う必要もなく、レーザ光を使っても基準レンズ85による点像を観察するだけなので、ある程度大きい透過チャートをレーザ光で観察する場合に発生するスペックルノイズも発生しない。
【0023】
しかしながら、被検レンズ83に対してNAが同等以上で無収差の基準レンズ85を準備する点が、次のような理由で非現実的である。つまり、上述したように、被検レンズ83として顕微鏡の対物レンズなを考えた場合、ある特定の波長の専用設計対物レンズであったり、レーザ専用設計の対物レンズであったりする。そうすると、被検レンズ83と同じ種類の数だけ基準レンズ85が必要となる。しかも、被検レンズ83と同等以上のNAで、予め無収差とみなせるレンズでなければならない。
【0024】
したがって、図12に示す方法では、基準レンズ85を予め準備するのに費用や時間かかかり、非効率的で実用的でない。さらに、上述したように複数枚のレンズから構成されるレンズ系の場合は、上述した偏心調整だけでなく、レンズ間の間隔の調整も必要である。この間隔調整は、軸上では球面収差に影響し、軸外ではコマ収差や非点収差に影響する。このため、軸外性能も要求される場合は、間隔調整は重要となり、レンズの軸上性能だけでなく、軸外性能も高感度に観察する必要かあった。
【0025】
本発明は上記事情に鑑みてなされたもので、被検レンズの軸上および軸外収差を高感度に、且つ実用的な方法で観察できるレンズ軸上軸外点像観察装置および方法を提供することを目的とする。
【0026】
【課題を解決するための手段】
請求項1記載の発明は、被検レンズと、前記被検レンズの後端側に平行光を導光する照明光学系と、前記被検レンズの先端側で、前記被検レンズ先端から出射された出射光束軸と反射光束軸が同一光束軸となるように反射可能に配置された球面ミラーと、前記被検レンズを通過した前記反射光束による点像を観察する点像観察光学系と、前記照明光学系の光軸と前記点像観察光学系の光軸の少なくとも一方の光軸と前記被検レンズの光軸とを相対的に傾斜可能な傾斜手段と、を具備しており、前記傾斜手段は、前記照明光学系の光軸と前記点像観察光学系の光軸の少なくとも一方の光軸及び前記被検レンズの光軸と互いに直交する軸を回転中心として回動することにより傾斜させるものであり、前記回転中心を前記被検レンズの瞳位置近傍に配置され、更に、前記傾斜手段の軸と前記被検レンズの瞳位置との位置関係を、前記被検レンズの光軸方向で調整する間隔補正部材を有し、該間隔補正部材は、前記傾斜手段の軸の延長線上に前記被検レンズの瞳位置を配置させるように調整することを特徴としている。
【0028】
請求項記載の発明は、請求項1記載の発明において、前記被検レンズは、前記被検レンズの光軸を中心軸として回動可能な保持手段に保持されていることを特徴としている。
請求項記載の発明は、請求項1記載の発明において、前記照明系は、光ファイバーと、前記光ファイバーの入射端に光を導入する光源と、前記光ファイバーの出射端から出射された光を平行光にするコリメータレンズと、から構成されることを特徴としている。
請求項記載の発明は、請求項記載の発明において、前記光ファイバーの出射端は、前記コリメータレンズの焦点位置に配置されていることを特徴とする請求項3記載のレンズ軸上軸外点像観察装置。
請求項記載の発明は、請求項1記載の発明において、前記照明系は、ピンホールと、前記ピンホールを背後から照明する光源と、前記ピンホールを通過した光を平行光にするコリメータレンズと、から構成されることを特徴としている。
請求項記載の発明は、請求項記載の発明において、前記ピンホールは、前記コリメータレンズの焦点位置に配置されていることを特徴としている。
請求項記載の発明は、請求項3又は5記載の発明において、前記コリメータレンズの焦点距離をf_ill、前記被検レンズの焦点距離をf_ob、前記ピンホールまたは光ファイバーのコア径をφ_P、前記被検レンズの理想状態におけるエアリディスク径をφ_airyとした場合、
φ_p≒(f_ill/f_ob)×φ_airyまたはφ_p≦(f_ill/f_ob)×φ_airy
の関係にあることを特徴としている。
請求項記載の発明は、請求項1記載の発明において、前記球面ミラーは、シリコン製であることを特徴としている。
請求項記載の発明は、請求項1記載の発明において、前記球面ミラーは、凹状の球面又は凸状の球面を有し、前球面ミラーの球面の曲率中心と前記被検レンズの焦点が一致することを特徴としている。
【0030】
この結果、本発明によれば、被検レンズの軸上の点像から軸上の収差の観察を行なうことができると同時に、被検レンズの軸外の点像から軸外の収差の観察も行なうことができるので、被検レンズの偏心調整を始め、間隔調整を高感度で効率的に行うことができる。
【0031】
また、本発明によれば、被検レンズの収差を高感度に観察でき、しかも、多品種少量生産になりがちな厳しい仕様性能の被検レンズに対しても時間的、費用的に効率的に対応可能なレンズの軸上軸外収差観察環境を提供できる。
【0032】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従い説明する。
【0033】
(第1の実施の形態)
図1(a)(b)は、本発明が適用されるレンズ軸上軸外点像観察装置の概略構成を示している。
【0034】
図において、1は装置本体で、この装置本体1は、水平方向のベース部1a、このベース部1aに直立して設けられた胴部1b、この胴部1bの先端にベース部1aと平行に設けられたアーム部1cから構成されている。
【0035】
装置本体1の胴部1bには、アーム部1cと平行な方向に回転軸2が突設されている。
【0036】
回転軸2には、傾斜手段としてのフレーム3が回動可能に支持されている。フレーム3は、板状のフレーム本体3aの上下端部3b、3cを平行に突出したコ字形状をしたものである。フレーム本体3aには、軸受4が設けられ、この軸受4に回転軸2が挿通され、装置本体1に対してフレーム3全体が回動自在になっている。
【0037】
装置本体1のベース部1aには、押しネジ台5が設けられている。押しネジ台5には、押しネジ6が螺装されている。押しネジ6は、ベース部1a面に沿って配置され、一方端部がフレーム3の下端部3cの側面に当接されている。また、押しネジ6の他方端部には、ハンドル7が設けられ、このハンドル7の回転操作により、フレーム3に対する押付け力を調整し、フレーム3全体を回転軸2を中心に回動させるようになっている。
【0038】
フレーム3の下端部3cには、XYZステージ8が設けられている。XYZステージ8には、標本としての球面ミラー9が載置されている。XYZステージ8は、球面ミラー9を載置した状態で、水平方向のXY方向と、垂直方向のZ方向の3方向に移動可能になっており、球面ミラー9の3方向の位置を調整できるようにしている。球面ミラー9には、所定の曲率半径を有する凹状の球面9aが形成されている。
【0039】
フレーム3の上端部3bには、自転部材10を介して被検レンズ11が設けられている。被検レンズ11は、球面ミラー9の球面9aに対向させて配置されている。これら被検レンズ11および球面ミラー9は、被検レンズ11の焦点と球面ミラー9の曲率中心が一致するような位置関係で配置されている。
【0040】
これにより、フレーム3は、照明光学系13の光軸(点像観察光学系14の光軸)に対して、被検レンズ11の光軸を傾斜可能にするようになっている。
【0041】
また、被検レンズ11と回転軸2の関係は、回転軸2の回転中心Aが被検レンズ11の光軸および前記照明光学系の光軸と前記点像観察光学系の光軸の少なくとも一方の光軸に直交し、かつ被検レンズ11の瞳位置にほぼ近い位置を含む面上に配置されている。これは、フレーム3の傾斜中心軸が被検レンズ11の瞳位置から外れていると、フレーム傾斜時に瞳枠で光束にケラレを発生することになり好ましくないからである。
【0042】
図2は、自転部材10の概略構成を示している。
【0043】
フレーム3の上端部3bには、孔部3dが形成されている。この孔部3dには、筒状の固定部材10aが設けられている。この場合、孔部3dと筒状の固定部材10aは、中空部を連通して設けられている。
【0044】
固定部材10aには、周面に回転軸受10bが配置され、この回転軸受10bを介して筒状の回転部材10cが設けられている。これにより、回転部材10cは、固定部材10aの中心軸と同じ軸(光軸)を中心に回転可能になっている。
【0045】
回転部材10cには、被検レンズ11がねじ込みなどにより固定されている。被検レンズ11は、回転部材10cとともに、固定部材10aの中心軸と同じ軸、つまり被検レンズ11の光軸を中心に自転可能になっている。
【0046】
図1に戻って、装置本体1のアーム部1c上には、ビームスプリッタ12が設けられている。このビームスプリッタ12は、平行光を射出する照明系13からの平行光を被検レンズ11側に反射し、また、被検レンズ11からの光を透過するようになっている。
【0047】
ビームスプリッタ12の透過光路には、点像拡大観察系14が設けられている。この点像拡大観察系14は、結像レンズ15と、撮像手段としてのCCDカメラ16を有している。結像レンズ15は、ビームスプリッタ12を透過した被検レンズ11からの光をCCDカメラ16の撮像面に結像させるようにしている。CCDカメラ16は、撮像面に結像された像を撮像するようにしている。
【0048】
次に、このように構成された実施の形態の動作を説明する。
【0049】
まず、被検レンズ11の軸上での収差の観察を行なう場合について説明する。
【0050】
この場合、ハンドル7を回転操作して押しネジ6によるフレーム3の押付け力を解除して、フレーム本体3aがベース部1a面に対し垂直になるように設定する。また、この状態から、被検レンズ11以外については、予め、収差が問題にならない程度に調整しておく。
【0051】
照明系13からの平行光がビームスプリッタ12に入射すると、ビームスプリッタ12で反射して被検レンズ11に入射する。被検レンズ11を透過した光は、被検レンズ11の焦点に一旦集光し、球面ミラー9に向かう。
【0052】
この場合、球面ミラー9の球面9aの曲率中心と被検レンズ11の焦点が一致しているので、被検レンズ11を透過した光線は、全て球面ミラー9の球面9aで垂直反射する。
【0053】
球面ミラー9で反射した光線は、再び被検レンズ11の焦点に集光し、被検レンズ11を再透過して、被検レンズ11の2倍の収差が加わった平行光としてビームスプリッタ12に入射する。そして、ビームスプリッタ12を透過した光は、点像拡大観察系14の結像レンズ15を介してCCDカメラ16で撮像され、点像として拡大観察される。
【0054】
このようにすると、照明系13からの平行光が被検レンズ11を往復するようになるので、被検レンズ11の収差を2倍に強調することができ、さらに被検レンズ11の点像そのものを拡大観察できるので、被検レンズ11の収差の観察感度を高めることができる。
【0055】
次に、球面ミラー9の作用をさらに詳しく説明する。図1では、被検レンズ11に入射する光線のうち、光軸を挟んで互いに対称な光線を細線と太線で表わしている。
【0056】
この場合、標本として球面ミラー9を用いているので、細線で表した光線は、球面ミラー9で反射しても、再び被検レンズ11の同じ経路を辿ってビームスプリッタ12側に出射され、点像拡大観察系14側に向かう。太線で表した光線も同様である。このことは、被検レンズ11の持っている収差を2倍した収差が加わった平行光が点像拡大観察系14に向かうことになり、被検レンズ11の収差を強調した状態で収差の観察を行うことができる。
【0057】
しかし、標本として球面ミラー9でなく、仮に平面ミラーを使用した場合、平面ミラーは、被検レンズ11の焦点に設置されるが、細線で表した光線も太線で表した光線も被検レンズ11の同じ経路を辿ってビームスプリッタ12側へ射出されることがないので、被検レンズ11の持っている偏心コマ収差などの非対称収差の情報は失われてしまうことは明らかである。このことから、標本として平面ミラーを使用することはできず、球面ミラー9が使用されている。また、球面ミラー9は、非常に高精度な球面である必要があり、一般には、反射面にはコーティングを施していない。従って、材質によってその反射率が決まり、普通は、ガラス(石英などが多い)であるが、反射率が4%程度と低いので、反射率が40%程度と高いシリコン製のものが好適である。
【0058】
次に、点像拡大観察系14について詳しく説明する。
【0059】
点像拡大観察系14は、結像レンズ15と撮像手段としてのCCDカメラ16から構成されており、被検レンズ11の2倍の収差が加わった点像を大きく拡大観察する機能を有している。ここで、拡大観察するには、結像レンズ15によって作られる点像を大きくすることと、CCDカメラ16に画素サイズの小さいものを使うことが考えられる。例えば、被検レンズ11として、NA=0.9、焦点距離f_ob=1.8mm、λ=0.55μmの顕微鏡対物レンズの場合の、結像レンズ15の焦点距離とCCDカメラ16の画素分解能について考えると、被検レンズ11が無収差の場合のエアリディスク径φ_airyは、1.22×λ/NA=1.22×0.55μm/0.9=0.75μmとなる。また、結像レンズ15の焦点距離をf_TLとすると、被検レンズ11の点像の光学拡大倍率Mは、M=f_TL/f_obとなる。また、f_TL=360mmとすると、M=200倍となり、CCDカメラ16に投影されるエアリディスク径は、0.75μm×200=150μmとなる。さらに、CCDカメラ16の1画素を7.5μmとすれば、150μm/7.5μm=20、即ち、点像のエアリディスク内を20×20画素の画素分解能で撮像できる拡大観察系となる。実際には、点像のエアリディスク内を10×10画素程度の画素分解能の撮像でも、収差の観察には実用上差し支えない。
【0060】
このようにして、点像を十分な画素分解能で撮像できれば、被検レンズ11の収差の影響を受けた点像を不図示のモニター上で十分に拡大観察でき、その収差を高感度に観察できる。
【0061】
なお、CCDカメラ16の代わりに無収差とみなせる接眼レンズを付けて観察しても良いが、光学系が増えるので、上述した拡大観察系の方がより望ましい。
【0062】
また、このように被検レンズ11の収差を高感度に観察できることは、実用上の次のような効果がある。
【0063】
第1に、サブμmオーダーの微小な透過チャートの製作という困難から開放される。第2に、レーザを使用してもスペックルノイズが発生しない。第3に、基準レンズ方式のように、被検レンズの種類と同数の基準レンズを製作する必要がない。
【0064】
この反面、球面ミラー9を準備する必要があるが、反射素子であるため、あらゆる波長の被検レンズ11に対して共通に使用できることから、無収差とみなせる球面ミラー9を1個だけ準備すればよい。球面ミラー9のチェックとしては、He−Neレーザを使用した干渉計が市販されているので、この干渉計により球面ミラー9の収差(球面からのずれ)を一度だけチェックしておけは良い。これにより、被検レンズ11さえ作れば、その収差をすぐに観察できる。
【0065】
従って、このようにすれば、光が被検レンズ11を往復するので、収差が2倍に強調され、しかも、被検レンズ11を往復した光による点像そのものを拡大観察できるので、被検レンズ11の軸上での収差を高感度に観察できる。
【0066】
また、落射照明方式を用いているので、微細な透過チャートや透過基準レンズを被検レンズ種類毎に準備するなどの必要がなくなるので、費用的にも時間的にも効率良く、様々な被検レンズに対応できる収差の観察環境を提供できる。
【0067】
さらに、球面ミラー9として、反射率が高いシリコン製のものを用いることにより、光の利用効率をあげることができるので、さらに被検レンズ11の収差を高感度に観察できる。
【0068】
以上の説明は、被検レンズ11の軸上での収差の観察方法について述べたが、次に、軸外の収差の観察方法について説明する。
【0069】
この場合、ハンドル7を回転操作して押しネジ6によりフレーム3に対して押付け力を作用させる。すると、フレーム3は、回転軸2を中心に回動され、図3に示すように、被検レンズ11、球面ミラー9およびXYZステージ8が一体的に傾斜する。なお、図3は、図1と同一部分には、同符号を付している。
【0070】
これにより被検レンズ11の光軸は、ビームスプリッタ12で反射されて被検レンズ11に入射される照明系13からの平行光の光軸に対して所定角度傾けられる。
【0071】
この場合、フレーム3の傾斜の軸、つまり回転中心Aは、被検レンズ11のほぼ瞳位置になっている。
【0072】
この場合も、照明系13からの平行光がビームスプリッタ12に入射すると、ビームスプリッタ12で反射して被検レンズ11に入射する。被検レンズ11を透過した光は、球面ミラー9に向かう。この場合、被検レンズ11、球面ミラー9およびXYZステージ8は、一体的に傾斜されている。これにより、被検レンズ11に入射される照明系13からの平行光の光軸は、被検レンズ11の光軸に対して所定角度傾けられるので、被検レンズ11へ入射した平行光は、被検レンズ11の光軸から外れた軸外に集光される。
【0073】
この状態で、XYZステージ8を移動操作して球面ミラー9の曲率中心を被検レンズ11の軸外集光位置に移動させる。これにより、球面ミラー9で反射した光線は、被検レンズ11を透過してビームスプリッタ12に入射する。そして、ビームスプリッタ12を透過した光は、点像拡大観察系14の結像レンズ15を介してCCDカメラ16で撮像され、点像として拡大観察される。この拡大観察される点像が被検レンズ11の軸外の点像で、この点像から軸外の収差の観察が行われる。
【0074】
この状態から自転部材10を操作して被検レンズ11を光軸中心に自転させると、被検レンズ11の光軸から外れた軸外集光位置を移動させることができる。これにより、被検レンズ11を所定角度ずつ自転させ、軸外集光位置を移動させながら、点像拡大観察系14により点像を観察することにより、被検レンズ11の軸外全ての場所での点像を観察することができる。
【0075】
従って、このようにすれば、さらに、被検レンズ11の軸外の点像から軸外の収差の観察を行なうことができるので、上述した被検レンズ11の軸上の収差の観察を合わせて行なうことにより、被検レンズ11の偏心調整を始め、間隔調整を高感度で効率的に行うことができる。
【0076】
また、被検レンズの収差を高感度に観察でき、しかも、多品種少量生産になりがちな厳しい仕様性能の被検レンズに対しても時間的、費用的に効率的に対応可能なレンズの軸上軸外収差観察環境を提供できる。
【0077】
これにより、例えば複数枚のレンズで構成される顕微鏡対物レンズなどのレンズ系において、各レンズ間の偏心によって発生するレンズ系の偏心コマ収差や各レンズ間の間隔ずれによって発生するレンズ系の収差(球面収差、軸外コマ収差など)観察に効率よく対応でき、これらのレンズ系の偏心調整および間隔調整についても高感度で効率的に行うことができる。
【0078】
(第2の実施の形態)
次に、本発明の第2の実施の形態を説明する。
【0079】
図4(a)(b)は、第2の実施の形態の概略構成を示すもので、図1と同一部分には、同符号を付している。
【0080】
上述した第1の実施の形態では、被検レンズ11、球面ミラー9およびXYZステージ8を一体的に傾斜させるようにしたが、この第2の実施の形態では、照明系13、ビームスプリッタ12および点像拡大観察系14が一体的に傾斜するようになっている。
【0081】
この場合、装置本体1の胴部1bには、アーム部1cの突出方向と反対方向に回転軸31が突設されている。
【0082】
回転軸31には、フレーム32が回動可能に支持されている。フレーム32は、板状のフレーム本体32aの上端部をアーム部1cと平行な方向に折り曲げた折曲げ部32bを有するものである。フレーム本体32aには、軸受33が設けられ、この軸受33に回転軸31が挿通され、装置本体1に対してフレーム32全体が回動自在になっている。
【0083】
装置本体1のベース部1a上には、XYZステージ8が設けられている。XYZステージ8には、標本としての球面ミラー9が載置されている。XYZステージ8は、球面ミラー9を載置した状態で、水平方向のXY方向と、垂直方向のZ方向の3方向に移動可能になっており、球面ミラー9の3方向の位置を調整できるようにしている。球面ミラー9には、所定の曲率半径を有する凹状の球面9aが形成されている。
【0084】
装置本体1のアーム部1cには、自転部材10を介して被検レンズ11が設けられている。被検レンズ11は、球面ミラー9の球面9aに対向させて配置されている。これら被検レンズ11および球面ミラー9は、被検レンズ11の焦点と球面ミラー9の曲率中心が一致するような位置関係で配置されている。
【0085】
ここで、被検レンズ11と回転軸31の関係は、回転軸31の回転中心Aが被検レンズ11の光軸および前記照明光学系の光軸と前記点像観察光学系の光軸の少なくとも一方の光軸に直交し、かつ被検レンズ11の瞳位置にほぼ近い位置を含む面上に配置されている。
【0086】
装置本体1のベース部1aには、押しネジ台5が設けられている。押しネジ台5には、押しネジ6が螺装されている。押しネジ6は、ベース部1a面に沿って配置され、一方端部がフレーム32のフレーム本体32a下端部に当接されている。また、押しネジ6の他方端部には、ハンドル7が設けられ、このハンドル7の回転操作により、フレーム本体32aに対する押付け力を調整し、フレーム32全体を回転軸31を中心に回動させるようになっている。
【0087】
フレーム32の折曲げ部32bには、ビームスプリッタ12が設けられている。このビームスプリッタ12は、平行光を射出する照明系13からの平行光を被検レンズ11側に反射し、また、被検レンズ11からの光を透過するようになっている。
【0088】
ビームスプリッタ12の透過光路には、点像拡大観察系14が設けられている。この点像拡大観察系14は、結像レンズ15と、撮像手段としてのCCDカメラ16を有している。結像レンズ15は、ビームスプリッタ12を透過した被検レンズ11からの光をCCDカメラ16の撮像面に結像させるようにしている。CCDカメラ16は、撮像面に結像された像を撮像するようにしている。
【0089】
これにより、フレーム32は、被検レンズ11の光軸に対して、照明光学系13の光軸(点像観察光学系14の光軸)を傾斜可能にするようになっている。
【0090】
このような構成において、まず、被検レンズ11の軸上での収差の観察を行なう場合は、ハンドル7を回転操作して押しネジ6によるフレーム32の押付け力を解除し、フレーム本体32aがベース部1a面に対し垂直になるように設定する。この状態で、上述したと同様にして被検レンズ11の軸上での収差の観察が行われる。
【0091】
次に、軸外での収差の観察を行なう場合は、ハンドル7を回転操作して押しネジ6によりフレーム32に対して押付け力を作用させる。すると、フレーム32は、回転軸31を中心に回動され、図5に示すように、照明系13、ビームスプリッタ12および点像拡大観察系14が一体的に傾斜する。なお、図5は、図4と同一部分には、同符号を付している。
【0092】
これにより、ビームスプリッタ12で反射されて被検レンズ11に入射される照明系13からの平行光の光軸は、被検レンズ11の光軸に対して所定角度傾けられる。
【0093】
この場合も、照明系13からの平行光がビームスプリッタ12に入射すると、ビームスプリッタ12で反射して被検レンズ11に入射する。被検レンズ11を透過した光は、球面ミラー9に向かう。この場合、照明系13、ビームスプリッタ12および点像拡大観察系14は、一体的に傾斜されている。これにより、被検レンズ11に入射される照明系13からの平行光の光軸は、被検レンズ11の光軸に対して所定角度傾けられるので、、被検レンズ11へ入射した平行光は、被検レンズ11の光軸から外れた軸外に集光される。
【0094】
この状態で、XYZステージ8を移動操作して球面ミラー9の曲率中心を被検レンズ11の軸外集光位置に移動させる。これにより、球面ミラー9で反射した光線は、被検レンズ11を透過してビームスプリッタ12に入射する。そして、ビームスプリッタ12を透過した光は、点像拡大観察系14の結像レンズ15を介してCCDカメラ16で撮像され、点像として拡大観察される。この拡大観察される点像が被検レンズ11の軸外の点像で、この点像から軸外の収差の観察が行われる。
【0095】
また、この状態から自転部材10を操作して被検レンズ11を光軸中心に自転させると、被検レンズ11の光軸から外れた軸外集光位置を移動させることができる。これにより、被検レンズ11を所定角度ずつ自転させ、軸外集光位置を移動させながら、点像拡大観察系14により点像を観察することにより、被検レンズ11の軸外全ての場所での点像を観察することができる。
【0096】
従って、このようにしても、第1の実施の形態で述べたと同様、被検レンズ11の軸外の点像から軸外の収差の観察を行なうことができるので、上述した被検レンズ11の軸上の収差の観察を合わせて行なうことにより、被検レンズ11の偏心調整を始め、間隔調整を高感度で効率的に行うことができる。
【0097】
(第3の実施の形態)
次に、本発明の第3の実施の形態を説明する。
【0098】
図6は、本発明の第3の実施の形態の概略構成を示すもので、図1と同一部分には、同符号を付している。
【0099】
なお、図面では示していないが、図1で述べたと同様に、装置本体1の胴部1bに回転軸2を介してフレーム3を回動可能に支持し、このフレーム3に被検レンズ11、球面ミラー9およびXYZステージ8を一体的に設け、これらをフレーム3とともに傾斜可能にする構成になっている。
【0100】
照明系13には、光源41、集光レンズ42、光ファイバー43およびコリメータレンズ44が設けられている。光ファイバー43は、出射端をコリメータレンズ44の焦点位置に配置されている。
【0101】
このようにすると、光源41から放射された光は、集光レンズ42を介して光ファイバー43に導入される。また、光ファイバー43から出射した光は、コリメータレンズ44を通り平行光となってビームスプリッタ12に入射し、これ以降、上述した第1の実施の形態で説明したような被検レンズ11の軸上、軸外の点像の拡大観察が行われる。
【0102】
この第3の実施例では、光ファイバー43によって照明光を導入するようにしたので、様々な光源に簡単に対処できるようになる。光源41には大型の水冷ガスレーザや、小型の半導体レーザ、ランプなど種々あるが、光源41と、それに適した光ファイバー43さえ準備すれば良いので、様々な光源に対して効率的に対応できる。光源41としてレーザ光源が使用される場合は、コア径数μmのシングルモードファイバーを使用する。光源41がランプ光源装置などの場合、シングルモードファイバーを使用しても良いがファイバーに導入できる光量が非常に少なくなるので、シングルモードファイバーよりもコア径の大きいマルチモードファイバーを使用した方が現実的である。ただし、CCDカメラ16と光ファイバー43の出射端面のコアは共役関係にあるため、あまりコア径の大きなファイバーを使用すると、被検レンズ11の点像を観察しているというよりも、ファイバーのコアを観察している状態に近づいてくる。それでも、十分に被検レンズ11の軸非対称収差を観察できるのであれば良いが、ここでは、点像を観察するための照明系6の条件について考えてみる。
【0103】
いま、被検レンズ11として、NA=0.9、f_ob=1.8mm、λ=0.55μmの顕微鏡対物レンズを想定する。この被検レンズ11のエアリデイスク径は、
φ_airy=1.22×λ/NA=1.22×0.55μm/0.9=0.75μm …▲1▼
である。
【0104】
ところで、光ファイバー43のコア径φ_pが、焦点距離f_illのコリメータレンズ44と、焦点距離f_obの被検レンズ11によって、被検レンズ11の焦点に投影されるわけだが、その投影像径φ’を幾何光学的に考えれば、
φ_p’=(f_ob/f_ill)×φ_p …▲2▼
となる。
【0105】
ここで、f_ob=1.8m、f_ill=180m、ファイバーコア径φ_P=10μmのマルチモードファイバーを考えると、
φ_p’=1.8mm/180mm×10μm=0.1μm
となる。いま、被検レンズ11のエアリディスク径はφ_airy=0.75μmであり、これは幾何光学的投影で考えたコアの投影像径φ_p'よりも大きい。すなわち、被検レンズ11の焦点には、ファイバーのコアが幾何光学的に投影されているわけではなく、被検レンズ11によって決まる点像が形成されていると考えて良い。
【0106】
このことをまとめると、下式▲3▼が成立していれば、ファイバーのコアを観察しているのではなく、被検レンズ11の点像を観察していると考えて良い。
【0107】
φ_p’≦φ_airy …▲3▼
また、実際には、φ_p’≒φ_airyでも、収差の高感度観察には十分である。したがって、本装置において最大の観察感度を引き出す条件として式▲3▼を拡張して
φ_p’≒φ_airyまたはφ_p’≦φ_airy …▲4▼
となる。
【0108】
▲1▼、▲2▼を▲4▼に代入して別形式で表せば、
φ_p≒(f_ill/f_ob)×φ_airyまたは
φ_p≦(f_ill/f_ob)×φ_airy …▲5▼
となる。
【0109】
φ_p’がφ_airyの数倍になってくると、収差の観察感度は落ちてくるが、本発明の実用上のメリットは失われることにはならない。したがって、式▲5▼の関係から多少外れたとしても本発明の意義が失われることは全くない。
【0110】
従って、このようにすれば、第1の実施の形態と同様な効果を得られ、さらに、光ファイバー43により照明光を導入するようにしたので、1台のレンズ軸上軸外点像観察装置で様々な光源に対して簡単に対応することができる。
【0111】
なお、この第3の実施の形態は、図4で述べたと同様に、装置本体1の胴部1bに回転軸31を介してフレーム32を回動可能に設け、このフレーム32に照明系13、ビームスプリッタ12および点像拡大観察系14を一体的に設け、これらをフレーム32とともに傾斜可能にした構成とすることもできる
(第4の実施の形態)
次に、本発明の第4の実施の形態を説明する。
【0112】
図7は、本発明の第4の実施の形態の概略構成を示すもので、図1と同一部分には、同符号を付している。
【0113】
なお、図面では示していないが、図1で述べたと同様に、装置本体1の胴部1bに回転軸2を介してフレーム3を回動可能に支持し、このフレーム3に被検レンズ11、球面ミラー9およびXYZステージ8を一体的に設け、これらをフレーム3とともに傾斜可能にする構成になっている。
【0114】
照明系13には、光源51、集光レンズ52、ピンホール(PH)53およびコリメータレンズ54が設けられている。ピンホール(PH)53は、コリメータレンズ54の焦点位置に配置されている。
【0115】
このようにすると、光源51から放射された光は、集光レンズ52を介してピンホール(PH)53背後から照射される。ピンホール(PH)53を通過した光は、コリメータレンズ54を通り平行光となってビームスプリッタ12に入射し、これ以降、上述した第1の実施の形態で説明したような被検レンズ11の軸上、軸外の点像の拡大観察が行われる。
【0116】
この第4の実施の形態では、光ファイバーに代わってピンホール(PH)53をコリメータレンズ54の焦点位置に設置し、ピンホール(PH)53を背後から光源51により照明する。このようにすると、特に、光源51として水銀ランプの深紫外輝線を使用するような場合、光ファイバーの透過率が劣化していくので、そのような場合に、この第4の実施の形態のような光ファイバーを使用しない構成が適している。この場合、ピンホール(PH)53の径をφ_pとして、第3の実施の形態で説明したのと同様に式▲5▼が成り立つのが望ましい。
【0117】
従って、このようにしても、第1の実施の形態と同様な効果を得られ、さらに、光源がランプ光源で光ファイバーによる照明光の導入が難しいような場合に好適な照明系を実現できる。
【0118】
なお、この第4の実施の形態も、図4で述べたと同様に、装置本体1の胴部1bに回転軸31を介してフレーム32を回動可能に設け、このフレーム32に照明系13、ビームスプリッタ12および点像拡大観察系14を一体的に設け、これらをフレーム32とともに傾斜可能にした構成とすることができる
(第5の実施の形態)
次に、本発明の第5の実施の形態を説明する。
【0119】
図8は、本発明の第5の実施の形態の概略構成を示すもので、図1と同一部分には、同符号を付している。
【0120】
なお、図面では示していないが、図1で述べたと同様に、装置本体1の胴部1bに回転軸2を介してフレーム3を回動可能に支持し、このフレーム3に被検レンズ11、球面ミラー9およびXYZステージ8を一体的に設け、これらをフレーム3とともに傾斜可能にする構成になっている。
【0121】
照明系13には、レーザ光源61と、レーザ光を無収差とみなせるレンズ62,63が設けられている。
【0122】
このようにすると、レーザ光源61からのレーザ光は、無収差とみなせるレンズ62、63によって、所望のビーム径に変換されてビームスプリッタ12に平行光として導入され、これ以降、上述した第1の実施の形態で説明したような被検レンズ11の軸上、軸外の点像の拡大観察が行われる。
【0123】
この第5の実施の形態は、特定のレーザ光に本装置を専用使用する場合や、当該レーザ光に使用できる光ファイバーが入手困難な場合に最適な構成となる。
【0124】
従って、このようにしても、第1の実施の形態と同様な効果を得られ、さらに、被検レンズの点像を観察していることに相当する照明系を簡単に実現できる。
【0125】
なお、この第5の実施の形態も、図4で述べたと同様に、装置本体1の胴部1bに回転軸31を介してフレーム32を回動可能に設け、このフレーム32に照明系13、ビームスプリッタ12および点像拡大観察系14を一体的に設け、これらをフレーム32とともに傾斜可能にした構成とすることができる
ところで、上述した各実施の形態に用いられる球面ミラー9は、いくつか形態が考えらえる。これらについて説明すると、上述では全て、凹状の球面9aを有する球面ミラー9を用いているが、例えば、図9に示すような凸状の球面21aを有する球面ミラー21でもよい。この場合も、球面ミラー21の球面21aの曲率中心と被検レンズ11の焦点が一致するようになっている。
【0126】
また、生物用顕微鏡の対物レンズ組立調整時の点像観察に用いられる球面ミラーとして図10に示すようなものがある。この場合、生物標本は、一般にスライドガラス上にスライスした観察標本を置き、その上から厚さ0.17mm程度のカバーガラスを載せて観察される。このため生物用対物レンズはカバーガラスが設置された場合に収差が最も小さくなるように設計されている。また、生物標本は、およそ生理食塩水程度の光学的屈折率を有すると考えて実用上差し支えない。このような生物標本の観察を行なうのに近い状態で、被検レンズ11の点像を観察するための球面ミラーが図10に示すものである。図10では、高精度なガラスボールレンズを半分にカットした半球状の球面ミラー22の平面22a側にカバーガラス23を取り付けた構成になっており、球面22b側は反射面として使用される。被検レンズ11の焦点位置は、カバーガラス23を介して球面ミラー22の平面22a当たりに合わせる。球面ミラー22は、内部がガラスであるが、生理食塩水と同じ屈折率ではなくても実用上それに近い屈折率と見なせるものであればよい。このような半球状の球面ミラー22を用いることにより、球面22bで反射した光は、再びもとの経路を辿って被検レンズ11の点像を観察することができる。また、生物顕微鏡で良く使用される油浸対物レンズを被検レンズ11とする場合は、カバーガラス23と被検レンズ11の間に該当するオイルを満たすようにすればよい。
【0127】
さらに、上述した実施の形態では、フレーム3(32)の傾斜範囲を、垂直状態を起点として片方に傾斜するように構成しているが、その変形として、垂直状態を中間位置として振り子のように両方向に傾斜させるようにしてもよい。こうすれば、軸上を中心として対称位置に存在する複数の軸外収差を容易に観察することが可能となる。また、フレーム3(32)傾斜の中心となる回転軸2(31)は、その中心軸が被検レンズ11の光軸に直交し、かつ被検レンズ11の瞳位置にほぼ近い位置を含む面上に配置されているが、被検レンズ11を異なる仕様のものに交換したとき、その瞳位置も変化することが考えられる。このようにフレーム3(32)傾斜の中心軸が被検レンズ11の瞳位置から外れていくと、フレーム傾斜時に瞳枠で光束がケラレを発生することになり、好ましくないので、フレーム傾斜の中心軸は、被検レンズ11のほぼ瞳位置とするのがよい。そこで、被検レンズ11と自転部材10との間に不図示の間隔補正部材を設け、この間隔補正部材により被検レンズ11の光軸方向の位置調整を可能にすることが考えられる。このような間隔補正部材を用いることで、被検レンズ11の瞳位置が変化した場合でも、回転軸2(31)の中心軸の延長線上に被検レンズ11の瞳位置を配置させることができる。このようにすれば、被検レンズ11の瞳位置を限定することなく、種々の仕様の被検レンズ11の軸上、軸外収差の観察を行なうことができる。
【0128】
その他、本発明は、上記実施の形態に限定されるものでなく、実施段階では、その要旨を変更しない範囲で種々変形することが可能である。
【0129】
さらに、上記実施の形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば、実施の形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。
【0130】
なお、上述した実施の形態には、以下の発明も含まれる。
【0131】
(1)請求項1乃至3のいずれかに記載のレンズ軸上軸外点像観察装置において、前記照明系は、光ファイバーとコリメータレンズによって構成されることを特徴としている。
【0132】
このようにすれば、1台のレンズ軸上軸外点像観察装置で様々な光源に対して効率的に対応することができる。
【0133】
(2)請求項1乃至3のいずれかに記載のレンズ軸上軸外点像観察装置において、前記照明系は、ピンホール、ピンホールを背後から照明する光源、コリメータレンズから構成されることを特徴としている。
【0134】
このようにすれば、光源がランプ光源で光ファイバーによる照明光の導入が難しい場合にも好適な照明系を実現できる。
【0135】
(3)(1)(2)記載のレンズ軸上軸外点像観察装置において、照明系のコリメータレンズの焦点距離をf_ill、被検レンズの焦点距離をf_ob、ピンホールまたは光ファイバーのコア径をφ_P、被検レンズの理想状態におけるエアリディスク径をφ_airyとした場合、
φ_p≒(f_ill/f_ob)×φ_airyまたはφ_p≦(f_ill/f_ob)×φ_airy
の関係にあることを特徴としている。
【0136】
このようにすれば、被検レンズの点像を観察していることに相当する照明系を実現できる。
【0137】
(4)請求項1乃至3のいずれかに記載のレンズ軸上軸外点像観察装置において、前記球面ミラーは、シリコン製であることを特徴としている。
【0138】
このようすれば、球面ミラーがシリコン製で反射率が高いので、光の利用効率を上げることができる。
【0139】
(5)被検レンズと、前記被検レンズの後端側に平行光を導光する照明光学系と、前記被検レンズの先端側で前記被検レンズ先端から出射された出射光束軸と反射光束軸が同一光束軸となるように反射可能に配置された球面ミラーと、前記被検レンズを通過した前記反射光束による点像を観察する点像観察光学系と、前記被検レンズに入射される前記照明光からの平行光の光軸と前記被検レンズの光軸とを相対的に傾斜可能にする傾斜手段とを具備したことを特徴としている。
【0140】
【発明の効果】
以上述べたように本発明によれば、被検レンズの軸上および軸外収差を高感度に、且つ実用的な方法で観察できるレンズ軸上軸外点像観察装置および方法を提供できる。つまり、軸上軸外収差を高感度に観察でき、しかも、多品種少量生産になりがちな厳しい仕様性能の被検レンズに対して時間的、費用的にも効率的に対応可能なレンズ軸上軸外点像観察環境を提供できるという優れた効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の概略構成を示す図。
【図2】第1の実施の形態に用いられる自転部材の概略構成を示す図。
【図3】第1の実施の形態のフレームを傾斜させた状態を示す図。
【図4】本発明の第2の実施の形態の概略構成を示す図。
【図5】第2の実施の形態のフレームを傾斜させた状態を示す図。
【図6】本発明の第3の実施の形態の概略構成を示す図。
【図7】本発明の第4の実施の形態の概略構成を示す図。
【図8】本発明の第5の実施の形態の概略構成を示す図。
【図9】第1乃至5の実施の形態に用いられる球面ミラーの変形例の概略構成を示す図。
【図10】第1乃至5の実施の形態に用いられる球面ミラーの他の変形例の概略構成を示す図。
【図11】従来のレンズ点像観察装置の一例の概略構成を示す図。
【図12】従来のレンズ点像観察装置の他例の概略構成を示す図。
【符号の説明】
1…装置本体、1a…ベース部、1b…胴部、1c…アーム部
2…回転軸、3…フレーム、3a…フレーム本体
3b…上端部、3c…下端部、3d…孔部、4…軸受
5…押しネジ台、6…押しネジ、7…ハンドル、8…XYZステージ
9…球面ミラー、9a…球面、10…自転部材、10a…固定部材
10b…回転軸受、10c…回転部材、11…被検レンズ
12…ビームスプリッタ、13…照明系、14…点像拡大観察系
15…結像レンズ、16…CCDカメラ、21a…球面
21…球面ミラー、22…球面ミラー、22a…平面
22b…球面、23…カバーガラス、31…回転軸、32…フレーム
32a…フレーム本体、32b…折曲げ部、33…軸受、41…光源
42…集光レンズ、43…光ファイバー、44…コリメータレンズ
51…光源、52…集光レンズ、53…ピンホール(PH)
54…コリメータレンズ、61…レーザ光源、62.63…レンズ

Claims (9)

  1. 被検レンズと、
    前記被検レンズの後端側に平行光を導光する照明光学系と、
    前記被検レンズの先端側で、前記被検レンズ先端から出射された出射光束軸と反射光束軸が同一光束軸となるように反射可能に配置された球面ミラーと、
    前記被検レンズを通過した前記反射光束による点像を観察する点像観察光学系と、
    前記照明光学系の光軸と前記点像観察光学系の光軸の少なくとも一方の光軸と前記被検レンズの光軸とを相対的に傾斜可能な傾斜手段と、
    を具備しており、前記傾斜手段は、前記照明光学系の光軸と前記点像観察光学系の光軸の少なくとも一方の光軸及び前記被検レンズの光軸と互いに直交する軸を回転中心として回動することにより傾斜させるものであり、前記回転中心を前記被検レンズの瞳位置近傍に配置され、
    更に、前記傾斜手段の軸と前記被検レンズの瞳位置との位置関係を、前記被検レンズの光軸方向で調整する間隔補正部材を有し、該間隔補正部材は、前記傾斜手段の軸の延長線上に前記被検レンズの瞳位置を配置させるように調整することを特徴とするレンズ軸上軸外点像観察装置。
  2. 前記被検レンズは、前記被検レンズの光軸を中心軸として回動可能な保持手段に保持されていることを特徴とする請求項1記載のレンズ軸上軸外点像観察装置。
  3. 前記照明系は、光ファイバーと、前記光ファイバーの入射端に光を導入する光源と、前記光ファイバーの出射端から出射された光を平行光にするコリメータレンズと、から構成されることを特徴とする請求項1記載のレンズ軸上軸外点像観察装置。
  4. 前記光ファイバーの出射端は、前記コリメータレンズの焦点位置に配置されていることを特徴とする請求項3記載のレンズ軸上軸外点像観察装置。
  5. 前記照明系は、ピンホールと、前記ピンホールを背後から照明する光源と、前記ピンホールを通過した光を平行光にするコリメータレンズと、から構成されることを特徴とする請求項1記載のレンズ軸上軸外点像観察装置。
  6. 前記ピンホールは、前記コリメータレンズの焦点位置に配置されていることを特徴とする請求項5記載のレンズ軸上軸外点像観察装置。
  7. 前記コリメータレンズの焦点距離を f_ill 、前記被検レンズの焦点距離を f_ob 、前記ピンホールまたは光ファイバーのコア径をφ _P 、前記被検レンズの理想状態におけるエアリディスク径をφ _airy とした場合、
    φ _p ≒( f_ill f_ob )×φ _airy またはφ _p ≦( f_ill f_ob )×φ _airy
    の関係にあることを特徴とする請求項3又は請求項5記載のレンズ軸上軸外点像観察装置。
  8. 前記球面ミラーは、シリコン製であることを特徴とする請求項1記載のレンズ軸上軸外点像観察装置。
  9. 前記球面ミラーは、凹状の球面又は凸状の球面を有し、前球面ミラーの球面の曲率中心と前記被検レンズの焦点が一致することを特徴とする請求項1記載のレンズ軸上軸外点像観察装置。
JP2003118343A 2003-04-23 2003-04-23 レンズ軸上軸外点像観察装置および方法 Expired - Fee Related JP4245967B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118343A JP4245967B2 (ja) 2003-04-23 2003-04-23 レンズ軸上軸外点像観察装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118343A JP4245967B2 (ja) 2003-04-23 2003-04-23 レンズ軸上軸外点像観察装置および方法

Publications (3)

Publication Number Publication Date
JP2004325173A JP2004325173A (ja) 2004-11-18
JP2004325173A5 JP2004325173A5 (ja) 2006-05-25
JP4245967B2 true JP4245967B2 (ja) 2009-04-02

Family

ID=33497909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118343A Expired - Fee Related JP4245967B2 (ja) 2003-04-23 2003-04-23 レンズ軸上軸外点像観察装置および方法

Country Status (1)

Country Link
JP (1) JP4245967B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814499B2 (ja) * 2004-07-22 2011-11-16 オリンパス株式会社 レンズ組立支援装置
JP4709642B2 (ja) * 2005-12-22 2011-06-22 オリンパス株式会社 波面収差測定装置
JP2007183358A (ja) * 2006-01-05 2007-07-19 Olympus Corp 光学素子の位置調整装置
FR2926636B1 (fr) * 2008-01-18 2010-09-17 Imagine Optic Instrument et procede de caracterisation d'un systeme optique

Also Published As

Publication number Publication date
JP2004325173A (ja) 2004-11-18

Similar Documents

Publication Publication Date Title
JP5479733B2 (ja) 顕微鏡照明装置及びアダプタ
EP1941313B1 (en) An optical system for illumination of an evanescent field
JP4744215B2 (ja) 暗視野検査照明装置
EP1745738A2 (en) Apparatus for measuring wavefront aberrations
JP2012508366A (ja) 画像マッピング分光計
US11327288B2 (en) Method for generating an overview image using a large aperture objective
JP2014095908A (ja) 焦点調整装置および焦点調整方法
JP2015152836A (ja) 共焦点光スキャナ
JP2004038139A (ja) 顕微鏡内への光線連結のための装置
JP2012198560A (ja) 小型超高開口率カタジオプトリック対物系
JP2002071513A (ja) 液浸系顕微鏡対物レンズ用干渉計および液浸系顕微鏡対物レンズの評価方法
JP2019526367A (ja) 反射屈折等倍アフォーカル瞳孔リレー及びこれを採用した光学撮影系
JP5489034B2 (ja) 反射型投影光学装置
JPH08179202A (ja) 紫外線結像光学システム
JP4814499B2 (ja) レンズ組立支援装置
JP4245967B2 (ja) レンズ軸上軸外点像観察装置および方法
JP2009145843A (ja) 顕微鏡照明光学系
JP4027752B2 (ja) レンズ点像観察装置および方法
JP2009229144A (ja) 偏心測定機
JP2013142768A (ja) 走査型顕微鏡
JP2006038488A5 (ja)
JPH10111217A (ja) 非球面鏡用の光軸調整装置
Wang et al. 3D-scanning microscopy with adaptive lenses and prisms for zebrafish studies
JP2006313213A (ja) 照明用光学系及び顕微鏡照明装置
JP2006118944A (ja) レンズの評価装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090107

R151 Written notification of patent or utility model registration

Ref document number: 4245967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees