JP4242733B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP4242733B2
JP4242733B2 JP2003294015A JP2003294015A JP4242733B2 JP 4242733 B2 JP4242733 B2 JP 4242733B2 JP 2003294015 A JP2003294015 A JP 2003294015A JP 2003294015 A JP2003294015 A JP 2003294015A JP 4242733 B2 JP4242733 B2 JP 4242733B2
Authority
JP
Japan
Prior art keywords
gas
valve
gas supply
exhaust pipe
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003294015A
Other languages
English (en)
Other versions
JP2005064306A (ja
Inventor
正憲 境
信人 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2003294015A priority Critical patent/JP4242733B2/ja
Publication of JP2005064306A publication Critical patent/JP2005064306A/ja
Application granted granted Critical
Publication of JP4242733B2 publication Critical patent/JP4242733B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、半導体装置の製造方法に関し、特に、Si半導体デバイスを製造する際に用いられる、CVD(Chemical Vapor Deposition)法の中の1つであるALD(Atomic layer Deposition)法により成膜を行う工程を備える半導体装置の製造方法に関する。
一般的に、ALD法等を行う減圧CVD装置では、処理炉1つに対し、真空排気手段が1つ対応し、処理炉から真空排気手段につながる主な配管は1系統であり、真空排気手段から成膜用のガスの除害装置へつながる配管も1系統である。
そのために、成膜に用いる2種類のガスが混合すると副生成物を生じる場合には、2種類のガスが排気系で混合、反応して副生成物を生じ、その副生成物が堆積してしまうものであれば排気配管を閉塞またはそれに近い状態にさせるおそれがあり、その副生成物が腐食性のものであれば、金属製の排気配管を腐食させる原因となり、問題となっていた。
従って、本発明の主な目的は、混合すると副生成物を生じる2種のガスが排気系で混合することを抑えることができ、副生成物の発生を低減することができる成膜工程を備える半導体装置の製造方法を提供することにある。
本発明によれば、
少なくとも第1の処理ガスと第2の処理ガスとをそれぞれ別々に処理室へ供給する供給手段と、前記処理室内の雰囲気を排気する排気手段であって、第1の排気経路および第2の排気経路と各排気経路にそれぞれ設けられた第1および第2のバルブとを有する前記排気手段と、を備える基板処理装置を使用して、基板に所望の膜を形成する工程を備える半導体装置の製造方法であって、
前記処理室内に前記第1の処理ガスを供給する第1のガス供給工程と、
前記第1のバルブを開いて前記第1の排気経路を単独で用いて、前記処理室内に供給された前記第1の処理ガスを前記処理室内から除去する第1のガス除去工程と、
前記第1のガス除去工程後、前記第1のバルブおよび前記第2のバルブを開いた状態で、前記第1の排気経路および前記第2の排気経路を共に用いて、前記処理室内に供給された前記第1の処理ガスを前記処理室内から除去する第2のガス除去工程と、
前記処理室内に前記第2の処理ガスを供給する第2のガス供給工程と、
前記第2のバルブを開いて前記第2の排気経路を単独で用いて、前記処理室内に供給された前記第2の処理ガスを前記処理室内から除去する第3のガス除去工程と、
前記第3のガス除去工程後、前記第2のバルブおよび前記第1のバルブを開いた状態で、前記第1の排気経路および前記第2の排気経路を共に用いて、前記処理室内に供給された前記第2の処理ガスを前記処理室内から除去する第4のガス除去工程と、
を有する半導体装置の製造方法が提供される。
本発明によれば、第1および第2のガスが混合する機会を激減することができ、排気系の副生成物の付着を抑えることができる。また、第1および第2のガスが混合すると腐食性の強い副生成物ができる場合でも、排気系の腐食防止対策になる。
まず、本発明の好適な実施例にて行った、ウエハ等の基板へのプロセス処理例としてCVD法の中の1つであるALD法を用いた成膜処理について、簡単に説明する。
ALD法は、ある成膜条件(温度、時間等)の下で、成膜に用いる2種類(またはそれ以上)の原料となるガスを1種類ずつ交互に基板上に供給し、1原子層単位で吸着させ、表面反応を利用して成膜を行う手法である。
この原料ガスを交互に流すという成膜方法に、以下にのべる処理炉以降の排気システムを組み合わせると、排気配管に反応副生成物が生成しにくくなることが期待される。
例えば、ALD法によりSiN(窒化珪素)膜を形成する場合、DCS(SiHCl、ジクロルシラン)とNH(アンモニア)を交互に供給することにより、300〜600℃の低温で高品質の成膜が可能である。このように、ALD法では、複数種類の反応性ガスを1種類ずつ交互に供給することによって成膜を行う。そして、膜厚制御は、反応性ガス供給のサイクル数で制御する。例えば、成膜速度が1Å/サイクルとすると、20Åの膜を形成する場合、処理を20サイクル行う。
本発明の好適な実施例では、排気系に、DCS用の排気経路とアンモニア用の排気経路をそれぞれ設け、各排気配管にそれぞれバルブを設ける。そして、これらのバルブを制御することにより、DCSガス供給工程後にDCSガスを処理室内から除去するDCSガス除去工程の初期時においては、DCS用の排気経路を単独で使用する。そして、DCSガス除去工程の所定時間経過後には、DCS用の排気経路とアンモニア用の排気経路を共に用いるようにする。その後、DCS用の排気経路のバルブを閉じ、アンモニアガスを処理室内へ供給するアンモニアガス供給工程時と、アンモニアガス供給工程後にアンオニアガスを処理室内から除去するアンモニアガス除去工程の初期時とにおいては、アンモニア用の排気経路を単独で使用する。そして、アンモニアガス除去工程の所定時間経過後には、アンモニア用の排気経路とDCS用の排気経路を共に用いるようにする。その後、アンモニア用の排気経路のバルブを閉じ、DCS用の排気経路を単独で用いてDCSガスを処理室内へ供給するDCSガス供給工程を行い、以降上記工程を繰り返す。また、好ましくは、DCSガス除去工程およびアンモニアガス除去工程においては、不活性ガスを処理室内に供給し、DCS用の排気経路やアンモニア用の排気経路から排気する。
次に、本発明の実施例を図面を参照してさらに詳細に説明する。
図1は、本実施例1にかかる縦型の基板処理炉の概略構成図であり、処理炉部分を縦断面で示し、図2は本実施例にかかる縦型の基板処理炉の概略構成図であり、処理炉部分を横断面で示す。加熱手段であるヒータ207の内側に、基板であるウエハ200を処理する反応容器として反応管203が設けられ、この反応管203の下端開口は蓋体であるシールキャップ219により気密部材であるOリング220を介して気密に閉塞され、少なくとも、このヒータ207、反応管203、およびシールキャップ219により処理炉(処理室)202を形成している。シールキャップ219には石英キャップ218を介して基板保持手段であるボート217が立設され、前記石英キャップ218はボート217を保持する保持体となっている。そして、ボート217は処理炉202に挿入される。ボート217にはバッチ処理される複数のウエハ200が水平姿勢で管軸方向に多段に積載される。ヒータ207は処理炉202に挿入されたウエハ200を所定の温度に加熱する。
そして、処理炉202へは複数種類、ここでは2種類のガスを供給する供給管としての2本のガス供給管232a、232bが設けられる。ここでは第1のガス供給管232aからは流量制御手段である第1のマスフローコントローラ241aおよび開閉弁であるバルブ243aを介し、更に後述する処理炉202内に形成されたバッファ室237を介して処理炉202に第1の反応ガス(NH)が供給され、第2のガス供給管232bからは流量制御手段である第2のマスフローコントローラ241b、開閉弁であるバルブ243b、ガス溜め247、および開閉弁であるバルブ243cを介し、更に後述するガス供給部249を介して処理炉202に第2の反応ガス(DCS)が供給される。
第1のガス供給管232aには、第1の不活性ガス供給管232cが開閉バルブ243eを介してバルブ243aの下流側に接続されている。第2のガス供給管232bには、第2の不活性ガス供給管232dが開閉バルブ243fを介してバルブ243cの下流側に接続されている。
処理炉202はガスを排気する排気管であるガス排気管231によりバルブ243dを介して排気手段である真空ポンプ246に接続され、真空排気されるようになっている。このバルブ243dは弁を開閉して処理炉202の真空排気・真空排気停止ができ、更に弁開度を調節して圧力調整可能になっている開閉弁である。また、真空ポンプ246と除害装置333との間には、排気経路としての第1の排気配管341および第2の排気配管342が並列に接続されている。第1の排気配管341には、開閉弁であるバルブ331が設けられ、第2の排気配管342には、開閉弁であるバルブ332が設けられている。
処理炉202を構成している反応管203の内壁とウエハ200との間における円弧状の空間には、反応管203の下部より上部の内壁にウエハ200の積載方向に沿って、ガス分散空間であるバッファ室237が設けられており、そのバッファ室237のウエハ200と隣接する壁の端部にはガスを供給する供給孔である第1のガス供給孔248aが設けられている。この第1のガス供給孔248aは反応管203の中心へ向けて開口している。この第1のガス供給孔248aは、下部から上部にわたってそれぞれ同一の開口面積を有し、更に同じ開口ピッチで設けられている。
そしてバッファ室237の第1のガス供給孔248aが設けられた端部と反対側の端部には、ノズル233が、やはり反応管203の下部より上部にわたりウエハ200の積載方向に沿って配設されている。そしてノズル233には複数のガスを供給する供給孔である第2のガス供給孔248bが設けられている。この第2のガス供給孔248bの開口面積は、バッファ室237と処理炉202の差圧が小さい場合には、上流側から下流側まで同一の開口面積で同一の開口ピッチとすると良いが、差圧が大きい場合には上流側から下流側に向かって開口面積を大きくするか、開口ピッチを小さくすると良い。
本実施例において、第2のガス供給孔248bの開口面積や開口ピッチを上流側から下流にかけて調節することで、まず、第2の各ガス供給孔248bよりガスの流速の差はあるが、流量はほぼ同量であるガスを噴出させる。そしてこの各第2のガス供給孔248bから噴出するガスをバッファ室237に噴出させて一旦導入し、前記ガスの流速差の均一化を行うこととした。
すなわち、バッファ室237において、各第2のガス供給孔248bより噴出したガスはバッファ室237で各ガスの速度が緩和された後、第1のガス供給孔248aより処理炉202に噴出する。この間に、各第2のガス供給孔248bより噴出したガスは、各第1のガス供給孔248aより噴出する際には、均一な流量と流速とを有するガスとすることができた。
さらに、バッファ室237に、細長い構造を有する第1の電極である第1の棒状電極269および第2の電極である第2の棒状電極270が上部より下部にわたって電極を保護する保護管である電極保護管275に保護されて配設され、この第1の棒状電極269または第2の棒状電極270のいずれか一方は整合器272を介して高周波電源273に接続され、他方は基準電位であるアースに接続されている。この結果、第1の棒状電極269および第2の棒状電極270間のプラズマ生成領域224にプラズマが生成される。
この電極保護管275は、第1の棒状電極269および第2の棒状電極270のそれぞれをバッファ室237の雰囲気と隔離した状態でバッファ室237に挿入できる構造となっている。ここで、電極保護管275の内部は外気(大気)と同一雰囲気であると、電極保護管275にそれぞれ挿入された第1の棒状電極269および第2の棒状電極270はヒータ207の加熱で酸化されてしまう。そこで、電極保護管275の内部は窒素などの不活性ガスを充填あるいはパージし、酸素濃度を充分低く抑えて第1の棒状電極269または第2の棒状電極270の酸化を防止するための不活性ガスパージ機構が設けられる。
さらに、第1のガス供給孔248aの位置より、反応管203の内周を120°程度回った内壁に、ガス供給部249が設けられている。このガス供給部249は、ALD法による成膜においてウエハ200へ、複数種類のガスを1種類ずつ交互に供給する際に、バッファ室237とガス供給種を分担する供給部である。
このガス供給部249もバッファ室237と同様にウエハと隣接する位置に同一ピッチでガスを供給する供給孔である第3のガス供給孔248cを有し、下部では第2のガス供給管232bが接続されている。
第3のガス供給孔248cの開口面積はバッファ室237と処理炉202の差圧が小さい場合には、上流側から下流側まで同一の開口面積で同一の開口ピッチとすると良いが、差圧が大きい場合には上流側から下流側に向かって開口面積を大きくするか開口ピッチを小さくすると良い。
反応管203内の中央部には複数枚のウエハ200を多段に同一間隔で載置するボート217が設けられており、このボート217は図中省略のボートエレベータ機構により反応管203に出入りできるようになっている。また処理の均一性を向上するためにボート217を回転するための回転手段であるボート回転機構267が設けてあり、ボート回転機構267を回転することにより、石英キャップ218に保持されたボート217を回転するようになっている。
制御手段であるコントローラ321は、第1、第2のマスフローコントローラ241a、241b、バルブ243a、243b、243c、243d、243e、243f、331、332、ヒータ207、真空ポンプ246、ボート回転機構267、図中省略のボート昇降機構、高周波電源273、整合器272、除害装置333に接続されており、コントローラ321によって、第1、第2のマスフローコントローラ241a、241bの流量調整、バルブ243a、243b、243c、243e、243f、331、332の開閉動作、バルブ243dの開閉および圧力調整動作、ヒータ207温度調節、真空ポンプ246の起動・停止、ボート回転機構267の回転速度調節、ボート昇降機構の昇降動作制御、高周波電極273の電力供給制御、整合器272によるインピーダンス制御および除害装置333によるガスの除害操作が行われる。
次にALD法による成膜例について、DCSおよびNHガスを用いてSiN膜を成膜する例で説明する。
まず、成膜しようとするウエハ200をボート217に装填し、処理炉202に搬入する。搬入後、次の3つのステップを順次実行する。
[ステップ1]
ステップ1では、プラズマ励起の必要なNHガスとプラズマ励起の必要のないDCSガスとを併行して第1のガス供給管232aと第2のガス供給管232bとに流すが、処理炉202にはNHガスのみを供給する。まず第1のガス供給管232aに設けたバルブ243a、ガス排気管231に設けたバルブ243dおよび第1の排気配管341に設けたバルブ331を開けて、第1のガス供給管232aから第1のマスフローコントローラ243aにより流量調整されたNHガスをノズル233の第2のガス供給孔248bからバッファ室237へ噴出し、第1の棒状電極269および第2の棒状電極270間に高周波電源273から整合器272を介して高周波電力を印加してNHをプラズマ励起し、活性種として第1のガス供給孔248aから処理炉202に供給しつつガス排気管231および第1の排気配管341から排気し、除害装置333まで送出する。このとき、第2の排気配管341に設けたバルブ332は閉じておく。
なお、このステップ1では、バルブ243fを開けて、第2の不活性ガス供給管232dから第2のガス供給管232b、ガス供給部249および第3のガス供給孔248cを介して窒素等の不活性ガスを処理炉202内に供給する。
NHガスをプラズマ励起することにより活性種として流すときは、バルブ243dを適正に調整して処理炉202内の圧力を10〜100Paとする。第1のマスフローコントローラ241aで制御するNHの供給流量は1000〜10000sccmである。NHをプラズマ励起することにより得られた活性種にウエハ200を晒す時間は2〜120秒間である。このときのヒータ207の温度はウエハ200の温度が300〜600℃になるよう設定してある。NHは反応温度が高いため、上記ウエハ温度では反応しないが、プラズマ励起することにより活性種としてから流すようにしており、このためウエハ温度は設定した低い温度範囲のままで成膜を行える。
このNHをプラズマ励起することにより活性種として供給しているとき、第2のガス供給管232bの上流側のバルブ243bを開け、下流側のバルブ243cを閉めて、DCSも第2のガス供給管232bに流すようにする。これによりバルブ243b、243c間に設けたガス溜め247にDCSを溜める。このとき、処理炉202内に流しているガスはNHをプラズマ励起することにより得られた活性種と第2のガス供給管232bから流した不活性ガスのみであり、DCSは存在しない。したがって、NHは気相反応を起こすことはなく、プラズマにより励起され活性種となったNHはウエハ200上の下地膜と表面反応する。
[ステップ2]
ステップ2では、第1のガス供給管232aのバルブ243aを閉めて、NHの供給を止める。この時、同時に、バルブ243eを開けて、第1の不活性ガス供給管232cから第1のガス供給管232a、ノズル233の第2のガス供給孔248b、バッファ室237、第1のガス供給孔248aを介して窒素等の不活性ガスを処理炉202内に供給する。但し、第1の棒状電極269および第2の棒状電極270間には高周波電力は印加しない。なお、このステップ2でも、バルブ243fを開けて、第2の不活性ガス供給管232dから第2のガス供給管232b、ガス供給部249および第3のガス供給孔248cを介して窒素等の不活性ガスを処理炉202内に供給し続ける。
そして、ガス排気管231のバルブ243dおよび第1の排気配管341のバルブ331は開いたままにし、第2の排気配管341のバルブ332は閉じておき、真空ポンプ246により、処理炉202を20Pa以下に排気し、残留NHをガス排気管231および第1の排気配管341を介して処理炉202から排除し始める。このように、第1のガス供給管232aのバルブ243aを閉めてNHの供給を止め、同時に、第1の不活性ガス供給管232cから第1のガス供給管232a等を介して窒素等の不活性ガスを処理炉202内に供給し、残留NHをガス排気管231および第1の排気配管341を介して処理炉202から排除し始めてから、しばらくすると、好ましくは、2秒以上経過すると、第1の排気配管341のバルブ331は開いたままで、第2の排気配管342のバルブ332も開け、第1の排気配管341および第2の排気配管342を介して排気し、その後、第1の排気配管341のバルブ331を閉じる。
なお、ここで、NHの供給を止め、残留NHをガス排気管231および第1の排気配管341を介して処理炉202から排除し始めてから、第2の排気配管342のバルブ332も開けるまでに、しばらく、好ましくは、2秒以上経過させるのは、先に流したガス(NH)の濃度を下げ、次のガス(DCS)との混合による副生成物の生成がほとんどなくなるようにするためである。
一方では、引続き第2のガス供給管232bのガス溜め247へ供給を継続する。ガス溜め247に所定圧、所定量のDCSが溜まったら上流側のバルブ243bも閉めて、ガス溜め247にDCSを閉じ込めておく。ガス溜め247内には、圧力が20000Pa以上になるようにDCSを溜める。また、ガス溜め247と処理炉202との間のコンダクタンスが1.5×10−3/s以上になるように装置を構成する。また、反応管203容積とこれに対する必要なガス溜め247の容積との比として考えると、反応管203容積100l(リットル)の場合においては、100〜300ccであることが好ましく、容積比としてはガス溜め247は反応室容積の1/1000〜3/1000倍とすることが好ましい。
[ステップ3]
ステップ3では、第1の排気配管341のバルブ331を閉じ、ガス排気管231および第2の排気配管342を介して処理炉202の排気を行った後、ガス排気管231のバルブ243cを閉じて排気を止め、第2のガス供給管232bの下流側のバルブ243cを開く。なお、バルブ243cを開く直前にバルブ243fを閉じ、第2の不活性ガス供給管232dからの窒素等の不活性ガスの供給を停止する。
これによりガス溜め247に溜められたDCSが処理炉202に一気に供給される。このときガス排気管231のバルブ243dが閉じられているので、処理炉202内の圧力は急激に上昇して約931Pa(7Torr)まで昇圧される。DCSを供給するための時間は2〜4秒設定し、その後上昇した圧力雰囲気中に晒す時間を2〜4秒に設定し、合計6秒とした。このときのウエハ温度はNHの供給時と同じく、300〜600℃である。DCSの供給により、下地膜上のNHとDCSとが表面反応して、ウエハ200上にSiN膜が成膜される。
成膜後、バルブ243cを閉じ、バルブ243dを開けて、ガス排気管231および第2の排気配管342を介して、処理炉202を真空排気し、残留するDCSの成膜に寄与した後のガスを除害装置333まで送出する。このとき、バルブ243cを閉じるのと同時に、バルブ243fを開けて、第2の不活性ガス供給管232dから第2のガス供給管232b、ガス供給部249および第3のガス供給孔248cを介して窒素等の不活性ガスを処理炉202内に供給する。また、このとき、第1の排気配管341に設けたバルブ331は閉じておく。
なお、このステップ3では、バルブ243eを開けて、第1の不活性ガス供給管232cから第1のガス供給管232a、ノズル233の第2のガス供給孔248b、バッファ室237、第1のガス供給孔248aを介して窒素等の不活性ガスを処理炉202内に供給し続ける。但し、第1の棒状電極269および第2の棒状電極270間には高周波電力は印加しない。
このように、第2のガス供給管232bのバルブ243cを閉めてDCSの供給を止め、同時に、第2の不活性ガス供給管232dから第2のガス供給管232b等を介して窒素等の不活性ガスを処理炉202内に供給し、残留DCSをガス排気管231および第2の排気配管342を介して処理炉202から排除し始めてから、しばらくすると、好ましくは、2秒以上経過すると、第2の排気配管342のバルブ332は開いたままで、第1の排気配管341のバルブ331も開け、第2の排気配管342および第1の排気配管341を介して排気し、その後、第2の排気配管342のバルブ332を閉じる。
なお、ここで、DCSの供給を止め、残留DCSをガス排気管231および第2の排気配管342を介して処理炉202から排除し始めてから、第1の排気配管341のバルブ331も開けるまでに、しばらく、好ましくは、2秒以上経過させるのは、先に流したガス(DCS)の濃度を下げ、次のガス(NH)との混合による副生成物の生成がほとんどなくなるようにするためである。
また、バルブ243cを閉めた後に、バルブ243bを開いてガス溜め247へのDCSの供給を開始する。なお、バルブ243bを開く直前にバルブ243eを閉じ、第1の不活性ガス供給管232cからの窒素等の不活性ガスの供給を停止する。
上記ステップ1〜3を1サイクルとし、このサイクルを複数回繰り返すことによりウエハ上に所定膜厚のSiN膜を成膜する。
図3は、本実施例2にかかる縦型の基板処理炉の概略構成図であり、処理炉部分を縦断面で示し、図2は本実施例にかかる縦型の基板処理炉の概略構成図であり、処理炉部分を横断面で示す。
実施例1では、処理炉202はガス排気管231によりバルブ243dを介して排気手段である真空ポンプ246に接続され、真空ポンプ246と除害装置333との間には、排気経路としての第1の排気配管341および第2の排気配管342が並列に接続されており、第1の排気配管341には、開閉弁であるバルブ331が設けられ、第2の排気配管342には、開閉弁であるバルブ332が設けられており、バルブ331、332、真空ポンプ246はコントローラ321に接続され、コントローラ321によって、バルブ331、332の開閉動作、真空ポンプ246の起動・停止の制御が行われていたが、本実施例2では、処理炉202は、ガス排気管231によりバルブ243dを介して第1の排気配管343および第2の排気配管344に並列に接続されており、第1の排気配管343には開閉弁であるバルブ334が設けられ、第2の排気配管344には開閉弁であるバルブ335が設けられ、第1の排気配管343のバルブ334と除害装置333との間には排気手段である真空ポンプ336が設けられ、第2の排気配管344のバルブ335と除害装置333との間には排気手段である真空ポンプ337が設けられ、バルブ334、335、真空ポンプ336、337はコントローラ321に接続され、コントローラ321によって、バルブ334、335の開閉動作、真空ポンプ336、337の起動・停止の制御が行われている点が実施例1と異なるが、他の点は同じである。
次にALD法による成膜例について、DCSおよびNHガスを用いてSiN膜を成膜する例で説明する。
まず、成膜しようとするウエハ200をボート217に装填し、処理炉202に搬入する。搬入後、次の3つのステップを順次実行する。なお、真空ポンプ336および337は排気動作を続けておく。
[ステップ1]
ステップ1では、プラズマ励起の必要なNHガスとプラズマ励起の必要のないDCSガスとを併行して第1のガス供給管232aと第2のガス供給管232bとに流すが、処理炉202にはNHガスのみを供給する。まず第1のガス供給管232aに設けたバルブ243a、ガス排気管231に設けたバルブ243dおよび第1の排気配管341に設けたバルブ331を開けて、第1のガス供給管232aから第1のマスフローコントローラ243aにより流量調整されたNHガスをノズル233の第2のガス供給孔248bからバッファ室237へ噴出し、第1の棒状電極269および第2の棒状電極270間に高周波電源273から整合器272を介して高周波電力を印加してNHをプラズマ励起し、活性種として第1のガス供給孔248aから処理炉202に供給しつつガス排気管231および第1の排気配管343から排気し、除害装置333まで送出する。このとき、第2の排気配管344に設けたバルブ335は閉じておく。
なお、このステップ1では、バルブ243fを開けて、第2の不活性ガス供給管232dから第2のガス供給管232b、ガス供給部249および第3のガス供給孔248cを介して窒素等の不活性ガスを処理炉202内に供給する。
NHガスをプラズマ励起することにより活性種として流すときは、バルブ243dを適正に調整して処理炉202内の圧力を10〜100Paとする。第1のマスフローコントローラ241aで制御するNHの供給流量は1000〜10000sccmである。NHをプラズマ励起することにより得られた活性種にウエハ200を晒す時間は2〜120秒間である。このときのヒータ207の温度はウエハ200の温度が300〜600℃になるよう設定してある。NHは反応温度が高いため、上記ウエハ温度では反応しないが、プラズマ励起することにより活性種としてから流すようにしており、このためウエハ温度は設定した低い温度範囲のままで成膜を行える。
このNHをプラズマ励起することにより活性種として供給しているとき、第2のガス供給管232bの上流側のバルブ243bを開け、下流側のバルブ243cを閉めて、DCSも第2のガス供給管232bに流すようにする。これによりバルブ243b、243c間に設けたガス溜め247にDCSを溜める。このとき、処理炉202内に流しているガスはNHをプラズマ励起することにより得られた活性種と第2のガス供給管232bから流した不活性ガスのみであり、DCSは存在しない。したがって、NHは気相反応を起こすことはなく、プラズマにより励起され活性種となったNHはウエハ200上の下地膜と表面反応する。
[ステップ2]
ステップ2では、第1のガス供給管232aのバルブ243aを閉めて、NHの供給を止める。この時、同時に、バルブ243eを開けて、第1の不活性ガス供給管232cから第1のガス供給管232a、ノズル233の第2のガス供給孔248b、バッファ室237、第1のガス供給孔248aを介して窒素等の不活性ガスを処理炉202内に供給する。但し、第1の棒状電極269および第2の棒状電極270間には高周波電力は印加しない。なお、このステップ2でも、バルブ243fを開けて、第2の不活性ガス供給管232dから第2のガス供給管232b、ガス供給部249および第3のガス供給孔248cを介して窒素等の不活性ガスを処理炉202内に供給し続ける。そして、ガス排気管231のバルブ243dおよび第1の排気配管343のバルブ334は開いたままにし、第2の排気配管344のバルブ335は閉じておき、真空ポンプ336により、処理炉202を20Pa以下に排気し、残留NHをガス排気管231および第1の排気配管343を介して処理炉202から排除し始める。
このように、第1のガス供給管232aのバルブ243aを閉めてNHの供給を止め、同時に、第1の不活性ガス供給管232cから第1のガス供給管232a等を介して窒素等の不活性ガスを処理炉202内に供給し、残留NHをガス排気管231および第1の排気配管343を介して処理炉202から排除し始めてから、しばらくすると、好ましくは、2秒以上経過すると、第1の排気配管343のバルブ334は開いたままで、第2の排気配管344のバルブ335も開け、第1の排気配管343および第2の排気配管344を介して排気し、その後、第1の排気配管343のバルブ334を閉じる。
なお、ここで、NHの供給を止め、残留NHをガス排気管231および第1の排気配管343を介して処理炉202から排除し始めてから、第2の排気配管344のバルブ335も開けるまでに、しばらく、好ましくは、2秒以上経過させるのは、先に流したガス(NH)の濃度を下げ、次のガス(DCS)との混合による副生成物の生成がほとんどなくなるようにするためである。
一方では、引続き第2のガス供給管232bのガス溜め247へ供給を継続する。ガス溜め247に所定圧、所定量のDCSが溜まったら上流側のバルブ243bも閉めて、ガス溜め247にDCSを閉じ込めておく。ガス溜め247内には、圧力が20000Pa以上になるようにDCSを溜める。また、ガス溜め247と処理炉202との間のコンダクタンスが1.5×10−3/s以上になるように装置を構成する。また、反応管203容積とこれに対する必要なガス溜め247の容積との比として考えると、反応管203容積100l(リットル)の場合においては、100〜300ccであることが好ましく、容積比としてはガス溜め247は反応室容積の1/1000〜3/1000倍とすることが好ましい。
[ステップ3]
ステップ3では、第1の排気配管343のバルブ334を閉じ、ガス排気管231および第2の排気配管344を介して処理炉202の排気を行った後、ガス排気管231のバルブ243cを閉じて排気を止め、第2のガス供給管232bの下流側のバルブ243cを開く。なお、バルブ243cを開く直前にバルブ243fを閉じ、第2の不活性ガス供給管232dからの窒素等の不活性ガスの供給を停止する。
これによりガス溜め247に溜められたDCSが処理炉202に一気に供給される。このときガス排気管231のバルブ243dが閉じられているので、処理炉202内の圧力は急激に上昇して約931Pa(7Torr)まで昇圧される。DCSを供給するための時間は2〜4秒設定し、その後上昇した圧力雰囲気中に晒す時間を2〜4秒に設定し、合計6秒とした。このときのウエハ温度はNHの供給時と同じく、300〜600℃である。DCSの供給により、下地膜上のNHとDCSとが表面反応して、ウエハ200上にSiN膜が成膜される。
成膜後、バルブ243cを閉じ、バルブ243dを開けて、ガス排気管231および第2の排気配管344を介して、処理炉202を真空排気し、残留するDCSの成膜に寄与した後のガスを除害装置333まで送出する。このとき、バルブ243cを閉じるのと同時に、バルブ243fを開けて、第2の不活性ガス供給管232dから第2のガス供給管232b、ガス供給部249および第3のガス供給孔248cを介して窒素等の不活性ガスを処理炉202内に供給する。また、このとき、第1の排気配管343に設けたバルブ334は閉じておく。
なお、このステップ3では、バルブ243eを開けて、第1の不活性ガス供給管232cから第1のガス供給管232a、ノズル233の第2のガス供給孔248b、バッファ室237、第1のガス供給孔248aを介して窒素等の不活性ガスを処理炉202内に供給し続ける。但し、第1の棒状電極269および第2の棒状電極270間には高周波電力は印加しない。
このように、第2のガス供給管232bのバルブ243cを閉めてDCSの供給を止め、同時に、第2の不活性ガス供給管232dから第2のガス供給管232b等を介して窒素等の不活性ガスを処理炉202内に供給し、残留DCSをガス排気管231および第2の排気配管344を介して処理炉202から排除し始めてから、しばらくすると、好ましくは、2秒以上経過すると、第2の排気配管344のバルブ335は開いたままで、第1の排気配管343のバルブ334も開け、第2の排気配管344および第1の排気配管343を介して排気し、その後、第2の排気配管344のバルブ335を閉じる。
なお、ここで、DCSの供給を止め、残留DCSをガス排気管231および第2の排気配管344を介して処理炉202から排除し始めてから、第1の排気配管343のバルブ334も開けるまでに、しばらく、好ましくは、2秒以上経過させるのは、先に流したガス(DCS)の濃度が下がり、次のガス(NH)との混合による副生成物の生成がほとんどなくなるようにするためである。
また、バルブ243cを閉めた後に、バルブ243bを開いてガス溜め247へのDCSの供給を開始する。
上記ステップ1〜3を1サイクルとし、このサイクルを複数回繰り返すことによりウエハ上に所定膜厚のSiN膜を成膜する。なお、バルブ243bを開く直前にバルブ243eを閉じ、第1の不活性ガス供給管232cからの窒素等の不活性ガスの供給を停止する。
以上のように、処理炉以降の真空排気手段以降の配管を2系統とすることで、2種のガスの混合する機会が激減し、常圧部である排気配管への副生成物の付着を抑えることができるとともに、真空排気手段内部での副生成物の生成も抑制できる。
また、2つの原料が混ざると腐食性の強い副生成物ができる場合も、本発明を用いれば排気系での原料の混合が抑えられることから、排気配管の腐食防止対策になることが期待される。
特に、実施例1および実施例2では、NHを流すときには、第1の排気配管341(実施例1)や第1の排気配管343(実施例2)のみから排気し、NHの供給を止めてからしばらくの間も第1の排気配管341(実施例1)や第1の排気配管343(実施例2)のみから排気し、その後は、実施例1では、第1の排気配管341および第2の排気配管342の両方から排気し、実施例2では、第1の排気配管343および第2の排気配管344の両方から排気しているので、先に流したガス(NH)の濃度が下がり、次のガス(DCS)との混合による副生成物の生成がほとんどなくなるようになる。
また、実施例1および実施例2では、成膜後、バルブ243cを閉じてDCSの供給を止め、バルブ243dを開けて、ガス排気管231および第2の排気配管342(実施例1)や第2の排気配管344(実施例2)を介して、処理炉202を真空排気し始めてからしばらくの間も第2の排気配管342(実施例1)や第1の排気配管344(実施例2)のみから排気し、その後は、実施例1では、第1の排気配管341および第2の排気配管342の両方から排気し、実施例2では、第1の排気配管343および第2の排気配管344の両方から排気しているので、先に流したガス(DCS)の濃度が下がり、次のガス(NH)との混合による副生成物の生成がほとんどなくなるようになる。
なお、実施例1および実施例2では、ガス溜め247を設けて、ガス溜め247にDCSを閉じ込めておき、ガス排気管231のバルブ243cを閉じて排気を止め、ガス溜め247の下流側のバルブ243cを開くことによりガス溜め247に溜められたDCSを処理炉202に一気に供給しているが、ガス溜め247を設けない場合には、DCSを流すときには、第2の排気配管342(実施例1)や第2の排気配管344(実施例2)のみから排気し、DCSの供給を止めてからしばらくの間も第2の排気配管342(実施例1)や第2の排気配管342(実施例2)のみから排気し、その後は、実施例1では、第1の排気配管341および第2の排気配管342の両方から排気し、実施例2では、第1の排気配管343および第2の排気配管344の両方から排気するようにすれば、先に流したガス(DCS)の濃度が下がり、次のガス(NH)との混合による副生成物の生成がほとんどなくなるようになる。
また、第1のガス供給管232bのバルブ243aを閉めてNHガスの供給を止めるのと同時に、第1の不活性ガス供給管232cから第1のガス供給管232a等を介して窒素等の不活性ガスを処理炉202内に供給して残留NHガスを処理炉202から排気しているので、残留NHガスを排気する効果が高められている。そして、第2のガス供給管232bのバルブ243cを閉めてDCSの供給を止めるのと同時に、第2の不活性ガス供給管232dから第2のガス供給管232b等を介して窒素等の不活性ガスを処理炉202内に供給し始めて残留DCSを処理炉202から排気しているので、残留DCSを排気する効果が高められている。
また、実施例1および実施例2においては、第2のガス供給管232bからDCSを処理炉202に供給する前から第1のガス供給管232aからNHガスを供給する直前まで、第1のガス供給管232aに第1の不活性ガス供給管232cから窒素等の不活性ガスを処理炉202に供給し続けているので、第1のガス供給管232a等の処理炉202への第1のガス供給系にDCSが回り込むのを防止でき、また、第1のガス供給管232aからNHガスを処理炉202に供給する前から第2のガス供給管232bからDCSを供給する直前まで、第2のガス供給管232bに第2の不活性ガス供給管232dから窒素等の不活性ガスを処理炉202に供給し続けているので、第2のガス供給管232b等の処理炉202への第2のガス供給系にNHガスが回り込むのを防止できる。
ALD装置では、ガスは下地膜表面に吸着する。このガスの吸着量は、ガスの圧力、およびガスへの暴露時間に比例する。よって、希望する一定量のガスを、短時間で吸着させるためには、ガスの圧力を短時間で大きくする必要がある。この点で、実施例1、2では、バルブ243dを閉めたうえで、ガス溜め247内に溜めたDCSを瞬間的に供給しているので、処理炉202内のDCSの圧力を急激に上げることができ、希望する一定量のガスを瞬間的に吸着させることができる。
また、実施例1、2では、ガス溜め247にDCSを溜めている間に、ALD法で必要なステップであるNHガスをプラズマ励起することによる活性種としての供給、および処理炉202の排気を行っているので、DCSを溜めるための特別なステップを必要としない。また、処理炉202内を排気してNHガスを除去してからDCSを流すので、両者はウエハ200に向かう途中で反応しない。供給されたDCSは、ウエハ200に吸着しているNHとのみ有効に反応させることができる。
次に、図4を参照して、本発明が好適に適用される基板処理装置の一例である半導体製造装置についての概略を説明する。
筐体101内部の前面側には、図示しない外部搬送装置との間で基板収納容器としてのカセット100の授受を行う保持具授受部材としてのカセットステージ105が設けられ、カセットステージ105の後側には昇降手段としてのカセットエレベータ115が設けられ、カセットエレベータ115には搬送手段としてのカセット移載機114が取りつけられている。又、前記カセットエレベータ115の後側には、カセット100の載置手段としてのカセット棚109が設られると共にカセットステージ105の上方にも予備カセット棚110が設けられている。予備カセット棚110の上方にはクリーンユニット118が設けられクリーンエアを筐体101の内部を流通させるように構成されている。
筐体101の後部上方には、処理炉202が設けられ、処理炉202の下方には基板としてのウエハ200を水平姿勢で多段に保持する基板保持手段としてのボート217を処理炉202に昇降させる昇降手段としてのボートエレベータ121が設けられ、ボートエレベータ121に取りつけられた昇降部材122の先端部には蓋体としてのシールキャップ219が取りつけられボート217を垂直に支持している。ボートエレベータ121とカセット棚109との間には昇降手段としての移載エレベータ113が設けられ、移載エレベータ113には搬送手段としてのウエハ移載機112が取りつけられている。又、ボートエレベータ121の横には、開閉機構を持ち処理炉202の下面を塞ぐ遮蔽部材としての炉口シャッタ116が設けられている。
ウエハ200が装填されたカセット100は、図示しない外部搬送装置からカセットステージ105にウエハ200が上向き姿勢で搬入され、ウエハ200が水平姿勢となるようカセットステージ105で90°回転させられる。更に、カセット100は、カセットエレベータ115の昇降動作、横行動作およびカセット移載機114の進退動作、回転動作の協働によりカセットステージ105からカセット棚109または予備カセット棚110に搬送される。
カセット棚109にはウエハ移載機112の搬送対象となるカセット100が収納される移載棚123があり、ウエハ200が移載に供されるカセット100はカセットエレベータ115、カセット移載機114により移載棚123に移載される。
カセット100が移載棚123に移載されると、ウエハ移載機112の進退動作、回転動作および移載エレベータ113の昇降動作の協働により移載棚123から降下状態のボート217にウエハ200を移載する。
ボート217に所定枚数のウエハ200が移載されるとボートエレベータ121によりボート217が処理炉202に挿入され、シールキャップ219により処理炉202が気密に閉塞される。気密に閉塞された処理炉202内ではウエハ200が加熱されると共に処理ガスが処理炉202内に供給され、ウエハ200に処理がなされる。
ウエハ200への処理が完了すると、ウエハ200は上記した作動の逆の手順により、ボート217から移載棚123のカセット100に移載され、カセット100はカセット移載機114により移載棚123からカセットステージ105に移載され、図示しない外部搬送装置により筐体101の外部に搬出される。尚、炉口シャッタ116は、ボート217が降下状態の際に処理炉202の下面を塞ぎ、外気が処理炉202内に巻き込まれるのを防止している。
カセット移載機114等の搬送動作は、搬送制御手段124により制御される。
本発明の実施例1の基板処理装置における縦型基板処理炉の概略縦断面図である。 本発明の実施例1および実施例2の基板処理装置における縦型基板処理炉の概略横断面図である。 本発明の実施例2の基板処理装置における縦型基板処理炉の概略縦断面図である。 本発明の実施例1および実施例2の基板処理装置を説明するための概略斜視図である。
符号の説明
200…ウエハ
202…処理炉
203…反応管
207…ヒータ
217…ボート
218…石英キャップ
219…シールキャップ
220…Oリング
224…プラズマ生成領域
231…ガス排気管
232a…第1のガス供給管
232b…第2のガス供給管
232c…第1の不活性ガス供給管
232d…第2の不活性ガス供給管
233…ノズル
237…バッファ室
241a…第1のマスフローコントローラ
241b…第2のマスフローコントローラ
243a…バルブ
243b…バルブ
243c…バルブ
243d…バルブ
243e…バルブ
243f…バルブ
246…真空ポンプ
247…ガス溜め
248a…第1のガス供給孔
248b…第2のガス供給孔
248c…第3のガス供給孔
249…ガス供給部
267…ボート回転機構
269…第1の棒状電極
270…第2の棒状電極
271…アース
272…整合器
273…高周波電源
275…電極保護管
321…コントローラ
331…バルブ
332…バルブ
333…除害装置
334…バルブ
335…バルブ
336…真空ポンプ
337…真空ポンプ
341…第1の排気配管
342…第2の排気配管
343…第1の排気配管
344…第2の排気配管

Claims (3)

  1. 少なくとも第1の処理ガスと第2の処理ガスとをそれぞれ別々に処理室へ供給する供給手段と、前記処理室内の雰囲気を排気する排気手段であって、第1の排気経路および第2の排気経路と各排気経路にそれぞれ設けられた第1および第2のバルブとを有する前記排気手段と、を備える基板処理装置を使用して、基板に所望の膜を形成する工程を備える半導体装置の製造方法であって、
    前記処理室内に前記第1の処理ガスを供給する第1のガス供給工程と、
    前記第1のバルブを開いて前記第1の排気経路を単独で用いて、前記処理室内に供給された前記第1の処理ガスを前記処理室内から除去する第1のガス除去工程と、
    前記第1のガス除去工程後、前記第1のバルブおよび前記第2のバルブを開いた状態で、前記第1の排気経路および前記第2の排気経路を共に用いて、前記処理室内に供給された前記第1の処理ガスを前記処理室内から除去する第2のガス除去工程と、
    前記処理室内に前記第2の処理ガスを供給する第2のガス供給工程と、
    前記第2のバルブを開いて前記第2の排気経路を単独で用いて、前記処理室内に供給された前記第2の処理ガスを前記処理室内から除去する第3のガス除去工程と、
    前記第3のガス除去工程後、前記第2のバルブおよび前記第1のバルブを開いた状態で、前記第1の排気経路および前記第2の排気経路を共に用いて、前記処理室内に供給された前記第2の処理ガスを前記処理室内から除去する第4のガス除去工程と、
    を有する半導体装置の製造方法。
  2. 前記第1のガス供給工程から前記第4のガス除去工程を順に繰り返し、前記第1および第3のガス除去工程は、前記第1の処理ガスもしくは前記第2の処理ガスの濃度が次の処理ガスとの混合による副生成物の生成がほとんどなくなる濃度となるまで行う請求項1記載の半導体装置の製造方法。
  3. 前記第1および第2の排気経路にそれぞれポンプを設ける請求項1または2記載の半導体装置の製造方法。
JP2003294015A 2003-08-15 2003-08-15 半導体装置の製造方法 Expired - Lifetime JP4242733B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003294015A JP4242733B2 (ja) 2003-08-15 2003-08-15 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003294015A JP4242733B2 (ja) 2003-08-15 2003-08-15 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2005064306A JP2005064306A (ja) 2005-03-10
JP4242733B2 true JP4242733B2 (ja) 2009-03-25

Family

ID=34370690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003294015A Expired - Lifetime JP4242733B2 (ja) 2003-08-15 2003-08-15 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP4242733B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10535501B2 (en) 2013-05-31 2020-01-14 Tokyo Electron Limited Film forming apparatus, film forming method and non-transitory storage medium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647359B2 (ja) * 2005-03-23 2011-03-09 株式会社日立国際電気 基板処理装置および成膜方法
KR100980126B1 (ko) * 2005-08-02 2010-09-03 도쿄엘렉트론가부시키가이샤 성막 방법, 성막 장치 및 기억매체
JP4305427B2 (ja) 2005-08-02 2009-07-29 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
JP6396670B2 (ja) * 2014-04-15 2018-09-26 東京エレクトロン株式会社 成膜装置ならびに排気装置および排気方法
CN111868893A (zh) * 2018-03-14 2020-10-30 株式会社国际电气 基板处理装置、半导体装置的制造方法和程序
TW202234623A (zh) * 2021-02-24 2022-09-01 日商國際電氣股份有限公司 基板處理裝置、半導體裝置之製造方法、程式及排氣系統

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10535501B2 (en) 2013-05-31 2020-01-14 Tokyo Electron Limited Film forming apparatus, film forming method and non-transitory storage medium

Also Published As

Publication number Publication date
JP2005064306A (ja) 2005-03-10

Similar Documents

Publication Publication Date Title
JP4734317B2 (ja) 基板処理方法および基板処理装置
JP5253589B2 (ja) 半導体デバイスの製造方法及び基板処理装置
WO2006038659A1 (ja) 基板処理装置および半導体デバイスの製造方法
JP2004281853A (ja) 基板処理装置
JP5568212B2 (ja) 基板処理装置、そのコーティング方法、基板処理方法及び半導体デバイスの製造方法
JPWO2005088692A1 (ja) 基板処理装置および半導体装置の製造方法
JP4566787B2 (ja) 基板処理装置および半導体装置の製造方法
JP4242733B2 (ja) 半導体装置の製造方法
JP2012114200A (ja) 基板処理装置
JP2007027425A (ja) 基板処理装置
JP4938805B2 (ja) 基板処理装置
JP4434807B2 (ja) 半導体装置の製造方法
JP2005243737A (ja) 基板処理装置
JP4267434B2 (ja) 基板処理装置
JP4509697B2 (ja) 基板処理装置
JP2005167027A (ja) 基板処理装置
JP4634155B2 (ja) 基板処理装置及び成膜方法
JP2006269532A (ja) 半導体デバイスの製造方法
JP2006295032A (ja) 基板処理装置
JP2006287153A (ja) 基板処理装置
JP4936497B2 (ja) 基板処理装置及び基板処理方法
JP2006216612A (ja) 基板処理装置
JP2005277264A (ja) 基板処理装置
JP2005251775A (ja) 基板処理装置
JP2011035191A (ja) 基板処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4242733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term