JP4241360B2 - 赤外線センサの製造方法 - Google Patents

赤外線センサの製造方法 Download PDF

Info

Publication number
JP4241360B2
JP4241360B2 JP2003416662A JP2003416662A JP4241360B2 JP 4241360 B2 JP4241360 B2 JP 4241360B2 JP 2003416662 A JP2003416662 A JP 2003416662A JP 2003416662 A JP2003416662 A JP 2003416662A JP 4241360 B2 JP4241360 B2 JP 4241360B2
Authority
JP
Japan
Prior art keywords
infrared
membrane
film
infrared absorption
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003416662A
Other languages
English (en)
Other versions
JP2005172762A (ja
Inventor
和明 渡辺
康利 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003416662A priority Critical patent/JP4241360B2/ja
Priority to DE102004058393.5A priority patent/DE102004058393B4/de
Publication of JP2005172762A publication Critical patent/JP2005172762A/ja
Application granted granted Critical
Publication of JP4241360B2 publication Critical patent/JP4241360B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

本発明は、基板に薄肉部としてのメンブレンが形成され、当該メンブレン上に赤外線吸収膜を備える赤外線センサの製造方法に関するものである。
基板に薄肉部としてのメンブレンが形成され、当該メンブレン上に赤外線吸収膜を備える赤外線センサとして、サーモパイル型やボロメータ型等の赤外線センサが知られている。
例えば、サーモパイル型の赤外線センサは、基板と、基板に形成された薄肉部としてのメンブレンと、温接点部がメンブレン上に形成され、冷接点部がメンブレンを除く基板上に形成された検出素子としての熱電対と、温接点部を被覆するようにメンブレン上に形成された赤外線吸収膜とにより構成される。
そして、赤外線を受光したときに熱電対における温接点部と冷接点部との間に生じる温度差によって熱電対の起電力を変化させ、変化した熱電対の起電力に基づいて赤外線を検出する。
ここで、赤外線吸収膜を備える赤外線センサの場合、検出される赤外線は赤外線吸収膜の吸収特性に依存する。従って、赤外線吸収膜における赤外線の吸収量(赤外線吸収率)を増大(すなわちセンサの検出感度を向上)するためには、一般的に赤外線吸収膜の膜厚を厚くする必要がある。
しかしながら、上述したようなメンブレン上に赤外線吸収膜を備える赤外線センサの場合、赤外線吸収膜の膜厚を厚くすると、薄肉部であるメンブレンに作用する応力(赤外線吸収膜の膜応力による)が増大するため、メンブレンが破損する恐れがある。
本発明は上記問題点に鑑み、赤外線吸収膜の赤外線吸収率を向上でき、且つ、メンブレンに作用する応力を低減できる赤外線センサの製造方法を提供することを目的としている。
上記目的を達成する為に請求項1に記載の発明は、基板と、基板に形成された薄肉部としてのメンブレンと、少なくとも一部が前記メンブレン上に形成され、赤外線を受光したときに生じる温度変化に基づいて電気信号を発生する検出素子と、検出素子の少なくとも一部を被覆し、メンブレンの形成領域端に対して所定の間隙を有するようにメンブレン上に形成された赤外線吸収膜とを備える赤外線センサを製造する赤外線センサの製造方法であって、赤外線吸収膜の形成工程において、スクリーン印刷法を用い、複数回印刷することにより厚さに差をもたせて、応力緩衝用薄肉部と該応力緩衝用薄肉部よりも厚さの厚い部位とを有し、赤外線吸収膜における端部から所定範囲が応力緩衝用薄肉部となるように、赤外線吸収膜を形成することを特徴とする。
本発明によれば、スクリーン印刷法を用い、複数回印刷することによって、応力緩衝用の薄肉部と該応力緩衝用薄肉部よりも厚さの厚い部位とを有する赤外線吸収膜を形成することができる。このような赤外線吸収膜においては、赤外線吸収膜の膜厚を厚くしても、赤外線吸収膜の膜内に生じる応力を緩和して、メンブレンに作用する応力を低減することができる。すなわち、赤外線吸収膜の赤外線吸収率の向上とメンブレンに作用する応力の低減とが両立された赤外線センサとすることができる。また、スクリーン印刷法を用いるので、製造コストを低減することもできる。
特に本発明のように、赤外線吸収膜をメンブレンの形成領域端に対して、所定の間隙をもって形成すると、赤外線吸収膜からメンブレンを除く基板部位に逃げる熱を低減することができる反面、メンブレンの当該間隙部分に応力が集中し、メンブレンが破損しやすくなる。しかしながら、本発明では、応力緩衝用薄肉部を有する赤外線吸収膜を形成するので、赤外線吸収膜の赤外線吸収率の向上とメンブレンに作用する応力の低減(破損の防止)とを両立することができる。
また、メンブレンの間隙部位に最も近い赤外線吸収膜における端部から所定範囲が応力緩衝用薄肉部となるように赤外線吸収膜を形成するので、メンブレンに作用する応力を効果的に低減することができる。
尚、検出素子としては、例えば請求項2に記載のように、温接点をメンブレン上に形成し、冷接点をメンブレンの形成領域を除く基板上に形成してなる熱電対を適用することができる。
また、請求項3に記載のように、基板として半導体基板を採用する場合には、絶縁膜を介して半導体基板上に検出素子を形成することが好ましい。
半導体基板を用いることで、一般的な半導体製造技術により容易にメンブレンを有する基板とすることができる。すなわち、高感度な赤外線センサを低コストで製造することができる。
以下、本発明の実施の形態を、図に基づいて説明する。尚、本実施形態においては、赤外線を検出する検出素子として熱電対を備えるサーモパイル型の赤外線センサを例にとり、以下に説明する。
(第1の実施形態)
図1は、本実施形態における赤外線センサの概略構成を示す図であり、(a)は断面図、(b)は上面側からみた平面図、(c)は検出素子の構成及びセンサ出力の取り出しを示す模式図である。尚、図1(b),(c)においては、便宜上、赤外線吸収膜を省略して図示している。
図1(a)に示すように、赤外線センサ100は、基板10と、検出素子20と、赤外線吸収膜30とにより構成される。
基板10はシリコンからなる半導体基板であり、基板10の下面側から例えばウェットエッチングにより開口部11が形成されている。本実施形態において、開口部11は矩形状の領域をもって開口されており、この開口面積が基板10の上面側へ行くほど縮小され、基板10の上面では、図1(b)に破線にて示されるような矩形状の領域となっている。
また、図1(a)に示すように、開口部11上を含む基板10の上面には、酸化シリコン膜や窒化シリコン膜等からなる絶縁膜12が形成されている。従って、開口部11上に位置する絶縁膜12の部分が、基板10における薄肉部、すなわちメンブレン13として構成されている。尚、絶縁膜12は、CVD法や、スパッタ法等により形成される。
このように、基板10が半導体基板であると、一般的な半導体製造技術により、基板10に容易にメンブレン13を形成することができる。すなわち、高感度な赤外線センサを低コストで製造することができる。尚、基板10としては、半導体基板以外にも、ガラス基板等を適用することが可能である。
検出素子20は熱電対であり、図1(b)に示すように、メンブレン13からメンブレン13外の基板10の厚肉部位に渡って形成されている。熱電対は、図1(c)に示すように、基板10の上に異種材料20a,20bの膜が交互に複数組直列に延設され(サーモパイル)、一つおきの接合部が温接点20cと冷接点20dとなる。異種材料20a,20bの膜の組み合せとしては、例えば、アルミニウム膜とポリシリコン膜の組み合せを用いることができる。尚、図1(b),(c)では省略されているが、実際には、ポリシリコン膜の上、及び、ポリシリコン膜が形成されていない絶縁膜12上に、酸化シリコン膜等よりなる層間絶縁膜が形成され、アルミニウム膜は、この層間絶縁膜上に形成されるとともに、この層間絶縁膜に形成されたコンタクトホールを介して、各ポリシリコン膜の端部間を接続している。
このような熱電対20を持つ赤外線センサ100は、いわゆるサーモパイル型赤外線センサと呼ばれるものである。図1(a)〜(c)に示すように、熱電対20の温接点20cは、熱容量の小さいメンブレン13上に形成されている。一方、熱電対20の冷接点20dは、メンブレン13の外側における熱容量の大きい基板10上に形成されており、基板10がヒートシンクとしての役目を果たしている。
尚、検出素子20は、少なくとも一部がメンブレン13上に形成されるとともに、メンブレン13上に形成された部位の少なくとも一部が赤外線吸収膜30に被覆され、赤外線を受光したときに生じる温度変化に基づいて電気信号を発生するものであれば適用が可能である。従って、上記熱電対以外にも、抵抗体を備えるボロメータ型の検出素子や焦電体を備える焦電型の検出素子であっても良い。
赤外線吸収膜30は、赤外線を効率良く吸収する材料からなり、検出素子20の少なくとも一部を被覆するようにメンブレン13上に形成されている。本実施形態における赤外線吸収膜30は、ポリエステル樹脂にカーボンを含有させ、焼き固めたものであり、赤外線を吸収して検出素子20の温接点20cの温度を効率良く上昇させるように、温接点20aを被覆しつつメンブレン13上に形成されている。
また、赤外線吸収膜30は、メンブレン13の形成領域端に対して、所定の間隙をもって形成されており、赤外線吸収膜30の幅(図1(a)における基板平面方向の長さ)をA、メンブレン13の幅をCとすると、これらの比A/Cが0.75〜0.90となっている。赤外線吸収膜30とメンブレン13との関係については、本出願人が特開2002−365140号公報にて開示しているので、本実施形態における説明は省略する。
このように本実施形態の赤外線センサ100は、検出素子(熱電対)20の温接点20cが、赤外線吸収膜30に被覆されつつメンブレン13上に形成されており、冷接点20dがメンブレン13を除く基板10の厚肉部分に形成されている。
従って、人体などから赤外線が照射されると、赤外線吸収膜30に赤外線が吸収されて、温度上昇が起こる。その結果、赤外線吸収膜30の下に配置された温接点20cの温度が上昇する。一方、冷接点20dは、基板10がヒートシンクとなっているため、温度上昇は起きない。このように、検出素子20は、赤外線を受光したときの温接点20cと冷接点20dとの間に生じる温度差により検出素子20の起電力を変化(ゼーベック効果)させ、その変化した起電力に基づいて赤外線を検出する。尚、図1(c)に示す熱電対はサーモパイルとなっているため、各異種材料20a,20bの組で発生する起電力の総和が、検出素子20の出力Voutとなる。
ここで、本実施形態のように赤外線吸収膜30を備える赤外線センサ100の場合、検出される赤外線は赤外線吸収膜30の吸収特性に依存する。従って、赤外線吸収膜30における赤外線の吸収量(赤外線吸収率)を増大、すなわち赤外線センサ100の検出感度を向上させるためには、一般的に赤外線吸収膜30の膜厚を厚くする必要がある。
しかしながら、赤外線吸収膜30には、当該膜30の形成時の残留応力や、使用環境下において温度変化による応力が発生する。これらの膜応力は、赤外線吸収膜30下のメンブレン13に作用するため、赤外線吸収膜30の膜厚が厚くなり、膜応力が大きくなると、薄肉部であるメンブレン13が破損する恐れがある。
特に、本実施形態に示すように、赤外線吸収膜30がメンブレン13の形成領域端に対して所定の間隙をもって形成されていると、赤外線吸収膜30からメンブレン13外の基板10の厚肉部分に逃げる熱を低減することができるものの、メンブレン13の当該間隙部分(メンブレン13の形成領域端と赤外線吸収膜30との形成領域端との間の部分)に応力が集中し、メンブレン13が破損しやすい。尚、メンブレン13に作用する応力分布については、シミュレーションにより確認している。
そこで、本発明者は、赤外線吸収膜30の赤外線吸収率向上と、メンブレン13に作用する応力の低減(破損の防止)とを両立するために、赤外線吸収膜30の表面粗さを制御することに着目した。
赤外線吸収膜30の赤外線吸収率は、100%から赤外線反射率と赤外線透過率を減じたものである。赤外線透過率は数%程度であり、赤外線吸収率は実質赤外線反射率により決定される。
ここで、赤外線吸収膜30における赤外線反射率と表面粗さとの関係は次式にて示される。
(数1) R1=R0exp{−(4πnσ/λ)2
尚、R1:赤外線反射率、R0:鏡面状態における赤外線反射率、λ:赤外線の入射波長、n:赤外線吸収膜の屈折率、σ:表面粗さである。
この数式1に示される関係式を用い、赤外線吸収膜30の膜厚を一定とし、赤外線の入射波長を変化させた場合の、赤外線吸収率と表面粗さとの関係を調査した。その結果を図2に示す。尚、赤外線吸収膜30はポリエステル樹脂にカーボンを添加してなるものとし、その膜厚は5μmとした。また、図2中において、三角は入射波長15μm、四角は入射波長10μm、菱形は入射波長5μmを示している。
図2に示されるように、表面粗さが2μm以上においては、赤外線の入射波長に関わらず、赤外線反射率がほぼ0%となることが判明した。これは、表面粗さが粗いと、赤外線吸収膜30の膜表面の凹壁面で一旦反射された赤外線が、再度赤外線吸収膜30に入射し赤外線吸収膜30に吸収されるためと考えられる。
このように、赤外線吸収膜30の表面粗さを2μm以上とすると、赤外線吸収膜30の膜厚を厚くしなくとも赤外線吸収率を向上することができることが判明した。この場合、赤外線吸収膜30の厚さを厚くしなくとも良いので、メンブレン13に作用する応力を低減でき、メンブレン13の破損を防止することができる。上述した本実施形態の赤外線センサ100においても、赤外線吸収膜30の表面粗さが2μm以上となっており、これにより、赤外線吸収膜30の赤外線吸収率の向上とメンブレン13に作用する応力の低減とを両立している。
尚、表面粗さが2μm以上となるような赤外線吸収膜30の形成方法としては、例えば平均粒径2〜3μmのカーボン30〜60重量%とポリエステル樹脂40〜70重量%からなるペーストを用いて、絶縁膜12を介した基板10の所定位置(メンブレン13形成位置)にスクリーン印刷し、所定温度で加熱することにより形成することができる。このようにスクリーン印刷法で形成すると、低コストで所望の赤外線吸収膜30を形成することができる。本実施形態においては、平均粒径2〜3μmのカーボン50重量%とポリエステル樹脂50重量%からなるペーストを用いてスクリーン印刷し、形成された赤外線吸収膜30の膜厚は4.0μm、表面粗さは2.0μmであった。尚、カーボン及びポリエステル樹脂以外にも、必要に応じて粘度調整のために溶剤を加えたり、フィラーを添加しても良い。
それ以外にも、例えば蒸着法等により形成された赤外線吸収膜30に対し、表面を粗化処理(薬液処理や機械的処理等)することにより、表面粗さが2μm以上となる赤外線吸収膜30を形成することも可能である。
最後に、上記製法により形成した赤外線吸収膜30において、赤外線吸収率に対する膜厚の影響を確認した。その結果を図3に示す。尚、図3においては、横軸に赤外線の波長を、縦軸に赤外線吸収率をとり、上記製法により形成された膜厚4.5μm(表面粗さ2.0μm)と膜厚6.5μm(表面粗さ2.1μm)の2種類の赤外線吸収膜30について確認した。
図3に示すように、膜厚4.5μmと膜厚6.5μmの赤外線吸収膜30において、波長に関わらず、赤外線吸収率がほぼ一致した。すなわち、赤外線吸収率30の表面粗さを2μm以上とすれば、赤外線吸収膜30の膜厚を薄くしても赤外線吸収率が低下しない、換言すれば、赤外線吸収膜30の膜厚を厚くしなくとも赤外線吸収率を向上できることが確認された。従って、表面粗さを2μm以上とすれば、赤外線吸収膜30の膜厚を薄くできるので、メンブレン13の破損も防止することができる。
(第2の実施形態)
次に、本発明の第2の実施形態を図4に基づいて説明する。図4は、本実施形態における赤外線センサ100の概略構成を示す断面図である。
第2の実施の形態における赤外線センサ100は、第1の実施の形態によるものと共通するところが多いので、以下、共通部分については詳しい説明は省略し、異なる部分を重点的に説明する。
第2の実施の形態において、第1の実施の形態と異なる点は、赤外線吸収膜30の赤外線吸収率の向上とメンブレン13に作用する応力の低減とを両立するために、赤外線吸収膜30に応力緩衝用の薄肉部を設けた点である。
第1実施形態で示したように、赤外線吸収膜30には、当該膜30の形成時の残留応力や、使用環境下において温度変化による応力が発生する。これらの膜応力は、赤外線吸収膜30下のメンブレン13に作用するため、赤外線吸収膜30の膜厚が厚くなり、膜応力が大きくなると、薄肉部であるメンブレン13が破損する恐れがある。
そこで、本実施形態においては、図4に示すように、赤外線吸収膜30の一部に応力緩衝用の薄肉部30aを設けた。従って、赤外線吸収膜30の膜厚を厚くしても、薄肉部30aを有していることにより赤外線吸収膜30に生じる応力が緩和されるので、メンブレン13に作用する応力を低減することができる。すなわち、本実施形態における赤外線センサ100も、赤外線吸収膜30の赤外線吸収率の向上とメンブレン13に作用する応力の低減とを両立することができる。
尚、薄肉部30aは、その形成位置及び形成個数が限定されるものではない。しかしながら、図4に示すように、赤外線吸収膜30がメンブレン13の形成領域端に対して所定の間隙をもって形成されている場合、赤外線吸収膜30からメンブレン13外の基板10の厚肉部分に逃げる熱を低減することができるものの、メンブレン13の当該間隙部分(メンブレン13の形成領域端と赤外線吸収膜30との形成領域端との間の部分)に応力が集中し、メンブレン13が破損しやすい。そこで、このような構成の場合、上述の間隙部分に隣接する赤外線吸収膜30の端部からの所定範囲に薄肉部30aが形成されていると、メンブレン13に作用する応力の低減に効果的である。
尚、このような薄肉部30aを有する赤外線吸収膜30の形成方法としては、例えば第1実施形態で示したスクリーン印刷法を適用することができる。具体的には、複数回印刷することにより薄肉部30aとそれ以外の部位との厚さに差をもたせ、薄肉部30aを有する赤外線吸収膜30を形成しても良い。また、薄肉部30aとそれ以外の部位とで、スクリーンメッシュの線径を変え(薄肉部30対応部位は細く)たり、コート剤の厚さ(レジスト厚)を変えることにより、1回の印刷で厚さに差を持たせ、薄肉部30aを有する赤外線吸収膜30を形成しても良い。
また、蒸着等により成膜後、エッチング等により赤外線吸収膜30の一部を除去し、薄肉部30aを有する赤外線吸収膜30を形成することも可能である。
本発明の第1の実施形態における赤外線センサの概略構成を示す図であり、(a)は断面図、(b)は上面側から見た平面図、(c)は検出素子の構成及びセンサ出力の取り出しを示す模式図である。 表面粗さと赤外線反射率との関係を示すグラフである。 赤外線吸収率に対する膜厚の影響を示すグラフである。 第2の実施形態における赤外線センサの概略構成を示す断面図である。
符号の説明
10・・・基板
13・・・メンブレン
20・・・検出素子(熱電対)
30・・・赤外線吸収膜
30a・・・(応力緩衝用)薄肉部

Claims (3)

  1. 基板と、
    基板に形成された薄肉部としてのメンブレンと、
    少なくとも一部が前記メンブレン上に形成され、赤外線を受光したときに生じる温度変化に基づいて電気信号を発生する検出素子と、
    前記検出素子の少なくとも一部を被覆し、前記メンブレンの形成領域端に対して所定の間隙を有するように前記メンブレン上に形成された赤外線吸収膜と、を備える赤外線センサの製造方法であって、
    前記赤外線吸収膜の形成工程において、スクリーン印刷法を用い、複数回印刷することにより厚さに差をもたせて、応力緩衝用薄肉部と該応力緩衝用薄肉部よりも厚さの厚い部位とを有し、前記赤外線吸収膜における端部から所定範囲が前記応力緩衝用薄肉部となるように、前記赤外線吸収膜を形成することを特徴とする赤外線センサの製造方法。
  2. 前記検出素子として、温接点を前記メンブレン上に形成し、冷接点を前記メンブレンの形成領域を除く前記基板上に形成してなる熱電対を形成することを特徴とする請求項1に記載の赤外線センサの製造方法。
  3. 前記基板は半導体基板であり、
    絶縁膜を介して前記半導体基板上に前記検出素子を形成することを特徴とする請求項1又は請求項2に記載の赤外線センサの製造方法。
JP2003416662A 2003-12-15 2003-12-15 赤外線センサの製造方法 Expired - Fee Related JP4241360B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003416662A JP4241360B2 (ja) 2003-12-15 2003-12-15 赤外線センサの製造方法
DE102004058393.5A DE102004058393B4 (de) 2003-12-15 2004-12-03 Infrarotsensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416662A JP4241360B2 (ja) 2003-12-15 2003-12-15 赤外線センサの製造方法

Publications (2)

Publication Number Publication Date
JP2005172762A JP2005172762A (ja) 2005-06-30
JP4241360B2 true JP4241360B2 (ja) 2009-03-18

Family

ID=34650635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416662A Expired - Fee Related JP4241360B2 (ja) 2003-12-15 2003-12-15 赤外線センサの製造方法

Country Status (2)

Country Link
JP (1) JP4241360B2 (ja)
DE (1) DE102004058393B4 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490751C1 (ru) * 2012-02-09 2013-08-20 Открытое акционерное общество "АНГСТРЕМ" Микроболометр с упрочненными поддерживающими балками и способы его изготовления
JP6095856B2 (ja) 2015-02-09 2017-03-15 三菱電機株式会社 電磁波検出器、及びガス分析装置
US10234379B2 (en) 2015-04-15 2019-03-19 Mitsubishi Electric Corporation Electromagnetic wave detector, electromagnetic wave detector array, and gas analyzing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10225377B4 (de) * 2001-06-11 2014-10-09 Denso Corporation Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors
JP2003207391A (ja) * 2002-01-17 2003-07-25 Nissan Motor Co Ltd 赤外線検知素子とその製造方法及びその製造装置

Also Published As

Publication number Publication date
JP2005172762A (ja) 2005-06-30
DE102004058393B4 (de) 2014-09-11
DE102004058393A1 (de) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4228232B2 (ja) 熱型赤外線検出素子
EP1334340B1 (en) Advanced high speed, multi-level uncooled bolometer and method for fabricating same
JP2006214758A (ja) 赤外線検出器
JP3514681B2 (ja) 赤外線検出器
JP3862080B2 (ja) 熱型赤外線検出器の製造方法
JP5964543B2 (ja) ボロメータ型テラヘルツ波検出器
US6379993B1 (en) Solid-state imaging device with a film of low hydrogen permeability and a method of manufacturing same
US8664510B2 (en) Infrared absorber and thermal infrared detector
JP3097591B2 (ja) 熱型赤外線検出素子
JP5251310B2 (ja) 2波長熱型赤外線アレイセンサ
JP2009174917A (ja) 赤外線検出素子、及び赤外線検出素子の製造方法
JP4241360B2 (ja) 赤外線センサの製造方法
JP2601271B2 (ja) 固体撮像装置
JP2000186958A (ja) 熱型赤外線検出素子
JPH06137943A (ja) 熱型赤外線センサ
JP2811709B2 (ja) 赤外線センサ
JP2006208177A (ja) 赤外線検出器
JP3608427B2 (ja) 赤外線吸収体及びこの赤外線吸収体を用いた熱型赤外線センサ
JP2002071451A (ja) 熱型赤外線検出素子及びそれを用いた赤外線撮像素子
JP2005315723A (ja) 熱型赤外線センサ
JP5456810B2 (ja) 熱型赤外線検出器
JPH11201820A (ja) 赤外放射温度計とその製造方法
JP6155998B2 (ja) 赤外線温度センサ
KR100529130B1 (ko) 적외선 흡수 볼로메터 제조 방법
JP2001116616A (ja) 熱型赤外線検出素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees