DE10225377B4 - Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors - Google Patents

Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors Download PDF

Info

Publication number
DE10225377B4
DE10225377B4 DE10225377.3A DE10225377A DE10225377B4 DE 10225377 B4 DE10225377 B4 DE 10225377B4 DE 10225377 A DE10225377 A DE 10225377A DE 10225377 B4 DE10225377 B4 DE 10225377B4
Authority
DE
Germany
Prior art keywords
absorbing layer
infrared ray
infrared radiation
screen printing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10225377.3A
Other languages
English (en)
Other versions
DE10225377A1 (de
Inventor
Kazuaki Hamamoto
Takahiko Yoshida
Yasutoshi Suzuki
Inao Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001176138A external-priority patent/JP2002365140A/ja
Priority claimed from JP2001341066A external-priority patent/JP3594923B2/ja
Application filed by Denso Corp filed Critical Denso Corp
Publication of DE10225377A1 publication Critical patent/DE10225377A1/de
Application granted granted Critical
Publication of DE10225377B4 publication Critical patent/DE10225377B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors mit den Schritten: Bereitstellen eines Substrats (1), welches erste und zweite Oberflächen (1a, 1b) aufweist; Bilden einer Schicht eines ersten Materials (6), welche mehrere Teile aufweist, auf der ersten Oberfläche (1a) des Substrats (1) mit einem ersten leitenden Material; Bilden einer Schicht eines zweiten Materials (8), welche mehrere Teile aufweist, mit einem zweiten leitenden Material, welches sich von dem ersten leitenden Material unterscheidet, zur Bildung von ersten und zweiten Verbindungsabschnitten (11, 12) mit mehreren Teilen der Schicht des ersten Materials; Bilden entweder eines Öffnungsschnitts (2) oder eines vertieften Abschnitts (50) durch Ätzen des Substrats von der zweiten Oberfläche aus, wo der erste Verbindungsabschnitt gebildet wird; Durchführen eines Siebdrucks einer Infrarotstrahlung absorbierenden Schicht (10) auf dem Substrat zur Bedeckung des ersten Verbindungsabschnitts nach dem Bilden entweder des Öffnungsabschnitts oder des vertieften Abschnitts, wobei der Siebdruck der Infrarotstrahlung absorbierenden Schicht den Siebdruck der Infrarotstrahlung absorbierenden Schicht derart beinhaltet, daß ein auf das Substrat aufgebrachter Druck höchstens 0,25 MPa beträgt.

Description

  • Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors (thermo pile infrared ray sensor), welcher eine Infrarotstrahlung absorbierende Schicht aufweist, welche Infrarotstrahlen absorbiert.
  • In einem herkömmlichen Infrarotstrahlungssensor wird eine aus ultrafeinen Teilchen, welche ein hohes Infrarotstrahlungsabsorptionsverhältnis besitzen, gebildete Goldschwarzschicht (gold-black layer) oder eine Kohlenstoffschicht üblicherweise als Infrarotstrahlung absorbierendes Material angenommen, welches Infrarotstrahlen absorbiert und die absorbierten Strahlen in Wärme umwandelt. Beispielsweise offenbart die JP 55-17104 B2 ein Herstellungsverfahren einer Goldschwarzschicht, welche gebildet wird durch Aufdampfen von Gold auf ein Substrat bei 13,33 Pa (0,1 Torr) in einer Atmosphäre von Argongas unter Verwendung einer Vakuumaufdampfungsvorrichtung und durch wiederholtes Aufdampfen von Gold auf das Substrat bei 133,3 Pa (1 Torr) in der Atmosphäre von Argongas. Demgegenüber offenbart die JP H6-108535 A ein Herstellungsverfahren einer Kohlenstoffschicht, welche ein hohes Infrarotstrahlungsabsorptionsverhältnis besitzt und durch Zerlegen bzw. Auflösen von Kohlenstoffhydrid (beispielsweise Methan, Ethylen oder Acetylen) unter Verwendung einer Vakuumglühentladung gebildet wird.
  • Um eine hohe Haftstärke der herkömmlichen Goldschwarzschicht zu erzielen, wird entsprechend der JP 55-17104 B2 das Aufdampfen des Golds zweimal durchgeführt. Jedoch ist die sich ergebende Beständigkeit der Haftstärke der Goldschwarzschicht unzureichend. Des weiteren sind die Herstellungskosten der Goldschwarzschicht erhöht, da das Herstellungsverfahren komplex ist.
  • Demgegenüber offenbart die JP 57-29683 B2 ebenfalls ein Herstellungsverfahren einer Goldschwarzschicht. D. h., es wird eine Goldschwarzschicht, welche einen zweischichtigen Aufbau aufweist, durch Aufsprühen von Kohlenstoffteilchen auf ein Substrat zur Bildung eines Untergrunds und danach durch Auftragen der Goldschwarzschicht gebildet. Jedoch ist die sich ergebende Beständigkeit der Haftstärke der Goldschwarzschicht ebenfalls unzureichend. Ebenfalls sind die Herstellungskosten der Goldschwarzschicht aus demselben Grunde wie oben erwähnt erhöht.
  • Die Goldschwarzschicht und die durch das oben beschriebene Herstellungsverfahren gebildete Kohlenstoffschicht werden durch Photolithographie zur Strukturierung der vorbestimmten Form geätzt. Daher sind die Herstellungskosten der Goldschwarzschicht weiter erhöht, da für das Photolithographieverfahren eine besondere Ausrüstung wie beispielsweise eine Photolithographiemaschine und eine Trockenätzmaschine nötig sind.
  • Des weiteren wird in dem in der JP H6-109535 A offenbarten Herstellungsverfahren ein Infrarotstrahlungssensordiaphragma zur Verringerung der thermischen Kapazität gebildet, welche durch das Substrat und die Infrarotstrahlung absorbierende Schicht gebildet wird, nachdem die Kohlenstoffschicht gebildet worden ist. Jedoch kann der Infrarotstrahlungssensor durch in der Infrarotstrahlung absorbierenden Schicht enthaltenen Kohlenstoff während der Bildung des Diaphragmas verunreinigt werden.
  • Überlicherweise enthält ein Thermosäuleninfrarotstrahlungssensor eine in einem dicken Abschnitt eines Substrats gebildete Membran, ein thermoelektrisches Paar (thermoelectric couple), welches einen auf der Membran gebildeten warmen Verbindungsabschnitt und einen auf dem Rand der Membran gebildeten kalten Verbindungsabschnitt besitzt, und eine auf der Membran gebildete Infrarotstrahlung absorbierende Schicht zur Bedeckung des warmen Verbindungsabschnitts. Der Thermosäuleninfrarotstrahlungssensor erfaßt Infrarotstrahlen auf der Grundlage einer zwischen dem thermoelektrischen Paar gebildeten Spannungsänderung, wenn die Infrarotstrahlen darauf abgestrahlt werden.
  • Jedoch ist eine Thermosäuleninfrarotstrahlungssensorspannung typischerweise niedrig. Insbesondere ist ein Abstand zwischen den warmen und kalten Abschnitten des thermoelektrischen Paares oder eine Wärmetrennbreite (heat separation width) oft zu groß, oder es ist die Membran zu dick, um die Wärmekapazität des warmen Verbindungsabschnitts zu verringern, welche nötig ist, einen großen Spannungsausgang zu erzielen, da Wärme von dem warmen Verbindungsabschnitt nicht leicht entkommen kann, und es wird die Temperaturdifferenz zwischen den warmen und kalten Verbindungsabschnitten des thermoelektrischen Paars groß.
  • Daher muß die Substratfläche erhöht werden, um die Wärmetrennbreite zu verlängern, oder es müssen Änderungen des Membranmaterials vorgenommen werden, um zu ermöglichen, daß Wärme von dem Verbindungsabschnitt entkommt, wodurch die Herstellungskosten einer derartigen Vorrichtung erhöht werden.
  • Aus der EP 1 039 280 A2 ist ein Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors bekannt, mit den Schritten:
    Bereitstellen eines Substrats, welches erste und zweite Oberflächen aufweist; Bilden einer Schicht eines ersten Materials, welche mehrere Teile aufweist, auf der ersten Oberfläche des Substrats mit dem ersten leitenden Material, wobei die mehreren Teile polykristalline Siliziumschichten vom n-Typ sind; und Bilden einer Schicht, welche mehrere Teile aufweist, mit einem Material, welches sich von dem ersten leitenden Material nicht unterscheidet (vergl. 4. Ausführungsform davon).
  • Des Weiteren ist aus der EP 1 039 280 A2 der Schritt des Bildens des Öffnungsabschnitts oder eines vertieften Abschnitts durch Ätzen des Substrats von der zweiten Oberfläche aus bekannt (vergl. 1. Ausführungsform davon). Schließlich ist daraus noch der Schritt des Durchführens eines Siebdrucks einer Infrarotstrahlung absorbierenden Schicht nach dem Bilden entweder des Öffnungsabschnitts oder des vertieften Abschnitts bekannt (vergl. 4. Ausführungsform davon).
  • Aufgabe der vorliegenden Erfindung ist es, ein aus der EP 1 039 280 A2 bekanntes Herstellungsverfahren für einen Thermosäuleninfrarotstrahlungssensor derart weiterzuentwickeln, dass ein derartiger Sensor kostengünstig hergestellt werden kann.
  • Die Lösung der Aufgabe erfolgt durch die Merkmale des Anspruchs 1.
  • Demgemäß wird ein Herstellungsverfahren für einen Thermosäuleninfrarotstrahlungssensor geschaffen, bei welchem die oben beschriebenen Einschränkungen bzw. Nachteile vermieden werden.
  • Darüber hinaus wird ein Thermosäuleninfrarotstrahlungssensor geschaffen, bei welchem ein geeignetes Ausgangssignal ohne eine verlängerte Sensorspitze erzielt werden kann.
  • Bei dem Thermosäuleninfrarotstrahlungssensor wird ein Öffnungsabschnitt (2) oder ein vertiefter Abschnitt (50) durch Äzten eines Substrats (1) von einer zweiten Oberfläche her gebildet, nachdem Schichten eines ersten und zweiten Materials (6, 8) derart gebildet worden sind, daß erste und zweite Verbindungsabschnitte (11, 12) auf der Grundlage von Teilen der Schichten des ersten und zweiten Materials gebildet worden sind. Es wird eine Infrarotstrahlung absorbierende Schicht (10) auf dem Substrat zur Bedeckung des ersten Verbindungsabschnitts mit einem Siebdruck gebildet, nachdem der Öffnungsabschnitt oder ein vertiefter Abschnitt gebildet worden sind.
  • Bei dem Infrarotstrahlungssensor kann sich die Infrarotstrahlung absorbierende Schicht nicht von dem Substrat abschälen, da sie gebildet worden ist, nachdem das Ätzen des Öffnungsabschnitts durchgeführt worden ist. Daher wird ein komplexes Verfahren, welches verhindert, daß sich die Infrarotstrahlung absorbierende Schicht abschält, nicht benötigt, und der Infrarotstrahlungssensor kann unter geringen Kosten hergestellt werden.
  • Bei einem Thermosäuleninfrarotstrahlungssensor der vorliegenden Erfindung wird die Infrarotstrahlung absorbierende Schicht derart gebildet, daß das Größenverhältnis der Breite von dem Öffnungsabschnitt oder dem vertieften Abschnitt zu der Breite der Infrarotstrahlung absorbierenden Schicht 0,75 bis 0,09 beträgt.
  • Bei dem Infrarotstrahlungssensor der vorliegenden Erfindung ist es möglich, den Sensorausgang zu erhöhen, ohne daß die Sensorspitze verlängert wird.
  • Die vorliegende Erfindung wird in der nachfolgenden Beschreibung unter Bezugnahme auf die Zeichnung erläutert.
  • 1 zeigt eine Vorderansicht, welche einen Thermosäuleninfrarotstrahlungssensor einer ersten Ausführungsform der vorliegenden Erfindung darstellt;
  • 2 zeigt eine Querschnittsansicht entlang Linie II-II von 1;
  • 3 zeigt eine Querschnittsansicht, welche Herstellungsprozesse des Thermosäuleninfrarotstrahlungssensor der ersten Ausführungsform darstellt;
  • 4 zeigt eine Querschnittsansicht, welche Herstellungsprozesse des elektrischen Kapazitätsdrucksensors (electrical capacitance pressure sensor) folgend auf 3 darstellt;
  • 5 zeigt eine Querschnittsansicht, welche Herstellungsprozesse des elektrischen Kapazitätsdrucksensors folgend auf 4 darstellt;
  • 6 zeigt eine Querschnittsansicht, welche Herstellungsprozesse des elektrischen Kapazitätsdrucksensors folgend auf 5 darstellt;
  • 7 zeigt eine schematische Ansicht, welche einen Druckprozess einer Kohlenstoffpaste der ersten Ausführungsform darstellt;
  • 8 zeigt einen Graphen, welcher das Verhältnis zwischen dem angelegten Druck während des Siebdrucks und einem Verhältnis der Bildung einer Membranbeschädigung darstellt.
  • 9A und 9B zeigen Vorderansichten, welche Druckbedingungen bzw. -zustände einer Polyesterharzpaste (polyester resin paste) und einer Phenolharzpaste (phenol resin paste) darstellen;
  • 10 zeigt einen Graphen in Form einer Linie, welcher eine Beziehung zwischen einem Kohlenstoffadditionsverhältnis und einem Infrarotstrahlungsübertragungsverhältnis darstellt;
  • 11 zeigt einen Graphen in Form einer Linie, welcher eine Beziehung zwischen der Oberflächenrauheit und dem Reflektionsverhältnis darstellt;
  • 12 zeigt einen Graphen in Form einer Linie, welcher eine Beziehung zwischen dem Kohlenstoffadditionsverhältnis und der Oberflächenrauheit darstellt;
  • 13 zeigt einen Graphen in Form einer Linie, welche eine Beziehung zwischen dem Kohlenstoffadditionsverhältnis und dem Infrarotstrahlungsabsorptionsverhältnis darstellt;
  • 14 zeigt eine Querschnittsansicht, welche einen Thermosäuleninfrarotstrahlungssensor einer zweiten Ausführungsform der vorliegenden Erfindung darstellt;
  • 15 zeigt eine Querschnittsansicht, welche einen Thermosäuleninfrarotstrahlungssensor der zweiten Ausführungsform darstellt;
  • 16 zeigt eine Vorderansicht, welche einen Thermosäuleninfrarotstrahlungssensor einer dritten Ausführungsform der vorliegenden Erfindung darstellt;
  • 17 zeigt eine Querschnittsansicht entlang Linie XVII-XVII von 16; und
  • 18 zeigt einen Graphen in Form einer Linie, welcher Beziehungen zwischen La/Lb und einem Ausgangsfehler und zwischen A/C und dem Thermosäulenausgang darstellt.
  • Die vorliegende Erfindung wird in der nachfolgenden Beschreibung unter Bezugnahme auf die Zeichnung erläutert.
  • Erste Ausführungsform
  • Entsprechend 1 und 2 wird ein Thermosäuleninfrarotstrahlungssensor (Infrarotstrahlungssensor) auf der Grundlage eines Substrats 1 hergestellt. Das Substrat 1 ist beispielsweise ein Halbleitersubstrat wie ein einkristallines Siliziumsubstrat, welches eine Dicke von 400 μm und eine erste Oberfläche 1a (obere Oberfläche in 2) und eine zweite Oberfläche 1b (untere Oberfläche in 2) besitzt. Eine Oberflächenrichtung der ersten Oberfläche 1a ist beispielsweise eine (100)- oder eine (110)-Ebene. Ein Öffnungsabschnitt 2 wird in dem Substrat 1 durch anisotopes Ätzen gebildet, um es von der zweiten Oberfläche 1b zu der ersten Oberfläche 1a in einer Richtung senkrecht zu dem Substrat 1 zu durchdringen. Die Größen (Weiten) La (1a) des Öffnungsabschnitts 2 betragen in etwa jeweils 1 mm.
  • Isolierschichten 3, 4, 5 werden auf der ersten Oberfläche 1a des Substrats 1 gebildet, um den Öffnungsabschnitt 2 zu bedecken. Die Isolierschichten 3, 5 werden aus Siliziumnitrid gebildet, und die Isolierschicht 4 wird aus Siliziumoxid gebildet. Die Isolierschichten 35 werden jeweils durch CVD, Sputtern, Aufdampfung oder dergleichen gebildet. Die Gesamtdicke der Isolierschichten 35 beträgt beispielsweise 2 μm.
  • Eine mit n-Typ Verunreinigungen dotierte Poly-Si-Schicht 6 (n-Typ Poly-Si-Schicht) wird durch CVD oder dergleichen gebildet und auf den Isolierschichten 35 strukturiert. Eine Isolierschicht 7 und eine dünne Aluminiumschicht 8 werden auf den Isolierschichten 35 und der n-Typ Poly-Si-Schicht 6 durch Sputtern, Aufdampfung oder dergleichen gebildet. Kontaktlöcher 7a werden in der Isolierschicht 7 gebildet, durch welche die dünne Aluminiumschicht 8 und die n-Typ Poly-Si-Schicht 6 miteinander kontaktiert werden. Insbesondere werden Teile der dünnen Aluminiumschicht und Teile der Poly-Si-Schicht 6 abwechselnd strukturiert, und es werden die jeweiligen Teile direkt miteinander an beiden Enden oder an einem Ende davon zur Bildung einer streifenförmigen Sensorverdrahtung (sensing wiring) kontaktiert.
  • Eine Passivierungsschicht 9, welche aus einer Siliziumoxidschicht, einer TEOS-Schicht oder dergleichen hergestellt wird, wird auf der dünnen Aluminiumschicht 8 gebildet. Eine aus Kohlenstoff hergestellte Infrarotstrahlung absorbierende Schicht 10 wird auf einem vorbestimmten Gebiet der Passivierungsschicht 9 gebildet. Beispielsweise beträgt die Dicke der Infrarotstrahlung absorbierenden Schicht 10 etwa 6 μm und betragen die Größen (Weiten) der Länge und Breite Lb des Infrarotstrahlung absorbierenden Abschnitts 10 jeweils etwa 0,8 mm.
  • Die Infrarotstrahlung absorbierende Schicht 10 wird rechtwinklig geformt und auf der Mitte des Substrats 1 angeordnet. Erste Verbindungsabschnitte 11 der n-Typ Poly-Si-Schicht 6 und der dünnen Aluminiumschicht 8 werden unter der Infrarotstrahlung absorbierenden Schicht 10 positioniert, während zweite Verbindungsabschnitte 12 der n-Typ Poly-Si-Schicht 6 und der dünnen Aluminiumschicht 8 auf dem Rand der Infrarotstrahlung absorbierenden Schicht 10 positioniert werden. D. h., es werden die zweiten Verbindungsabschnitte 12 nicht unter der Infrarotstrahlung absorbierenden Schicht 10 positioniert.
  • Wie in 1 dargestellt werden ein erster Anschluß 13 und ein zweiter Anschluß 14 auf den Isolierschichten 35 gebildet. Die ersten und zweiten Anschlüsse 13, 14 sind jeweils mit Enden der durch die n-Typ Poly-Si-Schicht 6 und die dünne Aluminiumschicht 8 gebildeten Reihenschaltung verbunden.
  • Bei diesem Aufbau ist eine Temperatur der ersten Verbindungsabschnitte 11 erhöht, wenn die Infrarotstrahlung absorbierende Schicht 10 Infrarotstrahlung absorbiert, da die n-Typ Poly-Si-Schicht 6 und die dünne Aluminiumschicht 8 unterschiedliche Materialien aufweisen. Daher bilden die auf dem Öffnungsabschnitt 2 positionierten ersten Verbindungsabschnitte 11 und die auf dem Substrat 1 um den Öffnungsabschnitt 2 positionierten zweiten Verbindungsabschnitte 12 Gruppen von thermoelektrischen Paaren, welche einen Seebeck-Koeffizienten besitzen. Die ersten Verbindungsabschnitte 11 entsprechen warmen Verbindungsabschnitten, und die zweiten Verbindungsabschnitte 12 entsprechen kalten Verbindungsabschnitten.
  • Ebenfalls sind bei diesem Aufbau Sensorelemente Es wie in 2 dargestellt auf einer Membran gebildet, welche eine Dünnschicht aufweist und auf dem Öffnungsabschnitt 2 des Substrats 1 gebildet ist. Daher ist eine Wärmekapazität der ersten Verbindungsabschnitte 11 kleiner als diejenige der auf dem Substrat 1 außer an dem Öffnungsabschnitt 2 gebildeten zweiten Verbindungsabschnitte 12, da das Substrat 1 als Wärmesenke arbeitet.
  • Bei dem vorliegenden Infrarotstrahlungssensor absorbiert die Infrarotstrahlung absorbierende Schicht 10 und erzeugt Wärme, wenn Infrarotstrahlen darauf auftreffen. Die Wärme ändert sich in eine elektromotorische Kraft zwischen den thermoelektrischen Paaren. Detailliert dargestellt, wenn die Infrarotstrahlung absorbierende Schicht 10 von einem menschlichen Körper oder dergleichen ausgesendete Infrarotstrahlen absorbiert, steigt die Temperatur davon an. Als Ergebnis steigt ebenfalls eine Temperatur des ersten Verbindungsabschnitts 11 unter der Infrarotstrahlung absorbierenden Schicht 10 an. Demgegenüber erhöht sich die Temperatur des zweiten Verbindungsabschnitts 12 nicht, da das Substrat 1 als Wärmesenke arbeitet. Dementsprechend wird eine Temperaturdifferenz zwischen den ersten und zweiten Verbindungsteilen 11, 12 erzeugt, und es wird daher die elektromotorische Kraft dazwischen auf der Grundlage des Seebeck-Effekts erzeugt.
  • Die elektromotorische Kraft wird an den ersten und zweiten Anschlüssen 13, 14 der Serienschaltung als Sensorausgangssignal Vout erfaßt. Dementsprechend können Infrarotstrahlen auf der Grundlage der elektromotorischen Kraft und der Temperatur des menschlichen Körpers und dergleichen, welche die Infrarotstrahlen erzeugt, erfaßt werden. Übrigens hängt die zu erzeugende elektromotorische Kraft von der Anzahl der thermoelektrischen Paare ab. Dementsprechend wird bei der vorliegenden Ausführungsform die Anzahl der thermoelektrischen Paare auf einen Bereich von mehreren Dutzend bis zu Hunderten festgelegt, um den Sensorausgang zu erhöhen.
  • Ein Verfahren zur Herstellung des Infrarotstrahlungssensors der vorliegenden Ausführungsform wird unter Bezugnahme auf 36 beschrieben. 36 stellen jeweils eine Querschnittsansicht eines Teils des Infrarotstrahlungssensors entsprechend 2 dar.
  • Zuerst wird, wie in 3 dargestellt, ein Siliziumwafer, welcher eine erste und zweite Oberfläche 1a, 1b besitzt, als das Substrat 1 bereitgestellt. Die Isolierschichten 35 werden auf der ersten Oberfläche 1a des Substrats 1 gebildet. Als nächstes wird eine Siliziumnitridschicht 20 auf der zweiten Oberfläche 1b des Substrats als Maske zur Bildung des Öffnungsabschnitts 2 gebildet. Danach wird ein Fensterabschnitt 21 in der Siliziumnitridschicht 20 gebildet. Die n-Typ Poly-Si-Schicht 6 wird auf den Isolierschichten 35 gebildet und strukturiert, und es werden die Isolierschicht 7 und die dünne Aluminiumschicht 8 des weiteren darauf gebildet und strukturiert. Die Passivierungsschicht 9 wird auf der dünnen Aluminumschicht 8 gebildet, um jeweilige Elemente des Infrarotstrahlungssensors zu bedecken.
  • Es wird dabei die Gesamtdicke (t) der jeweiligen Elemente 39 beispielsweise auf etwa 1,5 bis 2,8 μm festgelegt, um nicht deformiert zu werden, nachdem der Öffnungsabschnitt 3 gebildet worden ist.
  • Wie in 4 dargestellt, wird eine aus einem organischen Harz (Harzmaterial) gebildete Schutzschicht 30 auf einer Seite der ersten Oberfläche 1a des Substrats 1 gebildet, um einen Schutz gegen eine Ätzlösung zu bilden. Als nächstes wird der Öffnungsabschnitt 2 in dem Substrat 1 durch anisotropes Ätzen durch die Siliziumnitridschicht 20 gebildet. Beispielsweise wird das Substrat 1 in eine Alkaliätzlösung wie eine Kaliumhydroxidlösung eingetaucht. Der Ätzbetrag wird auf der Grundlage der Ätzzeit gesteuert, und es wird das Ätzen gestoppt, wenn das an dem Öffnungsabschnitt befindliche Silizium entfernt worden ist.
  • Wie in 5 dargestellt ist die Ätzschutzschicht 30 entfernt worden. In diesem Fall ist die Infrarotstrahlung absorbierende Schicht 10 noch nicht gebildet worden. Darauffolgend wird wie in 6 dargestellt die Infrarotstrahlung absorbierende Schicht 10 auf einem vorbestimmten Gebiet der Passivierungsschicht durch Siebdruck einer Kohlenstoffpaste und einem Trocknen gebildet. Der Siebdruck wird unter Bezugnahme auf 7 beschrieben.
  • Bei der vorliegenden Ausführungsform wird bezüglich des Siebdrucks ein Nichtkontakttyp (off contact type) verwendet. Ein in einem Siebrahmen 42 installiertes Sieb 41 wird über dem Wafer 40 angeordnet und leicht von einer Oberfläche des Wafers 40 getrennt. Das Sieb 41 besitzt einen vorbestimmten Fensterabschnitt. Eine Kohlenstoffpaste 43 wird auf dem Sieb 41 angebracht und wird aus dem Fensterabschnitt des Siebs 41 durch Bewegen eines Quetschers 44 auf dem Sieb 41 mit einem vorbestimmten Quetschdruck zusammengedrückt. Dabei beträgt der auf den Wafer 40 (d. h. das Substrat 1) aufgebrachte Quetschdruck F3 höchstens 0,25 Mpa. Dies liegt daran, daß die jeweiligen Elemente 35 des Infrarotstrahlungssensors infolge des Quetschdrucks zerstört werden können.
  • Ein mit Kohlenstoffpartikeln gemischtes Polyesterharz wird mit der Kohlenstoffpaste 43 zur Verwendung bei dem Siebdruck gemischt. Insbesondere beträgt der Durchmesser der Kohlenstoffteilchen etwa 2–3 μm, um das Infrarotstrahlungsabsorptionsverhältnis zu erhöhen, und das Kohlenstoffadditionsverhältnis des Polyesterharzes beträgt wenigstens 20 Gew.-%, vorzugsweise 30 bis 60 Gew.-%, um die Durchschnittsoberflächenrauheit Ra der Infrarotstrahlung absorbierende Schicht 10 auf wenigstens 0,5 μm zu verringern.
  • Nach dem Siebdruck wird das Substrat 1 in einem Heizgerät untergebracht und getrocknet. Daher wird die Infrarotstrahlung absorbierende Schicht 10 gebildet. Darauffolgend wird das Substrat 1 von einer Trennvorrichtung abgetrennt, wodurch der Infrarotstrahlungssensor der vorliegenden Ausführungsform fertiggestellt wird.
  • Die Gründe zur Verwendung der numerischen Werte des Quetschdrucks, des Durchmessers der Kohlenstoffteile, des Kohlenstoffdotierungsverhältnisses, des Polyesterharzes und der Durchschnittsoberflächenrauheit Ra werden unter Bezugnahme auf 813 beschrieben.
  • 8 stellt Untersuchungsergebnisse bezüglich des oben beschriebenen Siebdruckverfahrens dar. Die Horizontalachse stellt den während des Siebdruckverfahrens auf das Substrat 1 aufgebrachten Druck F3 dar, und die Vertikalachse stellt das Verhältnis der Bildung einer Membranbeschädigung dar. Der Druck F3 ist gleich einer nach unten gerichteten Kraft, welche mit einem Wert ausgedrückt wird, der gleich einem Quetschdruck F1 subtrahiert um eine Rückbildungskraft F2 ist, wobei die Quetschkraft F1 eine dem Sieb 41 durch den Quetscher 44 aufgebrachte Druckkraft ist und die Rückbildungskraft F2 eine elastische Kraft des Siebs 41 zur Wiederherstellung ihres ursprünglichen Zustands ist. Bei dieser Untersuchung beträgt die Dicke der Membran t (d. h. die Gesamtdicke der jeweiligen Schichten 39) 1,5 bis 2,8 μm, und die Größen der Länge und Breite des Öffnungsabschnitts 2 betragen jeweils etwa 1 mm.
  • Bezüglich 8 versteht es sich, daß das Verhältnis der Bildung einer Membranbeschädigung deutlich ansteigt, wenn der Druck F3 während des Siebdrucks 0,25 MPa oder mehr beträgt. Daher wird es bevorzugt, daß der dem Substrat 1 (Membran) aufgebrachte Druck auf höchstens 0,25 MPa während der Bildung der Infrarotstrahlung absorbierenden Schicht 10 festgelegt wird.
  • 9A und 9B stellen Druckzustände dar, wobei eine Polyesterharzpaste, d. h. ein Polyesterharz, welches Kohlenstoffteilchen enthält, und eine Phenolharzpaste, d. h. ein Phenolharz, welches Kohlenstoffteilchen enthält, gedruckt werden. Der Durchmesser der hinzugefügten Kohlenstoffteilchen beträgt im Durchschnitt 2 bis 3 μm, um das Infrarotstrahlungsabsorptionsverhältnis zu erhöhen. Bezüglich 9A und 9B ist es augenscheinlich, daß die Polyesterharzpaste der Phenolharzpaste bezüglich des Siebdrucks überlegen ist.
  • Wenn eine Strukturierung des Siebdrucks mit einer Paste durchgeführt wird, welche ein Phenolharz enthält (oder ein Polyamidharz, ein Polyimidharz, ein Epoxidharz oder ein Acrylharz), das Kohlenstoffteilchen (Graphit) beinhaltet, sind ein Auftragungsvermögen und eine Haftfähigkeit an üblichen Glasmaterialien (glass family materials) wie üblichen Siliziumschichten (silicon family layers), welche eine TEOS-Schicht oder dergleichen beinhalten, die für die Oberfläche des Infrarotstrahlungssensors verwendet werden, nicht gut. D. h., eine strukturierte Form der gedruckten Paste ist nicht gut, wenn die Größen der Länge und Breite davon jeweils 1 mm betragen, was derjenigen der Infrarotstrahlung absorbierenden Schicht 10 entspricht.
  • Demgegenüber wird bei der vorliegenden Ausführungsform ein Polyesterharz, welches ein gutes Auftragungsvermögen und eine Haftfähigkeit bezüglich üblichen Glasmaterialien besitzt, welche für die Oberfläche des Infrarotstrahlungssensors verwendet werden, als Material der Infrarotstrahlung absorbierenden Schicht 10 verwendet, welche durch Siebdruck gebildet wird. Ebenfalls wird Kohlenstoff der Polyesterharzpaste hinzugefügt, um das Infrarotstrahlungsabsorptionsverhältnis zu erhöhen. Daher ist es möglich, die Infrarotstrahlungsabsorptionsschicht, welche ein hohes Infrarotstrahlungsabsorptionsverhältnis und eine gute resultierende gedruckte Form besitzt, und bei niedrigen Kosten zu bilden.
  • Das Infrarotstrahlungsabsorptionsverhältnis, das Infrarotstrahlungsübertragungsverhältnis und das Infrarotstrahlungsreflexionsverhältnis sind in der Summe gleich 100%. Dementsprechend ist es nötig, daß das Infrarotstrahlungsübertragungsverhältnis und das Infrarotstrahlungsreflexionsverhältnis sich verringern, um das Infrarotstrahlungsabsorptionsverhältnis zu erhöhen. 10 stellt eine Beziehung zwischen einem Kohlenstoffadditionsverhältnis und dem Infrarotstrahlungsübertragungsverhältnis dar. Wenn sich entsprechend 10 das Kohlenstoffadditionsverhältnis in der Paste erhöht, verringert sich das Infrarotstrahlungsübertragungsverhältnis.
  • Dies liegt daran, daß sich der Prozentsatz der durch den Kohlenstoff absorbierten Infrarotstrahlen erhöht. Insbesondere verringert sich das Infrarotstrahlungsübertragungsverhältnis deutlich, wenn das Kohlenstoffadditionsverhältnis wenigstens 20 Gew.-% beträgt.
  • 11 stellt eine Beziehung zwischen der Oberflächenrauheit (Mittenliniendurchschnittsrauheit Ra: JIS B0601-1994) der Infrarotstrahlung absorbierenden Schicht und dem Infrarotstrahlungsreflexionsverhältnis davon dar. Das Infrarotstrahlungsreflexionsverhältnis verringert sich, wenn die Oberflächenrauheit sich erhöht, da viele Reflexionen auf der Oberfläche der Infrarotstrahlung absorbierenden Schicht 10 ansteigen. Insbesondere beträgt das Infrarotstrahlungsreflexionsverhältnis höchstens 10%, wenn die Oberflächenrauheit wenigstens 0,5 μm beträgt.
  • 12 stellt eine Beziehung zwischen dem Kohlenstoffadditionsverhältnis und der Oberflächenrauheit dar. Entsprechend 12 ändert sich die Oberflächenrauheit auf der Grundlage des Kohlenstoffadditionsverhältnisses. Die Oberflächenrauheit betrifft wenigstens 0,5 μm, wenn das Kohlenstoffadditionsverhältnis wenigstens 20 Gew.-% beträgt. Dementsprechend kann das Infrarotstrahlungsreflexionsverhältnis geringer sein, wenn das Kohlenstoffadditionsverhältnis wenigstens 20 Gew.-% beträgt.
  • Jedoch verringert sich die Oberflächenrauheit, wenn das Kohlenstoffadditionsverhältnis sich weiter erhöht, da Räume zwischen den Kohlenstoffteilchen vermindert werden, wenn sich die Dichte des Kohlenstoffs in der Infrarotstrahlung absorbierenden Schicht 10 erhöht. Es wird daher bevorzugt, daß das Kohlenstoffadditionsverhältnis nicht zu hoch ist.
  • 13 stellt eine Beziehung zwischen dem Kohlenstoffadditionsverhältnis und dem Infrarotstrahlungsabsorptionsverhältnis dar. Bei der vorliegenden Untersuchung beträgt die Wellenlänge der Infrarotstrahlung 10 μm. Eine Dicke der Infrarotstrahlung absorbierenden Schicht 10 beträgt wenigstens 3 μm, da das Absorptionsvermögen eines Absorbers einer elektromagnetischen Welle ansteigt, wenn dessen Dicke wenigstens ein Viertel der elektromagnetischen Wellenlänge beträgt.
  • Entsprechend 13 kann ein hohes Infrarotstrahlungsabsorptionsverhältnis erzielt werden, wenn das Kohlenstoffadditionsverhältnis wenigstens 20 Gew.-% beträgt. Insbesondere beträgt das Infrarotstrahlungsabsorptionsverhältnis wenigstens 90%, wenn das Kohlenstoffadditionsverhältnis 30 bis 60 Gew.-% beträgt.
  • Bei der vorliegenden Ausführungsform ist es möglich, den Infrarotstrahlungssensor ohne Verwendung einer aufwendigen Ausrüstung wie einer Vakuumaufdampfungsvorrichtung, einer Photolithographiemaschine und einer Trockenätzmaschine bei niedrigen Kosten herzustellen. Ebenfalls kann eine Infrarotstrahlung absorbierende Schicht, welche ein hohes Infrarotstrahlungsabsorptionsverhältnis und eine gute Strukturform besitzt, gebildet werden.
  • Wie oben erwähnt, besitzt der Infrarotstrahlungssensor der vorliegenden Ausführungsform die im folgenden beschriebenen Merkmale.
  • Der Öffnungsabschnitt 2 wird durch Ätzen von der zweiten Oberfläche 1b des Substrats 1 aus gebildet (3), nachdem die n-Typ Poly-Si-Schicht 3 und die dünne Aluminiumschicht 8 auf der ersten Oberfläche 1a des Substrats 1 gebildet worden sind (4). Danach wird die Infrarotstrahlung absorbierende Schicht 10 auf der Seite der ersten Oberfläche 1a des Substrats 1 mit einer Siebauftragung (screen paint) gebildet (6).
  • In dem Fall, bei welchem der Öffnungsabschnitt 2 gebildet wird, nachdem die Infrarotstrahlung absorbierende Schicht 10 gebildet worden ist, kann die Infrarotstrahlung absorbierende Schicht 10 von dem Substrat 1 sich abschälen, wenn die Schutzschicht 30 (4) entfernt wird.
  • Jedoch kann sich bei der vorliegenden Ausführungsform die Infrarotstrahlung absorbierende Schicht 10 nicht von dem Substrat 1 abschälen, da sie nach dem Ätzen für den Öffnungsabschnitt 2 gebildet worden ist. Daher wird ein komplexes Herstellungsverfahren, welches benötigt wird, um ein Abschälen der Infrarotstrahlung absorbierenden Schicht 10 zu verhindern, nicht benötigt, und es kann der Infrarotstrahlungssensor mit geringen Kosten hergestellt werden.
  • Bildungsprozesse der n-Typ Poly-Si-Schicht 6 und der dünnen Aluminiumschicht 8 und ein Ätzprozess für den Öffnungsabschnitt 2 werden in einem sauberen Raum durchgeführt, während ein Bildungsprozess der Infrarotstrahlung absorbierenden Schicht 10 außerhalb des reinen Raums durchgeführt wird.
  • In dem Fall, bei welchem die jeweiligen oben erwähnten Prozesse in dem reinen Raum durchgeführt werden, wird der reine Raum durch den Bildungsprozess der Infrarotstrahlung absorbierenden Schicht 10 verunreinigt. Jedoch kann bei der vorliegenden Ausführungsform verhindert werden, daß der saubere Raum verunreinigt wird, da die Infrarotstrahlung absorbierende Schicht 10 außerhalb des sauberen Raums über einen Siebdruck gebildet wird.
  • Während des Siebdruckverfahrens wird eine Strukturform der Infrarotstrahlung absorbierenden Schicht auf dem Sieb 41 gebildet. D. h., es wird die Infrarotstrahlung absorbierende Schicht 10 gleichzeitig fertiggestellt, wenn das Siebdruckverfahren durchgeführt wird. Dementsprechend wird eine Photolithographiemaschine und eine Trockenätzmaschine zur Strukturierung einer durch Vakuumaufdampfung gebildeten Infrarotstrahlung absorbierenden Schicht 10 bei der vorliegenden Ausführungsform nicht benötigt. Daher kann die Infrarotstrahlung absorbierende Schicht 10 durch eine Siebdruckmaschine gebildet werden, welche nicht so aufwendig wie eine Vakuumaufdampfungsvorrichtung ist, und daher kann der Infrarotstrahlungssensor mit niedrigen Kosten hergestellt werden.
  • Der auf das Substrat 1 während des Siebdrucks aufzubringende Quetschdruck beträgt höchstens 0,25 MPa. Daher wird es bevorzugt, die Infrarotstrahlung absorbierende Schicht nach dem Ätzen zu bilden, um eine Beschädigung der Membran zu vermeiden.
  • Die aus Polyester mit Kohlenstoffteilchen hergestellte Kohlenstoffpaste 43 wird zur Bildung der Infrarotstrahlung absorbierenden Schicht 10 verwendet. Daher kann die Infrarotschicht absorbierende Schicht 10 mit einer genauen Druckform gebildet werden. Ebenfalls beträgt das Kohlenstoffadditionsverhältnis der Kohlenstoffpaste 43 wenigstens 20 Gew.-% (vorzugsweise 30 bis 60 Gew.-%). Daher kann die Infrarotstrahlung absorbierende Schicht 10 mit einem hohen Infrarotstrahlungsabsorptionsverhältnis gebildet werden. Des weiteren beträgt die Oberflächenrauheit der Infrarotstrahlung absorbierenden Schicht 10 wenigstens 0,5 μm. Daher kann die Infrarotstrahlung absorbierende Schicht 10 mit einem niedrigen Infrarotstrahlungsreflexionsverhältnis gebildet werden. Wenn dementsprechend die aus Polyester mit Kohlenstoffteilchen gebildete Kohlenstoffpaste, deren Kohlenstoffadditionsverhältnis 30 bis 60 Gew.-% beträgt, und wenn die Oberflächenrauheit der Infrarotstrahlung absorbierenden Schicht 10 wenigstens 0,1 μm beträgt und deren Dicke wenigstens 3 μm beträgt, ist es möglich, die Infrarotstrahlung absorbierende Schicht 10 zu bilden, welche ein Infrarotstrahlungsabsorptionsverhältnis von wenigstens 90% besitzt.
  • Zweite Ausführungsform
  • Bei der in 14 und 15 dargestellten zweiten Ausführungsform besitzt ein Thermosäuleninfrarotstrahlungssensor (Infrarotstrahlungssensor) eine bezüglich der ersten Ausführungsform unterschiedliche Struktur. Wie in 14 dargestellt ist bei dieser Ausführungsform der Infrarotstrahlungssensor bezüglich demjenigen der ersten Ausführungsform modifiziert.
  • Bei dem Infrarotstrahlungssensor wird ein vertiefter Abschnitt 50 in dem Substrat 1 gebildet. D. h., ein Diaphragma 51 wird in dem Substrat 1 gebildet, auf welchem die ersten Verbindungsabschnitte 11 der thermoelektrischen Paare gebildet werden. In diesem Fall wird wie in 15 dargestellt ein Ätzprozess für den vertieften Abschnitt 50 gestoppt, bevor das Ätzen durch die erste Oberfläche 1a des Substrats 1 voranschreitet. Übrigens ist die Dicke des Diaphragmas 51 definierbar. Es wird jedoch eine Dicke so klein wie möglich bevorzugt, da sich die Wärmekapazität des Diaphragmas 51 verringert, wenn sich die Dicke davon verringert und eine Temperaturdifferenz zwischen den ersten und zweiten Verbindungsabschnitten 11, 12 sich erhöht.
  • Dritte Ausführungsform
  • Bei der in 16 und 17 dargestellten dritten Ausführungsform werden die Größen der Membran und der Infrarotstrahlung absorbierenden Schicht 10 bestimmt, um einen größeren Ausgang Vout des Thermosäuleninfrarotstrahlungssensors (Infrarotstrahlungssensor) als denjenigen bei der ersten Ausführungsform zu erlangen.
  • Insbesondere wird ein Verhältnis (Größenverhältnis) der Größen Lb zu den Größen La (Lb/La) derart bestimmt, daß es sich vorzugsweise in einem Bereich von 0,75 bis 0,90 befindet. Bei dem Infrarotstrahlungssensor ist es nötig, eine Temperaturdifferenz zwischen den ersten und zweiten Verbindungsabschnitten 11, 12 zu erhöhen, um den Sensorausgang Vout zu vergrößern. Die Temperaturdifferenz ΔT wird in Gleichung (1) dargestellt, wobei der Wärmewiderstand zwischen den ersten und zweiten Verbindungsabschnitten 11, 12 R ist, eine dem Infrarotstrahlungssensor aufgebrachte Infrarotstrahlungsenergie I ist und die Gesamtfläche der Infrarotstrahlung absorbierenden Schicht 10 S ist. ΔT = RIS (1)
  • Entsprechend der Gleichung (1) kann die Temperaturdifferenz ΔT durch Erhöhen des Wärmewiderstands R (d. h. des Wärmetrennabstands (thermo separate distance)) oder durch Erhöhen der Größe der Infrarotstrahlung absorbierenden Schicht 10 vergrößert werden. Die Größe der Infrarotstrahlung absorbierenden Schicht 10 verringert sich, wenn der Wärmewiderstand R ansteigt. Demgegenüber verringert sich der Wärmewiderstand R, wenn die Größe der Infrarotstrahlung absorbierenden Schicht 10 ansteigt. Daher kann der Sensorausgang Vout auf der Grundlage des Verhältnisses von Lb zu La (Lb/La) vergrößert werden.
  • 18 stellt Ergebnisse einer finite Elemente Modellierungsanalyse (FEM-Analyse) auf eine Änderung des Sensorausgangs Vout dar, wenn das Verhältnis Lb/La geändert wird. In diesem Fall wird das Verhältnis Lb/La durch Ändern der Größen Lb der Infrarotstrahlung absorbierenden Schicht 10 geändert, während die Größen La der Membran festgelegt sind. Die Analyse wird auf der Grundlage der Temperatur eines Objekts zur Erfassung bei 80°C ausgeführt.
  • Entsprechend 18 wird der Sensorausgang Vout als größter Wert dargestellt, wenn das Verhältnis Lb/La 0,82 beträgt. 18 stellt nicht die anderen Daten dar, wenn die Temperatur eines Objekts zur Erfassung nicht 80°C beträgt, sondern es wird der Sensorausgang Vout als größter Wert dargestellt, wenn das Verhältnis Lb/La 0,82 ebenso wie bei der Analyse beträgt.
  • 18 stellt ebenfalls Ausgangsfehler dar. Die Fehler entsprechen der prozentualen Differenz zwischen dem jeweiligen Wert des Sensorausgangs Vout und dem größten Wert davon, wenn der größte Wert des Sensorausgangs Vout auf 100% genormt ist.
  • Bei der vorliegenden Ausführungsform wird die Infrarotstrahlung absorbierende Schicht 10 durch Siebdruck gebildet. Wie oben beschrieben kann der Siebdruck mit niedrigen Kosten durchgeführt werden, es können jedoch Größenfehler und Formfehler der Infrarotstrahlung absorbierenden Schicht 10 groß sein. Die Fehler der Größen Lb betragen typischerweise ±10%, wenn die Infrarotstrahlung absorbierende Schicht 10 durch Siebdruck hergestellt wird. Dementsprechend erzeugt unter Berücksichtigung eines Fehlers von ±10% der Größen Lb, wenn das Verhältnis Lb/La 0,82 beträgt und der Sensorausgang Vout am größten ist, der Sensorausgang Vout akzeptable Ausgänge, wenn das Verhältnis Lb/La 0,75 bis 0,90 beträgt.
  • Des weiteren wird es bevorzugt, daß der Ausgangsfehler im Hinblick auf eine Anforderung einer Datenverarbeitungsschaltung höchstens ±3% beträgt. Wie in 18 dargestellt erfüllt ein Bereich, bei welchem das Verhältnis Lb/La 0,75 bis 0,90 beträgt, den geforderten Ausgangsfehlerbereich. Daher wird bei der vorliegenden Ausführungsform das Verhältnis Lb/La auf einen Bereich von 0,75 bis 0,90 festgelegt.
  • Bei der vorliegenden Ausführungsform ist es möglich, den Sensorausgang Vout durch Festlegen des Verhältnisses auf 0,75 bis 0,90 ohne Verlängern der Größe der Sensorspitze (d. h. Substrat 1) zu erhöhen.
  • Modifizierung
  • Bei den ersten bis dritten Ausführungsformen wird eine Kohlenstoffpaste zur Bildung der Infrarotstrahlung absorbierenden Schicht 10 verwendet. Jedoch können andere Materialien alternativ zur Bildung der Infrarotstrahlung absorbierenden Schicht 10 verwendet werden.
  • Es kann ein Siebdruck eines Kontakttyps alternativ zur Bildung der Infrarotstrahlung absorbierenden Schicht 10 verwendet werden. In diesem Fall sollte der Druck F3, welcher gleich dem Quetschdruck F1 ist, höchstens 0,25 MPa betragen, um nicht die Membran zu beschädigen, da die Rückbildungskraft F2 null beträgt (7).
  • Wie in 4 dargestellt, wird die Seite der ersten Oberfläche 1a des Substrats 1 mit der Schutzschicht 30 während des Ätzprozesses zur Bildung des Öffnungsabschnittes 2 bedeckt. Jedoch wird die Schutzschicht 30 nicht benötigt, wenn das Ätzen von lediglich einer Seite der zweiten Oberfläche 1b des Substrats 1 durchgeführt werden kann. In diesem Fall ist es möglich, die Herstellungskosten des Infrarotstrahlungssensors zu verringern, da ein Bildungsprozess der Schutzschicht 30 und ein Entfernungsprozess davon nicht benötigt werden.
  • Bei der dritten Ausführungsform können Größen, Formen, Materialien oder dergleichen des Substrats 1, der Membran, der thermoelektrischen Paare 11, 12, der Infrarotstrahlung absorbierenden Schicht 6 oder dergleichen alternativ verändert werden.
  • Vorstehend wurde ein mit Siebdruck hergestellter Thermosäuleninfrarotstrahlungssensor und ein Verfahren zu dessen Herstellung offenbart. Bei einem Thermosäuleninfrarotstrahlungssensor wird ein Öffnungsabschnitt (2) durch Ätzen eines Substrats (1) von einer zweiten Oberfläche (1b) aus gebildet, nachdem eine n-Typ Poly-Si-Schicht (6) und eine dünne Aluminiumschicht (8) derart gebildet worden sind, daß erste und zweite Verbindungsabschnitte (11, 12) durch Teile davon gebildet werden. Es wird eine Infrarotstrahlung absorbierende Schicht (10) auf dem Substrat zur Bedeckung des ersten Verbindungsabschnitts mit einem Siebdruck gebildet, nachdem der Öffnungsabschnitt gebildet worden ist.

Claims (7)

  1. Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors mit den Schritten: Bereitstellen eines Substrats (1), welches erste und zweite Oberflächen (1a, 1b) aufweist; Bilden einer Schicht eines ersten Materials (6), welche mehrere Teile aufweist, auf der ersten Oberfläche (1a) des Substrats (1) mit einem ersten leitenden Material; Bilden einer Schicht eines zweiten Materials (8), welche mehrere Teile aufweist, mit einem zweiten leitenden Material, welches sich von dem ersten leitenden Material unterscheidet, zur Bildung von ersten und zweiten Verbindungsabschnitten (11, 12) mit mehreren Teilen der Schicht des ersten Materials; Bilden entweder eines Öffnungsschnitts (2) oder eines vertieften Abschnitts (50) durch Ätzen des Substrats von der zweiten Oberfläche aus, wo der erste Verbindungsabschnitt gebildet wird; Durchführen eines Siebdrucks einer Infrarotstrahlung absorbierenden Schicht (10) auf dem Substrat zur Bedeckung des ersten Verbindungsabschnitts nach dem Bilden entweder des Öffnungsabschnitts oder des vertieften Abschnitts, wobei der Siebdruck der Infrarotstrahlung absorbierenden Schicht den Siebdruck der Infrarotstrahlung absorbierenden Schicht derart beinhaltet, daß ein auf das Substrat aufgebrachter Druck höchstens 0,25 MPa beträgt.
  2. Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors nach Anspruch 1, dadurch gekennzeichnet, daß der Siebdruck der Infrarotstrahlung absorbierenden Schicht einen Siebdruck der Infrarotschicht absorbierenden Schicht unter Verwendung einer Kohlenstoffpaste beinhaltet.
  3. Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors nach Anspruch 2, dadurch gekennzeichnet, daß der Siebdruck der Infrarotstrahlung absorbierenden Schicht einen Siebdruck der Infrarotstrahlung absorbierenden Schicht unter Verwendung von Polyesterharz mit Kohlenstoffteilchen beinhaltet.
  4. Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors nach Anspruch 3, dadurch gekennzeichnet, daß der Siebdruck der Infrarotstrahlung absorbierenden Schicht die Verwendung einer Kohlenstoffpaste beinhaltet, deren Kohlenstoffadditionsverhältnis wenigstens 20 Gew.-% beträgt.
  5. Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors nach Anspruch 3, dadurch gekennzeichnet, daß der Siebdruck der Infrarotstrahlung absorbierenden Schicht die Verwendung einer Kohlenstoffpaste beinhaltet, deren Kohlenstoffadditionsverhältnis 30 bis 60 Gew.-% beträgt.
  6. Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Siebdruck der Infrarotstrahlung absorbierenden Schicht einen Siebdruck der Infrarotstrahlung absorbierenden Schicht derart beinhaltet, daß eine Mittelliniendurchschnittsrauheit davon wenigstens 0,5 μm beträgt.
  7. Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Siebdruck der Infrarotstrahlung absorbierenden Schicht einen Siebdruck der Infrarotstrahlung absorbierenden Schicht derart beinhaltet, daß ein Größenverhältnis einer Breite der Infrarotstrahlung absorbierenden Schicht zu einer Breite entweder des Öffnungsabschnitts oder des vertieften Abschnitts 0,75 bis 0,90 beträgt.
DE10225377.3A 2001-06-11 2002-06-07 Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors Expired - Fee Related DE10225377B4 (de)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001176138A JP2002365140A (ja) 2001-06-11 2001-06-11 赤外線センサ
JP01-176138 2001-06-11
JP2001215183 2001-07-16
JP01-215183 2001-07-16
JP2001341066A JP3594923B2 (ja) 2001-07-16 2001-11-06 サーモパイル式赤外線センサの製造方法
JP01-341066 2001-11-06

Publications (2)

Publication Number Publication Date
DE10225377A1 DE10225377A1 (de) 2002-12-12
DE10225377B4 true DE10225377B4 (de) 2014-10-09

Family

ID=27346914

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10225377.3A Expired - Fee Related DE10225377B4 (de) 2001-06-11 2002-06-07 Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors

Country Status (2)

Country Link
US (1) US6870086B2 (de)
DE (1) DE10225377B4 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10321639A1 (de) * 2003-05-13 2004-12-02 Heimann Sensor Gmbh Infrarotsensor mit optimierter Flächennutzung
US20050016576A1 (en) * 2003-07-24 2005-01-27 Delphi Technologies, Inc. Stacked thermocouple structure and sensing devices formed therewith
US7211873B2 (en) * 2003-09-24 2007-05-01 Denso Corporation Sensor device having thin membrane and method of manufacturing the same
JP4337530B2 (ja) * 2003-12-09 2009-09-30 株式会社デンソー 赤外線吸収膜の製造方法
JP4241360B2 (ja) * 2003-12-15 2009-03-18 株式会社デンソー 赤外線センサの製造方法
US20050150537A1 (en) * 2004-01-13 2005-07-14 Nanocoolers Inc. Thermoelectric devices
US20050150535A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a thin-film thermoelectric device including a phonon-blocking thermal conductor
US20050150536A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a monolithic thin-film thermoelectric device including complementary thermoelectric materials
JP2006071601A (ja) * 2004-09-06 2006-03-16 Denso Corp 赤外線センサ、赤外線式ガス検出器、及び赤外線光源
US20060076046A1 (en) * 2004-10-08 2006-04-13 Nanocoolers, Inc. Thermoelectric device structure and apparatus incorporating same
JP2006214758A (ja) * 2005-02-01 2006-08-17 Denso Corp 赤外線検出器
JP2007024770A (ja) * 2005-07-20 2007-02-01 Denso Corp 障害物検出装置
JP2009174917A (ja) * 2008-01-22 2009-08-06 Oki Semiconductor Co Ltd 赤外線検出素子、及び赤外線検出素子の製造方法
EP2452172B1 (de) * 2009-07-10 2018-09-05 Stockert GmbH Temperaturfühler zur messung an oder in einem lebenden körper
JP5585241B2 (ja) 2010-06-25 2014-09-10 セイコーエプソン株式会社 焦電型検出器、焦電型検出装置及び電子機器
JP2013213718A (ja) * 2012-04-02 2013-10-17 Seiko Epson Corp 検出素子の製造方法、撮像デバイスの製造方法、検出素子、撮像デバイス、電子機器
US9219185B2 (en) 2013-12-19 2015-12-22 Excelitas Technologies Singapore Pte. Ltd CMOS integrated method for the fabrication of thermopile pixel with umbrella absorber on semiconductor substrate
US9373772B2 (en) 2014-01-15 2016-06-21 Excelitas Technologies Singapore Pte. Ltd. CMOS integrated method for the release of thermopile pixel on a substrate by using anisotropic and isotropic etching
US9324760B2 (en) * 2014-01-21 2016-04-26 Excelitas Technologies Singapore Pte. Ltd CMOS integrated method for fabrication of thermopile pixel on semiconductor substrate with buried insulation regions
DE102014203502B3 (de) * 2014-02-26 2015-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur Bestimmung von Temperaturen sowie deren Verwendung
JP7428186B2 (ja) * 2019-07-05 2024-02-06 住友電気工業株式会社 光センサ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039280A2 (de) * 1999-03-24 2000-09-27 Ishizuka Electronics Corp. Thermosaülenartiger Infrarotsensor und Vorrichtung zu seiner Herstellung
DE10124155A1 (de) * 2000-05-18 2002-02-07 Murata Manufacturing Co Infrarotsensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729683B2 (de) 1974-04-18 1982-06-24
JPS5517104B2 (de) 1974-04-18 1980-05-09
JPS62222134A (ja) 1986-03-25 1987-09-30 Toshiba Corp 赤外線検出器
JP3129504B2 (ja) 1992-02-25 2001-01-31 松下電工株式会社 赤外線検出素子
JP3124815B2 (ja) 1992-02-25 2001-01-15 松下電工株式会社 ダイアフラム構造用熱絶縁膜およびその製造方法
JPH06109535A (ja) 1992-09-24 1994-04-19 Matsushita Electric Works Ltd 赤外線検出素子
JP3339276B2 (ja) 1995-11-08 2002-10-28 日産自動車株式会社 赤外線検出素子
JP4511676B2 (ja) 1999-03-24 2010-07-28 石塚電子株式会社 サーモパイル型赤外線センサ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039280A2 (de) * 1999-03-24 2000-09-27 Ishizuka Electronics Corp. Thermosaülenartiger Infrarotsensor und Vorrichtung zu seiner Herstellung
DE10124155A1 (de) * 2000-05-18 2002-02-07 Murata Manufacturing Co Infrarotsensor

Also Published As

Publication number Publication date
DE10225377A1 (de) 2002-12-12
US6870086B2 (en) 2005-03-22
US20020185169A1 (en) 2002-12-12

Similar Documents

Publication Publication Date Title
DE10225377B4 (de) Verfahren zur Herstellung eines Thermosäuleninfrarotstrahlungssensors
DE69912376T2 (de) Verfahren zur herstellung eines halbleiterbauelements
DE60031089T2 (de) Kapazitiver Drucksensor und zugehöriges Herstellungsverfahren
DE60131745T2 (de) Filtervorrichtung und verfahren zu deren herstellung
DE2919418C2 (de)
DE4230338B4 (de) Verfahren zur Herstellung von Solarzellen aus amorphem Silizium mittels Naßätzen von Löchern oder Gräben durch Rückseitenelektroden und amorphes Silizium
EP1834163A1 (de) Vorrichtung zum messen von kräften, insbesondere drucksensor, und zugehöriges herstellverfahren
DE4309207A1 (de) Halbleitervorrichtung mit einem piezoresistiven Drucksensor
DE19520768B4 (de) Verfahren zur Herstellung einer Halbleitervorrichtung mit Dünnfilmwiderstand
DE102012107342A1 (de) Röntgenstrahlungsdurchtrittsfenster für einen Strahlungsdetektor, Strahlungsdetektor mit Röntgenstrahlungsdurchtrittsfenster, Verfahren zur Herstellung eines Röntgenstrahlungsdurchtrittsfensters sowie Verwendung von Graphen
WO1996041677A1 (de) Gasdurchlass mit selektiv wirkender durchtrittsfläche sowie verfahren zur herstellung der durchtrittsfläche
EP0664926A1 (de) Vorrichtung zur absorption infraroter strahlung.
DE4133008C2 (de) Kapazitive Drucksensoren und Herstellungsverfahren hierzu
DE102016224977A1 (de) Infrarot-Wärmedetektor und Herstellungsverfahren für Infrarot-Wärmedetektor
WO2018177810A1 (de) Verfahren zur herstellung eines bauteils und bauteil für ein elektronisches bauelement
DE112017007356T5 (de) Hohle versiegelte Vorrichtung und Herstellungsverfahren dafür
DE3634168C2 (de)
EP0890831B1 (de) Kondensatoranordnung und Herstellungsverfahren
DE19727447A1 (de) Infrarotstrahlungsempfindliche Vorrichtung
DE2900747C2 (de) Verfahren zur Herstellung einer Halbleiteranordnung
DE4329260B4 (de) Verfahren zur Herstellung einer Verdrahtung in einem Halbleiterbauelement
DE19710375C2 (de) Verfahren zum Herstellen von räumlich strukturierten Bauteilen
DE102004058393B4 (de) Infrarotsensor
DE10058861A1 (de) Infrarotsensor für hochauflösende Infrarot-Detektoranordnungen und Verfahren zu seiner Herstellung
DE60308811T2 (de) Thermischer Infrarotdetektor mit erhöhtem Füllfaktor, Methode zu dessen Herstellung und Matrix von thermischen Infrarotdetektoren

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee