JP4233403B2 - 電解加工装置及び電解加工方法 - Google Patents

電解加工装置及び電解加工方法 Download PDF

Info

Publication number
JP4233403B2
JP4233403B2 JP2003207200A JP2003207200A JP4233403B2 JP 4233403 B2 JP4233403 B2 JP 4233403B2 JP 2003207200 A JP2003207200 A JP 2003207200A JP 2003207200 A JP2003207200 A JP 2003207200A JP 4233403 B2 JP4233403 B2 JP 4233403B2
Authority
JP
Japan
Prior art keywords
electrode
ion exchanger
conductor
processing
electrolytic processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003207200A
Other languages
English (en)
Other versions
JP2005060732A (ja
Inventor
穂積 安田
郁太郎 野路
一人 廣川
健 飯泉
厳貴 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003207200A priority Critical patent/JP4233403B2/ja
Priority to US10/914,190 priority patent/US7476303B2/en
Publication of JP2005060732A publication Critical patent/JP2005060732A/ja
Application granted granted Critical
Publication of JP4233403B2 publication Critical patent/JP4233403B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電解加工装置及び電解加工方法に係り、特に半導体ウエハ等の基板の表面に形成された導電性材料を加工したり、基板の表面に付着した不純物を除去したりするために使用される電解加工装置及び電解加工方法に関するものである。
【0002】
【従来の技術】
近年、半導体ウエハ等の基板上に回路を形成するための配線材料として、アルミニウムまたはアルミニウム合金に代えて、電気抵抗率が低くエレクトロマイグレーション耐性が高い銅(Cu)を用いる動きが顕著になっている。この種の銅配線は、基板の表面に設けた微細凹みの内部に銅を埋込むことによって一般に形成される。この銅配線を形成する方法としては、CVD、スパッタリング及びめっきといった手法があるが、いずれにしても、基板のほぼ全表面に銅を成膜して、化学機械的研磨(CMP)により不要の銅を除去するようにしている。
【0003】
図1(a)乃至図1(c)は、この種の銅配線基板Wの一製造例を工程順に示すもので、先ず、図1(a)に示すように、半導体素子を形成した半導体基材1上の導電層1aの上にSiOからなる酸化膜やLow−K材膜等の絶縁膜2を堆積し、この絶縁膜2の内部に、リソグラフィ・エッチング技術によりコンタクトホール3と配線溝4を形成し、その上にTaN等からなるバリア膜5、更にその上に電解めっきの給電層としてシード層7を形成する。
【0004】
そして、図2(b)に示すように、基板Wの表面に銅めっきを施すことで、コンタクトホール3及び配線溝4内に銅を充填するとともに、絶縁膜2上に銅膜6を堆積する。その後、化学機械的研磨(CMP)により、絶縁膜2上の銅膜6及びバリア膜5を除去して、コンタクトホール3及び配線溝4に充填させた銅膜6の表面と絶縁膜2の表面とをほぼ同一平面にする。これにより、図2(c)に示すように銅膜6からなる配線が形成される。
【0005】
また、最近ではあらゆる機器の構成要素において微細化かつ高精度化が進み、サブミクロン領域での物作りが一般的となるにつれて、加工法自体が材料の特性に与える影響は益々大きくなっている。このような状況下においては、従来の機械加工のように、工具が被加工物を物理的に破壊しながら除去していく加工法では、加工によって被加工物に多くの欠陥を生み出してしまうため、被加工物の特性が劣化する。従って、いかに材料の特性を損なうことなく加工を行うことができるかが問題となってくる。
【0006】
この問題を解決する手段として開発された特殊加工法に、化学研磨や電解加工、電解研磨がある。これらの加工法は、従来の物理的な加工とは対照的に、化学的溶解反応を起こすことによって、除去加工等を行うものである。従って、塑性変形による加工変質層や転位等の欠陥は発生せず、前述の材料の特性を損なわずに加工を行うといった課題が達成される。
【0007】
電解加工として、イオン交換体を使用したものが開発されている。これは、図2に示すように、被加工物10の表面に、加工電極14に取付けたイオン交換体12aと、給電電極16に取付けたイオン交換体12bとを接触乃至近接させ、加工電極14と給電電極16との間に電源17を介して電圧を印加しつつ、加工電極14及び給電電極16と被加工物10との間に液体供給部19から超純水等の加工用液体18を供給して、被加工物10の表面層の除去加工を行うようにしたものである。この電解加工によれば、超純水等の加工用液体18中の水分子20をイオン交換体12a,12bで水酸化物イオン22と水素イオン24に解離し、例えば生成された水酸化物イオン22を、被加工物10と加工電極14との間の電界と超純水等の加工用液体18の流れによって、被加工物10の加工電極14と対面する表面に供給して、ここでの被加工物10近傍の水酸化物イオン22の密度を高め、被加工物10の原子10aと水酸化物イオン22を反応させる。反応によって生成された反応物質26は、超純水等の加工用液体18中に溶解し、被加工物10の表面に沿った超純水等の加工用液体18の流れによって被加工物10から除去される。
【0008】
ここで、例えばイオン交換体としてカチオン交換基(陽イオン交換基)を付与したカチオン交換体を使用して銅の電解加工を行うと、銅が陽イオン交換基に捕らえられる。このように銅による陽イオン交換基の消費が進むと、継続的な加工が不能になる。また、イオン交換体としてアニオン交換基(陰イオン交換基)を付与したアニオン交換体を使用して銅の電解加工を行うと、イオン交換体(アニオン交換体)の表面に銅の酸化物が生成されて付着し、加工速度の均一性を妨げるおそれがある。
【0009】
そこで、このような場合に、イオン交換体を再生することで、これらの弊害を除去することが考えられる。イオン交換体の再生とは、イオン交換体に捕らえられたイオンを、例えばカチオン交換体の場合は水素イオンに、アニオン交換体の場合は水酸化物イオンにそれぞれ交換することである。
【0010】
【発明が解決しようとする課題】
イオン交換体の再生は、通常、カチオン交換体の場合は酸を、アニオン交換体の場合はアルカリを用い、これらの液体にイオン交換体を浸漬させることで一般に行われる。ここで、例えば、ナトリウムイオンのように、水素イオンとイオン選択係数が近いイオンを捕らえた陽イオン交換体にあっては、酸に浸漬させることによって非常に短時間でイオン交換体を再生することができる。しかし、イオン選択係数の大きいイオンを捕らえたイオン交換体を酸やアルカリを使用して再生すると、この再生速度が非常に遅い。また再生後のイオン交換体には、薬液が高濃度に残留し、このため、イオン交換体の洗浄が必要となる。更に、再生液を溜める再生槽が別途必要となって、かなり広い設置面積を占めてしまうばかりでなく、イオン交換体の再生のために加工を中断する必要があって、スループットの低下に繋がってしまう。
【0011】
なお、被加工物に接するイオン交換体は、表面平滑性を持たせるため、例えば薄いフィルム形状に形成されており、そのため、イオンの蓄積容量の目安となるイオン交換容量が一般に小さい。このため、フィルム形状のイオン交換体と電極の間に、イオン交換容量の大きいイオン交換体を積層し、加工生成物の大部分の取込みをこの積層部(積層イオン交換体)で行っていた。しかし、ある程度加工を行うと、それ以上この積層部が加工生成物を取り込めなくなるので、イオン交換体の交換、もしくは再生を要していた。このため、この交換に多大な時間が掛かり、また再生するにしても、その間は加工ができないので、装置のスループットに悪影響を与えていた。
【0012】
このため、例えば電気透析式再生法等を使用し、被加工物より除去されてイオン交換体中に取り込まれた金属イオン等を加工中に排出部(系外)へ排出することで、イオン交換体を加工と同時に再生することが考えられる。しかし、加工と同時にイオン交換体を再生する方法であるため、被加工物から溶出した新しい金属イオン等が、常にイオン交換体中に取り込まれてしまい、このため、ある加工条件下では、イオン交換体に取り込まれた全ての金属イオン等を系外に完全に排出しきれないと考えられる。
【0013】
本発明は上記事情に鑑みて為されたもので、装置のスループットに悪影響を与えることなく、イオン交換体をその交換容量の再生率を向上させて再生することができるようにした電解加工装置及び電解加工方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
請求項1に記載の発明は、被加工物を保持する保持部と、加工電極、給電電極、前記加工電極及び前記給電電極の少なくとも一方を覆うイオン交換体、及び加工中に前記被加工物から前記イオン交換体に取り込まれた金属イオンを排出する排出部を備え、液体の存在下で、前記保持部で保持した被加工物に前記イオン交換体を近接乃至接触させつつ前記加工電極と前記給電電極との間に電圧を印加して該被加工物に加工を施しながら前記イオン交換体に取り込まれた金属イオンを前記排出部から排出する電極部と、前記イオン交換体に接触乃至近接自在な再生用導電体を有することを特徴とする電解加工装置である。
再生用導電体イオン交換体に接触させ、あたかもこの再生用導電体に電解加工を施すように操作することで、電極部に設けた排出部を利用したイオン交換体の再生を行うことができる。この場合、再生用導電体は、実際には電解加工されないので、再生用導電体からイオン金属等が溶出することがなく、従って、イオン交換体中にイオン金属等が取り込まれることはない。
【0015】
このように、加工中に被加工物からイオン交換体に取り込まれた金属イオンを、電極部に備えられた排出部から加工中に排出してイオン交換体の再生を行うことで、この再生が装置のスループットに悪影響を与えることを防止し、しかも、金属イオンがイオン交換体中に取り込まれることがない非加工状態にあるイオン交換体再生用導電体を接触させ、イオン交換体中の金属イオンを排出部から排出してイオン交換体を更に再生することで、イオン交換体をその蓄積容量の再生率を向上させて再生することができる。
【0016】
再生用導電体イオン交換体に接触させることによる金属イオンの排出は、被加工物がイオン交換体に接触していない部分、即ちイオン交換体の加工に用いられていない部分において行われる。ここで、「イオン交換体の加工に用いられていない部分」とは、
(1)加工物との相対運動の中で、被加工物との接触(乃至近接)が解かれ、加工に寄与しない状態、
(2)加工終了時、または加工のインターバルにおいて、被加工物との接触(乃至近接)が解かれている状態、
を意味する。
【0017】
再生用導電体は、電極(加工電極及び給電電極)を備えた電極部の形状に沿った形状で、イオン交換体の被加工物の加工に使用する面積より大きな大きさを有することが好ましい。再生時に再生用導電体イオン交換体とを相対移動させることにより、加工に使用するイオン交換体の全面を再生できるようにしても良い。
【0018】
請求項に記載の発明は、前記再生用導電体と前記電極部の前記加工電極または前記給電電極との間に電圧を印加することを特徴とする請求項記載の電解加工装置である。
このように、再生用導電体と電極部の加工電極または給電電極との間に電圧を印加することによっても、電極部に設けた排出部を利用したイオン交換体の再生を行うことができる。
【0019】
請求項に記載の発明は、前記イオン交換体と前記再生用導電体との間に、超純水、純水または電気伝導度が500μS/cm以下の液体のいずれかを供給することを特徴とする請求項1または2記載の電解加工装置である。
【0020】
純水は、例えば、電気伝導度(1atm,25℃換算値、以下同じ)が10μS/cm以下の水である。このように、純水、より好ましくは、超純水(例えば、電気伝導度が0.1μS/cm以下の水)を使用することで、清浄な再生を行うことができ、これによって、後の洗浄や廃液の処理を簡素化することができる。また、例えば、純水または超純水に界面活性剤等の添加剤を添加して、電気伝導度が500μS/cm以下、好ましくは、50μS/cm、より好ましくは、0.1μS/cm以下にした液体を使用し、液体中に、イオンの局部的な集中を防ぐ役割を果たす添加剤を存在させることで、イオンの局所的な集中を抑えることができる。
【0021】
請求項に記載の発明は、前記イオン交換体と前記再生用導電体との間への液体の供給を、(1)イオン交換体の表面への滴下、(2)再生用導電体表面からの供給、(3)加工電極と給電電極との間に配置した供給口からの供給、(4)加工電極及び給電電極の供給口からの供給のいずれか、もしくは任意の組合せで行うことを特徴とする請求項記載の電解加工装置である。
【0022】
請求項に記載の発明は、前記再生用導電体の少なくとも前記イオン交換体に接触乃至近接する部分は、化学的または電気化学的に不活性な導電性材料からなることを特徴とする請求項1乃至のいずれかに記載の電解加工装置である。
この化学的または電気化学的に不活性な導電性材料としては、白金やイリジウム等が挙げられる。この再生用導電体は、例えば、下地の電極素材としてのチタン表面に、めっきやコーティングで白金またはイリジウムを付着させている。さらにその後、高温で焼結して安定化と強度を保つ処理を行ってもよい。
【0023】
請求項に記載の発明は、前記再生用導電体は、前記再生用導電体を前記イオン交換体に接触または近接させる機構を有し、前記保持部で保持した被加工物の前記電極部による加工と、前記再生用導電体の前記イオン交換体への接触または近接を個別に行うように構成されていることを特徴とする請求項1乃至のいずれかに記載の電解加工装置である。
このように、再生用導電体イオン交換体への接触または近接によるイオン交換体の再生を、保持部で保持した被加工物の電極部による加工と個別に行うようにすることで、これらの操作を個別に制御して最適な状態で行うことができる。
ここで、イオン交換体の再生を、電極部による加工と「個別に行うようにする」とは、
(1)制御的な意味で、電極保持部と再生用導電体を個別に制御する場合、
(2)加工と再生を別々のタイミングで、例えば、加工後または加工中のインターバル時に再生を行う場合、
を含む。
【0024】
請求項に記載の発明は、前記再生用導電体は、前記保持部で保持した被加工物の前記電極部による加工と同時に、前記再生用導電体を前記イオン交換体に接触または近接させるように構成されていることを特徴とする請求項1乃至のいずれかに記載の電解加工装置である。
このように、保持部で保持した被加工物の電極部による加工と同時に、再生用導電体イオン交換体に接触または近接させて加工に使用されていないイオン交換体を再生することで、装置のスループットをより高めることができる。
【0025】
請求項に記載の発明は、前記再生用導電体は、前記保持部で保持した被加工物の周囲を囲繞する位置に配置され、該保持部と一体に移動するように構成されていることを特徴とする請求項1乃至のいずれかに記載の電解加工装置である。
これにより、再生用導電体を移動させるための機構を不要となして、装置として、より簡素化を図ることができる。
【0026】
請求項に記載の発明は、前記再生用導電体を前記イオン交換体に接触させる接触圧力を制御する接触圧制御部を有することを特徴とする請求項1乃至のいずれかに記載の電解加工装置である。
例えば、再生用導電体イオン交換体への押圧力を、被加工物のイオン交換体への押圧量よりも大きくすると、再生用導電体と電極部との距離が小さくなり両者間の抵抗が小さくなって、流れる電流が大きくなると共に再生効率が上昇する。しかし、この場合、再生用導電体イオン交換体が相対運動すると両者の摩擦が大きくなるため、イオン交換体が摩耗しやすい。一方、再生用導電体イオン交換体への押圧力を、被加工物のイオン交換体への押圧力よりも小さくする場合は、両者の摩擦は小さくなるが、抵抗が大きくなり、再生効率は低くなる。本発明では、再生用導電体の押圧力を適宜設定することにより、再生に要する電力を低減し、かつイオン交換体の摩耗をなるべき少なくする条件を設定することが好ましい。
【0027】
請求項10に記載の発明は、前記接触圧制御部は、自重、アクチュエータまたは圧力室内に導入する流体圧で前記接触圧力を制御するように構成されていることを特徴とする請求項記載の電解加工装置である。
【0028】
請求項11に記載の発明は、液体の存在下で、保持部で保持した被加工物に電極部のイオン交換体を接触させつつ加工電極と給電電極との間に電圧を印加して該被加工物に加工を施しながら、該加工中に前記イオン交換体内に取り込まれた金属イオンを前記電極部の内部に設けた排出部から排出し、さらに、前記イオン交換体内の金属イオンを、該イオン交換体再生用導電体を接触させて前記排出部から排出することを特徴とする電解加工方法である。
【0029】
請求項12に記載の発明は、被加工物の前記加工中の前記イオン交換体内の金属イオンの前記排出部からの排出と、前記再生用導電体前記イオン交換体に接触させることによる前記排出部からの金属イオンの排出を個別に行うことを特徴とする請求項11記載の電解加工方法である。
請求項13に記載の発明は、被加工物の前記加工中の前記イオン交換体内の金属イオンの前記排出部からの排出と、前記再生用導電体前記イオン交換体に接触させることによる前記排出部からの金属イオンの排出を同時に行うことを特徴とする請求項11記載の電解加工方法である。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。なお、以下の例では、被加工物として基板を使用し、基板の表面に堆積させた銅膜6(図1(b)参照)を除去(研磨)するようにした電解加工装置(電解研磨装置)に適用した例を示しているが、基板以外にも適用でき、更には、他の電解加工にも適用できることは勿論である。
【0031】
図3は、本発明の実施の形態における電解加工装置30の縦断正面図を、図4は、図3の平面図を示す。図3及び図4に示すように、この電解加工装置30は、半導体ウエハ等の被加工物としての基板Wを着脱自在に保持する基板保持部32と、複数の電極部材(加工電極部材及び給電電極部材)を有する電極部34と、この電極部34に隣接した位置に配置された再生用導電体保持部36とから主に構成されている。
【0032】
基板保持部32は、下記の電極部材52,54と直交する横方向に水平移動自在な基板保持ヘッド38と、この基板保持ヘッド38の内部を挿通して上下に延びる回転及び上下動自在な主軸40と、この主軸40の下端に連結され、基板Wをその表面(被処理面)を下向き(フェースダウン)にして着脱自在に保持する基板ホルダ42とを有しており、主軸40は、自転用モータ44に連結されて該自転用モータ44の回転に伴って回転するようになっている。
【0033】
電極部34は、矩形平板状の電極ベース50を有しており、この電極ベース50の上面に、複数の長尺状に延びる加工電極部材52と給電電極部材54とが、交互かつ等ピッチで並列に配置されている。この加工電極部材52は、加工電極56とイオン交換体58とを有し、この加工電極56とイオン交換体58との間に、隔壁60と該隔壁60で区画された排出路62とを有し、イオン排出機構を構成する排出部64が設けられている。給電電極部材54もほぼ同様に、給電電極66とイオン交換体68とを有し、この給電電極66とイオン交換体68との間に、隔壁70と該隔壁70で区画された排出路72とを有し、イオン排出機構を構成する排出部74が設けられている。なお、給電電極66を覆うイオン交換体68に生成物の蓄積がない場合には、排出部74を設けないようにしてもよい。
【0034】
この例では、加工電極56は電源76の陰極に接続され、給電電極66は電源76の陽極に接続されている。これは、例えば銅にあっては、陰極側に電解加工作用が生じるからであり、被加工材料によっては、陰極側が給電電極となり、陽極側が加工電極となるようにしてもよい。つまり、被加工材料が、例えば銅、モリブデンまたは鉄にあっては、陰極側に電解加工作用が生じるため、電源の陰極に接続された電極が加工電極に、電源の陰極に接続された電極が給電電極となる。一方、例えばアルミニウムやシリコンにあっては、陽極側で電解加工作用が生じるため、電源の陽極に接続した電極が加工電極となり、陰極に接続した電極が給電電極となる。
【0035】
このように、加工電極56と給電電極66とを互いに並列に交互に設けることで、基板Wの導電体膜(被加工物)に給電を行う給電部を設ける必要がなくなり、基板Wの全面の加工が可能となる。また、加工電極56と給電電極66との間に印加される電圧を、例えばON、OFFに矩形パルス状に変化させることで、電解生成物を溶解させ、加工の繰り返しの多重性によって平坦度を向上させることができる。
【0036】
ここで、加工電極56及び給電電極66は、電解反応により、電極の酸化または溶出が一般に問題となる。このため、この電極の素材として、電極に広く使用されている金属や金属化合物よりも、炭素、比較的不活性な貴金属、導電性酸化物または導電性セラミックスを使用することが好ましい。この貴金属を素材とした電極としては、例えば、下地の電極素材にチタンを用い、その表面にめっきやコーティングで白金またはイリジウムを付着させ、高温で焼結して安定化と強度を保つ処理を行ったものが挙げられる。セラミックス製品は、一般に無機物質を原料として熱処理によって得られ、各種の非金属・金属の酸化物・炭化物・窒化物などを原料として、様々な特性を持つ製品が作られている。この中に導電性を持つセラミックスもある。電極が酸化すると電極の電気抵抗値が増加し、印加電圧の上昇を招くが、このように、白金などの酸化しにくい材料や酸化イリジウムなどの導電性酸化物で電極表面を保護することで、電極素材の酸化による電極抵抗の増大を防止することができる。
【0037】
イオン交換体58,68は、例えば、アニオン交換能またはカチオン交換能を付与した不織布で構成されている。カチオン交換体は、好ましくは強酸性カチオン交換基(スルホン酸基)を担持したものであるが、弱酸性カチオン交換基(カルボキシル基)を担持したものでもよい。また、アニオン交換体は、好ましくは強塩基性アニオン交換基(4級アンモニウム基)を担持したものであるが、弱塩基性アニオン交換基(3級以下のアミノ基)を担持したものでもよい。
【0038】
ここで、例えば強塩基アニオン交換能を付与した不織布は、繊維径20〜50μmで空隙率が約90%のポリオレフィン製の不織布に、γ線を照射した後グラフト重合を行う所謂放射線グラフト重合法により、グラフト鎖を導入し、次に導入したグラフト鎖をアミノ化して4級アンモニウム基を導入して作製される。導入されるイオン交換基の容量は、導入するグラフト鎖の量により決定される。グラフト重合を行うためには、例えばアクリル酸、スチレン、メタクリル酸グリシジル、更にはスチレンスルホン酸ナトリウム、クロロメチルスチレン等のモノマーを用い、これらのモノマー濃度、反応温度及び反応時間を制御することで、重合するグラフト量を制御することができる。従って、グラフト重合前の素材の重量に対し、グラフト重合後の重量の比をグラフト率と呼ぶが、このグラフト率は、最大で500%が可能であり、グラフト重合後に導入されるイオン交換基は、最大で5meq/gが可能である。
【0039】
強酸性カチオン交換能を付与した不織布は、前記強塩基性アニオン交換能を付与する方法と同様に、繊維径20〜50μmで空隙率が約90%のポリオレフィン製の不織布に、γ線を照射した後グラフト重合を行う所謂放射線グラフト重合法により、グラフト鎖を導入し、次に導入したグラフト鎖を、例えば加熱した硫酸で処理してスルホン酸基を導入して作製される。また、加熱したリン酸で処理すればリン酸基が導入できる。ここでグラフト率は、最大で500%が可能であり、グラフト重合後に導入されるイオン交換基は、最大で5meq/gが可能である。
【0040】
なお、イオン交換体58,68の素材の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン系高分子、またはその他有機高分子が挙げられる。また素材形態としては、不織布の他に、織布、シート、多孔質材、短繊維、ネット等が挙げられる。
【0041】
ここで、ポリエチレンやポリプロピレンは、放射線(γ線と電子線)を先に素材に照射する(前照射)ことで、素材にラジカルを発生させ、次にモノマーと反応させてグラフト重合することができる。これにより、均一性が高く、不純物が少ないグラフト鎖ができる。一方、その他の有機高分子は、モノマーを含浸させ、そこに放射線(γ線、電子線、紫外線)を照射(同時照射)することで、ラジカル重合することができる。この場合、均一性に欠けるが、ほとんどの素材に適用できる。
【0042】
このように、イオン交換体58,68をアニオン交換能またはカチオン交換能を付与した不織布で構成することで、通水性があるために、純水または超純水や電解液等の液体が不織布の内部を自由に移動して、液相中のイオンとイオン交換体のイオン交換基の間で容易にイオン交換反応が行える。
【0043】
ここで、イオン交換体58,68をアニオン交換能またはカチオン交換能の一方を付与したもので構成すると、電解加工できる被加工材料が制限されるばかりでなく、極性により不純物が生成しやすくなる。そこで、イオン交換体58,68を、アニオン交換能を有するアニオン交換体とカチオン交換能を有するカチオン交換体とを同心状に配置して一体構成としてもよい。また、アニオン交換能を有するアニオン交換体とカチオン交換能を有するカチオン交換体とを重ね合わせたり、扇状に形成して、交互に配置したりしてもよい。更に、イオン交換体58,68自体にアニオン交換能とカチオン交換能の双方の交換基を付与するようにしてもよい。このようなイオン交換体としては、陰イオン交換基と陽イオン交換基を任意に分布させて存在させた両性イオン交換体、陽イオン交換基と陰イオン交換基を層状に存在させたバイポーラーイオン交換体、更には陽イオン交換基が存在する部分と陰イオン交換基が存在する部分とを厚さ方向に並列に存在させたモザイクイオン交換体が挙げられる。なお、アニオン交換能またはカチオン交換能の一方を付与したイオン交換体58,68を、被加工材料に合わせて使い分けてもよいことは勿論である。
【0044】
電極部34の電極ベース50の内部には、純水供給源に接続された流路(図示せず)が形成されており、加工電極部材52と給電電極部材54に挟まれた位置には、この流路と互いに連通して上下に貫通する貫通孔78aを内部に有する純水供給ノズル78が立設されている。これにより、この貫通孔78aを通して、純水、好ましくは超純水が基板Wとイオン交換体58,68との間、更には下記の再生用導電体84とイオン交換体58,68との間に供給される。この純水供給ノズル78の高さは、加工(再生)の際に純水供給ノズル78が基板Wに接触することがないよう、電極部材52,54の高さより低く設定されている。なお、純水供給ノズル78の上面に、基板Wの表面を傷つけない程度の弾性を有する材質により形成された緩衝部材を取付けるようにしてもよい。このような緩衝部材としては、例えばポリテックスパッド(ロデール社の商標)、不織布、発泡ポリウレタン、PVAスポンジ、ポリウレタンスポンジ等のパッドを用いることができる。
【0045】
ここで、純水は、例えば電気伝導度が10μS/cm以下の水であり、超純水は、例えば電気伝導度が0.1μS/cm以下の水である。なお、純水の代わりに電気伝導度500μS/cm以下の液体や、任意の電解液を使用してもよい。加工中に加工用液体を供給することにより、加工生成物、気体溶解等による加工不安定性を除去でき、均一な、再現性のよい加工が得られる。
【0046】
再生用導電体保持部36は、電極部材52,54と直交する横方向に水平移動自在な再生ヘッド80と、この再生ヘッド80から垂下する昇降自在な昇降軸82と、この昇降軸82の下端に連結された矩形状の再生用導電体84とを有しており、この昇降軸82は、再生ヘッド80に取付けた接触圧制御部としてのシリンダ86に連結されている。この再生用導電体84のイオン交換体58,68と対面する再生表面(下面)は、電気的に不活性な金属材料、例えば白金やイリジウムから構成され、これによって、電解反応によって溶液中に溶出しないようになっている。この再生用導電体84は、例えば、下地の電極素材としてのチタン表面に、めっきやコーティングで白金またはイリジウムを付着させ、しかる後、高温で焼結して安定化と強度を保つ処理を行って製作される。
なお、この例では、再生用導電体84の再生表面の全域を電気的に不活性な金属材料で覆った例を示しているが、被加工物としての基板Wに接触乃至近接する領域のみを電気的に不活性な金属材料で覆うようにしてもよい。
【0047】
この再生用導電体84の電極部材52,54の長さ方向に沿った長さは、電極部材52,54の基板ホルダ42で保持した基板Wに接触して電解加工を行うイオン交換体58,68の長さより長く設定され、横方向に平行移動することで、加工に使用するイオン交換体58,68の全面を再生できるようになっている。なお、再生用導電体として、電極(加工電極及び給電電極)を備えた電極部の形状に沿った形状で、イオン交換体の加工に使用する面積より大きな大きさを有するようにしたものを使用して、再生用導電体を横方向に平行移動させることなく、加工に使用するイオン交換体の全面を一度に再生できるようにしてもよい。
【0048】
この再生用導電体84は、下記のように、再生に付されるイオン交換体58,68に近接乃至接触させた状態で、イオン交換体58,68を再生するのに使用されるのであるが、再生用導電体84をイオン交換体58,68に接触させる接触圧力を制御する接触圧制御部としてのシリンダ86を備え、この再生用導電体84のイオン交換体58,68への押圧力を、例えば電解加工時における基板Wのイオン交換体58,68に対する押圧力より大きく設定することで、再生時における再生用導電体84と電極56,66との距離を小さくして、再生用導電体84と電極56,66との間の電圧を高くすることができる。この場合、再生用導電体84とイオン交換体58,68とを相対移動させないか、またはゆっくりと移動させることで、イオン交換体58,68の摩耗を防止することができる。
【0049】
ここで、例えば加工電極部材52のイオン交換体58としてカチオン交換基を付与したものを使用して銅の電解加工を行うと、加工終了後に銅がイオン交換体(カチオン交換体)58のイオン交換基の多くを占有しており、次の加工を行う時の加工効率が悪くなる。また、イオン交換体58としてアニオン交換基を付与したものを使用して銅の電解加工を行うと、イオン交換体(アニオン交換体)58の表面に銅の酸化物の微粒子が生成されて付着し、次の処理基板の表面を汚染するおそれがある。そこで、この例では、イオン交換体58として、カチオン交換体を使用し、加工中に基板Wに接触して加工に使用されるイオン交換体58を、加工中に排出部64で再生するようにしている。
【0050】
同様に、給電電極部材54のイオン交換体68として、カチオン交換体を使用し、加工中に基板Wに接触して加工(給電)に使用されるイオン交換体68を、加工中に排出部74で再生するようにしている。
【0051】
すなわち、排出部64,74の隔壁60,70で区画された排出路62,72の一端は、図4に示すように、排出液供給源88から延びて汚染物排出用の排出用液体を供給する排出液供給ライン90に接続され、他端は、排出液排出ライン92に接続されている。これによって、排出用液体は、排出路62,72の内部に供給され、この排出路62,72に沿って一方向に流れた後、外部に排出されるようになっている。
【0052】
隔壁60,70は、下記のように、再生に付するイオン交換体58,68から除去される不純物イオン等の移動の妨げとなることなく、しかも排出路62,72の内部を流れる排出用液体(液体中のイオンも含む)のイオン交換体58,68側への透過を防止できることが望ましい。イオン交換体は、カチオンまたはアニオンの一方を選択的に透過することができ、しかも、膜状のイオン交換体を用いることで、隔壁60と加工電極56との間、及び隔壁70と給電電極66との間を流れる排出用液体がイオン交換体58,68側に進入することを防止することができ、これらの要求を満たすことができる。
【0053】
また、排出路62,72内に供給する排出用液体は、電気伝導度(誘電率)が、例えば50μS/cm以上と高くかつイオン交換体58,68から除去されるイオンとの反応により不溶性の化合物を生成しない液体であることが望ましい。つまり、この排出用液体は、下記のように、再生に付するイオン交換体58,68から移動し隔壁60,70を通過したイオンを該液体の流れで系外に排出するためのもので、このように、電気伝導度(誘電率)が高くかつイオン交換体58,68から除去されるイオンとの反応により不溶性の化合物を生じない液体を供給することで、この液体の電気抵抗を下げて排出部64,74の消費電力を少なく抑え、しかも、イオン交換体58,68との反応で難溶性もしくは不溶性の化合物(2次生成物)が生成されて隔壁60,70に付着することを防止することができる。この排出用液体は、排出する不純物イオンの種類によって選択されるが、例えば、銅の電解研磨に使用したイオン交換体を再生する時に使用するものとして、濃度が1wt%以上の硫酸を挙げることができる。
【0054】
ここに、隔壁60,70として、この例では、再生に付するイオン交換体58,68と同じイオン交換基を有しているイオン交換体、すなわち加工電極部材52側の隔壁60としてカチオン交換体を、給電電極部材54側の隔壁70としてアニオン交換体をそれぞれ使用している。これにより、イオン交換体58,68から出たイオンのみを隔壁60,70を透過させ、排出路62,72内を流れる排出用液体中のイオンが隔壁60,70を透過してイオン交換体58,68側に移動することを防止することができる。
【0055】
次に、図5を参照して、再生の原理について説明する。
カチオン交換体にあっては、カチオン交換体の内部をカチオン(陽イオン)のみが電気的に移動可能である。そこで、加工電極56を陰極としたこの例にあっては、加工電極部材52側のイオン交換体58としてカチオン交換体を使用している。一方、アニオン交換体にあっては、アニオン交換体の内部をアニオン(陰イオン)のみが電気的に移動可能である。そこで、給電電極66を陽極としたこの例にあっては、給電電極部材54側のイオン交換体68としてアニオン交換体を使用している。
【0056】
そして、イオン交換体(カチオン交換体)58及びイオン交換体(アニオン交換体)68に基板W等の被処理材を近接乃至接触させた状態で、排出路62,72に排出液供給源88から汚染物排出用の排出用液体Aを、基板Wとイオン交換体58,68との間に純水供給ノズル78(図3参照)から純水等の電解加工用の加工用液体Bをそれぞれ供給し、同時に、加工電極56と給電電極66との間に、加工電極56を陰極、給電電極66を陽極とした電圧を電源76から印加し、これによって、電解加工を行う。
【0057】
この時、加工電極部材52側のイオン交換体(カチオン交換体)58にあっては、図5の右側に示すように、この内部に加工中に取り込まれた被加工物の溶解イオンM等のイオンが加工電極(陰極)56側に向かって移動して隔壁60を通過し、この隔壁60を通過したイオンMは、隔壁60と加工電極56との間の排出路62に供給される排出用液体Aの流れで系外に排出され、これによって、イオン交換体(カチオン交換体)58が再生される。この隔壁60として、カチオン交換体を使用することで、イオン交換体(カチオン交換体)58から出たイオンMのみを隔壁(カチオン交換体)60を透過させることができる。
【0058】
一方、給電電極部材54側のイオン交換体(アニオン交換体)68にあっては、図5の左側に示すように、この内部のイオンXが、給電電極(陽極)66側に向かって移動して隔壁70を通過し、この隔壁70を通過したイオンXは、隔壁70と給電電極66との間の排出路72に供給される排出用液体Aの流れで系外に排出され、これによって、イオン交換体(アニオン交換体)68が再生される。この隔壁70として、アニオン交換体を使用することで、イオン交換体(アニオン交換体)68から出たイオンXのみを隔壁(アニオン交換体)70を透過させることができる。
なお、この例では、汚染物排出用の液体として、単一の液体Aを使用しているが、イオン交換体から排出する不純物イオンの種類に合わせて異なる液体を使用してもよい。
【0059】
このように、加工中に基板Wに接触して加工に使用されるイオン交換体58,68の再生を行うと、例えば加工電極部材52側のイオン交換体58にあっては、基板W等の被加工物から溶出した新しい溶解イオン(金属イオン)M等のイオンが、常にイオン交換体58中に取り込まれているため、ある加工条件下では、イオン交換体58中に取り込まれた全ての溶解イオン(金属イオン)M等のイオンを系外に完全に排出しきれない。
そこで、この例では、再生用導電体84を備え、この再生用導電体84と前述の排出部64,74でイオン排出機構を構成し、加工に用いられていないイオン交換体58,68の前述の排出部64,74を利用した再生を行うことで、イオン交換体58,68をその交換容量の再生率を向上させて再生することができるようになっている。
【0060】
この再生の原理を、図6を参照して説明する。なお、給電電極部材54側にあっては、前述の図5に示す場合とほぼ同様であるので、ここではその説明を省略する。
つまり、加工に使用されていないイオン交換体58,68に再生用導電体保持部36で保持した再生用導電体84を近接乃至接触させた状態で、排出路62,72に排出液供給源88から汚染物排出用の排出用液体Aを、再生用導電体84とイオン交換体58,68との間に純水供給ノズル78(図3参照)から純水等の液体Bをそれぞれ供給し、同時に、加工電極56と給電電極66との間に、加工電極56を陰極、給電電極66を陽極とした電圧を電源76から印加し、これによって、イオン交換体58,68の再生を行う。
【0061】
この時、前述の図5に示す場合と同様に、加工電極部材52側のイオン交換体(カチオン交換体)58の内部に取り込まれた被加工物の溶解イオンM等のイオンが加工電極(陰極)56側に向かって移動して隔壁60を通過し、この隔壁60を通過したイオンMは、隔壁60と加工電極56との間の排出路62に供給される排出用液体Aの流れで系外に排出され、これによって、イオン交換体(カチオン交換体)58が再生される。しかし、前述の図5に示す加工中での再生とは異なり、イオン交換体58は、電解加工によって溶出が生じない再生表面を有する再生用導電体84に近接乃至接触しているため、この再生の際に、イオン交換体58中に、溶出イオン(金属イオン)等のイオンが取り込まれることはない。これにより、イオン交換体58中に取り込まれ、前述の加工中の再生によって除去されずイオン交換体58中に残った溶出イオン(金属イオン)等のイオンが、この再生によって除去される。
【0062】
次に、この電解加工装置30による基板処理(電解加工及び再生処理)について説明する。なお、この例では、便宜上、図4における電極部34の右半分の領域Sに位置する電極部材52,54を加工に使用し、左半分の領域Sに位置する電極部材52,54を加工に使用しないものとして説明する。
【0063】
先ず、基板保持部32の基板ホルダ42で基板Wを吸着保持し、基板保持ヘッド38を電極部34の右半分の領域S上に所定に位置に位置させる。次に、基板ホルダ42を下降させ、この基板ホルダ42で保持した基板Wを電極部34の上面に取付けた電極部材52,54のイオン交換体58,68の表面に接触させるか、または近接させる。再生用導電体保持部36にあっては、再生ヘッド80を電極部34の左半分の領域S上に所定の位置に位置させ、シリンダ86を作動させて、再生ヘッド80を下降させ、電極部材52,54のイオン交換体58,68の表面に所定の圧力で接触させる。
【0064】
この状態で、加工電極56と給電電極66との間に電源76から所定の電圧を印加しつつ、基板ホルダ42を回転(自転)させる。つまり、電極部34の右半分の領域Sに位置する電極部材52,54のイオン交換体58,68と基板ホルダ42で保持した基板Wを、接触もしくは近接させつつ相対運動させる。同時に、純水供給ノズル78を通じて、基板Wとイオン交換体58,68との間、及び再生用導電体84とイオン交換体58,68との間に、純水、好ましくは超純水等の加工用液体を供給する。更に、排出部64,74に設けた排出路62,72内に汚染物排出用の排出用液体を供給し、これによって、排出路62,72内に排出用液体を満たして、この排出用液体が排出路62,72内を一方向に流れて外部に流出するようにする。
【0065】
これによって、電極部34の右半分の領域Sにあっては、電極反応およびイオン交換体58,68内のイオンの移動を起こさせて、基板Wに設けられた、例えば図1(b)に示す銅膜6等の電解加工を行う。同時に、イオン交換体58,68を固体電解質としたイオン交換反応により、イオン交換体58,68中のイオンを加工電極56及び給電電極66に向けて移動させ、隔壁60,70を通過させて排出路62,72に導き、この排出路62,72に移動したイオンをこの排出路62,72内に供給される排出用液体の流れで系外に排出して、この加工に使用されている電極部材52,54のイオン交換体58,68の再生を行う。
【0066】
電極部34の左半分の領域Sにあっては、前述とほぼ同様にして、加工に使用されていない電極部材52,54のイオン交換体58,68の電解加工を伴わない再生を行う。これにより、電極部34の左半分の領域Sに位置する電極部材52,54のイオン交換体58,68のその交換容量の再生率を向上させた再生を行うことができる。この電極部34の左半分の領域Sに位置する電極部材52,54の再生に際して、再生ヘッド80をゆっくりと横方向に平行移動させるか、または、一旦上昇させた後、横方向に平行移動させ、しかる後、加工させることで、この領域Sに位置する電極部材52,54のイオン交換体58,68の全面に亘る再生を行う。
【0067】
この時、イオン交換体58として、カチオン交換体を使用した加工電極部材52側にあっては、イオン交換体58に取り込まれたカチオンが隔壁60を通過して排出路62の内部に移動し、アニオン交換体を使用した給電電極部材54側にあっては、イオン交換体68に取り込まれたアニオンが隔壁70を通過して排出路72の内部に移動して、イオン交換体58,68が再生される。
ここに、純水または超純水等の加工用液体がイオン交換体58,68の内部を流れるようにすることで、効率のよい電解加工を行うことができる。
【0068】
前述のように、隔壁60,70として、再生に付するイオン交換体58,68と同じイオン交換基を有しているイオン交換体を使用することで、イオン交換体58,68中の不純物イオンの隔壁(イオン交換体)60,70の内部の移動が隔壁(イオン交換体)60,70によって妨げられることを防止して、消費電力が増加することを防止し、しかも隔壁60,70と電極56,66との間を流れる排出用液体(液体中のイオンも含む)のイオン交換体58,68側への透過を阻止して、再生後のイオン交換体58,68の再汚染を防止することができる。更に、隔壁60,70と電極56,66との間に、電気伝導度(導電率)が高くかつイオン交換体58,68から除去されるイオンとの反応により不溶性の化合物を生成しない排出用液体を供給することで、この排出用液体の電気抵抗を下げて再生部の消費電力を少なく抑え、しかも不純物イオンとの反応で生成された不溶性の化合物(2次生成物)が隔壁60,70に付着して加工電極56と給電電極66との間の電気抵抗が変化し、制御が困難となることを防止することができる。
【0069】
電解加工完了後、電源76と加工電極56及び給電電極66との電気的接続を切り、基板ホルダ42の回転を停止させる。しかる後、基板ホルダ42を上昇させ、基板保持ヘッド38を横方向に水平移動させて、電解加工後の基板Wを次工程に搬送する。同時に、再生用導電体保持部36にあっても、再生ヘッド80を上昇させて、電極部34の領域Sに位置する電極材料52,54のイオン交換体58,68の再生を終了する。
【0070】
次に電解加工を行うときには、前述における基板保持部32と再生用導電体保持部36の位置関係を逆にして、つまり、電極部34の左半分の領域Sに基板保持部32が位置し、右半分の領域S再生用導電体保持部36が位置するようにする。そして、前述と同様にして、電極部34の左半分の領域Sに位置する電極部材52,54を使用して、基板保持部32の基板ホルダ42で保持した基板Wの加工と、この加工に使用している電極部材52,54のイオン交換体58,68の再生を同時に行い、同時に、右半分の領域Sに位置する、加工に使用していない電極部材52,54のイオン交換体58,68の再生を行う。
【0071】
なお、この例では、電解加工に利用する電極部材52,54と、電解加工に使用することなく、再生のみを行う電極部材52,54とを互いに分離するようにしているが、基板保持部32の基板保持ヘッド38と再生用導電体保持部36の再生ヘッド80とを同期して横方向に平行移動させることで、電解加工に使用した電極部材52,54のイオン交換体58,68を、再生用導電体保持部36を使用して連続して再生するようにしてもよい。
【0072】
また、この例では、基板Wとイオン交換体58,68の間、及び再生用導電体84とイオン交換体58,68との間に、純水、好ましくは超純水を供給するようにした例を示している。このように電解質を含まない純水または超純水を使用して電解加工及び再生を行うことで、基板Wの表面に電解質等の余分な不純物が付着したり、残留したりすることをなくすことができる。更に、電解によって溶解した銅イオン等が、イオン交換体58,68にイオン交換反応で即座に捕捉されるため、溶解した銅イオン等が基板Wの他の部分に再度析出したり、酸化されて微粒子となり基板Wの表面を汚染したりすることがない。
【0073】
超純水は、比抵抗が大きく電流が流れ難いため、電極と被加工物との距離を極力短くしたり、電極と被加工物との間にイオン交換体を挟むことで電気抵抗を低減したりしているが、さらに電解液を組み合わせることで、更に電気抵抗を低減して消費電力を削減することができる。なお、電解液による加工では、被加工物の加工される部分が加工電極よりやや広い範囲に及ぶが、超純水とイオン交換体の組合せでは、超純水にほとんど電流が流れないため、被加工物の加工電極とイオン交換体が投影された範囲内のみが加工されることになる。
【0074】
また、純水または超純水の代わりに、純水または超純水に電解質を添加した電解液を使用してもよい。電解液を使用することで、更に電気抵抗を低減して消費電力を削減することができる。この電解液としては、例えば、NaClやNaSO等の中性塩、HClやHSO等の酸、更には、アンモニア等のアルカリなどの溶液が使用でき、被加工物の特性によって適宜選択して使用すればよい。電解液を用いる場合は、基板Wとイオン交換体58,68との間に僅かの隙間を設けて非接触とすることが好ましい。
【0075】
更に、純水または超純水の代わりに、純水または超純水に界面活性剤等を添加して、電気伝導度が500μS/cm以下、好ましくは、50μS/cm以下、更に好ましくは、0.1μS/cm以下(比抵抗で10MΩ・cm以上)にした液体を使用してもよい。このように、純水または超純水に界面活性剤を添加することで、基板Wや再生用導電体84とイオン交換体58,68の界面にイオンの移動を防ぐ一様な抑制作用を有する層を形成し、これによって、イオン交換(金属の溶解)の集中を緩和して加工面の平坦性を向上させることができる。ここで、界面活性剤濃度は、100ppm以下が望ましい。なお、電気伝導度の値があまり高いと電流効率が下がり、加工速度が遅くなるが、500μS/cm以下、好ましくは、50μS/cm以下、更に好ましくは、0.1μS/cm以下の電気伝導度を有する液体を使用することで、所望の加工速度を得ることができる。
【0076】
また、加工速度を上げるために電圧を上げて電流密度を大きくすると、電極と基板(被加工物)との間の抵抗が大きい場合では、放電が生じる場合がある。放電が生じると、被加工物表面にピッチングが起こり、加工面の均一性や平坦化の確保が困難となる。これに対して、イオン交換体58,68を基板Wに接触させて電解加工を行うと、電気抵抗が極めて小さいことから、このような放電が生じることを防止することができる。
【0077】
図7は、本発明の他の実施の形態における電解加工装置30aを示す。この電解加工装置30aの前述の例と異なる点は、基板保持部32と再生用導電体保持部36とを互いに分離させて、この基板保持部32の基板ホルダ42で保持した基板Wの電極部34による電解加工並びに加工に使用されているイオン交換体58,68の再生と、電極部34の加工に使用されていない電極部材52,54の再生用導電体保持部36によるイオン交換体58,68の再生を互いに独立して行うようにした点にある。
【0078】
このように、再生用導電体保持部36による電極部34の電極部材52,54のイオン交換体58,68の再生を、電極部34による電解加工並びに加工中における電極部材52,54のイオン交換体58,68の再生と独立させることにより、電極部34及び基板保持部32と、電極部34及び再生用導電体保持部36を互いに個別に制御して、これらの操作を最適な条件で行うことができる。
なお、この例の場合、図7の破線で示すように、電源76の陽極を再生用導電体84に接続するようにしてもよく、これにより、加工電極部材52側のイオン交換体58の再生を安定して効率よく行うことができる。
【0079】
図8は、本発明の更に他の実施の形態における電解加工装置30bを示す。この実施の形態の電解加工装置30bは、基板保持部32と再生用導電体保持部36とを一体化している。つまり、この例の再生用導電体保持部36は、矩形平板状で中央に基板ホルダ42の外径に沿った形状の中央孔100aを設けた再生用導電体100を備えており、この再生用導電体100は、基板保持部32の基板保持ヘッド38の下面に固着したベース板102に取付けたシリンダ104のシリンダロッド106の下端に連結されている。そして、再生用導電体100の中央孔100a内に基板ホルダ42が位置して、この基板ホルダ42の周囲を再生用導電体100が囲繞するようになっている。その他の構成は、前述の例と同様である。
【0080】
この例によれば、基板ホルダ42で保持した基板Wの該基板Wに接触乃至近接する電極部材52,54により電解加工並びにこの加工に使用されている電極部材52,54のイオン交換体58,68の再生と、この加工に使用されている電極部材52,54の側方に位置する、加工にして使用されていない電極部材52,54のイオン交換体58,68の加工を伴わない再生を同時に行うことができる。
なお、この例では、再生用導電体100として、矩形平板状で、内部に中央孔100aを設けたものを使用しているが、リング状のものを使用してもよい。
【0081】
なお、図9に示すように、再生用導電体保持部36の内部に、再生用導電体84の再生表面(下面)で開口する複数の噴射口110aを有する流体供給部110を設け、この流体供給部110を通して、再生用導電体84とイオン交換体58,68との間に流体を供給するようにしてもよい。
【0082】
また、図10に示すように、昇降用モータ112とボールねじ114を介して、昇降軸82を昇降させ、更に再生用導電体84とハウジング116との間に弾性膜118で周囲を水密的に封止した流体室120を区画形成し、この流体室120内に流体圧力供給ライン122を接続して、再生用導電体84をイオン交換体58,68に接触させる接触圧力を制御する接触圧制御部を構成してもよい。この場合、再生用導電体84をイオン交換体58,68に接触させる接触圧力は、流体室120内に導入する流体の圧力を調整することで制御される。
【0083】
【発明の効果】
以上説明したように、本発明によれば、加工中に被加工物からイオン交換体に取り込まれた金属イオンを、電極部に備えられた排出部から加工中に排出してイオン交換体の再生を行うことで、この再生が装置のスループットに悪影響を与えることを防止し、しかも、金属イオンがイオン交換体中に取り込まれることがない非加工状態にあるイオン交換体再生用導電体を接触させ、イオン交換体中の金属イオンを排出部から排出してイオン交換体を更に再生することで、イオン交換体をその交換容量の再生率を向上させて再生することができる。
【図面の簡単な説明】
【図1】 銅配線を形成する例を工程順に示す図である。
【図2】 イオン交換体を備えた電解加工の原理の説明に付する図である。
【図3】 本発明の実施の形態の電解加工装置の縦断正面図である。
【図4】 図3の平面図である。
【図5】 本発明の実施の形態における電解加工装置の加工電極部材側及び/または給電電極側のイオン交換体を、加工中に再生する時の原理の説明に付する図である。
【図6】 本発明の実施の形態における電解加工装置の加工電極部材側及び/または給電電極側のイオン交換体を、再生電極部を介して加工を伴うことなく再生する時の原理の説明に付する図である。
【図7】 本発明の他の実施の形態における電解加工装置を示す縦断正面図である。
【図8】 本発明の更に他の実施の形態における電解加工装置を示す縦断正面図である。
【図9】 再生用導電体保持部の他の例を示す概要図である。
【図10】 再生用導電体保持部の更に他の例を示す概要図である。
【符号の説明】
30,30a,30b 電解加工装置
32 基板保持部
34 電極部
36 再生用導電体保持部
38 基板保持ヘッド
42 基板ホルダ
44 自転用モータ
50 電極ベース
52 加工電極部材
54 給電電極部材
56 加工電極
58,68 イオン交換体
60,70 隔壁
62,72 排出路
64,74 排出部
66 給電電極
76 電源
78 純水供給ノズル
80 再生ヘッド
84,100 再生用導電体
86,104 シリンダ
88 排出液供給源
90 排出液供給ライン
92 排出液排出ライン
102 ベース板
110 流体供給部
112 昇降用モータ
116 ハウジング
118 弾性膜
120 流体室
122 流体圧力供給ライ

Claims (13)

  1. 被加工物を保持する保持部と、
    加工電極、給電電極、前記加工電極及び前記給電電極の少なくとも一方を覆うイオン交換体、及び加工中に前記被加工物から前記イオン交換体に取り込まれた金属イオンを排出する排出部を備え、液体の存在下で、前記保持部で保持した被加工物に前記イオン交換体を近接乃至接触させつつ前記加工電極と前記給電電極との間に電圧を印加して該被加工物に加工を施しながら前記イオン交換体に取り込まれた金属イオンを前記排出部から排出する電極部と、
    前記イオン交換体に接触乃至近接自在な再生用導電体を有することを特徴とする電解加工装置。
  2. 前記再生用導電体と前記電極部の前記加工電極または前記給電電極との間に電圧を印加することを特徴とする請求項記載の電解加工装置。
  3. 前記イオン交換体と前記再生用導電体との間に、超純水、純水または電気伝導度が500μS/cm以下の液体のいずれかを供給することを特徴とする請求項1または2記載の電解加工装置。
  4. 前記イオン交換体と前記再生用導電体との間への液体の供給を、(1)イオン交換体の表面への滴下、(2)再生用導電体表面からの供給、(3)加工電極と給電電極との間に配置した供給口からの供給、(4)加工電極及び給電電極の供給口からの供給のいずれか、もしくは任意の組合せで行うことを特徴とする請求項記載の電解加工装置。
  5. 前記再生用導電体の少なくとも前記イオン交換体に接触乃至近接する部分は、化学的または電気化学的に不活性な導電性材料からなることを特徴とする請求項1乃至のいずれかに記載の電解加工装置。
  6. 前記再生用導電体は、前記再生用導電体を前記イオン交換体に接触または近接させる機構を有し、前記保持部で保持した被加工物の前記電極部による加工と、前記再生用導電体の前記イオン交換体への接触または近接を個別に行うように構成されていることを特徴とする請求項1乃至のいずれかに記載の電解加工装置。
  7. 前記再生用導電体は、前記保持部で保持した被加工物の前記電極部による加工と同時に、前記再生用導電体を前記イオン交換体に接触または近接させるように構成されていることを特徴とする請求項1乃至のいずれかに記載の電解加工装置。
  8. 前記再生用導電体は、前記保持部で保持した被加工物の周囲を囲繞する位置に配置され、該保持部と一体に移動するように構成されていることを特徴とする請求項1乃至のいずれかに記載の電解加工装置。
  9. 前記再生用導電体を前記イオン交換体に接触させる接触圧力を制御する接触圧制御部を有することを特徴とする請求項1乃至のいずれかに記載の電解加工装置。
  10. 前記接触圧制御部は、自重、アクチュエータまたは圧力室内に導入する流体圧で前記接触圧力を制御するように構成されていることを特徴とする請求項記載の電解加工装置。
  11. 液体の存在下で、保持部で保持した被加工物に電極部のイオン交換体を接触させつつ加工電極と給電電極との間に電圧を印加して該被加工物に加工を施しながら、該加工中に前記イオン交換体内に取り込まれた金属イオンを前記電極部の内部に設けた排出部から排出し、
    さらに、前記イオン交換体内の金属イオンを、該イオン交換体再生用導電体を接触させて前記排出部から排出することを特徴とする電解加工方法。
  12. 被加工物の前記加工中の前記イオン交換体内の金属イオンの前記排出部からの排出と、前記再生用導電体前記イオン交換体に接触させることによる前記排出部からの金属イオンの排出を個別に行うことを特徴とする請求項11記載の電解加工方法。
  13. 被加工物の前記加工中の前記イオン交換体内の金属イオンの前記排出部からの排出と、前記再生用導電体前記イオン交換体に接触させることによる前記排出部からの金属イオンの排出を同時に行うことを特徴とする請求項11記載の電解加工方法。
JP2003207200A 2003-08-11 2003-08-11 電解加工装置及び電解加工方法 Expired - Fee Related JP4233403B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003207200A JP4233403B2 (ja) 2003-08-11 2003-08-11 電解加工装置及び電解加工方法
US10/914,190 US7476303B2 (en) 2003-08-11 2004-08-10 Electrolytic processing apparatus and electrolytic processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207200A JP4233403B2 (ja) 2003-08-11 2003-08-11 電解加工装置及び電解加工方法

Publications (2)

Publication Number Publication Date
JP2005060732A JP2005060732A (ja) 2005-03-10
JP4233403B2 true JP4233403B2 (ja) 2009-03-04

Family

ID=34363764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207200A Expired - Fee Related JP4233403B2 (ja) 2003-08-11 2003-08-11 電解加工装置及び電解加工方法

Country Status (1)

Country Link
JP (1) JP4233403B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562801B2 (ja) * 2007-05-09 2010-10-13 株式会社カンタム14 シリコン基材の加工方法および加工装置

Also Published As

Publication number Publication date
JP2005060732A (ja) 2005-03-10

Similar Documents

Publication Publication Date Title
US8133380B2 (en) Method for regenerating ion exchanger
US20030132103A1 (en) Electrolytic processing device and substrate processing apparatus
WO2003064734A1 (en) Electrolytic processing apparatus and method
US7638030B2 (en) Electrolytic processing apparatus and electrolytic processing method
US20080217164A1 (en) Electrolytic Processing Apparatus
JP4233403B2 (ja) 電解加工装置及び電解加工方法
JP2003205428A (ja) 電解加工装置及び方法
US20050051432A1 (en) Electrolytic processing apparatus and method
US7476303B2 (en) Electrolytic processing apparatus and electrolytic processing method
JP4233376B2 (ja) 基板処理方法
JP4172945B2 (ja) 電解加工用イオン交換体の再生方法及び再生装置
US20070095659A1 (en) Electrolytic processing apparatus and electrolytic processing method
JP3995463B2 (ja) 電解加工方法
JP4130073B2 (ja) イオン交換体の再生方法及び再生装置
JP4245453B2 (ja) 電解加工装置及び電解加工方法
JP2003225831A (ja) 電解加工装置
JP4056359B2 (ja) 電解加工装置及び方法
JP3967207B2 (ja) 電解加工装置
JP2004160558A (ja) 電解加工装置及び電解加工方法
JP4274714B2 (ja) 加工装置及び加工方法
JP4127361B2 (ja) 電解加工装置
JP2005054205A (ja) 電解加工装置及び電解加工方法
JP2004255479A (ja) 電解加工方法及び電解加工装置
JP2003266245A (ja) 電解加工装置及び方法
US20060289298A1 (en) Electrolytic processing apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees