JP4226844B2 - Method for inhibiting corrosion of electrochemical device member and battery - Google Patents

Method for inhibiting corrosion of electrochemical device member and battery Download PDF

Info

Publication number
JP4226844B2
JP4226844B2 JP2002137467A JP2002137467A JP4226844B2 JP 4226844 B2 JP4226844 B2 JP 4226844B2 JP 2002137467 A JP2002137467 A JP 2002137467A JP 2002137467 A JP2002137467 A JP 2002137467A JP 4226844 B2 JP4226844 B2 JP 4226844B2
Authority
JP
Japan
Prior art keywords
battery
electrolyte
corrosion
aluminum laminate
lipf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002137467A
Other languages
Japanese (ja)
Other versions
JP2003331917A (en
Inventor
辻岡  章一
高瀬  浩成
幹弘 高橋
芳美 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002137467A priority Critical patent/JP4226844B2/en
Publication of JP2003331917A publication Critical patent/JP2003331917A/en
Application granted granted Critical
Publication of JP4226844B2 publication Critical patent/JP4226844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、LiPF6を電解質として使用したリチウム電池、リチウムイオン電池、電気二重層キャパシタ等の非水電解液電気化学ディバイス用部材の腐食抑制方法及び電池に関する。
【0002】
【従来技術】
近年の携帯機器の発展に伴い、その電源として電池やキャパシタのような電気化学的現象を利用した電気化学ディバイスの開発が盛んに行われるようになった。また、電源以外の電気化学ディバイスとしては、電気化学反応により色の変化が起こるエレクトロクロミックディスプレイ(ECD)が挙げられる。
【0003】
これらの電気化学ディバイスは、一般に一対の電極とその間を満たすイオン伝導体から構成される。このイオン伝導体には、溶媒、高分子またはそれらの混合物中に電解質と呼ばれるカチオン(A+)とアニオン(B-)からなる塩類(AB)を溶解したものが用いられる。この電解質は、溶解することにより、カチオンとアニオンに解離して、イオン伝導する。ディバイスに必要なイオン伝導度を得るためには、この電解質が溶媒や高分子に十分な量溶解することが必要である。実際は水以外のものを溶媒として用いる場合が多く、このような有機溶媒や高分子に十分な溶解度を持つ電解質は現状では数種類に限定される。例えば、リチウム電池用電解質としては、LiClO4、LiPF6、LiBF4 、LiAsF6、LiN(SO2CF32、LiN(SO2252 、LiN(SO2CF3)(SO249)、およびLiCF3SO3のみである。カチオンの部分は、リチウム電池のリチウムイオンのように、ディバイスにより決まっているものが多いが、アニオンの部分は、溶解性が高いという条件を満たせば使用可能である。現在ではアニオン部としてPF6を持ったものが広く実用化されているが、系内に微量に混入した水分により加水分解し、フッ化水素を発生するという問題点を有する。最近ではディバイスの外装に金属材やアルミラミネートを用いるものが多いが、ここで発生するフッ化水素により腐食され、特にアルミラミネート外装のものは容易に漏液等の事故に繋がる。そのためにアルミラミネートシートに防食のための表面処理などを施すことで対策をとっているが、長期の使用においてはその効果も十分ではない。
【0004】
【問題点を解決するための手段】
本発明者らは、かかる従来技術の問題点に鑑み鋭意検討の結果、ある特定の添加剤を加えることにより腐食を防止する方法を見出し本発明に到達したものである。
【0005】
すなわち本発明は、LiPFを電解質として用いる電解液またはゲル電解質、正極、負極からなり、且つ、電池の外装にアルミラミネートフィルムを使用した電池において、LiPF 対して0.001〜10mol%の範囲で一般式(1)で示される化学構造式よりなる化合物のうち少なくとも一つを添加することを特徴とする該電池の外装であるアルミラミネートフィルムの腐食抑制方法で、
【0006】
【化2】
【0007】
ただし、Mは、BまたはP、Aa+は、リチウムイオン、aは、、bは、、pは、b/a、mは、MがBの場合、1または2、MがPの場合、1、2、または3、nは、MがB、mが2の場合、0、MがB、mが1の場合、2、MがP、mが3の場合、0、MがP、mが2の場合、2、MがP、mが1の場合、4、qは、0、をそれぞれ表し、Rは、フッ素、 Oをそれぞれ表し、また、これらの方法を施すことにより該電池の外装であるアルミラミネートフィルムの腐食が抑制された電池を提供するものである。
【0009】
以下に、本発明をより詳細に説明する。
【0010】
ここで、まず本発明で使用される一般式(1)で示される化合物の具体例を次に示す。
【0011】
【化3】
【0012】
【化4】
【0015】
ここではAa+としてリチウムイオンを挙げる
【0016】
LiPFを電解質として用いる電解液またはゲル電解質、正極、負極からなり、且つ、電池の外装にアルミラミネートフィルムを使用した電池の用途を考慮した場合、リチウムイオンが好ましい。Aa+のカチオンの価数aは、が好ましい。アニオンの価数bも同様に1が好ましい。カチオンとアニオンの比を表す定数pは、両者の価数の比b/aで必然的に決まってくる。
【0017】
本発明で用いる一般式(1)の化合物は、イオン性金属錯体構造を採っており、その中心となるMは、BまたはPから選ばれる種々の元素を中心のMとして利用することは可能であるが、B、Pの場合、比較的合成も容易であり、さらに合成の容易性のほか、低毒性、安定性、コストとあらゆる面で優れた特性を有する。
【0018】
次に、本発明で用いる化合物(イオン性金属錯体)の特徴となる配位子の部分について説明する。以下、ここではMに結合している有機または無機の部分を配位子と呼ぶ。
【0019】
一般式(1)中のR1は、C1〜C10のアルキレン、C1〜C10のハロゲン化アルキレン、C4〜C20のアリーレン、またはC4〜C20のハロゲン化アリーレンから選ばれるものよりなるが、これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を持ってもよい。具体的には、アルキレン及びアリーレン上の水素の代わりにハロゲン、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、水酸基、また、アルキレン及びアリーレン上の炭素の代わりに、窒素、イオウ、酸素が導入された構造等を挙げることができる。さらには、複数存在するR1はそれぞれが結合してもよく、例えば、エチレンジアミン四酢酸のような配位子を挙げることができる。
【0020】
好ましくは電子吸引性の基がよく、特にフッ素がよい。Rがフッ素の場合、溶解度向上する。
【0021】
、それぞれ独立で、Oであり、これらのヘテロ原子を介して配位子がMに結合する。ここで、以外で結合することは、不可能ではないが合成上非常に煩雑なものとなる。この化合物の特徴として同一の配位子内にXとXによるMとの結合があるため、これらの配位子がMとキレート構造を構成している。このキレートの効果により、この化合物の耐熱性、化学的安定性、耐加水分解性が向上している。この配位子中の定数qはであるが、特に、0の場合はこのキレートリングが五員環になるため、キレート効果が最も強く発揮され安定性が増すため好ましい。
【0023】
また、ここまでに説明した配位子の数に関係する定数mおよびnは、中心のMの種類によって決まってくるものであるが、mは、MがBの場合、1または2、MがPの場合、1、2、または3、nは、MがB、mが2の場合、0、MがB、mが1の場合、2、MがP、mが3の場合、0、MがP、mが2の場合、2、MがP、mが1の場合、4である
【0024】
これらの一般式(1)で示される化合物をLiPF6と混合する方法により該電池の外装であるアルミラミネートフィルムの腐食抑制する。LiPFは、該電池の内部への極微量の水分の混入によりアニオンが加水分解を受けてフッ化水素を発生し、ディバイスの外装に用いる金属やアルミラミネートを腐食する。また、このフッ化水素は電極活物質との反応によりディバイスの性能及び寿命を悪化させる。本発明では、LiPFと一般式(1)の化合物を混合して使用することでこの発生したフッ化水素をトラップし、腐食及び性能、寿命の悪化を抑制することが可能となった。その原理の詳細は明らかではないが、一般式(1)の化合物とフッ化水素が速やかに反応し、無害化しているものと推測される。
【0025】
これらの電解質と化合物の使用割合はLiPF を電解質として用いる電解液またはゲル電解質、正極、負極からなり、且つ、電池の外装にアルミラミネートフィルムを使用した電池の特性や腐食防止効果を考慮すると、添加剤の濃度が電解質に対して、0.001〜10mol%、好ましくは0.01〜1mol%の範囲である。該化合物の添加量が0.001mol%より少ない場合は、フッ化水素の吸収力が小さいため、腐食抑制効果が小さい上にサイクル特性、保存安定性が悪くなる。また、10mol%より大きい場合は、該化合物の電極表面上での分解等の副反応によりガス発生等が起こる。
【0026】
本発明の化合物を応用する電気化学ディバイスの基本構成要素としては、イオン伝導体、負極、正極、集電体、セパレーターおよびアルミラミネートフィルムの容器等から成る。
【0027】
イオン伝導体としては、電解質と非水系溶媒又はポリマーの混合物が用いられる。非水系溶媒を用いれば、一般にこのイオン伝導体は電解液と呼ばれ、ポリマーを用いれば、ポリマー固体電解質と呼ばれるものになる。ポリマー固体電解質には可塑剤として非水系溶媒を含有するものをゲル電解質と呼ぶ。
【0028】
非水溶媒としては、本発明で用いる化合物及び電解質を溶解できる非プロトン性の溶媒であれば特に限定されるものではなく、例えば、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、アミド類、スルホン類等が使用できる。また、単一の溶媒だけでなく、二種類以上の混合溶媒でもよい。好ましくは誘電率が20以上の非プロトン性の溶媒と誘電率が10以下の非プロトン性溶媒からなる混合溶媒がよい。具体例としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、およびγ−ブチロラクトン等を挙げることができる。
【0029】
また、電解質に混合するポリマーとしては、該化合物を溶解できる非プロトン性のポリマーであれば特に限定されるものではない。例えば、ポリエチレンオキシドを主鎖または側鎖に持つポリマー、ポリビニリデンフロライドのホモポリマーまたはコポリマー、メタクリル酸エステルポリマー、ポリアクリロニトリルなどが挙げられる。これらのポリマーに可塑剤を加える場合は、上記の非プロトン性非水溶媒が使用可能である。これらのイオン伝導体中における電解質濃度は、0.1mol/dm3以上、飽和濃度以下、好ましくは、0.5mol/dm3以上、2.5mol/dm3以下である。0.1mol/dm3より濃度が低いとイオン伝導度が低いため好ましくない。
【0030】
負極材料としては、特に限定されないが、リチウム電池の場合、リチウム金属やリチウムと他の金属との合金が使用される。また、リチウムイオン電池の場合、ポリマー、有機物、ピッチ等を焼成して得られたカーボンや天然黒鉛、金属酸化物等のインターカレーションと呼ばれる現象を利用した材料が使用される。電気二重層キャパシタの場合、活性炭、多孔質金属酸化物、多孔質金属、導電性ポリマー等が用いられる。
【0031】
正極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、例えば、LiCoO2 、LiNiO2 、LiMnO2 、LiMn24 等のリチウム含有酸化物、TiO2 、V25 、MoO3 等の酸化物、TiS2 、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、およびポリピロール等の導電性高分子が使用される。電気二重層キャパシタの場合、活性炭、多孔質金属酸化物、多孔質金属、導電性ポリマー等が用いられる。
【0032】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
【0033】
実施例1
エチレンカーボネート50vol%とジメチルカーボネート50vol%の混合溶媒中にLiPF6を1.0mol/lの濃度で溶解した溶液を調製した。この溶液中に、
【0034】
【化7】
【0035】
の構造を有するホウ酸リチウム誘導体を0.01mol/lとなるように添加した電解液を調製した。
【0036】
この電解液を用いて次の手順のようにアルミラミネートの腐食試験を実施した。まず、この電解液10ml及び1cm角のアルミラミネート試験片をフッ素樹脂製ボトルに入れ密栓した。これを60℃の高温槽に静置してアルミラミネートの状態を観察した。その結果、2週間後においてもアルミラミネートに変化は見られず、全く腐食されていなかった。
【0037】
次に、この電解液を用いてLiCoO2を正極材料、天然黒鉛を負極材料としてセルを作製し、実際に電池の充放電試験を実施した。試験用セルは以下のように作製した。
【0038】
LiCoO2粉末90重量部に、バインダーとして5重量部のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5重量部混合し、さらにN,N−ジメチルホルムアミドを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。また、天然黒鉛粉末90重量部に、バインダーとして10重量部のポリフッ化ビニリデン(PVDF)を混合し、さらにN,N−ジメチルホルムアミドを添加し、スラリー状にした。このスラリーを銅箔上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。そして、ポリエチレン製セパレータに電解液を浸み込ませてセルを組み立てた。
【0039】
以下のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0Vまで、試験温度は70℃で行った。その結果、500回充放電を繰り返したが500回目の容量は初回の80%という結果が得られた。
【0040】
実施例2
エチレンカーボネート50vol%とジエチルカーボネート50vol%の混合溶媒中にLiPF6を1.0mol/lの濃度で溶解した溶液を調製した。この溶液中に実施例1と同様の構造を有するホウ酸リチウム誘導体を0.00001mol/lとなるように添加した電解液を調製した。
【0041】
この電解液を用いて実施例1と同様のアルミラミネートの腐食試験を実施した。その結果、2週間後においてもアルミラミネートに変化は見られず、全く腐食されていなかった。
【0042】
実施例3
エチレンカーボネート50vol%とエチルメチルカーボネート50vol%の混合溶媒中にLiPF6を1.0mol/lの濃度で溶解した溶液を調製した。この溶液中に、
【0043】
【化8】
【0044】
の構造を有するリン酸リチウム誘導体を0.01mol/lとなるように添加した電解液を調製した。
【0045】
この電解液を用いて実施例1と同様のアルミラミネートの腐食試験を実施した。その結果、2週間後においてもアルミラミネートに変化は見られず、全く腐食されていなかった。
【0046】
比較例1
エチレンカーボネート50vol%とジメチルカーボネート50vol%の混合溶媒中にLiPF6を1.0mol/lを溶解した電解液を調製した。
【0047】
この電解液を用いて実施例1と同様のアルミラミネートの腐食試験を実施した。その結果、1日後にアルミラミネートのアルミニウム層の部分と樹脂層の部分が剥離した。
【0048】
【発明の効果】
本発明の腐食抑制法によれば、電解液中に該化合物を混合するだけでリチウム電池、リチウムイオン電池、電気二重層キャパシタ等の電気化学ディバイスの腐食を容易に抑制できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and a battery for inhibiting corrosion of non-aqueous electrolyte electrochemical device members such as lithium batteries, lithium ion batteries, and electric double layer capacitors using LiPF 6 as an electrolyte.
[0002]
[Prior art]
With the development of portable devices in recent years, the development of electrochemical devices using electrochemical phenomena such as batteries and capacitors as a power source has become active. Further, as an electrochemical device other than the power source, an electrochromic display (ECD) in which a color change is caused by an electrochemical reaction can be given.
[0003]
These electrochemical devices are generally composed of a pair of electrodes and an ionic conductor filling them. As the ionic conductor, a solution in which a salt (AB) composed of a cation (A + ) and an anion (B ) called an electrolyte is dissolved in a solvent, a polymer, or a mixture thereof is used. When this electrolyte is dissolved, it dissociates into a cation and an anion to conduct ions. In order to obtain the ionic conductivity necessary for the device, it is necessary that this electrolyte is dissolved in a sufficient amount in a solvent or a polymer. Actually, a solvent other than water is often used as a solvent, and there are currently only a few types of electrolytes having sufficient solubility in such organic solvents and polymers. For example, as an electrolyte for a lithium battery, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and LiCF 3 SO 3 only. The cation portion is often determined by the device, such as the lithium ion of a lithium battery, but the anion portion can be used if the condition that the solubility is high is satisfied. At present, those having PF 6 as an anion portion are widely put into practical use, but have a problem that they are hydrolyzed by water mixed in a trace amount in the system to generate hydrogen fluoride. Recently, many metal parts and aluminum laminates are used for the exterior of the device, but corrosion is caused by the hydrogen fluoride generated here, and particularly, the one with the aluminum laminate is easily led to an accident such as leakage. Therefore, measures are taken by applying a surface treatment for corrosion prevention to the aluminum laminate sheet, but the effect is not sufficient in long-term use.
[0004]
[Means for solving problems]
As a result of intensive studies in view of the problems of the prior art, the present inventors have found a method for preventing corrosion by adding a specific additive, and have reached the present invention.
[0005]
That is, the present invention is an electrolyte or a gel electrolyte using LiPF 6 as an electrolyte, a positive electrode, and a negative electrode, and, in the battery using the aluminum laminate film to the battery exterior, of 0.001-10 mol% for the LiPF 6 In the method for inhibiting corrosion of an aluminum laminate film, which is an exterior of the battery, comprising adding at least one of compounds having the chemical structural formula represented by the general formula (1) in a range,
[0006]
[Chemical formula 2]
[0007]
Where M is B or P , A a + is lithium ion, a is 1 , b is 1 , p is b / a, m is 1 or 2 when M is B, and M is P , 1, 2 or 3 , n is 0 when M is B and m is 2, when M is B and m is 1, 2, when M is P and when m is 3, 0 and M are when the P, m is 2, 2, M is when the P, m is 1, 4, q represents 0, respectively, R 2 is fluorine, X 1, X 2 represents O, respectively, also By providing these methods, the present invention provides a battery in which corrosion of the aluminum laminate film that is the exterior of the battery is suppressed.
[0009]
Hereinafter, the present invention will be described in more detail.
[0010]
Here, first, specific examples of the compound represented by the general formula (1) used in the present invention are shown below.
[0011]
[Chemical 3]
[0012]
[Formula 4]
[0015]
Here, lithium ions are listed as A a + .
[0016]
Lithium ions are preferred when considering the use of a battery comprising an electrolyte solution or gel electrolyte using LiPF 6 as an electrolyte, a positive electrode, a negative electrode, and using an aluminum laminate film for the battery exterior. The valence a of the cation of A a + is preferably 1 . Similarly, the valence b of the anion is preferably 1 . The constant p representing the ratio of cation to anion is inevitably determined by the valence ratio b / a of both.
[0017]
Compounds of general formula (1) used in the present invention, adopts an ionic metal complex structure, M serving as its center is selected from B or P. Although various elements can be used as the central M , in the case of B and P , synthesis is relatively easy, and in addition to the ease of synthesis, all aspects of low toxicity, stability, and cost It has excellent characteristics.
[0018]
Next, the part of the ligand that is a feature of the compound (ionic metal complex) used in the present invention will be described. Hereinafter, the organic or inorganic part bonded to M is referred to as a ligand.
[0019]
R 1 in the general formula (1) is selected from C 1 to C 10 alkylene, C 1 to C 10 halogenated alkylene, C 4 to C 20 arylene, or C 4 to C 20 halogenated arylene. These alkylenes and arylenes may have a substituent or a hetero atom in the structure. Specifically, instead of hydrogen on alkylene and arylene, halogen, chain or cyclic alkyl group, aryl group, alkenyl group, alkoxy group, aryloxy group, sulfonyl group, amino group, cyano group, carbonyl group, acyl group , An amide group, a hydroxyl group, and a structure in which nitrogen, sulfur, or oxygen is introduced in place of carbon on alkylene and arylene. Furthermore, plural R 1 s may be bonded to each other, and examples thereof include a ligand such as ethylenediaminetetraacetic acid.
[0020]
R 2 is preferably good electron-withdrawing groups, particularly good fluorine. When R 2 is fluorine, the solubility is improved.
[0021]
X 1 and X 2 are each independently O, and the ligand is bonded to M through these heteroatoms. Here, it is not impossible to combine other than O , but it becomes very complicated in synthesis. Since this compound has a bond of M by X 1 and X 2 in the same ligand, these ligands constitute a chelate structure with M. Due to the effect of this chelate, the heat resistance, chemical stability, and hydrolysis resistance of this compound are improved. The constant q in this ligand is 0 , but in particular, 0 is preferable because this chelate ring becomes a five-membered ring, so that the chelate effect is exerted most strongly and the stability is increased.
[0023]
The constants m and n related to the number of ligands described so far are determined by the type of M at the center, and m is 1 or 2 when M is B, and M is In the case of P, 1, 2 or 3, n is 0 when M is B and m is 2, 0 when M is B and m is 1, 0 when M is P and m is 3, When M is P and m is 2, 2, when M is P and m is 1, it is 4 .
[0024]
Corrosion inhibition of the aluminum laminate film which is the exterior of the battery is suppressed by a method in which the compound represented by the general formula (1) is mixed with LiPF 6 . LiPF 6 corrodes the metal or aluminum laminate used for the exterior of the device by generating hydrogen fluoride due to hydrolysis of anions by the entry of a very small amount of moisture into the battery . In addition, this hydrogen fluoride deteriorates the performance and life of the device by reaction with the electrode active material. In the present invention, it is possible to trap the generated hydrogen fluoride by using a mixture of LiPF 6 and the compound of the general formula (1), and suppress corrosion, performance and deterioration of life. Although the details of the principle are not clear, it is presumed that the compound of the general formula (1) and hydrogen fluoride reacted rapidly and made harmless.
[0025]
The usage ratio of these electrolytes and compounds consists of an electrolyte solution or gel electrolyte using LiPF 6 as an electrolyte, a positive electrode, a negative electrode, and considering the characteristics and corrosion prevention effect of a battery using an aluminum laminate film for the battery exterior . The concentration of the additive is in the range of 0.001 to 10 mol%, preferably 0.01 to 1 mol% with respect to the electrolyte. When the amount of the compound added is less than 0.001 mol%, the absorption capability of hydrogen fluoride is small, so that the corrosion inhibition effect is small and the cycle characteristics and storage stability are deteriorated. On the other hand, when the amount is more than 10 mol%, gas generation or the like occurs due to side reactions such as decomposition of the compound on the electrode surface.
[0026]
The basic components of an electrochemical device to which the compound of the present invention is applied include an ion conductor, a negative electrode, a positive electrode, a current collector, a separator, and an aluminum laminate film container.
[0027]
As the ionic conductor, a mixture of an electrolyte and a non-aqueous solvent or polymer is used. If a non-aqueous solvent is used, this ionic conductor is generally called an electrolytic solution, and if a polymer is used, it becomes a polymer solid electrolyte. A polymer solid electrolyte containing a non-aqueous solvent as a plasticizer is called a gel electrolyte.
[0028]
The non-aqueous solvent is not particularly limited as long as it is an aprotic solvent capable of dissolving the compound and electrolyte used in the present invention, and examples thereof include carbonates, esters, ethers, lactones, nitriles, amides. And sulfones can be used. Moreover, not only a single solvent but 2 or more types of mixed solvents may be sufficient. A mixed solvent composed of an aprotic solvent having a dielectric constant of 20 or more and an aprotic solvent having a dielectric constant of 10 or less is preferable. Specific examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide. , Sulfolane, and γ-butyrolactone.
[0029]
The polymer mixed with the electrolyte is not particularly limited as long as it is an aprotic polymer capable of dissolving the compound. Examples thereof include polymers having polyethylene oxide in the main chain or side chain, homopolymers or copolymers of polyvinylidene fluoride, methacrylic acid ester polymers, polyacrylonitrile and the like. When a plasticizer is added to these polymers, the above-mentioned aprotic non-aqueous solvent can be used. Electrolyte concentration in these ion conductors in the, 0.1 mol / dm 3 or more, the saturation concentration or less, preferably, 0.5 mol / dm 3 or more and 2.5 mol / dm 3 or less. When the concentration is lower than 0.1 mol / dm 3 , the ionic conductivity is low, which is not preferable.
[0030]
Although it does not specifically limit as a negative electrode material, In the case of a lithium battery, the alloy of lithium metal and lithium and another metal is used. In the case of a lithium ion battery, a material that uses a phenomenon called intercalation such as carbon, natural graphite, or metal oxide obtained by firing a polymer, an organic material, pitch, or the like is used. In the case of an electric double layer capacitor, activated carbon, porous metal oxide, porous metal, conductive polymer, or the like is used.
[0031]
As the cathode material is not particularly limited, a lithium battery and a lithium ion battery, for example, LiCoO 2, LiNiO 2, LiMnO 2, lithium-containing oxides such as LiMn 2 O 4, TiO 2, V 2 O 5, MoO Oxides such as 3 , sulfides such as TiS 2 and FeS, or conductive polymers such as polyacetylene, polyparaphenylene, polyaniline, and polypyrrole are used. In the case of an electric double layer capacitor, activated carbon, porous metal oxide, porous metal, conductive polymer, or the like is used.
[0032]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this Example.
[0033]
Example 1
A solution was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / l in a mixed solvent of ethylene carbonate 50 vol% and dimethyl carbonate 50 vol%. In this solution,
[0034]
[Chemical 7]
[0035]
An electrolyte solution was prepared by adding a lithium borate derivative having the structure of 0.01 mol / l.
[0036]
Using this electrolytic solution, the corrosion test of the aluminum laminate was performed as in the following procedure. First, 10 ml of the electrolytic solution and a 1 cm square aluminum laminate test piece were put in a fluororesin bottle and sealed. This was left still in a 60 degreeC high temperature tank, and the state of the aluminum laminate was observed. As a result, no change was observed in the aluminum laminate even after 2 weeks, and no corrosion was observed.
[0037]
Next, using this electrolytic solution, a cell was prepared using LiCoO 2 as a positive electrode material and natural graphite as a negative electrode material, and a battery charge / discharge test was actually performed. The test cell was produced as follows.
[0038]
To 90 parts by weight of LiCoO 2 powder, 5 parts by weight of polyvinylidene fluoride (PVDF) as a binder and 5 parts by weight of acetylene black as a conductive material were mixed, and N, N-dimethylformamide was further added to form a paste. The paste was applied on an aluminum foil and dried to obtain a test positive electrode body. Further, 90 parts by weight of natural graphite powder was mixed with 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on a copper foil and dried at 150 ° C. for 12 hours to obtain a test negative electrode body. Then, the electrolyte was immersed in a polyethylene separator to assemble the cell.
[0039]
The constant current charge / discharge test was conducted under the following conditions. Both charging and discharging were performed at a current density of 0.35 mA / cm 2 , charging was performed at 4.2 V, discharging was performed at 3.0 V, and a test temperature was 70 ° C. As a result, charging / discharging was repeated 500 times, but the capacity at the 500th time was 80% of the first time.
[0040]
Example 2
A solution was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / l in a mixed solvent of ethylene carbonate 50 vol% and diethyl carbonate 50 vol%. An electrolytic solution was prepared by adding a lithium borate derivative having the same structure as in Example 1 to this solution so as to be 0.00001 mol / l.
[0041]
The corrosion test of the aluminum laminate similar to Example 1 was implemented using this electrolyte solution. As a result, no change was observed in the aluminum laminate even after 2 weeks, and no corrosion was observed.
[0042]
Example 3
A solution was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / l in a mixed solvent of ethylene carbonate 50 vol% and ethyl methyl carbonate 50 vol%. In this solution,
[0043]
[Chemical 8]
[0044]
The electrolyte solution which added the lithium phosphate derivative which has the structure of 0.01 mol / l was prepared.
[0045]
The corrosion test of the aluminum laminate similar to Example 1 was implemented using this electrolyte solution. As a result, no change was observed in the aluminum laminate even after 2 weeks, and no corrosion was observed.
[0046]
Comparative Example 1
An electrolytic solution in which 1.0 mol / l of LiPF 6 was dissolved in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of dimethyl carbonate was prepared.
[0047]
The corrosion test of the aluminum laminate similar to Example 1 was implemented using this electrolyte solution. As a result, the aluminum layer part and the resin layer part of the aluminum laminate were peeled after one day.
[0048]
【The invention's effect】
According to the corrosion inhibiting method of the present invention, corrosion of electrochemical devices such as lithium batteries, lithium ion batteries, electric double layer capacitors and the like can be easily suppressed by simply mixing the compound in the electrolytic solution.

Claims (2)

LiPFを電解質として用いる電解液またはゲル電解質、正極、負極からなり、且つ、電池の外装にアルミラミネートフィルムを使用した電池において、LiPFに対して0.001〜10mol%の範囲で一般式(1)で示される化学構造式よりなる化合物のうち少なくとも一つを添加することを特徴とする該電池の外装であるアルミラミネートフィルムの腐食抑制方法。
ただし、Mは、BまたはP
a+は、リチウムイオン、
aは、
bは、
pは、b/a、
mは、MがBの場合、1または2、MがPの場合、1、2、または3
nは、MがB、mが2の場合、0、MがB、mが1の場合、2、MがP、mが3の場合、0、MがP、mが2の場合、2、MがP、mが1の場合、4
qは、0をそれぞれ表し、
は、フッ素、
Oをそれぞれ表す。
In a battery comprising an electrolytic solution or gel electrolyte using LiPF 6 as an electrolyte, a positive electrode, a negative electrode, and using an aluminum laminate film for the battery exterior, a general formula (within a range of 0.001 to 10 mol% relative to LiPF 6 ) A method for inhibiting corrosion of an aluminum laminate film, which is an exterior of the battery, comprising adding at least one of compounds having the chemical structural formula represented by 1).
Where M is B or P ,
A a + is lithium ion,
a is 1 ,
b is 1 ,
p is b / a,
m is 1 or 2 when M is B, 1, 2 or 3 when M is P ;
n is 0 when M is B and m is 2, when M is B and m is 2, 2 when M is P and m is 3, 0 when M is P and m is 2, , When M is P and m is 1, 4 ,
q represents 0 ,
R 2 is fluorine,
X 1, X 2 represents O, respectively.
請求項1に記載の腐食抑制方法を用いたことを特徴とする電池。  A battery using the corrosion inhibiting method according to claim 1.
JP2002137467A 2002-05-13 2002-05-13 Method for inhibiting corrosion of electrochemical device member and battery Expired - Lifetime JP4226844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137467A JP4226844B2 (en) 2002-05-13 2002-05-13 Method for inhibiting corrosion of electrochemical device member and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002137467A JP4226844B2 (en) 2002-05-13 2002-05-13 Method for inhibiting corrosion of electrochemical device member and battery

Publications (2)

Publication Number Publication Date
JP2003331917A JP2003331917A (en) 2003-11-21
JP4226844B2 true JP4226844B2 (en) 2009-02-18

Family

ID=29699221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137467A Expired - Lifetime JP4226844B2 (en) 2002-05-13 2002-05-13 Method for inhibiting corrosion of electrochemical device member and battery

Country Status (1)

Country Link
JP (1) JP4226844B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701595B2 (en) * 2003-09-03 2011-06-15 ソニー株式会社 Lithium ion secondary battery
JP2005243504A (en) * 2004-02-27 2005-09-08 Sanyo Electric Co Ltd Lithium secondary battery
JP4711639B2 (en) * 2004-03-29 2011-06-29 セントラル硝子株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
JP2005285492A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
CN100576611C (en) * 2005-02-24 2009-12-30 索尼株式会社 Battery
JP2009021102A (en) * 2007-07-12 2009-01-29 Toyota Central R&D Labs Inc Lithium-ion secondary battery
JP5196909B2 (en) * 2007-08-23 2013-05-15 株式会社豊田中央研究所 Non-aqueous electrolyte lithium ion secondary battery
CN117790904A (en) 2017-09-22 2024-03-29 三菱化学株式会社 Nonaqueous electrolyte, nonaqueous electrolyte secondary battery, and energy device

Also Published As

Publication number Publication date
JP2003331917A (en) 2003-11-21

Similar Documents

Publication Publication Date Title
JP5544748B2 (en) Electrolytes for electrochemical devices, electrolytes using the same, and nonaqueous electrolyte batteries
JP3722685B2 (en) Electrolyte for electrochemical device and battery using the same
JP2004111349A (en) Method for avoiding solvent decomposition in electrochemical device, and the electrochemical device using the same
JP2005285491A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP4175792B2 (en) Electrolytic solution or gel electrolyte for electrochemical device and battery
JP4281030B2 (en) Non-aqueous electrolyte battery
JP4226844B2 (en) Method for inhibiting corrosion of electrochemical device member and battery
JP3730855B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4076738B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP3974012B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730860B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730861B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4190207B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP2004103372A (en) Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same
JP4076748B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP4104294B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730856B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3712358B2 (en) Electrolyte for electrochemical device, electrolyte or solid electrolyte thereof, and battery
JP4104292B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4104289B2 (en) Electrolyte for electrochemical device, electrolyte or solid electrolyte thereof, and battery
JP4104293B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4175798B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4104290B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4190206B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4076727B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4226844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term