JP3974012B2 - Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries - Google Patents

Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries Download PDF

Info

Publication number
JP3974012B2
JP3974012B2 JP2002306078A JP2002306078A JP3974012B2 JP 3974012 B2 JP3974012 B2 JP 3974012B2 JP 2002306078 A JP2002306078 A JP 2002306078A JP 2002306078 A JP2002306078 A JP 2002306078A JP 3974012 B2 JP3974012 B2 JP 3974012B2
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
electrolytes
battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002306078A
Other languages
Japanese (ja)
Other versions
JP2004146071A (en
Inventor
辻岡  章一
高瀬  浩成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002306078A priority Critical patent/JP3974012B2/en
Publication of JP2004146071A publication Critical patent/JP2004146071A/en
Application granted granted Critical
Publication of JP3974012B2 publication Critical patent/JP3974012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム電池及びリチウムイオン電池の電気化学ディバイス用として利用される優れたサイクル特性、貯蔵特性を示す電解質、電解液または固体電解質、及びそれを用いたリチウム電池及びリチウムイオン電池に関する。
【0002】
【従来の技術】
近年の携帯機器の発展に伴い、その電源として電池やキャパシタのような電気化学的現象を利用した電気化学ディバイスの開発が盛んに行われるようになった。また、電源以外の電気化学ディバイスとしては、電気化学反応により色の変化が起こるエレクトロクロミックディスプレイ(ECD)が挙げられる。
【0003】
これらの電気化学ディバイスは、一般に一対の電極とその間を満たすイオン伝導体から構成される。このイオン伝導体には、溶媒、高分子またはそれらの混合物中に電解質と呼ばれるカチオン(A+)とアニオン(B-)からなる塩類(AB)を溶解したものが用いられる。この電解質は溶解することにより、カチオンとアニオンに解離して、イオン伝導する。ディバイスに必要なイオン伝導度を得るためには、この電解質が溶媒や高分子に十分な量溶解することが必要である。実際は水以外のものを溶媒として用いる場合が多く、このような有機溶媒や高分子に十分な溶解度を持つ電解質は現状では数種類に限定される。例えば、リチウム電池用電解質としては、LiClO4、LiPF6、LiBF4 、LiAsF6、LiN(SO2CF32、LiN(SO2252 、LiN(SO2CF3)(SO249)およびLiCF3SO3のみである。カチオンの部分はリチウム電池のリチウムイオンのように、ディバイスにより決まっているものが多いが、アニオンの部分は溶解性が高いという条件を満たせば使用可能である。
【0004】
しかしながら、既存の電解質は種々の問題を持っており、新規のアニオン部を有する電解質が要望されている。具体的にはClO4イオンは爆発性、AsF6イオンは毒性を有するため安全上の理由で使用できない。唯一実用化されているLiPF6も耐熱性、耐加水分解性などの問題を有する。LiN(CF3SO22、LiN(SO2252 、LiN(SO2CF3)(SO249)およびLiCF3SO3は安定性が高く、イオン伝導度も高いため非常に優れた電解質であるが、電池内のアルミニウムの集電体を電位がかかった状態で腐食するため使用が困難である(非特許文献1、非特許文献2)。
【0005】
また、ディバイスの応用範囲が多種多様化している中で、それぞれの用途に対する最適な電解質が探索されているが、既存の電解質ではアニオンの種類が少ないため最適化も限界に達している。そこで、上記の既存する電解質を数種混ぜて個々の電解質の特徴を合せ持った電解液組成を探索したり、その一方で、更なる高機能化を目指して新規な電解質を開発しているのが現状である(非特許文献3、特許文献1、特許文献2)。
【0006】
【非特許文献1】
K. Kinoshita et al, Electrochemical and Solid-State Letters, 4, A42(2001)
【非特許文献2】
R.T.Atanasoski et al, J. Power Sources, 68, 320(1997)
【非特許文献3】
L. Peter and J.Arai, J. Applied Electrochemistry, 29, 1053(1999)
【特許文献1】
特開2001−110450
【特許文献2】
特開2001−143750
【0007】
【問題点を解決するための手段】
本発明者らは、かかる従来技術の問題点に鑑み鋭意検討の結果、新規の化学構造的な特徴を有する電解質を数種類組み合わせた系を見出し本発明に到達したものである。
【0008】
すなわち本発明は、一般式(1)で示される化学構造式よりなる化合物及び一般式(2)で示される化学構造式よりなる化合物を少なくとも含むリチウム電池及びリチウムイオン電池用電解質で、
【0009】
【化2】
【0010】
ただし、Mは、B、またはP、Aa+は、リチウムイオン、aは、1、bは、1、pは、1、mは、MがBの場合1または2、MがPの場合1、2、または3、nは、MがBの場合0または2、MがPの場合0、2、または4、qは、0または1をそれぞれ表し、R、Rは、それぞれ独立で、H、ハロゲン、C〜C10のアルキル、またはC〜C10のハロゲン化アルキル、Rは、C〜C10のアルキレン、C〜C10のハロゲン化アルキレン、C〜C20のアリーレン、またはC〜C20のハロゲン化アリーレン、Rは、ハロゲン、またはX、Xは、O、またはNR、Xは、O、Rは、C〜C10のアルキル、Xは、O、Rは、C〜C10のハロゲン化アルキルをそれぞれ表すリチウム電池及びリチウムイオン電池用電解質であり、該電解質を非水溶媒に溶解したものよりなるリチウム電池及びリチウムイオン電池用電解液または該電解質をポリマーに溶解したものよりなるリチウム電池及びリチウムイオン電池用固体電解質、及び少なくとも正極、負極、電解液または固体電解質からなり、該電解液または固体電解質に該電解質を含むリチウム電池及びリチウムイオン電池を提供するものである。
【0011】
なお、本発明で用いるアルキル、ハロゲン化アルキル、アリール、ハロゲン化アリールは、分岐や水酸基、エーテル結合等の他の官能基を持つものも含む。
【0012】
以下に、本発明をより詳細に説明する。
【0013】
ここで、まず本発明で使用される一般式(1)で示される化合物及び一般式(2)で示される化合物の具体例を次に示す。
【0014】
【化3】
【0015】
【化4】
【0016】
ここではAa+としてリチウムイオンが挙げられる。
【0017】
電気化学的なディバイス等の用途を考慮した場合、リチウムイオンが好ましい。Aa+のカチオンの価数aは、1から3が好ましい。3より大きい場合、結晶格子エネルギーが大きくなるため、溶媒に溶解することが困難になるという問題が起こる。そのため溶解度を必要とする場合は1がより好ましい。アニオンの価数bも同様に1から3が好ましく、特に1がより好ましい。カチオンとアニオンの比を表す定数pは、両者の価数の比b/aで必然的に決まってくる。
【0018】
本発明の構成の一部である一般式(1)及び一般式(2)で示される電解質は、イオン性金属錯体構造を採っており、その中心となるMは、B、またはPである。B、またはPの場合、合成の容易性のほか、低毒性、安定性、コストとあらゆる面で優れた特性を有する。
【0019】
次に、一般式(1)及び一般式(2)で表される電解質(イオン性金属錯体)の特徴となる配位子の部分について説明する。以下、ここではMに結合している有機または無機の部分を配位子と呼ぶ。
【0020】
一般式(1)及び一般式(2)中の は、O、またはNR 、X は、Oであり、これらのヘテロ原子を介してMに結合する。ここで、O、S、N以外で結合することは、不可能ではないが合成上非常に煩雑なものとなる。この化合物の特徴として同一の配位子内にX1以外のカルボキシル基(−COO−)によるMとの結合があるため、これらの配位子がMとキレート構造を構成している。このキレートの効果により、この化合物の耐熱性、化学的安定性、耐加水分解性が向上している。この配位子中の定数qは0または1であるが、特に、0の場合はこのキレートリングが五員環になるため、キレート効果が最も強く発揮され安定性が増すため好ましい。また、カルボキシル基による電子吸引効果により中心のMの負電荷が分散し、アニオンの電気的安定性が増すため、非常にイオン解離しやすくなり、溶媒への溶解度やイオン伝導度などが大きくなる。また、その他の耐熱性、化学的安定性、耐加水分解性も向上する。
【0021】
1とR2は、それぞれ独立で、H、ハロゲン、C1〜C10のアルキル、またはC1〜C10のハロゲン化アルキルから選ばれるものよりなるが、好ましくはR1とR2の少なくとも一方がフッ素化アルキルであり、さらに好ましくは、R1とR2の少なくとも一方がトリフルオロメチル基である。R1とR2に電子吸引性のハロゲンやハロゲン化アルキルが存在することにより、中心のMの負電荷が分散し、アニオンの電気的安定性が増すため、非常にイオン解離しやすくなり、溶媒への溶解度やイオン伝導度、触媒活性などが大きくなる。また、その他の耐熱性、化学的安定性、耐加水分解性も向上する。特にこのハロゲンがフッ素の場合がより効果が大きく、さらにはトリフルオロメチル基の場合が最も効果が大きくなる。
【0022】
は、C1〜C10のアルキレン、C〜C10のハロゲン化アルキレン、C 〜C20のアリーレン、またはC 〜C20のハロゲン化アリーレンから選ばれるものよりなるが、好ましくは中心のMとキレートリングを形成したとき、5〜10員環を作るものが好ましい。10員環よりも大きい場合はキレート効果が小さくなるため、好ましくない。また、R3が水酸基やカルボキシル基を構造内に有する場合は、この部分でさらに、中心のMに結合を作ることも可能である。
【0023】
は、ハロゲン、またはX から選ばれるものよりなるが、好ましくはフッ素が好ましい。
【0024】
は、〜C10のアルキルから選ばれるものよりなる。この部分は、他の部分と異なり電子吸引性基は必要ない。ここに電子吸引性基を導入した場合、N上の電子密度が低下して、中心のMに配位することができなくなる。
【0025】
は、C〜C10のハロゲン化アルキルから選ばれるものよりなるが、好ましくはC〜C10のフッ素化アルキルである。Rに電子吸引性のハロゲン化アルキルが存在することにより、中心のMの負電荷が分散し、アニオンの電気的安定性が増すため、非常にイオン解離しやすくなり、溶媒への溶解度やイオン伝導度などが大きくなる。また、その他の耐熱性、化学的安定性、耐加水分解性も向上する。特にこのハロゲン化アルキルがフッ素化アルキルの場合がより効果が大きくなる。また、ここまでに説明した配位子の数に関係する定数mおよびnは、中心のMの種類によって決まってくるものである。
【0026】
以上、前記したこれらの電解質は単独で使用しても、実用上十分な電池特性が発揮されるが、両者または同じ一般式の電解質同士を混合することで電池を充電した状態で、例えば、40℃以上の高温環境下で長時間保存した際、自己放電量が低減されて貯蔵特性が改善されることが本発明により見出された。その原理の詳細は明らかではないが、初回の充電時に両電解質の一部が正、負極表面でわずかに分解してその配位子からなる皮膜が形成されることによって、後続する電解液溶媒の分解や電極の活性劣化を防止するものと推測される。
【0027】
これらの電解質の使用割合は、リチウム電池及びリチウムイオン電池のサイクル特性や保存安定性の向上効果を考慮すると、以下に示す範囲が好ましい。一般式(1)の電解質と一般式(2)の混合、あるいは同じ一般式の電解質同士で混合され、各電解質のモル比は、1:99〜99:1、好ましくは5:95〜95:5である。
【0028】
本発明の電解質を用いて電気化学ディバイスを構成する場合、その基本構成要素としては、イオン伝導体、負極、正極、集電体、セパレーターおよび容器等から成る。
【0029】
イオン伝導体としては、電解質と非水系溶媒又はポリマーの混合物が用いられる。非水系溶媒を用いれば、一般にこのイオン伝導体は電解液と呼ばれ、ポリマーを用いれば、ポリマー固体電解質と呼ばれるものになる。ポリマー固体電解質には可塑剤として非水系溶媒を含有するものも含まれる。
【0030】
非水溶媒としては、本発明の電解質を溶解できる非プロトン性の溶媒であれば特に限定されるものではなく、例えば、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、アミド類、スルホン類等が使用できる。また、単一の溶媒だけでなく、二種類以上の混合溶媒でもよい。具体例としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、およびγ−ブチロラクトン等を挙げることができる。
【0031】
ただし、二種類以上の混合溶媒にする場合、式中のAa+がLiイオンである電解質の場合は、これらの非水溶媒のうち誘電率が20以上の非プロトン性溶媒と誘電率が10以下の非プロトン性溶媒からなる混合溶媒に溶解することにより電解液を調製することが好ましい。特に、リチウム塩ではジエチルエーテル、ジメチルカーボネート等の誘電率が10以下の非プロトン性溶媒に対する溶解度が低く単独では十分なイオン伝導度が得られず、また、逆に誘電率20以上の非プロトン性溶媒単独中では、溶解度は高いもののその粘度も高い為にイオンが移動し難くなり、やはり十分なイオン伝導度が得られない。これらを混合すれば、適当な溶解度と移動度を確保することができ十分なイオン伝導度を得ることができる。
【0032】
また、電解質に混合するポリマーとしては、該化合物を溶解できる非プロトン性のポリマーであれば特に限定されるものではない。例えば、ポリエチレンオキシドを主鎖または側鎖に持つポリマー、ポリビニリデンフロライドのホモポリマーまたはコポリマー、メタクリル酸エステルポリマー、ポリアクリロニトリルなどが挙げられる。これらのポリマーに可塑剤を加える場合は、上記の非プロトン性非水溶媒が使用可能である。これらのイオン伝導体中における本発明の混合電解質濃度は、0.1mol/dm3以上、飽和濃度以下、好ましくは、0.5mol/dm3以上、1.5mol/dm3以下である。0.1mol/dm3より濃度が低いとイオン伝導度が低いため好ましくない。
【0033】
負極材料としては、特に限定されないが、リチウム電池の場合、リチウム金属やリチウムと他の金属との合金および金属間化合物が使用される。また、リチウムイオン電池の場合、ポリマー、有機物、ピッチ等を焼成して得られたカーボンや天然黒鉛、金属酸化物等のインターカレーションと呼ばれる現象を利用した材料が使用される
【0034】
正極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、例えば、LiCoO2 、LiNiO2 、LiMnO2、LiMn24 等のリチウム含有酸化物、TiO2 、V25、MoO3 等の酸化物、TiS2 、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、およびポリピロール等の導電性高分子が使用される
【0035】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
【0036】
実施例1
エチレンカーボネート50vol%とジメチルカーボネート50vol%の混合溶媒中に、
【0037】
【化5】
【0038】
の構造を有するホウ酸リチウム誘導体を0.99mol/dm3
【0039】
【化6】
【0040】
の構造を有するホウ酸リチウム誘導体を0.01mol/dm3とを溶解した電解液を調製し、この電解液を用いてLiCoO2を正極材料、天然黒鉛を負極材料としてセルを作製し、実際に電池の充放電試験を実施した。試験用セルは以下のように作製した。
【0041】
LiCoO2粉末90重量部に、バインダーとして5重量部のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5重量部混合し、さらにN,N−ジメチルホルムアミドを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。また、天然黒鉛粉末90重量部に、バインダーとして10重量部のポリフッ化ビニリデン(PVDF)を混合し、さらにN,N−ジメチルホルムアミドを添加し、スラリー状にした。このスラリーを銅箔上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。そして、ポリエチレン製セパレータに電解液を浸み込ませてセルを組み立てた。
【0042】
次に、以下のような条件で保存試験を実施した。まず、環境温度25℃で充電放電を10サイクル行い、最後に充電させて60℃に保持した恒温室中に120時間保管した。この時、充電、放電時の電流密度は0.35mA/cm2 、充電は4.2V、放電は3.0V(vs.Li/Li+ )まで行った。保管後、電池を25℃まで自然冷却し、同条件で放電させて自己放電率を調べた。次いで、1サイクルの充放電を実施して放電容量回復率を調べた。その結果、自己放電率20%、放電容量回復率86%であった。
【0043】
実施例2
エチレンカーボネート50vol%とジエチルカーボネート50vol%の混合溶媒中に、実施例1と同様に
【0044】
【化7】
【0045】
の構造を有するホウ酸リチウム誘導体を0.90mol/dm3
【0046】
【化8】
【0047】
の構造を有するホウ酸リチウム誘導体を0.10mol/dm3とを溶解した電解液を調製し、この電解液を用いて実施例1と同様にLiCoO2を正極材料、天然黒鉛を負極材料としたセルを作製し、実施例1と同様に保存試験を実施した。その結果、自己放電率15%、放電容量回復率90%であった。
【0048】
実施例3
エチレンカーボネート50vol%とエチルメチルカーボネート50vol%の混合溶媒中に、
【0049】
【化9】
【0050】
の構造を有するホウ酸リチウム誘導体を0.80mol/dm3
【0051】
【化10】
【0052】
の構造を有するホウ酸リチウム誘導体を0.20mol/dm3とを溶解した電解液を調製し、この電解液を用いて実施例1と同様にLiCoO2を正極材料、天然黒鉛を負極材料としたセルを作製し、実施例1と同様に保存試験を実施した。その結果、自己放電率17%、放電容量回復率88%であった。
【0053】
実施例4
エチレンカーボネート50vol%とエチルメチルカーボネート50vol%の混合溶媒中に、
【0054】
【化11】
【0055】
の構造を有するホウ酸リチウム誘導体を0.80mol/dm3
【0056】
【化12】
【0057】
の構造を有するホウ酸リチウム誘導体を0.20mol/dm3とを溶解した電解液を調製し、この電解液を用いて実施例1と同様にLiCoO2を正極材料、天然黒鉛を負極材料としたセルを作製し、以下のような条件で定電流充放電試験を実施した。環境温度60℃で充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、500回充放電を繰り返したが500回目の容量は初回の93%という結果が得られた。
【0058】
比較例1
エチレンカーボネート50vol%とジメチルカーボネート50vol%の混合溶媒中に、
【0059】
【化13】
【0060】
の構造を有するホウ酸リチウム誘導体を1.0mol/dm3を溶解した電解液を調製し、この電解液を用いて実施例1と同様にLiCoO2を正極材料、天然黒鉛を負極材料としたセルを作製し、同様に保存試験を実施した。その結果、自己放電率30%、放電容量回復率80%であった。
【0061】
比較例2
エチレンカーボネート50vol%とジエチルカーボネート50vol%の混合溶媒中に、
【0062】
【化14】
【0063】
の構造を有するホウ酸リチウム誘導体を1.0mol/dm3を溶解した電解液を調製し、この電解液を用いて実施例1と同様にLiCoO2を正極材料、天然黒鉛を負極材料としたセルを作製し、同様に保存試験を実施した。その結果、自己放電率28%、放電容量回復率78%であった。
【0064】
比較例3
エチレンカーボネート50vol%とエチルメチルカーボネート50vol%の混合溶媒中に、
【0065】
【化15】
【0066】
の構造を有するホウ酸リチウム誘導体を1.0mol/lを溶解した電解液を調製し、実施例1と同様に、LiCoO2を正極材料、天然黒鉛を負極材料としたセルを作製し、実施例4と同じ条件で定電流充放電試験を実施した。その結果、500回充放電を繰り返したが500回目の容量は初回の25%という結果が得られた。
【0067】
【発明の効果】
本発明は、リチウム電池、リチウムイオン電池、電気二重層キャパシタ等の電気化学ディバイス用として利用される従来の電解質に比べ、優れたサイクル特性、高温貯蔵特性を有する電解質であり、その電解液または固体電解質並びにこれらを用いた電池を可能としたものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention has excellent cycle characteristics are utilized for electrochemical devices of the lithium battery and lithium-ion batteries, the electrolyte shows the storage characteristics, the electrolyte solution or solid electrolyte, and a lithium battery and a lithium ion battery using the same.
[0002]
[Prior art]
With the development of portable devices in recent years, the development of electrochemical devices using electrochemical phenomena such as batteries and capacitors as a power source has become active. Further, as an electrochemical device other than the power source, an electrochromic display (ECD) in which a color change is caused by an electrochemical reaction can be given.
[0003]
These electrochemical devices are generally composed of a pair of electrodes and an ionic conductor filling them. As the ionic conductor, a solution in which a salt (AB) composed of a cation (A + ) and an anion (B ) called an electrolyte is dissolved in a solvent, a polymer, or a mixture thereof is used. When this electrolyte is dissolved, it dissociates into a cation and an anion, and conducts ions. In order to obtain the ionic conductivity necessary for the device, it is necessary that this electrolyte is dissolved in a sufficient amount in a solvent or a polymer. Actually, a solvent other than water is often used as a solvent, and there are currently only a few types of electrolytes having sufficient solubility in such organic solvents and polymers. For example, as an electrolyte for a lithium battery, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) and LiCF 3 SO 3 only. The cation portion is often determined by the device, such as the lithium ion of a lithium battery, but the anion portion can be used if the condition that the solubility is high is satisfied.
[0004]
However, existing electrolytes have various problems, and an electrolyte having a novel anion portion is desired. Specifically, ClO 4 ions are explosive and AsF 6 ions are toxic and cannot be used for safety reasons. The only practically used LiPF 6 also has problems such as heat resistance and hydrolysis resistance. LiN (CF 3 SO 2 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) and LiCF 3 SO 3 have high stability and ionic conductivity. Although it is an excellent electrolyte because it is high, it is difficult to use because the aluminum current collector in the battery is corroded in a state where a potential is applied (Non-patent Documents 1 and 2).
[0005]
In addition, as the application range of devices is diversified, optimum electrolytes for each application are being searched for. However, since there are few types of anions in existing electrolytes, optimization has reached the limit. Therefore, we are searching for an electrolyte composition that combines the characteristics of individual electrolytes by mixing several types of the above existing electrolytes, and on the other hand, we are developing new electrolytes aiming at further enhancement of functionality. Is the current status (Non-patent Document 3, Patent Document 1, Patent Document 2).
[0006]
[Non-Patent Document 1]
K. Kinoshita et al, Electrochemical and Solid-State Letters, 4, A42 (2001)
[Non-Patent Document 2]
RTAtanasoski et al, J. Power Sources, 68, 320 (1997)
[Non-Patent Document 3]
L. Peter and J. Arai, J. Applied Electrochemistry, 29, 1053 (1999)
[Patent Document 1]
JP 2001-110450 A
[Patent Document 2]
JP 2001-143750 A
[0007]
[Means for solving problems]
As a result of intensive studies in view of the problems of the prior art, the present inventors have found a system in which several kinds of electrolytes having novel chemical structural characteristics are combined and have reached the present invention.
[0008]
That is, the present invention provides a lithium battery and an electrolyte for a lithium ion battery including at least a compound comprising the chemical structural formula represented by the general formula (1) and a compound comprising the chemical structural formula represented by the general formula (2).
[0009]
[Chemical formula 2]
[0010]
Where M is B or P, A a + is lithium ion, a is 1, b is 1, p is 1, m is 1 or 2 when M is B, and 1 when M is P 2, or 3 , n represents 0 or 2 when M is B, 0, 2, or 4 when M is P , q represents 0 or 1, respectively, and R 1 and R 2 are each independently , H, halogen, C 1 -C 10 alkyl, or C 1 -C 10 halogenated alkyl, R 3 is C 1 -C 10 alkylene, C 1 -C 10 halogenated alkylene, C 6 -C 20 arylenes, or C 6 -C 20 halogenated arylenes, R 4 is halogen, or X 2 R 7 , X 1 is O, or NR 5 , X 2 is O, R 5 is C 1- alkyl of C 10, X 3 is O, R 7 is a halogenated alkyl of C 1 -C 10 A lithium battery and a lithium ion battery electrolyte each of which represents a lithium battery comprising a solution of the electrolyte in a non-aqueous solvent, a lithium ion battery electrolyte or a lithium battery comprising the electrolyte dissolved in a polymer, and a lithium battery Provided are a solid electrolyte for an ion battery, and at least a positive electrode, a negative electrode, an electrolytic solution or a solid electrolyte, and a lithium battery and a lithium ion battery containing the electrolyte in the electrolytic solution or the solid electrolyte.
[0011]
The alkyl, alkyl halide, aryl, and aryl halide used in the present invention include those having other functional groups such as a branch, a hydroxyl group, and an ether bond.
[0012]
Hereinafter, the present invention will be described in more detail.
[0013]
Here, specific examples of the compound represented by the general formula (1) and the compound represented by the general formula (2) used in the present invention are shown below.
[0014]
[Chemical 3]
[0015]
[Formula 4]
[0016]
Here, lithium ions are exemplified as A a + .
[0017]
Lithium ions are preferred when considering applications such as electrochemical devices. The valence a of the cation of A a + is preferably 1 to 3. If it is larger than 3, the crystal lattice energy becomes large, which causes a problem that it becomes difficult to dissolve in a solvent. Therefore, when solubility is required, 1 is more preferable. Similarly, the valence b of the anion is preferably 1 to 3, and more preferably 1. The constant p representing the ratio of cation to anion is inevitably determined by the valence ratio b / a of both.
[0018]
The electrolyte of the formula which is part of the configuration of the present invention (1) and the general formula (2) has taken an ionic metal complex structure, M serving as its center, a B or P,. In the case of B 2 or P, in addition to the ease of synthesis, it has excellent properties in all aspects such as low toxicity, stability and cost.
[0019]
Next, the part of the ligand that is characteristic of the electrolyte (ionic metal complex) represented by the general formula (1) and the general formula (2) will be described. Hereinafter, the organic or inorganic part bonded to M is referred to as a ligand.
[0020]
In the general formula (1) and the general formula (2), X 1 is O, or NR 5 , X 2 is O , and is bonded to M through these heteroatoms. Here, it is not impossible to combine other than O, S, and N, but it is very complicated in synthesis. Since this compound has a bond with M by a carboxyl group (—COO—) other than X 1 in the same ligand, these ligands constitute a chelate structure with M. Due to the effect of this chelate, the heat resistance, chemical stability, and hydrolysis resistance of this compound are improved. The constant q in this ligand is 0 or 1. Particularly, 0 is preferable because this chelate ring is a five-membered ring, so that the chelate effect is exerted most strongly and the stability is increased. Further, the negative charge of M at the center is dispersed due to the electron withdrawing effect by the carboxyl group, and the electrical stability of the anion is increased. Therefore, ion dissociation becomes very easy, and the solubility in the solvent, the ionic conductivity, and the like increase. In addition, other heat resistance, chemical stability, and hydrolysis resistance are also improved.
[0021]
R 1 and R 2 are each independently selected from the group consisting of H, halogen, C 1 -C 10 alkyl, or C 1 -C 10 halogenated alkyl, preferably at least R 1 and R 2 One is a fluorinated alkyl, and more preferably at least one of R 1 and R 2 is a trifluoromethyl group. The presence of electron-withdrawing halogen or alkyl halide in R 1 and R 2 disperses the negative charge of the center M and increases the electrical stability of the anion. Solubility, ionic conductivity, catalytic activity, etc. increase. In addition, other heat resistance, chemical stability, and hydrolysis resistance are also improved. In particular, when the halogen is fluorine, the effect is greater, and when the halogen is a trifluoromethyl group, the effect is greatest.
[0022]
R 3 consists of one selected from C 1 -C 10 alkylene, C 1 -C 10 halogenated alkylene, C 6 -C 20 arylene, or C 6 -C 20 halogenated arylene, preferably When a chelate ring is formed with the central M, one that forms a 5- to 10-membered ring is preferable. When it is larger than the 10-membered ring, the chelate effect is reduced, which is not preferable. Further, when R 3 has a hydroxyl group or a carboxyl group in the structure, it is possible to further form a bond at the center M at this portion.
[0023]
R 4 is made of halogen or X 2 R 7 , and preferably fluorine.
[0024]
R 5 consists of one selected from C 1 -C 10 alkyl. Unlike other parts, this part does not require an electron-withdrawing group. When an electron-withdrawing group is introduced here, the electron density on N is lowered and cannot be coordinated to M at the center.
[0025]
R 7 is composed of one selected from C 1 to C 10 halogenated alkyls, preferably C 1 to C 10 fluorinated alkyls. The presence of an electron-withdrawing alkyl halide in R 7 disperses the negative charge of the center M and increases the electrical stability of the anion, which makes it very easy to dissociate ions, solubilities in the solvent and ions Conductivity increases. In addition, other heat resistance, chemical stability, and hydrolysis resistance are also improved. In particular, the effect is greater when the alkyl halide is a fluorinated alkyl. Further, constants m and n relating to the number of ligands described thus far, Ru der what comes determined by the type of M of the center.
[0026]
As described above, even when these electrolytes are used alone, practically sufficient battery characteristics are exhibited. However, in a state where the battery is charged by mixing both or the same general electrolytes, for example, 40 It has been found by the present invention that when stored for a long time in a high temperature environment of at least ° C., the self-discharge amount is reduced and the storage characteristics are improved. Although the details of the principle are not clear, a part of both electrolytes are positively and slightly decomposed on the negative electrode surface during the first charge to form a film made of the ligand. It is presumed to prevent decomposition and electrode activity deterioration.
[0027]
The use ratio of these electrolytes is preferably in the following range in consideration of the cycle characteristics and storage stability improvement effect of lithium batteries and lithium ion batteries . The electrolyte of the general formula (1) and the general formula (2) are mixed, or the electrolytes of the same general formula are mixed. The molar ratio of each electrolyte is 1:99 to 99: 1, preferably 5:95 to 95: 5.
[0028]
When an electrochemical device is constituted using the electrolyte of the present invention, its basic components are composed of an ion conductor, a negative electrode, a positive electrode, a current collector, a separator, a container, and the like.
[0029]
As the ionic conductor, a mixture of an electrolyte and a non-aqueous solvent or polymer is used. If a non-aqueous solvent is used, this ionic conductor is generally called an electrolytic solution, and if a polymer is used, it becomes a polymer solid electrolyte. The polymer solid electrolyte includes those containing a non-aqueous solvent as a plasticizer.
[0030]
The non-aqueous solvent is not particularly limited as long as it is an aprotic solvent capable of dissolving the electrolyte of the present invention, and examples thereof include carbonates, esters, ethers, lactones, nitriles, amides, sulfones. Can be used. Moreover, not only a single solvent but 2 or more types of mixed solvents may be sufficient. Specific examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide. , Sulfolane, and γ-butyrolactone.
[0031]
However, when two or more kinds of mixed solvents are used, in the case of an electrolyte in which A a + in the formula is Li ion, an aprotic solvent having a dielectric constant of 20 or more and a dielectric constant of 10 or less among these nonaqueous solvents It is preferable to prepare an electrolytic solution by dissolving in a mixed solvent composed of aprotic solvent. In particular, lithium salts have low solubility in aprotic solvents having a dielectric constant of 10 or less, such as diethyl ether and dimethyl carbonate, so that sufficient ionic conductivity cannot be obtained by themselves, and conversely aprotic having a dielectric constant of 20 or more. In the solvent alone, the solubility is high, but the viscosity is high, so that the ions are difficult to move, and sufficient ionic conductivity cannot be obtained. If these are mixed, appropriate solubility and mobility can be ensured, and sufficient ionic conductivity can be obtained.
[0032]
The polymer mixed with the electrolyte is not particularly limited as long as it is an aprotic polymer capable of dissolving the compound. Examples thereof include polymers having polyethylene oxide in the main chain or side chain, homopolymers or copolymers of polyvinylidene fluoride, methacrylic acid ester polymers, polyacrylonitrile and the like. When a plasticizer is added to these polymers, the above-mentioned aprotic non-aqueous solvent can be used. Mixing the electrolyte concentration of the present invention in these ion conductors in the, 0.1 mol / dm 3 or more, the saturation concentration or less, preferably, 0.5 mol / dm 3 or more and 1.5 mol / dm 3 or less. If the concentration is lower than 0.1 mol / dm 3 , the ion conductivity is low, which is not preferable.
[0033]
Although it does not specifically limit as a negative electrode material, In the case of a lithium battery, the alloy and intermetallic compound of lithium metal, lithium, and another metal are used. In the case of a lithium ion battery, a material that uses a phenomenon called intercalation such as carbon, natural graphite, or metal oxide obtained by firing a polymer, an organic material, pitch, or the like is used .
[0034]
As the cathode material is not particularly limited, a lithium battery and a lithium ion battery, for example, LiCoO 2, LiNiO 2, LiMnO 2, lithium-containing oxides such as LiMn 2 O 4, TiO 2, V 2 O 5, MoO Oxides such as 3 , sulfides such as TiS 2 and FeS, or conductive polymers such as polyacetylene, polyparaphenylene, polyaniline, and polypyrrole are used .
[0035]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this Example.
[0036]
Example 1
In a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of dimethyl carbonate,
[0037]
[Chemical formula 5]
[0038]
0.99 mol / dm 3 of a lithium borate derivative having the following structure:
[Chemical 6]
[0040]
An electrolytic solution in which 0.01 mol / dm 3 of a lithium borate derivative having the following structure is dissolved is prepared. Using this electrolytic solution, a cell is manufactured using LiCoO 2 as a positive electrode material and natural graphite as a negative electrode material. A charge / discharge test of the battery was performed. The test cell was produced as follows.
[0041]
To 90 parts by weight of LiCoO 2 powder, 5 parts by weight of polyvinylidene fluoride (PVDF) as a binder and 5 parts by weight of acetylene black as a conductive material were mixed, and N, N-dimethylformamide was further added to form a paste. The paste was applied on an aluminum foil and dried to obtain a test positive electrode body. Further, 90 parts by weight of natural graphite powder was mixed with 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on a copper foil and dried at 150 ° C. for 12 hours to obtain a test negative electrode body. Then, the electrolyte was immersed in a polyethylene separator to assemble the cell.
[0042]
Next, a storage test was performed under the following conditions. First, 10 cycles of charge / discharge were performed at an environmental temperature of 25 ° C., and the battery was stored for 120 hours in a thermostatic chamber that was charged at the end and maintained at 60 ° C. At this time, the current density during charging and discharging was 0.35 mA / cm 2 , the charging was 4.2 V, and the discharging was performed up to 3.0 V (vs. Li / Li + ). After storage, the battery was naturally cooled to 25 ° C. and discharged under the same conditions to examine the self-discharge rate. Subsequently, 1 cycle charge / discharge was implemented and the discharge capacity recovery rate was investigated. As a result, the self-discharge rate was 20% and the discharge capacity recovery rate was 86%.
[0043]
Example 2
In the same manner as in Example 1 in a mixed solvent of ethylene carbonate 50 vol% and diethyl carbonate 50 vol%
[Chemical 7]
[0045]
The lithium borate derivative having the structure: 0.90 mol / dm 3
[Chemical 8]
[0047]
An electrolyte solution prepared by dissolving 0.10 mol / dm 3 of a lithium borate derivative having the following structure was prepared. Using this electrolyte solution, LiCoO 2 was used as a positive electrode material and natural graphite was used as a negative electrode material in the same manner as in Example 1. A cell was prepared and a storage test was conducted in the same manner as in Example 1. As a result, the self-discharge rate was 15% and the discharge capacity recovery rate was 90%.
[0048]
Example 3
In a mixed solvent of ethylene carbonate 50 vol% and ethyl methyl carbonate 50 vol%,
[0049]
[Chemical 9]
[0050]
The lithium borate derivative having the structure: 0.80 mol / dm 3
[Chemical Formula 10]
[0052]
An electrolyte solution in which 0.20 mol / dm 3 of a lithium borate derivative having the following structure was dissolved was prepared. Using this electrolyte solution, LiCoO 2 was used as a positive electrode material and natural graphite was used as a negative electrode material in the same manner as in Example 1. A cell was prepared and a storage test was conducted in the same manner as in Example 1. As a result, the self-discharge rate was 17% and the discharge capacity recovery rate was 88%.
[0053]
Example 4
In a mixed solvent of ethylene carbonate 50 vol% and ethyl methyl carbonate 50 vol%,
[0054]
Embedded image
[0055]
The lithium borate derivative having the structure: 0.80 mol / dm 3
Embedded image
[0057]
An electrolyte solution in which 0.20 mol / dm 3 of a lithium borate derivative having the following structure was dissolved was prepared. Using this electrolyte solution, LiCoO 2 was used as a positive electrode material and natural graphite was used as a negative electrode material in the same manner as in Example 1. A cell was prepared, and a constant current charge / discharge test was performed under the following conditions. Charging and discharging were performed at an environmental temperature of 60 ° C. at a current density of 0.35 mA / cm 2. Charging was performed at 4.2 V and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, charging / discharging was repeated 500 times, but the 500th capacity was 93% of the first time.
[0058]
Comparative Example 1
In a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of dimethyl carbonate,
[0059]
Embedded image
[0060]
An electrolytic solution in which 1.0 mol / dm 3 of a lithium borate derivative having the following structure was dissolved was prepared, and a cell using LiCoO 2 as a positive electrode material and natural graphite as a negative electrode material was used in the same manner as in Example 1 using this electrolytic solution. And a storage test was conducted in the same manner. As a result, the self-discharge rate was 30% and the discharge capacity recovery rate was 80%.
[0061]
Comparative Example 2
In a mixed solvent of 50 vol% ethylene carbonate and 50 vol% diethyl carbonate,
[0062]
Embedded image
[0063]
An electrolytic solution in which 1.0 mol / dm 3 of a lithium borate derivative having the following structure was dissolved was prepared, and a cell using LiCoO 2 as a positive electrode material and natural graphite as a negative electrode material was used in the same manner as in Example 1 using this electrolytic solution. And a storage test was conducted in the same manner. As a result, the self-discharge rate was 28% and the discharge capacity recovery rate was 78%.
[0064]
Comparative Example 3
In a mixed solvent of ethylene carbonate 50 vol% and ethyl methyl carbonate 50 vol%,
[0065]
Embedded image
[0066]
An electrolyte solution in which 1.0 mol / l of a lithium borate derivative having the structure of 1 was dissolved was prepared, and a cell using LiCoO 2 as a positive electrode material and natural graphite as a negative electrode material was prepared in the same manner as in Example 1. The constant current charge / discharge test was performed under the same conditions as in No. 4. As a result, charging / discharging was repeated 500 times, but the 500th capacity was 25% of the first time.
[0067]
【The invention's effect】
The present invention is an electrolyte having excellent cycle characteristics and high-temperature storage characteristics as compared with conventional electrolytes used for electrochemical devices such as lithium batteries, lithium ion batteries, and electric double layer capacitors. An electrolyte and a battery using these are made possible.

Claims (5)

一般式(1)で示される化学構造式よりなる化合物及び一般式(2)で示される化学構造式よりなる化合物を少なくとも含むリチウム電池及びリチウムイオン電池用電解質。
ただし、Mは、B、またはP、
a+は、リチウムイオン、
aは、1、
bは、1、
pは、1、
mは、MがBの場合1または2、MがPの場合1、2、または3
nは、MがBの場合0または2、MがPの場合0、2、または4
qは、0または1をそれぞれ表し、
、Rは、各々独立で、H、ハロゲン、C〜C10のアルキル、またはC〜C10のハロゲン化アルキル、
は、C〜C10のアルキレン、C〜C10のハロゲン化アルキレン、C 〜C20のアリーレン、またはC 〜C20のハロゲン化アリーレン
は、ハロゲン、またはX
は、O、またはNR、Xは、O、
は、C1〜C10のアルキル、
は、O、
は、C〜C10のハロゲン化アルキルをそれぞれ表す。
An electrolyte for a lithium battery and a lithium ion battery comprising at least a compound having a chemical structural formula represented by the general formula (1) and a compound having a chemical structural formula represented by the general formula (2).
Where M is B or P,
A a + is lithium ion,
a is 1,
b is 1,
p is 1,
m is 1 or 2 when M is B, 1, 2 or 3 when M is P ;
n is 0 or 2 when M is B, 0, 2, or 4 when M is P ;
q represents 0 or 1 respectively;
R 1 and R 2 are each independently H, halogen, C 1 to C 10 alkyl, or C 1 to C 10 halogenated alkyl,
R 3 is C 1 -C 10 alkylene, C 1 -C 10 halogenated alkylene, C 6 -C 20 arylene, or C 6 -C 20 halogenated arylene ,
R 4 is halogen or X 2 R 7 ,
X 1 is O or NR 5 , X 2 is O,
R 5 is C 1 -C 10 alkyl,
X 3 is O,
R 7 represents a C 1 to C 10 halogenated alkyl, respectively.
少なくとも請求項1記載の電解質を非水溶媒に溶解したものよりなることを特徴とするリチウム電池及びリチウムイオン電池用電解液。  An electrolyte solution for lithium batteries and lithium ion batteries, comprising at least the electrolyte according to claim 1 dissolved in a non-aqueous solvent. 非水溶媒が、誘電率が20以上の非プロトン性溶媒と誘電率が10以下の非プロトン性溶媒からなる混合溶媒であることを特徴とする請求項2記載のリチウム電池及びリチウムイオン電池用電解液。  3. The electrolysis for lithium battery and lithium ion battery according to claim 2, wherein the non-aqueous solvent is a mixed solvent comprising an aprotic solvent having a dielectric constant of 20 or more and an aprotic solvent having a dielectric constant of 10 or less. liquid. 少なくとも請求項1記載の電解質をポリマーに溶解したものよりなることを特徴とするリチウム電池及びリチウムイオン電池用固体電解質。  A solid electrolyte for a lithium battery and a lithium ion battery, comprising at least the electrolyte according to claim 1 dissolved in a polymer. 少なくとも正極、負極、電解液または固体電解質からなり、該電解液または固体電解質に請求項1に記載の電解質を含むことを特徴とするリチウム電池及びリチウムイオン電池A lithium battery and a lithium ion battery comprising at least a positive electrode, a negative electrode, an electrolytic solution, or a solid electrolyte, wherein the electrolytic solution or the solid electrolyte includes the electrolyte according to claim 1.
JP2002306078A 2002-10-21 2002-10-21 Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries Expired - Fee Related JP3974012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306078A JP3974012B2 (en) 2002-10-21 2002-10-21 Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306078A JP3974012B2 (en) 2002-10-21 2002-10-21 Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries

Publications (2)

Publication Number Publication Date
JP2004146071A JP2004146071A (en) 2004-05-20
JP3974012B2 true JP3974012B2 (en) 2007-09-12

Family

ID=32452978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306078A Expired - Fee Related JP3974012B2 (en) 2002-10-21 2002-10-21 Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries

Country Status (1)

Country Link
JP (1) JP3974012B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2523237A1 (en) 2011-05-11 2012-11-14 GS Yuasa International Ltd. Electric storage device
US9806376B2 (en) 2014-08-28 2017-10-31 Gs Yuasa International Ltd. Energy storage device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002771A1 (en) * 2014-07-02 2016-01-07 セントラル硝子株式会社 Complex center formation agent, ionic complex and production method thereof
KR101992124B1 (en) 2015-09-30 2019-06-25 주식회사 엘지화학 Non-aqueous electrolyte solution and lithium secondary battery comprising the same
WO2017057968A1 (en) * 2015-09-30 2017-04-06 주식회사 엘지화학 Non-aqueous electrolyte and lithium secondary battery comprising same
KR102430423B1 (en) 2018-01-08 2022-08-09 주식회사 엘지에너지솔루션 Lithium secondary battery having improved cycle life characteristics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2523237A1 (en) 2011-05-11 2012-11-14 GS Yuasa International Ltd. Electric storage device
US8597827B2 (en) 2011-05-11 2013-12-03 G.S. Yuasa International Ltd. Electric storage device
EP2978048A1 (en) 2011-05-11 2016-01-27 GS Yuasa International Ltd. Electric storage device
US9509148B2 (en) 2011-05-11 2016-11-29 Gs Yuasa International Ltd. Electric storage device
US9806376B2 (en) 2014-08-28 2017-10-31 Gs Yuasa International Ltd. Energy storage device

Also Published As

Publication number Publication date
JP2004146071A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP3722685B2 (en) Electrolyte for electrochemical device and battery using the same
JP2004111349A (en) Method for avoiding solvent decomposition in electrochemical device, and the electrochemical device using the same
JP4711639B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4175792B2 (en) Electrolytic solution or gel electrolyte for electrochemical device and battery
JP3730855B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4226844B2 (en) Method for inhibiting corrosion of electrochemical device member and battery
JP3974012B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4020557B2 (en) Electrolyte for electrochemical devices
JP4076738B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP3730830B2 (en) Electrolyte for electrochemical devices
JP3730860B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730861B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4190207B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP2004103372A (en) Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same
JP4104294B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4076748B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP4104292B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4104289B2 (en) Electrolyte for electrochemical device, electrolyte or solid electrolyte thereof, and battery
JP4076727B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP3730856B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3712358B2 (en) Electrolyte for electrochemical device, electrolyte or solid electrolyte thereof, and battery
JP4104293B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4104290B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4175798B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4076726B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees