JP3730861B2 - Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries - Google Patents

Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries Download PDF

Info

Publication number
JP3730861B2
JP3730861B2 JP2000376731A JP2000376731A JP3730861B2 JP 3730861 B2 JP3730861 B2 JP 3730861B2 JP 2000376731 A JP2000376731 A JP 2000376731A JP 2000376731 A JP2000376731 A JP 2000376731A JP 3730861 B2 JP3730861 B2 JP 3730861B2
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
general formula
electrolytes
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000376731A
Other languages
Japanese (ja)
Other versions
JP2002184465A (en
Inventor
辻岡  章一
高瀬  浩成
幹弘 高橋
博美 杉本
誠 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2000376731A priority Critical patent/JP3730861B2/en
Priority to EP01123577A priority patent/EP1195834B1/en
Priority to DE60143070T priority patent/DE60143070D1/en
Priority to US09/969,127 priority patent/US6783896B2/en
Publication of JP2002184465A publication Critical patent/JP2002184465A/en
Application granted granted Critical
Publication of JP3730861B2 publication Critical patent/JP3730861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム電池、リチウムイオン電池、電気二重層キャパシタ等の電気化学ディバイス用として利用される優れたサイクル特性を示す電解質、電解液または固体電解質、及びそれを用いた電池に関する。
【0002】
【従来技術】
近年の携帯機器の発展に伴い、その電源として電池やキャパシタのような電気化学的現象を利用した電気化学ディバイスの開発が盛んに行われるようになった。また、電源以外の電気化学ディバイスとしては、電気化学反応により色の変化が起こるエレクトロクロミックディスプレイ(ECD)が挙げられる。
【0003】
これらの電気化学ディバイスは、一般に一対の電極とその間を満たすイオン伝導体から構成される。このイオン伝導体には、溶媒、高分子またはそれらの混合物中に電解質と呼ばれるカチオン(A+)とアニオン(B-)からなる塩類(AB)を溶解したものが用いられる。この電解質は溶解することにより、カチオンとアニオンに解離して、イオン伝導する。ディバイスに必要なイオン伝導度を得るためには、この電解質が溶媒や高分子に十分な量溶解することが必要である。実際は水以外のものを溶媒として用いる場合が多く、このような有機溶媒や高分子に十分な溶解度を持つ電解質は現状では数種類に限定される。例えば、リチウム電池用電解質としては、LiClO4、LiPF6、LiBF4 、LiAsF6、LiN(SO2CF32、LiN(SO2252 、LiN(SO2CF3)(SO249)およびLiCF3SO3のみである。カチオンの部分はリチウム電池のリチウムイオンのように、ディバイスにより決まっているものが多いが、アニオンの部分は溶解性が高いという条件を満たせば使用可能である。
【0004】
ディバイスの応用範囲が多種多様化している中で、それぞれの用途に対する最適な電解質が探索されているが、現状ではアニオンの種類が少ないため最適化も限界に達している。また、既存の電解質は種々の問題を持っており、新規のアニオン部を有する電解質が要望されている。具体的にはClO4イオンは爆発性、AsF6イオンは毒性を有するため安全上の理由で使用できない。唯一実用化されているLiPF6も耐熱性、耐加水分解性などの問題を有する。LiN(CF3SO22、LiN(SO2252 、LiN(SO2CF3)(SO249)およびLiCF3SO3は安定性が高く、イオン伝導度も高いため非常に優れた電解質であるが、電池内のアルミニウムの集電体を電位がかかった状態で腐食するため使用が困難である。
【0005】
【問題点を解決するための具体的手段】
本発明者らは、かかる従来技術の問題点に鑑み鋭意検討の結果、新規の化学構造的な特徴を有する電解質と従来のものを組み合わせた系を見出し本発明に到達したものである。
【0006】
すなわち本発明は、一般式(1)で示される化学構造式よりなる化合物と、一般式(2)、一般式(3)、または一般式(4)で示される化学構造式よりなる化合物のうち少なくとも一つよりなるリチウム電池及びリチウムイオン電池用電解質で、
【0007】
【化2】
【0008】
Mは、B、またはP、Aa+は、Liイオン、aは、1、bは、1、pは、1、mは、1〜、nは、1〜、qは、0または1をそれぞれ表し、R1は、C1〜C10のアルキレン、C1〜C10のハロゲン化アルキレン、C〜C20のアリーレン、またはC〜C20のハロゲン化アリーレン(これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を持ってもよく、また、m個存在するR1はそれぞれが結合してもよい。)、R2は、ハロゲン、X1、X2は、O、で、x、y、zは、それぞれ独立で、1から8、をそれぞれ表すリチウム電池及びリチウムイオン電池用電解質であり、該電解質を非水溶媒に溶解したものよりなるリチウム電池及びリチウムイオン電池用電解液または該電解質をポリマーに溶解したものよりなるリチウム電池及びリチウムイオン電池用固体電解質、及び少なくとも正極、負極、電解液または固体電解質からなり、該電解液または固体電解質に請求項1に記載の電解質を含む電池を提供するものである。
【0009】
なお、本発明で用いるアルキル、ハロゲン化アルキル、アリール、ハロゲン化アリールは、分岐や水酸基、エーテル結合等の他の官能基を持つものも含む。
【0010】
以下に、本発明をより詳細に説明する。
【0011】
ここで、まず本発明で使用される一般式(1)で示される化合物の具体例を次に示す。
【0012】
【化3】
【0013】
【化4】
【0015】
【化6】
【0016】
ここではAa+としてリチウムイオンが挙げられる。
【0018】
本発明の構成の一部である一般式(1)で示される電解質は、イオン性金属錯体構造を採っており、その中心となるMは、遷移金属、周期律表のIII族、IV族、またはV族元素から選ばれる。好ましくは、Al、B、V、Ti、Si、Zr、Ge、Sn、Cu、Y、Zn、Ga、Nb、Ta、Bi、P、As、Sc、Hf、またはSbのいずれかであり、さらに好ましくは、B、またはPである。種々の元素を中心のMとして利用することは可能であるが、Al、B、V、Ti、Si、Zr、Ge、Sn、Cu、Y、Zn、Ga、Nb、Ta、Bi、P、As、Sc、Hf、またはSbの場合、比較的合成も容易であり、さらにB、またはPの場合、合成の容易性のほか、低毒性、安定性、コストとあらゆる面で優れた特性を有する。
【0019】
次に、一般式(1)で示される電解質(イオン性金属錯体)の特徴となる配位子の部分について説明する。以下、ここではMに結合している有機または無機の部分を配位子と呼ぶ。
【0020】
一般式(1)中のR1は、C1〜C10のアルキレン、C1〜C10のハロゲン化アルキレン、 〜C20のアリーレン、または 〜C20のハロゲン化アリーレンから選ばれるものよりなるが、これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を持ってもよい。具体的には、アルキレン及びアリーレン上の水素の代わりにハロゲン、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、水酸基、また、アルキレン及びアリーレン上の炭素の代わりに、窒素、イオウ、酸素が導入された構造等を挙げることができる。さらには、複数存在するR1はそれぞれが結合してもよく、例えば、エチレンジアミン四酢酸のような配位子を挙げることができる。
【0021】
2は、ハロゲン、好ましくは電子吸引性の基がよく、特にフッ素がよい。R2がフッ素の場合、その強い電子吸引性による電解質の解離度の向上とサイズが小さくなることによる移動度の向上の効果により、イオン伝導度が非常に高くなる。
【0022】
1、X2は、それぞれ独立で、O、であり、これらのヘテロ原子を介して配位子がMに結合する。ここで、O、以外で結合することは、不可能ではないが合成上非常に煩雑なものとなる。この化合物の特徴として同一の配位子内にX1とX2によるMとの結合があるため、これらの配位子がMとキレート構造を構成している。このキレートの効果により、この化合物の耐熱性、化学的安定性、耐加水分解性が向上している。この配位子中の定数qは0または1であるが、特に、0の場合はこのキレートリングが五員環になるため、キレート効果が最も強く発揮され安定性が増すため好ましい。
【0024】
また、ここまでに説明した配位子の数に関係する定数mおよびnは、中心のMの種類によって決まってくるものであるが、mは1から、nは1からが好ましい。
【0025】
次に、一般式(2)、一般式(3)、一般式(4)で示される化合物の具体例としては、LiCF3SO3、LiN(SO2CF32、LiN(SO2252 、LiN(SO2CF3)(SO249)、およびLiC(SO2CF33、等が挙げられる。これらの電解質は単独で使用すると、電池内のアルミニウムの集電体を電位がかかった状態で腐食するため、充放電サイクルを繰り返すと容量が低下するという問題点を有する。本発明ではこれらのスルホニル基を有する電解質と一般式(1)の電解質を混合して使用することで、このアルミニウムの集電体の腐食を防止することが可能となった。その原理の詳細は明らかではないが、一般式(1)の電解質が電極表面でわずかに分解してアルミニウム表面にその配位子からなる皮膜が形成され、その腐食を防止するものと推測される。
【0026】
これらの電解質の使用割合は電気化学ディバイスのサイクル特性や保存安定性の向上効果を考慮すると、以下に示す範囲が好ましい。一般式(1)の電解質と、一般式(2)、一般式(3)、一般式(4)の電解質のモル比は、5:95〜95:5、好ましくは30:70〜70:30である。一般式(1)の電解質が5より少ない場合は、アルミニウムの腐食防止の効果が小さいため、サイクル特性、保存安定性が悪くなるし、また、95より大きい場合は、一般式(2)、一般式(3)、一般式(4)のイオン伝導性の高さ、電気化学的安定性が充分に発揮できない。
【0027】
本発明の電解質を用いて電気化学ディバイスを構成する場合、その基本構成要素としては、イオン伝導体、負極、正極、集電体、セパレーターおよび容器等から成る。
【0028】
イオン伝導体としては、電解質と非水系溶媒又はポリマーの混合物が用いられる。非水系溶媒を用いれば、一般にこのイオン伝導体は電解液と呼ばれ、ポリマーを用いれば、ポリマー固体電解質と呼ばれるものになる。ポリマー固体電解質には可塑剤として非水系溶媒を含有するものも含まれる。
【0029】
非水溶媒としては、本発明の電解質を溶解できる非プロトン性の溶媒であれば特に限定されるものではなく、例えば、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、アミド類、スルホン類等が使用できる。また、単一の溶媒だけでなく、二種類以上の混合溶媒でもよい。具体例としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、およびγ−ブチロラクトン等を挙げることができる。
【0030】
ただし、二種類以上の混合溶媒にする場合、一般式(1)のAa+がLiイオンである電解質の場合は、これらの非水溶媒のうち誘電率が20以上の非プロトン性溶媒と誘電率が10以下の非プロトン性溶媒からなる混合溶媒に溶解することにより電解液を調製することが好ましい。特にこのリチウム塩ではジエチルエーテル、ジメチルカーボネート等の誘電率が10以下の非プロトン性溶媒に対する溶解度が低く単独では十分なイオン伝導度が得られず、また、逆に誘電率20以上の非プロトン性溶媒単独では溶解度は高いもののその粘度も高いため、イオンが移動しにくくなりやはり十分なイオン伝導度が得られない。これらを混合すれば、適当な溶解度と移動度を確保することができ十分なイオン伝導度を得ることができる。
【0031】
また、電解質を溶解するポリマーとしては、非プロトン性のポリマーであれば特に限定されるものではない。例えば、ポリエチレンオキシドを主鎖または側鎖に持つポリマー、ポリビニリデンフロライドのホモポリマーまたはコポリマー、メタクリル酸エステルポリマー、ポリアクリロニトリルなどが挙げられる。これらのポリマーに可塑剤を加える場合は、上記の非プロトン性非水溶媒が使用可能である。これらのイオン伝導体中における本発明の混合電解質濃度は、0.1mol/dm3以上、飽和濃度以下、好ましくは、0.5mol/dm3以上、1.5mol/dm3以下である。0.1mol/dm3より濃度が低いとイオン伝導度が低いため好ましくない。
【0032】
負極材料としては、特に限定されないが、リチウム電池の場合、リチウム金属やリチウムと他の金属との合金が使用される。また、リチウムイオン電池の場合、ポリマー、有機物、ピッチ等をを焼成して得られたカーボンや天然黒鉛、金属酸化物等のインターカレーションと呼ばれる現象を利用した材料が使用される。電気二重層キャパシタの場合、活性炭、多孔質金属酸化物、多孔質金属、導電性ポリマー等が用いられる。
【0033】
正極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、例えば、LiCoO2 、LiNiO2 、LiMnO2 、LiMn24 等のリチウム含有酸化物、TiO2 、V25 、MoO3 等の酸化物、TiS2 、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、およびポリピロール等の導電性高分子が使用される。電気二重層キャパシタの場合、活性炭、多孔質金属酸化物、多孔質金属、導電性ポリマー等が用いられる。
【0034】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
【0035】
実施例1
エチレンカーボネート50vol%とジメチルカーボネート50vol%の混合溶媒中に、
【0036】
【化7】
【0037】
の構造を有するホウ酸リチウム誘導体を0.05mol/lとLiN(SO2252を0.95mol/lとを溶解した電解液を調製し、交流二極式セルによりイオン伝導度を測定した。その結果、25℃でのイオン伝導度は、7.2mS/cmであった。
【0038】
次に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。試験用セルは作用極としてアルミニウム、対極及び参照極としてリチウム金属を有するビーカー型のものを用いた。作用極を5V(Li/Li+)に保持したところ、全く電流は流れなかった。試験後に作用極表面をSEMで観察したが試験前と比べて変化は認められなかった。
【0039】
さらに、この電解液を用いてLiCoO2を正極材料としてハーフセルを作製し、実際に電池の充放電試験を実施した。試験用セルは以下のように作製した。LiCoO2粉末90重量部に、バインダーとして5重量部のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5重量部混合し、さらにN,N−ジメチルホルムアミドを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。負極にはリチウム金属を使用した。そして、グラスファイバーフィルターをセパレーターとしてこのセパレータに電解液を浸み込ませてセルを組み立てた。
【0040】
次に、以下のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、初回の放電容量は、118mAh/g(正極の容量)であった。また、100回充放電を繰り返したが100回目の容量は初回の95%という結果が得られた。
【0041】
実施例2
プロピレンカーボネート50vol%とジエチルカーボネート50vol%の混合溶媒中に、実施例1と同様の構造を有するホウ酸リチウム誘導体を0.10mol/lとLiN(SO2CF32を0.90mol/lとを溶解した電解液を調製し、交流二極式セルによりイオン伝導度を測定した。その結果、25℃でのイオン伝導度は、8.8mS/cmであった。
【0042】
次に、実施例1と同様に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。作用極を5V(Li/Li+)に保持したところ、全く電流は流れなかった。試験後に作用極表面をSEMで観察したが試験前と比べて変化は認められなかった。
【0043】
さらに、この電解液を用いて実施例1と同様にLiCoO2を正極材料としたハーフセルを作製し、以下のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、初回の放電容量は、115mAh/g(正極の容量)であった。また、100回充放電を繰り返したが100回目の容量は初回の88%という結果が得られた。
【0044】
実施例3
エチレンカーボネート50vol%とジメチルカーボネート50vol%の混合溶媒中に、実施例1と同様の構造を有するホウ酸リチウム誘導体を0.05mol/lとLiN(SO2CF3)(SO249)を0.95mol/lとを溶解した電解液を調製し、交流二極式セルによりイオン伝導度を測定した。その結果、25℃でのイオン伝導度は、6.5mS/cmであった。
【0045】
次に、実施例1と同様に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。作用極を5V(Li/Li+)に保持したところ、全く電流は流れなかった。試験後に作用極表面をSEMで観察したが試験前と比べて変化は認められなかった。
【0046】
さらに、この電解液を用いて実施例1と同様にLiCoO2を正極材料としたハーフセルを作製し、以下のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、初回の放電容量は、120mAh/g(正極の容量)であった。また、100回充放電を繰り返したが100回目の容量は初回の91%という結果が得られた。
【0047】
実施例4
エチレンカーボネート50vol%とジメチルカーボネート50vol%の混合溶媒中に、実施例1と同様の構造を有するホウ酸リチウム誘導体を0.95mol/lとLiN(SO2CF3)(SO249)を0.05mol/lとを溶解した電解液を調製し、交流二極式セルによりイオン伝導度を測定した。その結果、25℃でのイオン伝導度は、6.9mS/cmであった。
【0048】
次に、実施例1と同様に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。作用極を5V(Li/Li+)に保持したところ、全く電流は流れなかった。試験後に作用極表面をSEMで観察したが試験前と比べて変化は認められなかった。
【0049】
さらに、この電解液を用いて実施例1と同様にLiCoO2を正極材料としたハーフセルを作製し、以下のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、初回の放電容量は、120mAh/g(正極の容量)であった。また、100回充放電を繰り返したが100回目の容量は初回の93%という結果が得られた。
【0050】
実施例5
平均分子量10000のポリエチレンオキシド70重量部にアセトニトリルを添加して溶液を調整し、この溶液に実施例1と同様の構造を有するホウ酸リチウム誘導体を5重量部、LiN(SO2CF3)(SO249)を25重量部加え、これをガラス上にキャストし、乾燥して溶媒のアセトニトリルを除去することにより高分子固体電解質膜を作製した。
【0051】
次に、この高分子固体電解質膜を用いてアルミニウム集電体の腐食試験を実施した。この膜を作用極のアルミニウム電極とリチウム電極で挟み、圧着し測定を行った。作用極を5V(Li/Li+)に保持したところ、全く電流は流れなかった。試験後に作用極表面をSEMで観察したが試験前と比べて変化は認められなかった。
【0052】
次に、この高分子固体電解質膜を電解液とセパレータの代わりとして用いて実施例1と同様にLiCoO2を正極材料としたハーフセルを作製し、70℃で以下のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.1mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、初回の放電容量は、120mAh/g(正極の容量)であった。また、100回充放電を繰り返したが100回目の容量は初回の91%という結果が得られた。
【0053】
比較例1
エチレンカーボネート50vol%とジメチルカーボネート50vol%の混合溶媒中に、LiN(SO2252を1.0mol/lを溶解した電解液を調製し、実施例1と同様に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。作用極を5V(Li/Li+)に保持したところ、腐食電流が観察された。また、試験後に作用極表面をSEMで観察したところ、その表面に腐食によるものと思われるピットが多数観察された。
【0054】
次に、この電解液を用いて実施例1と同様にLiCoO2を正極材料としたハーフセルを作製し、以下のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、初回の放電容量は、117mAh/g(正極の容量)であった。また、100回充放電を繰り返したが100回目の容量は初回の69%という結果が得られた。
【0055】
比較例2
プロピレンカーボネート50vol%とジエチルカーボネート50vol%の混合溶媒中に、LiN(SO2CF32を1.0mol/lを溶解した電解液を調製し、実施例1と同様に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。作用極を5V(Li/Li+)に保持したところ、腐食電流が観察された。また、試験後に作用極表面をSEMで観察したところ、その表面に腐食によるものと思われるピットが多数観察された。
【0056】
次に、この電解液を用いて実施例1と同様にLiCoO2を正極材料としたハーフセルを作製し、以下のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、初回の放電容量は、112mAh/g(正極の容量)であった。また、100回充放電を繰り返したが100回目の容量は初回の67%という結果が得られた。
【0057】
比較例3
エチレンカーボネート50vol%とジメチルカーボネート50vol%の混合溶媒中に、LiN(SO2CF3)(SO249)を1.0mol/lを溶解した電解液を調製し、実施例1と同様に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。作用極を5V(Li/Li+)に保持したところ、腐食電流が観察された。また、試験後に作用極表面をSEMで観察したところ、その表面に腐食によるものと思われるピットが多数観察された。
【0058】
次に、この電解液を用いて実施例1と同様にLiCoO2を正極材料としたハーフセルを作製し、以下のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、初回の放電容量は、118mAh/g(正極の容量)であった。また、100回充放電を繰り返したが100回目の容量は初回の74%という結果が得られた。
【0059】
【発明の効果】
本発明は、リチウム電池、リチウムイオン電池、電気二重層キャパシタ等の電気化学ディバイス用として利用される従来の電解質に比べ、優れたサイクル特性、保存特性を有する電解質であり、その電解液または固体電解質並びにこれらを用いた電池を可能としたものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolyte, an electrolytic solution, or a solid electrolyte that exhibits excellent cycle characteristics used for electrochemical devices such as lithium batteries, lithium ion batteries, and electric double layer capacitors, and a battery using the same.
[0002]
[Prior art]
With the development of portable devices in recent years, the development of electrochemical devices using electrochemical phenomena such as batteries and capacitors as a power source has become active. Further, as an electrochemical device other than the power source, an electrochromic display (ECD) in which a color change is caused by an electrochemical reaction can be given.
[0003]
These electrochemical devices are generally composed of a pair of electrodes and an ionic conductor filling them. As the ionic conductor, a solution in which a salt (AB) composed of a cation (A + ) and an anion (B ) called an electrolyte is dissolved in a solvent, a polymer, or a mixture thereof is used. When this electrolyte is dissolved, it dissociates into a cation and an anion, and conducts ions. In order to obtain the ionic conductivity necessary for the device, it is necessary that this electrolyte is dissolved in a sufficient amount in a solvent or a polymer. Actually, a solvent other than water is often used as a solvent, and there are currently only a few types of electrolytes having sufficient solubility in such organic solvents and polymers. For example, as an electrolyte for a lithium battery, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) and LiCF 3 SO 3 only. The cation portion is often determined by the device, such as the lithium ion of a lithium battery, but the anion portion can be used if the condition that the solubility is high is satisfied.
[0004]
While the application range of devices is diversifying, the optimum electrolyte for each application is being searched for, but at present, optimization is reaching its limit because there are few types of anions. Moreover, the existing electrolyte has various problems, and an electrolyte having a novel anion portion is desired. Specifically, ClO 4 ions are explosive and AsF 6 ions are toxic and cannot be used for safety reasons. The only practically used LiPF 6 also has problems such as heat resistance and hydrolysis resistance. LiN (CF 3 SO 2 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) and LiCF 3 SO 3 have high stability and ionic conductivity. It is a very excellent electrolyte because it is high, but it is difficult to use because the aluminum current collector in the battery is corroded in a state where a potential is applied.
[0005]
[Concrete means for solving the problem]
As a result of intensive studies in view of the problems of the prior art, the present inventors have found a system in which an electrolyte having a novel chemical structural feature and a conventional one are combined, and have reached the present invention.
[0006]
That is, the present invention relates to a compound comprising a chemical structural formula represented by general formula (1) and a compound comprising a chemical structural formula represented by general formula (2), general formula (3), or general formula (4). An electrolyte for at least one lithium battery and lithium ion battery ,
[0007]
[Chemical 2]
[0008]
M is B or P, A a + is Li ion, a is 1, b is 1, p is 1, m is 1 to 2 , n is 1 to 4 , q is 0 or 1 R 1 represents C 1 -C 10 alkylene, C 1 -C 10 halogenated alkylene, C 6 -C 20 arylene, or C 6 -C 20 halogenated arylene (these alkylene and arylenes). May have a substituent or a hetero atom in the structure, and m R 1 may be bonded to each other.), R 2 is halogen, X 1 and X 2 are O, And x, y, and z are each independently an electrolyte for a lithium battery and a lithium ion battery , each representing 1 to 8, and the lithium battery and the lithium ion battery that are obtained by dissolving the electrolyte in a non-aqueous solvent . An electrolyte or a solution of the electrolyte in a polymer. A lithium battery and a solid electrolyte for a lithium ion battery , and at least a positive electrode, a negative electrode, an electrolytic solution or a solid electrolyte, and the battery containing the electrolyte according to claim 1 in the electrolytic solution or the solid electrolyte are provided.
[0009]
The alkyl, alkyl halide, aryl, and aryl halide used in the present invention include those having other functional groups such as a branch, a hydroxyl group, and an ether bond.
[0010]
Hereinafter, the present invention will be described in more detail.
[0011]
Here, first, specific examples of the compound represented by the general formula (1) used in the present invention are shown below.
[0012]
[Chemical 3]
[0013]
[Formula 4]
[0015]
[Chemical 6]
[0016]
Here, lithium ions may be mentioned as A a + .
[0018]
The electrolyte represented by the general formula (1), which is a part of the structure of the present invention, has an ionic metal complex structure, and M at the center thereof is a transition metal, group III, group IV of the periodic table, Or selected from group V elements. Preferably, any of Al, B, V, Ti, Si, Zr, Ge, Sn, Cu, Y, Zn, Ga, Nb, Ta, Bi, P, As, Sc, Hf, or Sb, and B or P is preferable. Although various elements can be used as the central M, Al, B, V, Ti, Si, Zr, Ge, Sn, Cu, Y, Zn, Ga, Nb, Ta, Bi, P, As , Sc, Hf, or Sb is relatively easy to synthesize. Further, in the case of B or P, in addition to the ease of synthesis, it has excellent properties in all aspects such as low toxicity, stability, and cost.
[0019]
Next, the part of the ligand that is a feature of the electrolyte (ionic metal complex) represented by the general formula (1) will be described. Hereinafter, the organic or inorganic part bonded to M is referred to as a ligand.
[0020]
R 1 in the general formula (1) is selected from C 1 to C 10 alkylene, C 1 to C 10 halogenated alkylene, C 6 to C 20 arylene, or C 6 to C 20 halogenated arylene. These alkylenes and arylenes may have a substituent or a hetero atom in the structure. Specifically, instead of hydrogen on alkylene and arylene, halogen, chain or cyclic alkyl group, aryl group, alkenyl group, alkoxy group, aryloxy group, sulfonyl group, amino group, cyano group, carbonyl group, acyl group , An amide group, a hydroxyl group, and a structure in which nitrogen, sulfur, or oxygen is introduced in place of carbon on alkylene and arylene. Furthermore, plural R 1 s may be bonded to each other, and examples thereof include a ligand such as ethylenediaminetetraacetic acid.
[0021]
R 2 is preferably a halogen, preferably an electron-withdrawing group, particularly fluorine. When R 2 is fluorine, the ion conductivity is very high due to the improvement in dissociation of the electrolyte due to its strong electron-withdrawing property and the effect of improving the mobility due to the reduction in size.
[0022]
X 1 and X 2 are each independently O, and the ligand is bonded to M through these heteroatoms. Here, it is not impossible to combine other than O, but it is very complicated in synthesis. Since this compound has a bond of M by X 1 and X 2 in the same ligand, these ligands constitute a chelate structure with M. Due to the effect of this chelate, the heat resistance, chemical stability, and hydrolysis resistance of this compound are improved. The constant q in this ligand is 0 or 1. Particularly, 0 is preferable because this chelate ring is a five-membered ring, so that the chelate effect is exerted most strongly and the stability is increased.
[0024]
The constants m and n related to the number of ligands described so far are determined by the type of M at the center, and m is preferably 1 to 2 and n is preferably 1 to 4 .
[0025]
Next, specific examples of the compounds represented by the general formula (2), the general formula (3), and the general formula (4) include LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2). F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9), and LiC (SO 2 CF 3) 3 , include like. When these electrolytes are used alone, the aluminum current collector in the battery is corroded in a state where an electric potential is applied, so that there is a problem that the capacity decreases when the charge / discharge cycle is repeated. In the present invention, it is possible to prevent corrosion of the aluminum current collector by using the electrolyte having the sulfonyl group and the electrolyte of the general formula (1) in combination. Although the details of the principle are not clear, it is presumed that the electrolyte of the general formula (1) is slightly decomposed on the electrode surface to form a film composed of the ligand on the aluminum surface, thereby preventing the corrosion. .
[0026]
The usage ratio of these electrolytes is preferably in the following range in consideration of the cycle characteristics of the electrochemical device and the effect of improving the storage stability. The molar ratio of the electrolyte of general formula (1) and the electrolytes of general formula (2), general formula (3), and general formula (4) is 5:95 to 95: 5, preferably 30:70 to 70:30. It is. When the electrolyte of the general formula (1) is less than 5, since the effect of preventing corrosion of aluminum is small, the cycle characteristics and storage stability are deteriorated, and when it is larger than 95, the general formula (2), general The high ion conductivity and electrochemical stability of the formula (3) and the general formula (4) cannot be sufficiently exhibited.
[0027]
When an electrochemical device is constituted using the electrolyte of the present invention, its basic components are composed of an ion conductor, a negative electrode, a positive electrode, a current collector, a separator, a container, and the like.
[0028]
As the ionic conductor, a mixture of an electrolyte and a non-aqueous solvent or polymer is used. If a non-aqueous solvent is used, this ionic conductor is generally called an electrolytic solution, and if a polymer is used, it becomes a polymer solid electrolyte. The polymer solid electrolyte includes those containing a non-aqueous solvent as a plasticizer.
[0029]
The non-aqueous solvent is not particularly limited as long as it is an aprotic solvent capable of dissolving the electrolyte of the present invention, and examples thereof include carbonates, esters, ethers, lactones, nitriles, amides, sulfones. Can be used. Moreover, not only a single solvent but 2 or more types of mixed solvents may be sufficient. Specific examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide. , Sulfolane, and γ-butyrolactone.
[0030]
However, when two or more kinds of mixed solvents are used, in the case of an electrolyte in which A a + in the general formula (1) is Li ion, among these nonaqueous solvents, an aprotic solvent having a dielectric constant of 20 or more and a dielectric constant Is preferably dissolved in a mixed solvent composed of 10 or less aprotic solvents. In particular, this lithium salt has low solubility in an aprotic solvent having a dielectric constant of 10 or less, such as diethyl ether, dimethyl carbonate, etc., and sufficient ionic conductivity cannot be obtained by itself, and conversely, an aprotic property having a dielectric constant of 20 or more. Although the solvent alone has high solubility, its viscosity is also high, so that ions do not easily move and sufficient ionic conductivity cannot be obtained. If these are mixed, appropriate solubility and mobility can be ensured, and sufficient ionic conductivity can be obtained.
[0031]
The polymer that dissolves the electrolyte is not particularly limited as long as it is an aprotic polymer. Examples thereof include polymers having polyethylene oxide in the main chain or side chain, homopolymers or copolymers of polyvinylidene fluoride, methacrylic acid ester polymers, polyacrylonitrile and the like. When a plasticizer is added to these polymers, the above-mentioned aprotic non-aqueous solvent can be used. Mixing the electrolyte concentration of the present invention in these ion conductors in the, 0.1 mol / dm 3 or more, the saturation concentration or less, preferably, 0.5 mol / dm 3 or more and 1.5 mol / dm 3 or less. If the concentration is lower than 0.1 mol / dm 3 , the ion conductivity is low, which is not preferable.
[0032]
Although it does not specifically limit as a negative electrode material, In the case of a lithium battery, the alloy of lithium metal and lithium and another metal is used. In the case of a lithium ion battery, a material using a phenomenon called intercalation such as carbon, natural graphite, or metal oxide obtained by firing a polymer, an organic substance, pitch or the like is used. In the case of an electric double layer capacitor, activated carbon, porous metal oxide, porous metal, conductive polymer, or the like is used.
[0033]
As the cathode material is not particularly limited, a lithium battery and a lithium ion battery, for example, LiCoO 2, LiNiO 2, LiMnO 2, lithium-containing oxides such as LiMn 2 O 4, TiO 2, V 2 O 5, MoO Oxides such as 3 , sulfides such as TiS 2 and FeS, or conductive polymers such as polyacetylene, polyparaphenylene, polyaniline, and polypyrrole are used. In the case of an electric double layer capacitor, activated carbon, porous metal oxide, porous metal, conductive polymer, or the like is used.
[0034]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this Example.
[0035]
Example 1
In a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of dimethyl carbonate,
[0036]
[Chemical 7]
[0037]
An electrolyte solution prepared by dissolving 0.05 mol / l of a lithium borate derivative having the structure: 0.95 mol / l of LiN (SO 2 C 2 F 5 ) 2 was prepared, and the ionic conductivity was measured using an AC bipolar cell. Was measured. As a result, the ionic conductivity at 25 ° C. was 7.2 mS / cm.
[0038]
Next, a corrosion test of the aluminum current collector was performed using this electrolytic solution. The test cell was a beaker type having aluminum as a working electrode, a counter electrode and lithium metal as a reference electrode. When the working electrode was held at 5 V (Li / Li + ), no current flowed. After the test, the surface of the working electrode was observed with SEM, but no change was observed compared to before the test.
[0039]
Furthermore, using this electrolytic solution, a half cell was produced using LiCoO 2 as a positive electrode material, and a battery charge / discharge test was actually performed. The test cell was produced as follows. To 90 parts by weight of LiCoO 2 powder, 5 parts by weight of polyvinylidene fluoride (PVDF) as a binder and 5 parts by weight of acetylene black as a conductive material were mixed, and N, N-dimethylformamide was further added to form a paste. The paste was applied on an aluminum foil and dried to obtain a test positive electrode body. Lithium metal was used for the negative electrode. Then, using the glass fiber filter as a separator, an electrolyte was immersed in the separator to assemble a cell.
[0040]
Next, a constant current charge / discharge test was performed under the following conditions. Both charging and discharging were performed at a current density of 0.35 mA / cm 2 , charging was performed at 4.2 V, and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, the initial discharge capacity was 118 mAh / g (capacity of the positive electrode). Moreover, although charging / discharging was repeated 100 times, the capacity | capacitance of the 100th time obtained the result of 95% of the first time.
[0041]
Example 2
In a mixed solvent of 50 vol% propylene carbonate and 50 vol% diethyl carbonate, 0.10 mol / l of a lithium borate derivative having the same structure as in Example 1 and 0.90 mol / l of LiN (SO 2 CF 3 ) 2 Was prepared, and the ionic conductivity was measured with an AC bipolar cell. As a result, the ionic conductivity at 25 ° C. was 8.8 mS / cm.
[0042]
Next, in the same manner as in Example 1, a corrosion test of the aluminum current collector was performed using this electrolytic solution. When the working electrode was held at 5 V (Li / Li + ), no current flowed. After the test, the surface of the working electrode was observed with SEM, but no change was observed compared to before the test.
[0043]
Furthermore, a half cell using LiCoO 2 as a positive electrode material was produced in the same manner as in Example 1 using this electrolytic solution, and a constant current charge / discharge test was performed under the following conditions. Both charging and discharging were performed at a current density of 0.35 mA / cm 2 , charging was performed at 4.2 V, and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, the initial discharge capacity was 115 mAh / g (positive electrode capacity). Moreover, although charging / discharging was repeated 100 times, the capacity | capacitance of the 100th time obtained the result of 88% of the first time.
[0044]
Example 3
In a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of dimethyl carbonate, 0.05 mol / l of lithium borate derivative having the same structure as in Example 1 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) Was dissolved in 0.95 mol / l, and the ionic conductivity was measured with an AC bipolar cell. As a result, the ionic conductivity at 25 ° C. was 6.5 mS / cm.
[0045]
Next, in the same manner as in Example 1, a corrosion test of the aluminum current collector was performed using this electrolytic solution. When the working electrode was held at 5 V (Li / Li + ), no current flowed. After the test, the surface of the working electrode was observed with SEM, but no change was observed compared to before the test.
[0046]
Furthermore, a half cell using LiCoO 2 as a positive electrode material was produced in the same manner as in Example 1 using this electrolytic solution, and a constant current charge / discharge test was performed under the following conditions. Both charging and discharging were performed at a current density of 0.35 mA / cm 2 , charging was performed at 4.2 V, and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, the initial discharge capacity was 120 mAh / g (capacity of the positive electrode). Moreover, although charging / discharging was repeated 100 times, the capacity | capacitance of the 100th time obtained the result of 91% of the first time.
[0047]
Example 4
In a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of dimethyl carbonate, 0.95 mol / l of lithium borate derivative having the same structure as in Example 1 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) Was dissolved in 0.05 mol / l, and the ionic conductivity was measured with an AC bipolar cell. As a result, the ionic conductivity at 25 ° C. was 6.9 mS / cm.
[0048]
Next, in the same manner as in Example 1, a corrosion test of the aluminum current collector was performed using this electrolytic solution. When the working electrode was held at 5 V (Li / Li + ), no current flowed. After the test, the surface of the working electrode was observed with SEM, but no change was observed compared to before the test.
[0049]
Furthermore, a half cell using LiCoO 2 as a positive electrode material was produced in the same manner as in Example 1 using this electrolytic solution, and a constant current charge / discharge test was performed under the following conditions. Both charging and discharging were performed at a current density of 0.35 mA / cm 2 , charging was performed at 4.2 V, and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, the initial discharge capacity was 120 mAh / g (capacity of the positive electrode). Moreover, although charging / discharging was repeated 100 times, the capacity | capacitance of the 100th time obtained the result of 93% of the first time.
[0050]
Example 5
Acetonitrile was added to 70 parts by weight of polyethylene oxide having an average molecular weight of 10000 to prepare a solution, and 5 parts by weight of a lithium borate derivative having the same structure as in Example 1, LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) was added in an amount of 25 parts by weight, which was cast on glass and dried to remove the solvent acetonitrile, thereby preparing a polymer solid electrolyte membrane.
[0051]
Next, a corrosion test of the aluminum current collector was performed using this polymer solid electrolyte membrane. This film was sandwiched between an aluminum electrode and a lithium electrode as working electrodes, and measured by pressure bonding. When the working electrode was held at 5 V (Li / Li + ), no current flowed. After the test, the surface of the working electrode was observed with SEM, but no change was observed compared to before the test.
[0052]
Next, using this polymer solid electrolyte membrane as an electrolyte and a separator, a half cell using LiCoO 2 as a positive electrode material was produced in the same manner as in Example 1, and constant current charge / discharge was performed at 70 ° C. under the following conditions. The test was conducted. Both charging and discharging were performed at a current density of 0.1 mA / cm 2 , charging was performed at 4.2 V, and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, the initial discharge capacity was 120 mAh / g (capacity of the positive electrode). Moreover, although charging / discharging was repeated 100 times, the capacity | capacitance of the 100th time obtained the result of 91% of the first time.
[0053]
Comparative Example 1
An electrolytic solution in which 1.0 mol / l of LiN (SO 2 C 2 F 5 ) 2 was dissolved in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of dimethyl carbonate was prepared. Was used to conduct corrosion tests on aluminum current collectors. When the working electrode was held at 5 V (Li / Li + ), a corrosion current was observed. Further, when the surface of the working electrode was observed with an SEM after the test, many pits that were thought to be due to corrosion were observed on the surface.
[0054]
Next, a half cell using LiCoO 2 as a positive electrode material was prepared in the same manner as in Example 1 using this electrolytic solution, and a constant current charge / discharge test was performed under the following conditions. Both charging and discharging were performed at a current density of 0.35 mA / cm 2 , charging was performed at 4.2 V, and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, the initial discharge capacity was 117 mAh / g (capacity of the positive electrode). Moreover, although charging / discharging was repeated 100 times, the capacity | capacitance of the 100th time obtained the result of 69% of the first time.
[0055]
Comparative Example 2
An electrolyte solution in which 1.0 mol / l of LiN (SO 2 CF 3 ) 2 was dissolved in a mixed solvent of 50 vol% propylene carbonate and 50 vol% diethyl carbonate was prepared, and this electrolyte solution was used in the same manner as in Example 1. The corrosion test of the aluminum current collector was conducted. When the working electrode was held at 5 V (Li / Li + ), a corrosion current was observed. Further, when the surface of the working electrode was observed with an SEM after the test, many pits that were thought to be due to corrosion were observed on the surface.
[0056]
Next, a half cell using LiCoO 2 as a positive electrode material was prepared in the same manner as in Example 1 using this electrolytic solution, and a constant current charge / discharge test was performed under the following conditions. Both charging and discharging were performed at a current density of 0.35 mA / cm 2 , charging was performed at 4.2 V, and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, the initial discharge capacity was 112 mAh / g (positive electrode capacity). Moreover, although charging / discharging was repeated 100 times, the capacity | capacitance of the 100th time obtained the result of 67% of the first time.
[0057]
Comparative Example 3
An electrolyte solution in which 1.0 mol / l of LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) was dissolved in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of dimethyl carbonate was prepared. In addition, a corrosion test of the aluminum current collector was performed using this electrolytic solution. When the working electrode was held at 5 V (Li / Li + ), a corrosion current was observed. Further, when the surface of the working electrode was observed with an SEM after the test, many pits that were thought to be due to corrosion were observed on the surface.
[0058]
Next, a half cell using LiCoO 2 as a positive electrode material was prepared in the same manner as in Example 1 using this electrolytic solution, and a constant current charge / discharge test was performed under the following conditions. Both charging and discharging were performed at a current density of 0.35 mA / cm 2 , charging was performed at 4.2 V, and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, the initial discharge capacity was 118 mAh / g (capacity of the positive electrode). Moreover, although charging / discharging was repeated 100 times, the capacity | capacitance of the 100th time obtained the result of 74% of the first time.
[0059]
【The invention's effect】
The present invention is an electrolyte having excellent cycle characteristics and storage characteristics as compared with conventional electrolytes used for electrochemical devices such as lithium batteries, lithium ion batteries, and electric double layer capacitors. In addition, a battery using these is made possible.

Claims (5)

一般式(1)で示される化学構造式よりなる化合物と、一般式(2)、一般式(3)、または一般式(4)で示される化学構造式よりなる化合物のうち少なくとも一つよりなるリチウム電池及びリチウムイオン電池用電解質。
Mは、B、またはP、
a+は、Liイオン、
aは、1、
bは、1、
pは、1、
mは、1〜
nは、1〜
qは、0または1をそれぞれ表し、
1は、C1〜C10のアルキレン、C1〜C10のハロゲン化アルキレン、C〜C20のアリーレン、またはC〜C20のハロゲン化アリーレン(これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を持ってもよく、またm個存在するR1はそれぞれが結合してもよい。)、
2は、ハロゲン、
1、X2は、O、
x、y、zは、それぞれ独立で、1から8をそれぞれ表す。
It consists of at least one of the compound consisting of the chemical structural formula shown by the general formula (1) and the compound consisting of the chemical structural formula shown by the general formula (2), the general formula (3), or the general formula (4). Electrolyte for lithium battery and lithium ion battery .
M is B or P,
A a + is Li ion,
a is 1,
b is 1,
p is 1,
m is 1-2 ,
n is 1 to 4 ,
q represents 0 or 1 respectively;
R 1 is C 1 -C 10 alkylene, C 1 -C 10 halogenated alkylene, C 6 -C 20 arylene, or C 6 -C 20 halogenated arylene (these alkylene and arylene are in the structure) May have a substituent or a hetero atom, and m R 1 may be bonded to each other.)
R 2 is halogen,
X 1 and X 2 are O,
x, y, and z are each independently 1 to 8;
請求項1記載の電解質を非水溶媒に溶解したものよりなることを特徴とするリチウム電池及びリチウムイオン電池用電解液。An electrolyte for lithium batteries and lithium ion batteries, comprising the electrolyte according to claim 1 dissolved in a non-aqueous solvent. 非水溶媒が、誘電率が20以上の非プロトン性溶媒と誘電率が10以下の非プロトン性溶媒からなる混合溶媒であることを特徴とする請求項記載のリチウム電池及びリチウムイオン電池用電解液。 3. The electrolysis for lithium battery and lithium ion battery according to claim 2 , wherein the non-aqueous solvent is a mixed solvent comprising an aprotic solvent having a dielectric constant of 20 or more and an aprotic solvent having a dielectric constant of 10 or less. liquid. 請求項1記載の電解質をポリマーに溶解したものよりなることを特徴とするリチウム電池及びリチウムイオン電池用固体電解質。A solid electrolyte for a lithium battery and a lithium ion battery, comprising the electrolyte according to claim 1 dissolved in a polymer. 少なくとも正極、負極、電解液または固体電解質からなり、該電解液または固体電解質に請求項1に記載の電解質を含むことを特徴とする電池。  A battery comprising at least a positive electrode, a negative electrode, an electrolyte solution or a solid electrolyte, wherein the electrolyte solution or solid electrolyte contains the electrolyte according to claim 1.
JP2000376731A 2000-10-03 2000-12-12 Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries Expired - Fee Related JP3730861B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000376731A JP3730861B2 (en) 2000-12-12 2000-12-12 Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
EP01123577A EP1195834B1 (en) 2000-10-03 2001-10-01 Electrolyte for electrochemical device
DE60143070T DE60143070D1 (en) 2000-10-03 2001-10-01 Electrolyte for electrochemical device
US09/969,127 US6783896B2 (en) 2000-10-03 2001-10-03 Electrolyte for electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376731A JP3730861B2 (en) 2000-12-12 2000-12-12 Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries

Publications (2)

Publication Number Publication Date
JP2002184465A JP2002184465A (en) 2002-06-28
JP3730861B2 true JP3730861B2 (en) 2006-01-05

Family

ID=18845553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376731A Expired - Fee Related JP3730861B2 (en) 2000-10-03 2000-12-12 Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries

Country Status (1)

Country Link
JP (1) JP3730861B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4795654B2 (en) * 2003-06-16 2011-10-19 株式会社豊田中央研究所 Lithium ion secondary battery
JP4711639B2 (en) * 2004-03-29 2011-06-29 セントラル硝子株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
JP2005285492A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
JP5350845B2 (en) * 2009-03-13 2013-11-27 株式会社豊田中央研究所 Lithium ion secondary battery
CN104851612A (en) * 2015-04-03 2015-08-19 安徽江威精密制造有限公司 Composite electrode material improving current discharge performance and preparation method thereof

Also Published As

Publication number Publication date
JP2002184465A (en) 2002-06-28

Similar Documents

Publication Publication Date Title
JP3722685B2 (en) Electrolyte for electrochemical device and battery using the same
US6787267B2 (en) Electrolyte for electrochemical device
JP4175792B2 (en) Electrolytic solution or gel electrolyte for electrochemical device and battery
JP4281030B2 (en) Non-aqueous electrolyte battery
JP3730855B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4020557B2 (en) Electrolyte for electrochemical devices
JP4226844B2 (en) Method for inhibiting corrosion of electrochemical device member and battery
JP4076738B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP3730830B2 (en) Electrolyte for electrochemical devices
JP3730861B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730860B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3974012B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4190207B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730856B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4076748B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP2004103372A (en) Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same
JP3712358B2 (en) Electrolyte for electrochemical device, electrolyte or solid electrolyte thereof, and battery
JP4104294B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4104293B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4104290B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4175798B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4076727B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP4104291B2 (en) Electrolyte for electrochemical device, electrolyte or solid electrolyte thereof, and battery
JP4104292B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4076726B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees