JP4076738B2 - Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery - Google Patents

Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery Download PDF

Info

Publication number
JP4076738B2
JP4076738B2 JP2001177867A JP2001177867A JP4076738B2 JP 4076738 B2 JP4076738 B2 JP 4076738B2 JP 2001177867 A JP2001177867 A JP 2001177867A JP 2001177867 A JP2001177867 A JP 2001177867A JP 4076738 B2 JP4076738 B2 JP 4076738B2
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
battery
formula
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001177867A
Other languages
Japanese (ja)
Other versions
JP2002373703A (en
Inventor
辻岡  章一
高瀬  浩成
幹弘 高橋
博美 杉本
誠 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2001177867A priority Critical patent/JP4076738B2/en
Priority to DE60143070T priority patent/DE60143070D1/en
Priority to EP01123577A priority patent/EP1195834B1/en
Priority to US09/969,127 priority patent/US6783896B2/en
Publication of JP2002373703A publication Critical patent/JP2002373703A/en
Application granted granted Critical
Publication of JP4076738B2 publication Critical patent/JP4076738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte, electrolytic solution or solid electrolyte showing an excellent cycle characteristic, for use with lithium batteries, lithium ion batteries, or electrochemical devices such as electric double-layer capacitors, and to provide a battery using it. SOLUTION: The electrolyte for an electrochemical device comprises a compound of the general formula 1 and one or more of compounds of general formulae 2 to 4. In the formulae, M represents a transition metal or an element of the groups III to V; A<a+> represents a metal ion, a hydrogen ion or an onium ion; (a) is 1 to 3; b is 1 to 3; p is b/a; m is 1 to 4; n is 1 to 8; q is 0 or 1; R<1> represents a C1-10 alkylene or the like; R<2> represents halogen, a C1-10 alkyl or the like, or X<3> R<3> ; X<1> , X<2> and X<3> each represent O, S or NR<4> 4; R<3> and R<4> each represent hydrogen, a C1-10 alkyl, or a C1-10 alkyl halide or the like; Y<1> , Y<2> and Y<3> each represent an SO2 group or a CO group; and R<5> to R<7> each represent an electron-withdrawing organic substituent group.

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム電池、リチウムイオン電池利用される優れたサイクル特性を示す電解質、電解液または固体電解質、及びそれを用いた、リチウム電池またはリチウムイオン電池に関する。
【0002】
【従来の技術】
近年の携帯機器の発展に伴い、その電源として電池やキャパシタのような電気化学的現象を利用した電気化学ディバイスの開発が盛んに行われるようになった。また、電源以外の電気化学ディバイスとしては、電気化学反応により色の変化が起こるエレクトロクロミックディスプレイ(ECD)が挙げられる。
【0003】
これらの電気化学ディバイスは、一般に一対の電極とその間を満たすイオン伝導体から構成される。このイオン伝導体には、溶媒、高分子またはそれらの混合物中に電解質と呼ばれるカチオン(A+)とアニオン(B-)からなる塩類(AB)を溶解したものが用いられる。この電解質は溶解することにより、カチオンとアニオンに解離して、イオン伝導する。ディバイスに必要なイオン伝導度を得るためには、この電解質が溶媒や高分子に十分な量溶解することが必要である。実際は水以外のものを溶媒として用いる場合が多く、このような有機溶媒や高分子に十分な溶解度を持つ電解質は現状では数種類に限定される。例えば、リチウム電池用電解質としては、LiClO4、LiPF6、LiBF4 、LiAsF6、LiN(SO2CF32、LiN(SO2252 、LiN(SO2CF3)(SO249)およびLiCF3SO3のみである。カチオンの部分はリチウム電池のリチウムイオンのように、ディバイスにより決まっているものが多いが、アニオンの部分は溶解性が高いという条件を満たせば使用可能である。
【0004】
【発明が解決しようとする課題】
ディバイスの応用範囲が多種多様化している中で、それぞれの用途に対する最適な電解質が探索されているが、現状ではアニオンの種類が少ないため最適化も限界に達している。また、既存の電解質は種々の問題を持っており、新規のアニオン部を有する電解質が要望されている。具体的にはClO4イオンは爆発性、AsF6イオンは毒性を有するため安全上の理由で使用できない。唯一実用化されているLiPF6も耐熱性、耐加水分解性などの問題を有する。LiN(CF3SO22、LiN(SO2252 、LiN(SO2CF3)(SO249)およびLiCF3SO3は安定性が高く、イオン伝導度も高いため非常に優れた電解質であるが、電池内のアルミニウムの集電体を電位がかかった状態で腐食するため使用が困難である。
【0005】
【課題を解決するための手段】
本発明者らは、かかる従来技術の問題点に鑑み鋭意検討の結果、新規の化学構造的な特徴を有する電解質を数種類組み合わせた系を見出し本発明に到達したものである。
【0006】
すなわち本発明は、化学式が下記式(1a)、式(1b)、式(1c)、式(1d)、または式(1e)で示されるいずれかの化合物と、
【化7】

Figure 0004076738
(1a)、
【化8】
Figure 0004076738
(1b)、
【化9】
Figure 0004076738
(1c)、
【化10】
Figure 0004076738
(1d)、
【化11】
Figure 0004076738
(1e)
一般式(2)、一般式(3)、または一般式(4)で示される化学構造式よりなる化合物のうち少なくとも一つよりなる、アルミニウム集電体を備えるリチウム電池及びリチウムイオン電池用電解質で、
【0007】
【化12】
Figure 0004076738
【0008】
a+ は、リチウムイオン、aは、1、Y 、Y、Yは、それぞれ独立で、SO基を、R、R、Rは、それぞれ独立で、一般式(2)の場合、R は、CF CH または(CF CH、一般式(3)の場合、R とR は、それぞれCF CH または(CF CH、あるいはR とR が共に(CF C、一般式(4)の場合、R 、R 、R は、(CF CHをそれぞれ表す、アルミニウム集電体を備えるリチウム電池及びリチウムイオン電池用電解質であり、該電解質を非水溶媒に溶解したものよりなる、アルミニウム集電体を備えるリチウム電池及びリチウムイオン電池用電解液または該電解質をポリマーに溶解したものよりなる、アルミニウム集電体を備えるリチウム電池及びリチウムイオン電池用固体電解質、及び少なくとも正極、負極、電解液または固体電解質からなり、該電解液または固体電解質に該電解質を含む、アルミニウム集電体を備えるリチウム電池またはリチウムイオン電池を提供するものである。
【0010】
以下に、本発明をより詳細に説明する。
【0018】
ここではAa+としてリチウムイオンが挙げられる。
【0020】
本発明の構成の一部である化学式が式(1a)、式(1b)、式(1c)、式(1d)、または式(1e)で示される電解質は、イオン性金属錯体構造を採っており、その中心となる金属B、またはPであるさらに、B、またはPの場合、合成の容易性のほか、低毒性、安定性、コストとあらゆる面で優れた特性を有する。
【0027】
次に、一般式(2)、一般式(3)、一般式(4)で示される化合物の具体例としては、CFCHOSOLi、(CFCHOSOLi、(CFCHOSONLi、((CFCHOSONLi、(CFCHOSO)((CFCHOSO)NLi、((CFCOSONLi、および((CFCHOSOCLi、等が挙げられるこれらの電解質は単独で使用すると、電池内のアルミニウムの集電体を電位がかかった状態で腐食するため、充放電サイクルを繰り返すと容量が低下するという問題点を有する。本発明ではこれらのスルホニル基を有する電解質と、化学式が式(1a)、式(1b)、式(1c)、式(1d)、または式(1e)で示される電解質を混合して使用することで、このアルミニウムの集電体の腐食を防止することが可能となった。その原理の詳細は明らかではないが、化学式が式(1a)、式(1b)、式(1c)、式(1d)、または式(1e)で示される電解質が電極表面でわずかに分解してアルミニウム表面にその配位子からなる皮膜が形成され、その腐食を防止するものと推測される。
【0028】
これらの電解質の使用割合は、アルミニウム集電体を備えるリチウム電池及びリチウムイオン電池のサイクル特性や保存安定性の向上効果を考慮すると、以下に示す範囲が好ましい。化学式が式(1a)、式(1b)、式(1c)、式(1d)、または式(1e)で示される電解質と、一般式(2)、一般式(3)、一般式(4)の電解質のモル比は、1:99〜99:1、好ましくは20:80〜80:20である。化学式が式(1a)、式(1b)、式(1c)、式(1d)、または式(1e)で示される電解質が1より少ない場合は、アルミニウムの腐食防止の効果が小さいため、サイクル特性、保存安定性が悪くなるし、また、99より大きい場合は、一般式(2)、一般式(3)、一般式(4)のイオン伝導性の高さ、電気化学的安定性が充分に発揮できない。
【0029】
本発明の電解質を用いてアルミニウム集電体を備えるリチウム電池またはリチウムイオン電池を構成する場合、その基本構成要素としては、イオン伝導体、負極、正極、集電体、セパレーターおよび容器等から成る。
【0030】
イオン伝導体としては、電解質と非水系溶媒又はポリマーの混合物が用いられる。非水系溶媒を用いれば、一般にこのイオン伝導体は電解液と呼ばれ、ポリマーを用いれば、ポリマー固体電解質と呼ばれるものになる。ポリマー固体電解質には可塑剤として非水系溶媒を含有するものも含まれる。
【0031】
非水溶媒としては、本発明の電解質を溶解できる非プロトン性の溶媒であれば特に限定されるものではなく、例えば、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、アミド類、スルホン類等が使用できる。また、単一の溶媒だけでなく、二種類以上の混合溶媒でもよい。具体例としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、およびγ−ブチロラクトン等を挙げることができる。
【0032】
ただし、二種類以上の混合溶媒にする場合これらの非水溶媒のうち誘電率が20以上の非プロトン性溶媒と誘電率が10以下の非プロトン性溶媒からなる混合溶媒に溶解することにより電解液を調製することが好ましい。特にリチウム塩ではジエチルエーテル、ジメチルカーボネート等の誘電率が10以下の非プロトン性溶媒に対する溶解度が低く単独では十分なイオン伝導度が得られず、また、逆に誘電率20以上の非プロトン性溶媒単独では溶解度は高いもののその粘度も高いため、イオンが移動しにくくなりやはり十分なイオン伝導度が得られない。これらを混合すれば、適当な溶解度と移動度を確保することができ十分なイオン伝導度を得ることができる。
【0033】
また、電解質を溶解するポリマーとしては、非プロトン性のポリマーであれば特に限定されるものではない。例えば、ポリエチレンオキシドを主鎖または側鎖に持つポリマー、ポリビニリデンフロライドのホモポリマーまたはコポリマー、メタクリル酸エステルポリマー、ポリアクリロニトリルなどが挙げられる。これらのポリマーに可塑剤を加える場合は、上記の非プロトン性非水溶媒が使用可能である。これらのイオン伝導体中における本発明の混合電解質濃度は、0.1mol/dm3以上、飽和濃度以下、好ましくは、0.5mol/dm3以上、1.5mol/dm3以下である。0.1mol/dm3より濃度が低いとイオン伝導度が低いため好ましくない。
【0034】
負極材料としては、特に限定されないが、リチウム電池の場合、リチウム金属やリチウムと他の金属との合金および金属間化合物が使用される。また、リチウムイオン電池の場合、ポリマー、有機物、ピッチ等を焼成して得られたカーボンや天然黒鉛、金属酸化物等のインターカレーションと呼ばれる現象を利用した材料が使用される
【0035】
正極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、例えば、LiCoO2 、LiNiO2 、LiMnO2、LiMn24 等のリチウム含有酸化物、TiO2 、V25、MoO3 等の酸化物、TiS2 、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、およびポリピロール等の導電性高分子が使用される
【0036】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
【0037】
実施例1
エチレンカーボネート50vol%とジメチルカーボネート50vol%の混合溶媒中に、
【0038】
【化9】
Figure 0004076738
【0039】
の構造を有するホウ酸リチウム誘導体を0.01mol/lと((CF32CHOSO22NLiを0.99mol/lとを溶解した電解液を調製し、この電解液を用いてアルミニウム集電体の腐食試験を実施した。試験用セルは作用極としてアルミニウム、対極及び参照極としてリチウム金属を有するビーカー型のものを用いた。作用極を5V(Li/Li+)に保持したところ、全く電流は流れなかった。試験後に作用極表面をSEMで観察したが試験前と比べて変化は認められなかった。
【0040】
さらに、この電解液を用いてLiCoO2を正極材料、天然黒鉛を負極材料としてセルを作製し、実際に電池の充放電試験を実施した。試験用セルは以下のように作製した。
【0041】
LiCoO2粉末90重量部に、バインダーとして5重量部のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5重量部混合し、さらにN,N−ジメチルホルムアミドを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。また、天然黒鉛粉末90重量部に、バインダーとして10重量部のポリフッ化ビニリデン(PVDF)を混合し、さらにN,N−ジメチルホルムアミドを添加し、スラリー状にした。このスラリーを銅箔上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。そして、ポリエチレン製セパレータに電解液を浸み込ませてセルを組み立てた。
【0042】
次に、以下のような条件で定電流充放電試験を実施した。環境温度25℃で充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、500回充放電を繰り返したが500回目の容量は初回の87%という結果が得られた。
【0043】
実施例2
エチレンカーボネート50vol%とジエチルカーボネート50vol%の混合溶媒中に、実施例1と同様の構造を有するホウ酸リチウム誘導体を0.90mol/lと(CF3CH2OSO22NLiを0.10mol/lとを溶解した電解液を調製し、実施例1と同様に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。作用極を5V(Li/Li+)に保持したところ、全く電流は流れなかった。試験後に作用極表面をSEMで観察したが試験前と比べて変化は認められなかった。
【0044】
さらに、この電解液を用いて実施例1と同様にLiCoO2を正極材料、天然黒鉛を負極材料としたセルを作製し、以下のような条件で定電流充放電試験を実施した。環境温度60℃で充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、500回充放電を繰り返したが500回目の容量は初回の84%という結果が得られた。
【0045】
実施例3
エチレンカーボネート50vol%とエチルメチルカーボネート50vol%の混合溶媒中に、
【0046】
【化10】
Figure 0004076738
【0047】
の構造を有するホウ酸リチウム誘導体を0.70mol/lと((CF32CHOSO22NLiを0.30mol/lとを溶解した電解液を調製し、実施例1と同様に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。作用極を5V(Li/Li+)に保持したところ、全く電流は流れなかった。試験後に作用極表面をSEMで観察したが試験前と比べて変化は認められなかった。
【0048】
さらに、この電解液を用いて実施例1と同様にLiCoO2を正極材料、天然黒鉛を負極材料としたセルを作製し、以下のような条件で定電流充放電試験を実施した。環境温度60℃で充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、500回充放電を繰り返したが500回目の容量は初回の89%という結果が得られた。
【0049】
実施例4
平均分子量10000のポリエチレンオキシド70重量部にアセトニトリルを添加して溶液を調整し、この溶液に実施例1と同様の構造を有するホウ酸リチウム誘導体を5重量部、((CF32CHOSO22NLiを25重量部加え、これをガラス上にキャストし、乾燥して溶媒のアセトニトリルを除去することにより高分子固体電解質膜を作製した。
【0050】
次に、この高分子固体電解質膜を用いてアルミニウム集電体の腐食試験を実施した。この膜を作用極のアルミニウム電極とリチウム電極で挟み、圧着し測定を行った。作用極を5V(Li/Li+)に保持したところ、全く電流は流れなかった。試験後に作用極表面をSEMで観察したが試験前と比べて変化は認められなかった。
【0051】
次に、この高分子固体電解質膜を電解液とセパレータの代わりとして用いてLiCoO2を正極材料、リチウム金属箔を負極材料としたセルを作製し、70℃で以下のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.1mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、初回の放電容量は、120mAh/g(正極の容量)であった。また、100回充放電を繰り返したが100回目の容量は初回の92%という結果が得られた。
【0052】
比較例1
エチレンカーボネート50vol%とジメチルカーボネート50vol%の混合溶媒中に、((CF32CHOSO22NLiを1.0mol/lを溶解した電解液を調製し、実施例1と同様に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。作用極を5V(Li/Li+)に保持したところ、腐食電流が観察された。また、試験後に作用極表面をSEMで観察したところ、その表面に腐食によるものと思われるピットが多数観察された。
【0053】
次に、この電解液を用いて実施例1と同様にLiCoO2を正極材料、天然黒鉛を負極材料としたセルを作製し、以下のような条件で定電流充放電試験を実施した。環境温度25℃で充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、500回充放電を繰り返したが500回目の容量は初回の62%という結果が得られた。
【0054】
比較例2
エチレンカーボネート50vol%とジエチルカーボネート50vol%の混合溶媒中に、(CF3CH2OSO22NLiを1.0mol/lを溶解した電解液を調製し、実施例1と同様に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。作用極を5V(Li/Li+)に保持したところ、腐食電流が観察された。また、試験後に作用極表面をSEMで観察したところ、その表面に腐食によるものと思われるピットが多数観察された。
【0055】
次に、この電解液を用いて実施例1と同様にLiCoO2を正極材料、天然黒鉛を負極材料としたセルを作製し、以下のような条件で定電流充放電試験を実施した。環境温度60℃で充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、500回充放電を繰り返したが500回目の容量は初回の58%という結果が得られた。
【0056】
比較例3
エチレンカーボネート50vol%とエチルメチルカーボネート50vol%の混合溶媒中に、実施例1と同様の構造を有するホウ酸リチウム誘導体を1.0mol/lを溶解した電解液を調製し、実施例1と同様に、LiCoO2を正極材料、天然黒鉛を負極材料としたセルを作製し、以下のような条件で定電流充放電試験を実施した。環境温度60℃で充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、500回充放電を繰り返したが500回目の容量は初回の65%という結果が得られた。
【0057】
【発明の効果】
本発明は、リチウム電池、リチウムイオン電池利用される従来の電解質に比べ、優れたサイクル特性、保存特性を有する電解質であり、その電解液または固体電解質並びにこれらを用いた、アルミニウム集電体を備えるリチウム電池またはリチウムイオン電池を可能としたものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium battery, an electrolyte exhibiting excellent cycle characteristics used for a lithium ion battery , an electrolytic solution or a solid electrolyte, and a lithium battery or a lithium ion battery using the same.
[0002]
[Prior art]
With the development of portable devices in recent years, the development of electrochemical devices using electrochemical phenomena such as batteries and capacitors as a power source has become active. Further, as an electrochemical device other than the power source, an electrochromic display (ECD) in which a color change is caused by an electrochemical reaction can be given.
[0003]
These electrochemical devices are generally composed of a pair of electrodes and an ionic conductor filling them. As the ionic conductor, a solution in which a salt (AB) composed of a cation (A + ) and an anion (B ) called an electrolyte is dissolved in a solvent, a polymer, or a mixture thereof is used. When this electrolyte is dissolved, it dissociates into a cation and an anion, and conducts ions. In order to obtain the ionic conductivity necessary for the device, it is necessary that this electrolyte is dissolved in a sufficient amount in a solvent or a polymer. Actually, a solvent other than water is often used as a solvent, and there are currently only a few types of electrolytes having sufficient solubility in such organic solvents and polymers. For example, as an electrolyte for a lithium battery, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) and LiCF 3 SO 3 only. The cation portion is often determined by the device, such as the lithium ion of a lithium battery, but the anion portion can be used if the condition that the solubility is high is satisfied.
[0004]
[Problems to be solved by the invention]
While the application range of devices is diversifying, the optimum electrolyte for each application is being searched for, but at present, optimization is reaching its limit because there are few types of anions. Moreover, the existing electrolyte has various problems, and an electrolyte having a novel anion portion is desired. Specifically, ClO 4 ions are explosive and AsF 6 ions are toxic and cannot be used for safety reasons. The only practically used LiPF 6 also has problems such as heat resistance and hydrolysis resistance. LiN (CF 3 SO 2 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) and LiCF 3 SO 3 have high stability and ionic conductivity. It is a very excellent electrolyte because it is high, but it is difficult to use because the aluminum current collector in the battery is corroded in a state where a potential is applied.
[0005]
[Means for Solving the Problems]
As a result of intensive studies in view of the problems of the prior art, the present inventors have found a system in which several kinds of electrolytes having novel chemical structural characteristics are combined and have reached the present invention.
[0006]
That is, the present invention relates to any compound represented by the following formula (1a), formula (1b), formula (1c), formula (1d), or formula (1e) :
[Chemical 7]
Figure 0004076738
(1a),
[Chemical 8]
Figure 0004076738
(1b),
[Chemical 9]
Figure 0004076738
(1c),
[Chemical Formula 10]
Figure 0004076738
(1d),
Embedded image
Figure 0004076738
(1e)
A lithium battery including an aluminum current collector and an electrolyte for a lithium ion battery, comprising at least one of compounds represented by the chemical structural formula represented by the general formula (2), the general formula (3), or the general formula (4). ,
[0007]
Embedded image
Figure 0004076738
[0008]
A a + is a lithium ion, a is 1 , Y 1 , Y 2 , Y 3 are each independent, and SO 2 groups are independent of each other, R 5 , R 6 , R 7 are each independent, and the general formula (2) In this case, R 5 is CF 3 CH 2 or (CF 3 ) 2 CH, and in the case of general formula (3), R 5 and R 6 are CF 3 CH 2 or (CF 3 ) 2 CH, or R 5, respectively. And R 6 are both (CF 3 ) 3 C and general formula (4), R 5 , R 6 , R 7 each represent (CF 3 ) 2 CH , a lithium battery with an aluminum current collector and lithium an electrolyte for ion battery, consisting obtained by dissolving a electrolyte in a nonaqueous solvent composed of those dissolved in the polymer electrolyte solution or electrolyte for a lithium battery and a lithium-ion battery comprising an aluminum current collector, an aluminum current collector Li with a body Um batteries and lithium ion batteries for a solid electrolyte, and at least becomes a positive electrode, a negative electrode, from the electrolyte or solid electrolyte comprises electrolyte in the electrolyte solution or a solid electrolyte, a lithium battery or a lithium ion battery comprising an aluminum current collector To do.
[0010]
Hereinafter, the present invention will be described in more detail.
[0018]
Here, lithium ions are exemplified as A a + .
[0020]
The electrolyte represented by the formula (1a), formula (1b), formula (1c), formula (1d), or formula (1e) , which is a part of the structure of the present invention, has an ionic metal complex structure. cage, metal serving as the center is a B or P,. Furthermore, in the case of B or P, in addition to the ease of synthesis, it has excellent properties in all aspects such as low toxicity, stability and cost.
[0027]
Next, specific examples of the compounds represented by the general formula (2), the general formula (3), and the general formula (4) include CF 3 CH 2 OSO 3 Li, (CF 3 ) 2 CHOSO 3 Li, and (CF 3 CH 2 OSO 2 ) 2 NLi, ((CF 3 ) 2 CHOSO 2 ) 2 NLi, (CF 3 CH 2 OSO 2 ) ((CF 3 ) 2 CHOSO 2 ) NLi, ((CF 3 ) 3 COSO 2 ) 2 NLi , And ((CF 3 ) 2 CHOSO 2 ) 3 CLi, and the like . When these electrolytes are used alone, the aluminum current collector in the battery is corroded in a state where an electric potential is applied, so that there is a problem that the capacity decreases when the charge / discharge cycle is repeated. In the present invention, an electrolyte having these sulfonyl groups and an electrolyte having a chemical formula of formula (1a), formula (1b), formula (1c), formula (1d), or formula (1e) are mixed and used. Thus, corrosion of the aluminum current collector can be prevented. Although the details of the principle are not clear, the electrolyte represented by the formula (1a), (1b), (1c), (1d), or (1e) is slightly decomposed on the electrode surface. It is presumed that a film composed of the ligand is formed on the aluminum surface and prevents the corrosion.
[0028]
The usage ratio of these electrolytes is preferably in the range shown below in consideration of the cycle characteristics and the effect of improving storage stability of a lithium battery and a lithium ion battery including an aluminum current collector . An electrolyte having a chemical formula of formula (1a), formula (1b), formula (1c), formula (1d), or formula (1e), and general formula (2), general formula (3), or general formula (4) The molar ratio of the electrolyte is 1:99 to 99: 1, preferably 20:80 to 80:20. When the chemical formula is less than 1 in the formula (1a), the formula (1b), the formula (1c), the formula (1d), or the formula (1e), the effect of preventing the corrosion of aluminum is small. The storage stability is deteriorated, and when it is greater than 99, the high ion conductivity and electrochemical stability of the general formula (2), the general formula (3), and the general formula (4) are sufficient. I can't show it.
[0029]
When a lithium battery or a lithium ion battery including an aluminum current collector is configured using the electrolyte of the present invention, the basic components include an ion conductor, a negative electrode, a positive electrode, a current collector, a separator, a container, and the like.
[0030]
As the ionic conductor, a mixture of an electrolyte and a non-aqueous solvent or polymer is used. If a non-aqueous solvent is used, this ionic conductor is generally called an electrolytic solution, and if a polymer is used, it becomes a polymer solid electrolyte. The polymer solid electrolyte includes those containing a non-aqueous solvent as a plasticizer.
[0031]
The non-aqueous solvent is not particularly limited as long as it is an aprotic solvent capable of dissolving the electrolyte of the present invention, and examples thereof include carbonates, esters, ethers, lactones, nitriles, amides, sulfones. Can be used. Moreover, not only a single solvent but 2 or more types of mixed solvents may be sufficient. Specific examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide. , Sulfolane, and γ-butyrolactone.
[0032]
However, when two or more kinds of mixed solvents are used , electrolysis is achieved by dissolving them in a mixed solvent composed of an aprotic solvent having a dielectric constant of 20 or more and an aprotic solvent having a dielectric constant of 10 or less. It is preferable to prepare a liquid. In particular, lithium salts have low solubility in an aprotic solvent having a dielectric constant of 10 or less, such as diethyl ether and dimethyl carbonate, so that sufficient ionic conductivity cannot be obtained by themselves, and conversely, an aprotic solvent having a dielectric constant of 20 or more. Independently, the solubility is high, but the viscosity is also high, so that ions are difficult to move and sufficient ionic conductivity cannot be obtained. If these are mixed, appropriate solubility and mobility can be ensured, and sufficient ionic conductivity can be obtained.
[0033]
The polymer that dissolves the electrolyte is not particularly limited as long as it is an aprotic polymer. Examples thereof include polymers having polyethylene oxide in the main chain or side chain, homopolymers or copolymers of polyvinylidene fluoride, methacrylic acid ester polymers, polyacrylonitrile and the like. When a plasticizer is added to these polymers, the above-mentioned aprotic non-aqueous solvent can be used. Mixing the electrolyte concentration of the present invention in these ion conductors in the, 0.1 mol / dm 3 or more, the saturation concentration or less, preferably, 0.5 mol / dm 3 or more and 1.5 mol / dm 3 or less. When the concentration is lower than 0.1 mol / dm 3 , the ionic conductivity is low, which is not preferable.
[0034]
Although it does not specifically limit as a negative electrode material, In the case of a lithium battery, the alloy and intermetallic compound of lithium metal, lithium, and another metal are used. In the case of a lithium ion battery, a material that uses a phenomenon called intercalation such as carbon, natural graphite, or metal oxide obtained by firing a polymer, an organic material, pitch, or the like is used .
[0035]
As the cathode material is not particularly limited, a lithium battery and a lithium ion battery, for example, LiCoO 2, LiNiO 2, LiMnO 2, lithium-containing oxides such as LiMn 2 O 4, TiO 2, V 2 O 5, MoO Oxides such as 3 , sulfides such as TiS 2 and FeS, or conductive polymers such as polyacetylene, polyparaphenylene, polyaniline, and polypyrrole are used .
[0036]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this Example.
[0037]
Example 1
In a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of dimethyl carbonate,
[0038]
[Chemical 9]
Figure 0004076738
[0039]
An electrolytic solution in which 0.01 mol / l of a lithium borate derivative having a structure of (mol) and (0.99 CF / l) of ((CF 3 ) 2 CHOSO 2 ) 2 NLi is dissolved is prepared. An electrical corrosion test was conducted. The test cell was a beaker type having aluminum as a working electrode, a counter electrode and lithium metal as a reference electrode. When the working electrode was held at 5 V (Li / Li + ), no current flowed. After the test, the surface of the working electrode was observed with SEM, but no change was observed compared to before the test.
[0040]
Furthermore, using this electrolytic solution, a cell was fabricated using LiCoO 2 as a positive electrode material and natural graphite as a negative electrode material, and a battery charge / discharge test was actually performed. The test cell was produced as follows.
[0041]
To 90 parts by weight of LiCoO 2 powder, 5 parts by weight of polyvinylidene fluoride (PVDF) as a binder and 5 parts by weight of acetylene black as a conductive material were mixed, and N, N-dimethylformamide was further added to form a paste. The paste was applied on an aluminum foil and dried to obtain a test positive electrode body. Further, 90 parts by weight of natural graphite powder was mixed with 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on a copper foil and dried at 150 ° C. for 12 hours to obtain a test negative electrode body. Then, the electrolyte was immersed in a polyethylene separator to assemble the cell.
[0042]
Next, a constant current charge / discharge test was performed under the following conditions. Charging and discharging were performed at an environmental temperature of 25 ° C. at a current density of 0.35 mA / cm 2. Charging was performed at 4.2 V and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, charging / discharging was repeated 500 times, but the 500th capacity was 87% of the first time.
[0043]
Example 2
In a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate, 0.90 mol / l of a lithium borate derivative having the same structure as in Example 1 and 0.10 mol / l of (CF 3 CH 2 OSO 2 ) 2 NLi An electrolytic solution in which 1 was dissolved was prepared, and a corrosion test of an aluminum current collector was performed using this electrolytic solution in the same manner as in Example 1. When the working electrode was held at 5 V (Li / Li + ), no current flowed. After the test, the surface of the working electrode was observed with SEM, but no change was observed compared to before the test.
[0044]
Further, using this electrolytic solution, a cell using LiCoO 2 as a positive electrode material and natural graphite as a negative electrode material was prepared in the same manner as in Example 1, and a constant current charge / discharge test was performed under the following conditions. Charging and discharging were performed at an environmental temperature of 60 ° C. at a current density of 0.35 mA / cm 2. Charging was performed at 4.2 V and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, charging / discharging was repeated 500 times, but the 500th capacity was 84% of the initial capacity.
[0045]
Example 3
In a mixed solvent of ethylene carbonate 50 vol% and ethyl methyl carbonate 50 vol%,
[0046]
[Chemical Formula 10]
Figure 0004076738
[0047]
An electrolyte solution prepared by dissolving 0.70 mol / l of a lithium borate derivative having the structure of (0.3) mol / l of ((CF 3 ) 2 CHOSO 2 ) 2 NLi was prepared. A corrosion test was conducted on the aluminum current collector using the electrolytic solution. When the working electrode was held at 5 V (Li / Li + ), no current flowed. After the test, the surface of the working electrode was observed with SEM, but no change was observed compared to before the test.
[0048]
Further, using this electrolytic solution, a cell using LiCoO 2 as a positive electrode material and natural graphite as a negative electrode material was prepared in the same manner as in Example 1, and a constant current charge / discharge test was performed under the following conditions. Charging and discharging were performed at an environmental temperature of 60 ° C. at a current density of 0.35 mA / cm 2. Charging was performed at 4.2 V and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, charging / discharging was repeated 500 times, but the 500th capacity was 89% of the first time.
[0049]
Example 4
Acetonitrile was added to 70 parts by weight of polyethylene oxide having an average molecular weight of 10000 to prepare a solution, and 5 parts by weight of a lithium borate derivative having the same structure as in Example 1 was added to this solution ((CF 3 ) 2 CHOSO 2 ). A polymer solid electrolyte membrane was prepared by adding 25 parts by weight of 2NLi, casting it on glass, and drying to remove acetonitrile as a solvent.
[0050]
Next, a corrosion test of the aluminum current collector was performed using this polymer solid electrolyte membrane. This film was sandwiched between an aluminum electrode and a lithium electrode as working electrodes, and measured by pressure bonding. When the working electrode was held at 5 V (Li / Li + ), no current flowed. After the test, the surface of the working electrode was observed with SEM, but no change was observed compared to before the test.
[0051]
Next, a cell using LiCoO 2 as a positive electrode material and lithium metal foil as a negative electrode material was prepared using this polymer solid electrolyte membrane as an electrolyte and a separator, and charged at a constant current at 70 ° C. under the following conditions. A discharge test was performed. Both charging and discharging were performed at a current density of 0.1 mA / cm 2 , charging was performed at 4.2 V, and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, the initial discharge capacity was 120 mAh / g (capacity of the positive electrode). Moreover, although charging / discharging was repeated 100 times, the capacity | capacitance of the 100th time obtained the result of 92% of the first time.
[0052]
Comparative Example 1
An electrolytic solution was prepared by dissolving 1.0 mol / l of ((CF 3 ) 2 CHOSO 2 ) 2 NLi in a mixed solvent of 50 vol% ethylene carbonate and 50 vol% dimethyl carbonate. The corrosion test of the aluminum electrical power collector was implemented using the liquid. When the working electrode was held at 5 V (Li / Li + ), a corrosion current was observed. Further, when the surface of the working electrode was observed with an SEM after the test, many pits that were thought to be due to corrosion were observed on the surface.
[0053]
Next, using this electrolytic solution, a cell using LiCoO 2 as a positive electrode material and natural graphite as a negative electrode material was produced in the same manner as in Example 1, and a constant current charge / discharge test was performed under the following conditions. Charging and discharging were performed at an environmental temperature of 25 ° C. at a current density of 0.35 mA / cm 2. Charging was performed at 4.2 V and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, charging / discharging was repeated 500 times, but the capacity at the 500th time was 62% of the first time.
[0054]
Comparative Example 2
An electrolytic solution in which 1.0 mol / l of (CF 3 CH 2 OSO 2 ) 2 NLi was dissolved in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate was prepared. Was used to conduct corrosion tests on aluminum current collectors. When the working electrode was held at 5 V (Li / Li + ), a corrosion current was observed. Further, when the surface of the working electrode was observed with an SEM after the test, many pits that were thought to be due to corrosion were observed on the surface.
[0055]
Next, using this electrolytic solution, a cell using LiCoO 2 as a positive electrode material and natural graphite as a negative electrode material was produced in the same manner as in Example 1, and a constant current charge / discharge test was performed under the following conditions. Charging and discharging were performed at an environmental temperature of 60 ° C. at a current density of 0.35 mA / cm 2. Charging was performed at 4.2 V and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, charging / discharging was repeated 500 times, but the capacity at the 500th time was 58% of the first time.
[0056]
Comparative Example 3
An electrolyte solution was prepared by dissolving 1.0 mol / l of a lithium borate derivative having the same structure as in Example 1 in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of ethyl methyl carbonate. A cell using LiCoO 2 as a positive electrode material and natural graphite as a negative electrode material was prepared, and a constant current charge / discharge test was performed under the following conditions. Charging and discharging were performed at an environmental temperature of 60 ° C. at a current density of 0.35 mA / cm 2. Charging was performed at 4.2 V and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, charging / discharging was repeated 500 times, but the capacity at the 500th time was 65% of the first time.
[0057]
【The invention's effect】
The present invention as compared to conventional electrolytes utilized lithium battery, lithium ion battery, excellent cycle characteristics, a electrolyte with storage characteristics, the electrolyte solution or a solid electrolyte and using them, the aluminum current collector A lithium battery or a lithium ion battery can be provided .

Claims (5)

化学式が下記式(1a)、式(1b)、式(1c)、式(1d)、または式(1e)で示されるいずれかの化合物と、
Figure 0004076738
(1a)、
Figure 0004076738
(1b)、
Figure 0004076738
(1c)、
Figure 0004076738
(1d)、
Figure 0004076738
(1e)
一般式(2)、一般式(3)、または一般式(4)で示される化学構造式よりなる化合物のうち少なくとも一つよりなる、アルミニウム集電体を備えるリチウム電池及びリチウムイオン電池用電解質。
Figure 0004076738
a+ は、リチウムイオン、
aは、1をそれぞれ表し、
、Y、Yは、SO基、
、R、Rは、それぞれ独立で、一般式(2)の場合、R は、CF CH または(CF CH、一般式(3)の場合、R とR は、それぞれCF CH または(CF CH、あるいはR とR が共に(CF C、一般式(4)の場合、R 、R 、R は、(CF CHをそれぞれ表す。
Any compound represented by the following formula (1a), formula (1b), formula (1c), formula (1d), or formula (1e) ;
Figure 0004076738
(1a),
Figure 0004076738
(1b),
Figure 0004076738
(1c),
Figure 0004076738
(1d),
Figure 0004076738
(1e)
An electrolyte for a lithium battery and an lithium ion battery, comprising an aluminum current collector , comprising at least one of compounds represented by the chemical structural formula represented by the general formula (2), the general formula (3), or the general formula (4).
Figure 0004076738
A a + is lithium ion,
a represents 1 and
Y 1 , Y 2 and Y 3 are SO 2 groups,
R 5 , R 6 and R 7 are independent of each other. In the case of the general formula (2), R 5 is CF 3 CH 2 or (CF 3 ) 2 CH, and in the case of the general formula (3), R 5 and R 6 is CF 3 CH 2 or (CF 3 ) 2 CH, or when both R 5 and R 6 are (CF 3 ) 3 C, and in general formula (4), R 5 , R 6 , R 7 are ( Each represents CF 3 ) 2 CH .
請求項1記載の電解質を非水溶媒に溶解したものよりなることを特徴とする、アルミニウム集電体を備えるリチウム電池及びリチウムイオン電池用電解液A lithium battery comprising an aluminum current collector and an electrolyte for a lithium ion battery, wherein the electrolyte according to claim 1 is dissolved in a nonaqueous solvent. 非水溶媒が、誘電率が20以上の非プロトン性溶媒と誘電率が10以下の非プロトン性溶媒からなる混合溶媒であることを特徴とする請求項2記載の、アルミニウム集電体を備えるリチウム電池及びリチウムイオン電池用電解液。3. The lithium equipped with an aluminum current collector according to claim 2, wherein the non-aqueous solvent is a mixed solvent comprising an aprotic solvent having a dielectric constant of 20 or more and an aprotic solvent having a dielectric constant of 10 or less. Electrolyte for battery and lithium ion battery. 請求項1記載の電解質をポリマーに溶解したものよりなることを特徴とする、アルミニウム集電体を備えるリチウム電池及びリチウムイオン電池用固体電解質。A lithium battery comprising an aluminum current collector and a solid electrolyte for a lithium ion battery, wherein the electrolyte according to claim 1 is dissolved in a polymer. 少なくとも正極、負極、電解液または固体電解質からなり、該電解液または固体電解質に請求項1に記載の電解質を含むことを特徴とする、アルミニウム集電体を備えるリチウム電池またはリチウムイオン電池A lithium battery or lithium ion battery comprising an aluminum current collector, comprising at least a positive electrode, a negative electrode, an electrolytic solution, or a solid electrolyte, wherein the electrolytic solution or solid electrolyte includes the electrolyte according to claim 1.
JP2001177867A 2000-10-03 2001-06-13 Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery Expired - Fee Related JP4076738B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001177867A JP4076738B2 (en) 2001-06-13 2001-06-13 Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
DE60143070T DE60143070D1 (en) 2000-10-03 2001-10-01 Electrolyte for electrochemical device
EP01123577A EP1195834B1 (en) 2000-10-03 2001-10-01 Electrolyte for electrochemical device
US09/969,127 US6783896B2 (en) 2000-10-03 2001-10-03 Electrolyte for electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001177867A JP4076738B2 (en) 2001-06-13 2001-06-13 Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery

Publications (2)

Publication Number Publication Date
JP2002373703A JP2002373703A (en) 2002-12-26
JP4076738B2 true JP4076738B2 (en) 2008-04-16

Family

ID=19018647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177867A Expired - Fee Related JP4076738B2 (en) 2000-10-03 2001-06-13 Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery

Country Status (1)

Country Link
JP (1) JP4076738B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186115B2 (en) 2003-06-11 2008-11-26 ソニー株式会社 Lithium ion secondary battery
JP4941423B2 (en) * 2003-06-11 2012-05-30 ソニー株式会社 Lithium ion secondary battery
JP4795654B2 (en) * 2003-06-16 2011-10-19 株式会社豊田中央研究所 Lithium ion secondary battery
JP2005243504A (en) * 2004-02-27 2005-09-08 Sanyo Electric Co Ltd Lithium secondary battery
JP5796417B2 (en) 2011-08-31 2015-10-21 セントラル硝子株式会社 Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery
JP6440331B2 (en) 2014-05-08 2018-12-19 三星エスディアイ株式会社Samsung SDI Co., Ltd. Organic electrolyte and lithium battery employing this electrolyte
JP6098684B2 (en) 2015-08-12 2017-03-22 セントラル硝子株式会社 Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP2002373703A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
KR101363442B1 (en) Electrolyte for electrochemical device, electrolyte solution using same, and non-aqueous electrolyte battery
KR100467453B1 (en) Electrolyte for lithium secondary batteries and lithium secondary batteries comprising the same
US6787267B2 (en) Electrolyte for electrochemical device
JP3722685B2 (en) Electrolyte for electrochemical device and battery using the same
CN104508897A (en) Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
JP4711639B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4175792B2 (en) Electrolytic solution or gel electrolyte for electrochemical device and battery
JP4281030B2 (en) Non-aqueous electrolyte battery
JP4076738B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP3730855B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4104294B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4226844B2 (en) Method for inhibiting corrosion of electrochemical device member and battery
JP4190207B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3974012B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730861B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730860B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4104293B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4076748B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP2004103372A (en) Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same
JP4104290B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4175798B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730856B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4076727B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP4076726B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP4104292B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees