JP4281030B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4281030B2
JP4281030B2 JP24272998A JP24272998A JP4281030B2 JP 4281030 B2 JP4281030 B2 JP 4281030B2 JP 24272998 A JP24272998 A JP 24272998A JP 24272998 A JP24272998 A JP 24272998A JP 4281030 B2 JP4281030 B2 JP 4281030B2
Authority
JP
Japan
Prior art keywords
electrolyte
battery
electrolyte battery
solvent
litfsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24272998A
Other languages
Japanese (ja)
Other versions
JP2000077098A (en
Inventor
誠二郎 落合
亜矢 小林
徳雄 稲益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP24272998A priority Critical patent/JP4281030B2/en
Publication of JP2000077098A publication Critical patent/JP2000077098A/en
Application granted granted Critical
Publication of JP4281030B2 publication Critical patent/JP4281030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム電池、リチウムイオン電池等の非水電解質電池に関するものである。
【0002】
【従来の技術】
近年の携帯用電子機器の小型化に伴い、高エネルギー密度を有するリチウム二次電池の需要が増大している。また、電気自動車用等の大型電池への応用も期待されており、これらの研究開発において、高エネルギー密度化や大容量化の技術や安全性向上の技術の確立は不可欠である。現在、新しい支持電解質の開発がリチウム二次電池の安全性および信頼性の観点から必要になってきている。なぜならば、リチウム二次電池の支持電解質として最も多く用いられているLiPF6は熱的および化学的に安定であるとはいえず、新規支持電解質を用いることにより、リチウム二次電池における安全性および信頼性の改善、さらに充放電特性の改善が期待されるからである。
【0003】
【発明が解決しようとする課題】
LiPF6 に変わる支持電解質として、LiCF3 SO3 やLiN( SO2 CF3 )2 (LiTFSI)に代表される含フッ素有機物アニオンからなる支持電解質が期待されている。LiCF3 SO3 やLiTFSIはLiPF6 に比較して熱的および化学的に安定であり、リチウム二次電池において優れた特性を示すと考えられる。しかしながら、これら含フッ素有機物アニオンを含む支持電解質を用いた場合の問題点として、アルミニウム(Al)集電体の溶出が挙げられる。例えば、プロピレンカーボネートやエチレンカーボネートとジメチルカーボネート等の低粘度溶媒との混合溶媒にLiPF6 を溶解した電解液中においてAl金属は、リチウムの標準電極電位に対して4Vの電位を印加した場合においても安定に存在する。しかしながら、前記混合溶媒にLiCF3 SO3 やLiTFSIを溶解した電解液中においてAl金属は、リチウムの標準電極電位に対し4Vの電位を印加すると酸化電流が観測され、Alが溶出していると考えられる。Al金属は非常に軽量であり、かつ安価であるため、広くリチウム二次電池の集電体として用いられてきており、Alの溶出を抑制することがこれら含フッ素有機物アニオンからなる支持電解質実用化における最大の課題である。
【0004】
電解液中のAlの溶出において支持電解質の及ぼす影響については明確ではないが、金村らによって支持電解質の安定性が指摘されている(第28回新電池構想部会講演会予稿集p.1)。LiPF6 を用いた電解液中において5V(vs.Li/Li+ )でアノード分極した後のAl電極表面には酸化物やフッ化物の存在が確認され、XPS(光電子分光)による深さ分析のプロファイルから被膜の主成分がAlF3 に変化しているのに対し、LiCF3 SO3 を用いた場合においてはO元素が多く、比較的F元素が少ない。また、アノード酸化処理を行う前と同様のスペクトルが処理後に観測されていることから、Al金属表面に生成する酸化物およびフッ化物の不働態被膜の有無あるいは性質がAl電極の安定性に関係すると報告されている。LiCF3 SO3 は安定であるためにAl表面に不働態被膜を生成せず、LiPF6 は分解することによりAl表面に不働態被膜を生成し、Al金属を安定化していると考えられる。
【0005】
LiCF3 SO3 やLiTFSI等の支持電解質を用いた場合におけるAlの溶出は、Fの供給がなく、Al金属表面に不働態被膜が生成されないためであるとの見解より、添加剤の検討が行われている。一例として、HF水溶液の添加が挙げられ、十分ではないがAlの溶出が若干、抑制されることが確認されている。しかしながら、このようなフッ素被膜を形成するような添加剤は電池における充放電特性への影響が懸念される。
【0006】
そこで、含フッ素有機物アニオンを改良したLiN( SO2 2 5 2 やLiN( SO2 CF3 )( SO2 4 9 )等の支持電解質が提案されている。これらの支持電解質は被膜形成による安定化とは異なるメカニズムによってAlの溶出を抑制していると考えられる。このメカニズムについては明確ではないが、アニオンのサイズが影響している可能性がある。LiCF3 SO3 やLiTFSIに比較して、これらの支持電解質におけるアニオンのサイズは大きく、電荷密度が低いと予想される。これによりAlを溶出する能力が低下すると考えられる。あるいは、フルオロアルキル鎖が長くなることにより立体障害的効果が現れている可能性もある。しかしながら、アニオンのサイズが大きいほどAlの溶出抑制効果が大きいが、アニオンのサイズが大きくなることにより移動度の低下が起こり、イオン伝導度が低下するという問題点が残されている。
【0007】
【課題を解決するための手段】
本発明では上述の含フッ素有機物アニオンを含む支持電解質を含む電解液あるいは高分子ゲル電解質にアクセプター数が18.3よりも大きな値を示す溶媒、具体的にはスルトンを加えることにより、Alの溶出を抑制することが可能となる。よって、熱的および化学的に安定な支持電解質を用いることにより、安全性および信頼性の高いリチウム二次電池を得ることができる。
【0008】
アクセプター数はV.GultmannによってThe Donor-Acceptor Approch to Molecular Interactions, Plenum Press(1978)で報告されている。Gultmannはアクセプター数を1,2−ジクロロエタン中でその溶媒とトリエチルホスフィンオキシドによって形成された付加物の31P−NMRの化学シフトを用いて示しており、(C2 5 )PO:SbCl5 の化学シフトを100として他の(C2 5 )PO:アクセプター溶媒の化学シフトをアクセプター数(AN)と定義した。よって、ANの値が大きい溶媒ほど強くアニオンに配位すると予想される。即ち、電解液あるいは高分子ゲル電解質中で、溶媒が含フッ素有機物アニオンに強く配位することによりAlの溶出を抑制する効果があると考えられる。
【0009】
アクセプター数が18.3より大きな値を示す溶媒としてはジメチルホルムアミドなどのアミド類、アセトニトリルなどのニトリル類等が挙げられるが、リチウム二次電池に使用できる溶媒は多くなく、これらのうちスルトンを有する溶媒において良好な電池特性が得られた。
【0010】
【発明の実施の形態】
以下、本発明における非水電解質電池について説明する。図1はAlの腐食を評価するために用いたサイクリックボルタンメトリー用の評価セルである。aは作用極であり、1cm2 のAl箔を用いる。bおよびcはそれぞれ対極、参照極であり、共にニッケル板にリチウムを圧着したものである。dは非水電解質であり、非水溶媒にリチウム塩を溶解した非水電解液、あるいは非水溶媒、リチウム塩および高分子の複合材料である高分子ゲル電解質を用いる。評価条件は30℃雰囲気、電位掃引速度0.1mV/sで行う。
(実施例1)非水電解液として、LiTFSIを1mol/lの濃度で溶解したスルホランを用いた。図1のセルを用いてこの電解液のサイクリックボルタンメトリー測定を行った。
【0011】
(比較例1)非水電解液として、LiTFSIを1mol/lの濃度で溶解したγ−ブチロラクトンを用い、図1のセルを用いてこの電解液のサイクリックボルタンメトリー測定を行った。
【0012】
図2に実施例1および比較例1のサイクリックボルタンメトリー測定の結果を示す。比較例1で見られる3.7V以上での酸化電流が実施例1では観測されず、実施例1でAlの溶出が抑制されていることが確認された。しかしながら、実施例1における電解液はイオン伝導度が低いため、スルホランと他の溶媒との混合溶媒を用いる必要がある。混合に用いる溶媒にはエチレンカーボネートやプロピレンカーボネート等の環状炭酸エステル、γ−ブチロラクトン等の環状カルボン酸エステル、テトラヒドロフランや1,3−ジオキソラン等の環状エーテル、1,2−ジメトキシエタン等の鎖状エーテル、ジメチルカーボネートやエチルメチルカーボネート等の鎖状炭酸エステル、プロピオン酸メチル等の鎖状カルボン酸エステルなどが挙げられるが、これに限定されるものではなく、また、2種類以上を混合することも可能である。
【0013】
(実施例2)γ−ブチロラクトンとスルホランを重量比1:4で混合した後、LiTFSIを1mol/lの濃度で溶解して電解液を調製した。図1のセルを用いてこの電解液のサイクリックボルタンメトリー測定を行った。
【0014】
(実施例3)γ−ブチロラクトンとスルホランを重量比2:3で混合した後、LiTFSIを1mol/lの濃度で溶解して電解液を調製した。図1のセルを用いてこの電解液のサイクリックボルタンメトリー測定を行った。
【0015】
(比較例2)非水電解液として、LiBF4 を1mol/lの濃度で溶解したγ−ブチロラクトンを用い、図1のセルを用いてこの電解液のサイクリックボルタンメトリー測定を行った。
【0016】
図3に実施例1、2、3および比較例2のサイクリックボルタンメトリー測定の結果を示す。γ−ブチロラクトンの含有量が増加するにつれ、3.8V以上での酸化電流値の増加が確認された。しかしながら、酸化ピーク電流値は図2の比較例1よりも約1/100と小さく、Alの溶出が抑制されていることが確認された。
【0017】
(実施例4および5)ジメチルカーボネートとスルホランをそれぞれ重量比で1:4および2:3で混合した後、LiTFSIを1mol/lの濃度で溶解して電解液を調製した。表1に実施例1、2、3、4および5の電解液を用いて20℃におけるイオン伝導度を測定した結果を示す。γ−ブチロラクトンあるいはジメチルカーボネートを加えることによりイオン伝導度の向上が確認された。
【0018】
【表1】
【0019】
また、高分子と実施例1〜5のような電解液との複合体である高分子ゲル電解質においても同様なAlの溶出が抑制されていることが確認された。以下、高分子ゲル電解質を用いた電池について説明する。図4は評価に用いた電池であり、1はAl集電体、2は正極活物質、3は高分子ゲル電解質、4は負極活物質、5は負極集電体、6は外装を示す。
【0020】
(実施例6)高分子ゲル電解質として、ポリエーテル、LiTFSI、γ−ブチロラクトンおよびスルホランからなる複合材料を用い、図4で示される電池を用いて充放電サイクル試験を行った。γ−ブチロラクトンとスルホランの混合比は重量比で2:3とした。正極活物質としてはLiCoO2 、負極活物質にはカーボンを用いた。充放電は1mAの電流値で2.7〜4.2Vの範囲で行った。
【0021】
(比較例3)高分子ゲル電解質として、ポリエーテル、LiTFSI、γ−ブチロラクトンからなる複合材料を用い、図4で示される電池を用いて充放電サイクル試験を行った。正極活物質としてはLiCoO2 、負極活物質にはカーボンを用いた。充放電は1mAの電流値で2.7〜4.2Vの範囲で行った。
【0022】
実施例6および比較例3における充放電サイクル試験の結果を図5に示す。比較例3では1サイクル目から放電容量が低く、電池の解体後Alの腐食が確認されたのに対し、実施例6では初期サイクルより高い放電容量が得られ、サイクルを繰り返すことによる容量劣化も小さい結果となった。また、電池の解体後Alの腐食は確認されなかった。
【0023】
【発明の効果】
以上説明したように、LiN(CF SO またはLiOSO Rf1(式中Rf1は−F、−C 2k+1 、または−OC 2m 2n+1 であり、k=1〜5、m=1あるいは2、n=1〜5である)で示されるフッ素有機物アニオンからなる支持電解質を用いた非水電解液あるいは高分子ゲル電解質において、スルトンを溶媒に含有させることにより、リチウム電池の集電体に用いられるAlの腐食が抑制される。したがって、LiPF6 やLiBF4 に比較して熱的および化学的に安定である含フッ素有機物アニオンからなるリチウム塩を用いることにより、安全性および信頼性に優れた二次電池を提供できる。
【図面の簡単な説明】
【図1】サイクリックボルタンメトリー測定用セルの斜視図である。
【図2】各種電解液を用いた場合におけるAl極のサイクリックボルタモグラムの比較図である。
【図3】各種電解液を用いた場合におけるAl極のサイクリックボルタモグラムの比較図である。
【図4】評価に用いた電池の断面図である。
【図5】充放電サイクル試験におけるサイクル数と放電容量との関係図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonaqueous electrolyte battery such as a lithium battery or a lithium ion battery.
[0002]
[Prior art]
With the recent miniaturization of portable electronic devices, the demand for lithium secondary batteries having high energy density is increasing. Application to large batteries for electric vehicles is also expected, and in these research and development, it is essential to establish technologies for increasing energy density, increasing capacity, and improving safety. At present, the development of a new supporting electrolyte is required from the viewpoint of safety and reliability of lithium secondary batteries. This is because LiPF 6, which is most frequently used as a supporting electrolyte for lithium secondary batteries, is not thermally and chemically stable. By using a new supporting electrolyte, safety in lithium secondary batteries and This is because improvement in reliability and further improvement in charge / discharge characteristics are expected.
[0003]
[Problems to be solved by the invention]
As a supporting electrolyte replacing LiPF 6 , a supporting electrolyte made of a fluorine-containing organic anion typified by LiCF 3 SO 3 or LiN (SO 2 CF 3 ) 2 (LiTFSI) is expected. LiCF 3 SO 3 and LiTFSI are thermally and chemically stable compared to LiPF 6 and are considered to exhibit excellent characteristics in lithium secondary batteries. However, as a problem when using a supporting electrolyte containing these fluorine-containing organic anions, elution of an aluminum (Al) current collector can be mentioned. For example, in an electrolytic solution in which LiPF 6 is dissolved in a mixed solvent of a low viscosity solvent such as propylene carbonate or ethylene carbonate and dimethyl carbonate, Al metal is applied even when a potential of 4 V is applied to the standard electrode potential of lithium. It exists stably. However, in the electrolytic solution in which LiCF 3 SO 3 or LiTFSI is dissolved in the mixed solvent, an oxidation current is observed when Al metal is applied with a potential of 4 V with respect to the standard electrode potential of lithium, and Al is considered to elute. It is done. Since Al metal is very lightweight and inexpensive, it has been widely used as a current collector for lithium secondary batteries. Practical use of supporting electrolytes composed of these fluorine-containing organic anions can suppress the elution of Al. Is the biggest issue.
[0004]
Although the influence of the supporting electrolyte on the elution of Al in the electrolytic solution is not clear, the stability of the supporting electrolyte has been pointed out by Kanamura et al. The presence of oxides and fluorides was confirmed on the surface of the Al electrode after anodic polarization at 5 V (vs. Li / Li + ) in an electrolyte solution using LiPF 6, and depth analysis by XPS (photoelectron spectroscopy) was performed. From the profile, the main component of the film is changed to AlF 3 , whereas when LiCF 3 SO 3 is used, there are many O elements and relatively few F elements. In addition, since the same spectrum as before the anodic oxidation treatment was observed after the treatment, the presence or absence or properties of the oxide and fluoride passivated films formed on the Al metal surface are related to the stability of the Al electrode. It has been reported. Since LiCF 3 SO 3 is stable, it does not generate a passive film on the Al surface, and LiPF 6 decomposes to generate a passive film on the Al surface and stabilize the Al metal.
[0005]
Considering that the elution of Al in the case of using a supporting electrolyte such as LiCF 3 SO 3 or LiTFSI is because there is no supply of F and no passive film is formed on the surface of the Al metal, an additive was studied. It has been broken. An example is the addition of an HF aqueous solution, and it has been confirmed that although not sufficient, the elution of Al is somewhat suppressed. However, there is a concern that such an additive that forms a fluorine coating may affect the charge / discharge characteristics of the battery.
[0006]
Thus, supporting electrolytes such as LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), which have improved fluorine-containing organic anions, have been proposed. These supporting electrolytes are considered to suppress elution of Al by a mechanism different from stabilization by film formation. The mechanism is not clear, but the anion size may have an effect. Compared to LiCF 3 SO 3 and LiTFSI, the anion size in these supporting electrolytes is large and the charge density is expected to be low. This is thought to reduce the ability to elute Al. Alternatively, there is a possibility that a steric hindrance effect appears due to the longer fluoroalkyl chain. However, the larger the anion size, the greater the effect of suppressing the elution of Al. However, as the anion size increases, the mobility is lowered and the ionic conductivity is lowered.
[0007]
[Means for Solving the Problems]
In the present invention, by adding a solvent having an acceptor number greater than 18.3, specifically sultone, to the electrolyte solution or polymer gel electrolyte containing the above-mentioned supporting electrolyte containing a fluorine-containing organic anion, elution of Al is achieved. Can be suppressed. Therefore, a lithium secondary battery with high safety and reliability can be obtained by using a thermally and chemically stable supporting electrolyte.
[0008]
The number of acceptors is reported by V. Gultmann in The Donor-Acceptor Approch to Molecular Interactions, Plenum Press (1978). Gultmann shows the acceptor number using the 31P-NMR chemical shift of the adduct formed by its solvent and triethylphosphine oxide in 1,2-dichloroethane, and the chemistry of (C 2 H 5 ) PO: SbCl 5 . The chemical shift of other (C 2 H 5 ) PO: acceptor solvents was defined as the acceptor number (AN) with a shift of 100. Therefore, it is expected that the solvent having a larger AN value is more strongly coordinated with the anion. In other words, it is considered that the solvent is strongly coordinated to the fluorine-containing organic anion in the electrolytic solution or the polymer gel electrolyte, thereby suppressing the elution of Al.
[0009]
Examples of the solvent having an acceptor number greater than 18.3 include amides such as dimethylformamide, and nitriles such as acetonitrile. However, there are not many solvents that can be used for lithium secondary batteries, and among these, sultone is included. Good battery characteristics were obtained in the solvent.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the nonaqueous electrolyte battery in the present invention will be described. FIG. 1 shows an evaluation cell for cyclic voltammetry used for evaluating corrosion of Al. a is a working electrode, and a 1 cm 2 Al foil is used. b and c are a counter electrode and a reference electrode, respectively, and both are formed by pressure bonding lithium to a nickel plate. d is a non-aqueous electrolyte, and a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent or a polymer gel electrolyte that is a composite material of a non-aqueous solvent, a lithium salt and a polymer is used. The evaluation conditions are 30 ° C. atmosphere and potential sweep rate of 0.1 mV / s.
Example 1 As a non-aqueous electrolyte, sulfolane in which LiTFSI was dissolved at a concentration of 1 mol / l was used. The cyclic voltammetry measurement of this electrolyte solution was performed using the cell of FIG.
[0011]
(Comparative Example 1) As a non-aqueous electrolyte, γ-butyrolactone in which LiTFSI was dissolved at a concentration of 1 mol / l was used, and cyclic voltammetry measurement of this electrolyte was performed using the cell of FIG.
[0012]
FIG. 2 shows the results of cyclic voltammetry measurement in Example 1 and Comparative Example 1. The oxidation current at 3.7 V or higher seen in Comparative Example 1 was not observed in Example 1, and it was confirmed that Al elution was suppressed in Example 1. However, since the electrolytic solution in Example 1 has low ionic conductivity, it is necessary to use a mixed solvent of sulfolane and another solvent. Solvents used for mixing include cyclic carbonates such as ethylene carbonate and propylene carbonate, cyclic carboxylic acid esters such as γ-butyrolactone, cyclic ethers such as tetrahydrofuran and 1,3-dioxolane, and chain ethers such as 1,2-dimethoxyethane. , Chain carbonic acid esters such as dimethyl carbonate and ethyl methyl carbonate, and chain carboxylic acid esters such as methyl propionate, but are not limited thereto, and two or more types can be mixed. It is.
[0013]
Example 2 After mixing γ-butyrolactone and sulfolane at a weight ratio of 1: 4, LiTFSI was dissolved at a concentration of 1 mol / l to prepare an electrolytic solution. The cyclic voltammetry measurement of this electrolyte solution was performed using the cell of FIG.
[0014]
Example 3 After mixing γ-butyrolactone and sulfolane at a weight ratio of 2: 3, LiTFSI was dissolved at a concentration of 1 mol / l to prepare an electrolytic solution. The cyclic voltammetry measurement of this electrolyte solution was performed using the cell of FIG.
[0015]
(Comparative Example 2) As the non-aqueous electrolyte, γ-butyrolactone in which LiBF 4 was dissolved at a concentration of 1 mol / l was used, and cyclic voltammetry measurement of this electrolyte was performed using the cell of FIG.
[0016]
FIG. 3 shows the results of cyclic voltammetry measurement in Examples 1, 2, 3 and Comparative Example 2. As the content of γ-butyrolactone increased, an increase in oxidation current value at 3.8 V or higher was confirmed. However, the oxidation peak current value was as small as about 1/100 that of Comparative Example 1 in FIG. 2, and it was confirmed that elution of Al was suppressed.
[0017]
Examples 4 and 5 Dimethyl carbonate and sulfolane were mixed at a weight ratio of 1: 4 and 2: 3, respectively, and then LiTFSI was dissolved at a concentration of 1 mol / l to prepare an electrolytic solution. Table 1 shows the results of measuring the ionic conductivity at 20 ° C. using the electrolytic solutions of Examples 1, 2, 3, 4 and 5. Improvement of ionic conductivity was confirmed by adding γ-butyrolactone or dimethyl carbonate.
[0018]
[Table 1]
[0019]
Moreover, it was confirmed that the same elution of Al was suppressed also in the polymer gel electrolyte which is a composite of the polymer and the electrolyte solution as in Examples 1 to 5. Hereinafter, a battery using the polymer gel electrolyte will be described. FIG. 4 shows a battery used for evaluation, in which 1 is an Al current collector, 2 is a positive electrode active material, 3 is a polymer gel electrolyte, 4 is a negative electrode active material, 5 is a negative electrode current collector, and 6 is an exterior.
[0020]
(Example 6) As a polymer gel electrolyte, a composite material composed of polyether, LiTFSI, γ-butyrolactone and sulfolane was used, and a charge / discharge cycle test was conducted using the battery shown in FIG. The mixing ratio of γ-butyrolactone and sulfolane was 2: 3 by weight. LiCoO 2 was used as the positive electrode active material, and carbon was used as the negative electrode active material. Charging / discharging was performed in the range of 2.7 to 4.2 V at a current value of 1 mA.
[0021]
(Comparative Example 3) A charge / discharge cycle test was performed using a composite material composed of polyether, LiTFSI, and γ-butyrolactone as the polymer gel electrolyte, using the battery shown in FIG. LiCoO 2 was used as the positive electrode active material, and carbon was used as the negative electrode active material. Charging / discharging was performed in the range of 2.7 to 4.2 V at a current value of 1 mA.
[0022]
The results of the charge / discharge cycle test in Example 6 and Comparative Example 3 are shown in FIG. In Comparative Example 3, the discharge capacity was low from the first cycle, and corrosion of Al was confirmed after the battery was disassembled, whereas in Example 6, a higher discharge capacity was obtained than in the initial cycle, and the capacity was deteriorated by repeating the cycle. The result was small. Moreover, corrosion of Al was not confirmed after the battery was disassembled.
[0023]
【The invention's effect】
As described above, LiN (CF 3 SO 2 ) 2 or LiOSO 2 Rf1 (wherein Rf1 is —F, —C k F 2k + 1 , or —OC m H 2m C n F 2n + 1 , and k = 1 to 5 In a non-aqueous electrolyte or polymer gel electrolyte using a supporting electrolyte composed of a fluorine organic anion represented by m = 1 or 2, and n = 1 to 5, a lithium battery can be obtained by containing sultone in a solvent. Corrosion of Al used for the current collector is suppressed. Therefore, by using a lithium salt composed of a fluorine-containing organic anion that is thermally and chemically stable compared to LiPF 6 and LiBF 4 , a secondary battery excellent in safety and reliability can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view of a cyclic voltammetry measurement cell.
FIG. 2 is a comparison diagram of cyclic voltammograms of Al electrodes when various electrolytes are used.
FIG. 3 is a comparative diagram of cyclic voltammograms of Al electrodes when various electrolytes are used.
FIG. 4 is a cross-sectional view of a battery used for evaluation.
FIG. 5 is a diagram showing the relationship between the number of cycles and the discharge capacity in a charge / discharge cycle test.

Claims (3)

アルミニウムあるいはアルミニウム合金を正極の集電体とする電池において、電解液あるいは高分子ゲル電解質が、LiN(CF SO またはLiOSO Rf1(式中Rf1は−F、−C 2k+1 、または−OC 2m 2n+1 であり、k=1〜5、m=1あるいは2、n=1〜5である)で示される化合物のうち少なくとも一つを含み、且つ溶媒がスルトンを含有することを特徴とする非水電解質電池。In a battery in which aluminum or an aluminum alloy is used as a positive electrode current collector, an electrolytic solution or a polymer gel electrolyte is LiN (CF 3 SO 2 ) 2 or LiOSO 2 Rf1 (where Rf1 is −F, −C k F 2k + 1 , Or —OC m H 2m C n F 2n + 1 , k = 1 to 5, m = 1 or 2, and n = 1 to 5) , and the solvent contains sultone. nonaqueous electrolyte battery characterized by containing. 前記スルトンの全溶媒中における含有量が、重量部で60%以上であることを特徴とする請求項1記載の非水電解質電池。The nonaqueous electrolyte battery according to claim 1, wherein the content of the sultone in all the solvents is 60% or more by weight. 前記スルトンが、化で示される化合物であることを特徴とする請求項1記載の非水電解質電池。
(式中R14は、−Hまたは−CHである。)
The non-aqueous electrolyte battery according to claim 1 , wherein the sultone is a compound represented by Chemical Formula 1 .
(Wherein R 9 to R 14 are —H or —CH 3 ).
JP24272998A 1998-08-28 1998-08-28 Non-aqueous electrolyte battery Expired - Fee Related JP4281030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24272998A JP4281030B2 (en) 1998-08-28 1998-08-28 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24272998A JP4281030B2 (en) 1998-08-28 1998-08-28 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2000077098A JP2000077098A (en) 2000-03-14
JP4281030B2 true JP4281030B2 (en) 2009-06-17

Family

ID=17093388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24272998A Expired - Fee Related JP4281030B2 (en) 1998-08-28 1998-08-28 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4281030B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693248B2 (en) * 2001-01-09 2011-06-01 三井化学株式会社 Polymer solid electrolyte and secondary battery
JP5135649B2 (en) * 2001-04-04 2013-02-06 日産自動車株式会社 Solid polymer electrolyte battery and method for producing solid polymer electrolyte
JP3866191B2 (en) 2001-12-11 2007-01-10 日立マクセル株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP4433163B2 (en) * 2004-02-13 2010-03-17 日本電気株式会社 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4967464B2 (en) * 2006-06-07 2012-07-04 パナソニック株式会社 Non-aqueous electrolyte secondary battery
KR101412899B1 (en) 2010-02-12 2014-06-26 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
JP5674390B2 (en) * 2010-09-13 2015-02-25 住友精化株式会社 Sulfone compound and non-aqueous electrolyte using the same
CN107742743A (en) 2012-06-05 2018-02-27 日本电气株式会社 Lithium secondary battery
JP6018820B2 (en) * 2012-07-04 2016-11-02 株式会社日本触媒 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
WO2014080870A1 (en) * 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery
EP2924796B1 (en) 2012-11-20 2018-04-18 Nec Corporation Lithium ion secondary battery
WO2016204278A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
JP2021089875A (en) * 2019-12-06 2021-06-10 株式会社日立製作所 Nonaqueous electrolyte solution, semisolid electrolyte layer, sheet for secondary battery and secondary battery

Also Published As

Publication number Publication date
JP2000077098A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
Park et al. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis (fluorosulfonyl) imide electrolytes
US9012071B2 (en) Electrolyte solution for a secondary battery
US8679684B2 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
JP4187959B2 (en) Non-aqueous electrolyte and secondary battery using the same
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
JPWO2006115023A1 (en) Non-aqueous electrolyte, electrochemical energy storage device using the same, and non-aqueous electrolyte secondary battery
JP2008522376A5 (en)
ES2946916T3 (en) Mixture of lithium salts and their uses as battery electrolyte
JP4281030B2 (en) Non-aqueous electrolyte battery
JP5165862B2 (en) Non-aqueous electrolyte and electrochemical energy storage device using the same
JPWO2020022452A1 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
US20220029199A1 (en) Non-aqueous electrolyte solution for battery and lithium secondary battery
JP4226844B2 (en) Method for inhibiting corrosion of electrochemical device member and battery
JP4076738B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP3730855B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
WO2021205750A1 (en) Electrolytic solution for electrochemical device, and electrochemical device
JP3974012B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730861B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4190207B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730860B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP6894751B2 (en) Non-aqueous electrolyte for batteries, additives for batteries, and lithium secondary batteries
JP2002100403A (en) Nonaqueous electrolyte and nonaqueous electrochemical device containing the same
JP2004103372A (en) Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees