WO2021205750A1 - Electrolytic solution for electrochemical device, and electrochemical device - Google Patents

Electrolytic solution for electrochemical device, and electrochemical device Download PDF

Info

Publication number
WO2021205750A1
WO2021205750A1 PCT/JP2021/005681 JP2021005681W WO2021205750A1 WO 2021205750 A1 WO2021205750 A1 WO 2021205750A1 JP 2021005681 W JP2021005681 W JP 2021005681W WO 2021205750 A1 WO2021205750 A1 WO 2021205750A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
additive
electrolytic solution
salt
concentration
Prior art date
Application number
PCT/JP2021/005681
Other languages
French (fr)
Japanese (ja)
Inventor
続木武男
加納幸司
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2021205750A1 publication Critical patent/WO2021205750A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic solution for an electrochemical device and an electrochemical device.
  • Electrochemical devices such as electric double-layer capacitors and lithium-ion capacitors that use non-aqueous electrolytes can have a high withstand voltage because the electrolysis voltage of the non-aqueous solvent is high, and can store a large amount of energy. ..
  • PF 6 is an electrolyte - or anions decomposition products such as hydrogen fluoride and decomposing occurs such non-aqueous electrolyte solution reductive decomposition to a high resistance film on the negative electrode near It is thought that various characteristics of the cell are deteriorated due to the formation.
  • Patent Document 1 uses an imide-based lithium salt having an imide structure and includes a polymer having a RED (Relative Energy Difference) value larger than 1 based on the Hansen solubility parameter.
  • RED Relative Energy Difference
  • Patent Document 2 proposes a lithium ion secondary battery in which a plurality of additives are added to an electrolytic solution obtained by adding an imide-based lithium salt and LiPF 6 to a non-aqueous organic solvent.
  • Patent Document 3 proposes a lithium ion capacitor in which a specific additive is added to an electrolytic solution obtained by adding either LiPF 6 or LiBF 4 and LiFSI to a mixed solvent of chain carbonate and cyclic carbonate. Has been done.
  • Patent Document 4 by adding an imide-based lithium salt, an alkylsulfonic acid lithium salt, a difluorophosphate lithium salt, a lithium oxalate borate, and a vinylene carbonate to the electrolytic solution, the electric resistance after high temperature storage is increased. A suppressed lithium-ion secondary battery has been proposed.
  • LiFSI is used as the imide-based lithium salt, and a binder containing a polymer such that the RED value based on the Hansen solubility parameter is larger than 1 is used to float the lithium ion capacitor at a high temperature of about 85 ° C. It is stated that the reliability will be good. However, although the low temperature characteristics have been discussed based on the presence or absence of electrolyte precipitation and the value of ionic conductivity, no specific cell evaluation has been performed.
  • Patent Document 2 a group consisting of lithium difluorooxalate phosphate, trimethylsilylpropyl phosphate, 1,3-propensulton, and ethylene sulfate is added to an electrolytic solution obtained by adding an imide-based lithium salt and LiPF 6 to a non-aqueous organic solvent. It is described that the addition of one or more types improves the output characteristics at low temperature (-30 ° C) and high temperature (60 ° C). However, the high temperature side is evaluated only up to 60 ° C., and it is unclear whether it can withstand a high temperature such as 85 ° C.
  • Patent Document 3 a mixed solvent prepared by mixing either ethylene carbonate (EC) or propylene carbonate (PC) with any one of dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) is used. I'm using it. Then, one of LiPF 6 and LiBF 4 and LiFSI are added to this mixed solvent as an electrolyte to prepare an electrolytic solution.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • any compound of a chain ether, a fluorinated chain ether, and a propionic acid ester is added to this electrolytic solution, or a sulton compound, a cyclic phosphazene, a fluorocyclic carbonate, a cyclic carbonate, and a cyclic carboxylic acid. It is described in Patent Document 3 that any compound of ester and cyclic acid anhydride is added. It is described in Patent Document 3 that this improves the output characteristics of the lithium ion capacitor at ⁇ 30 ° C. and suppresses the generation of gas when the lithium ion capacitor is stored at 60 ° C. However, the high temperature side is evaluated only up to 60 ° C., and it is unclear whether it can withstand a high temperature such as 85 ° C.
  • Patent Document 4 Lithium trifluoromethanesulfonate, lithium difluorophosphate, lithium (oxalate) borate, and vinylene carbonate are added to an electrolytic solution obtained by adding LiPF 6 and an imide-based lithium salt to a non-aqueous organic solvent.
  • LiPF 6 and an imide-based lithium salt are added to an electrolytic solution obtained by adding LiPF 6 and an imide-based lithium salt to a non-aqueous organic solvent.
  • a lithium ion secondary battery capable of reducing the rate of increase in resistance at ⁇ 20 ° C. even after storage at 80 ° C. for 48 hours is disclosed.
  • the time for storing at a high temperature is only 48 hours, and it is unclear whether the characteristics of the lithium ion secondary battery deteriorate even if the lithium ion secondary battery is stored at a high temperature for a long period of time such as 1000 hours.
  • the present invention has been made in view of the above problems, and provides an electrolytic solution for an electrochemical device capable of improving both low temperature characteristics and high temperature reliability of an electrochemical device, and an electrochemical device including the same.
  • the purpose is to do.
  • the electrolytic solution for an electrochemical device is an electrolytic solution in which an electrolyte is dissolved in a solvent, the solvent contains a cyclic carbonate and a chain carbonate, and the electrolyte is an imide-based lithium salt and a non-imide-based electrolyte.
  • An additive containing a lithium salt, a lithium difluorophosphate, a lithium oxalateric acid salt, and a lithium oxalatoboate salt is added to the electrolytic solution, and the concentration of the additive in the electrolytic solution is 0.5 wt% or more 2 It is 0.0 wt% or less, and the ratio of the weight of the lithium difluorophosphate to the combined weight of the lithium oxalatrate salt and the lithium oxalateborate salt is 1: 9 to 3: 7, and the lithium oxalaterate is obtained.
  • the ratio of the weight of the salt to the weight of the lithium oxalate borate salt is 1: 1 to 3: 1.
  • the lithium oxalatric acid salt may be lithium difluorobis (oxalat) or lithium tetrafluoro (oxalat) phosphate.
  • the lithium oxalate borate salt may be lithium bis (oxalate) borate or lithium difluoro (oxalate) borate.
  • the cyclic carbonate may be propylene carbonate or ethylene carbonate
  • the chain carbonate may be ethyl methyl carbonate or diethyl carbonate.
  • the imide-based lithium salt may be lithium bisfluorosulfonylimide, and the non-imide-based lithium salt may be lithium hexafluorophosphate.
  • the electrochemical device according to the present invention includes a power storage element in which a positive electrode and a negative electrode are laminated via a separator, and is used for any of the above electrochemical devices on the active material of the positive electrode and the active material of the negative electrode, or the separator. It is characterized in that it is impregnated with an electrolytic solution.
  • an electrolytic solution for an electrochemical device capable of improving both low temperature characteristics and high temperature reliability of the electrochemical device, and an electrochemical device provided with the electrolytic solution.
  • FIG. 1 is an exploded view of the lithium ion capacitor 100.
  • the lithium ion capacitor 100 includes a power storage element 50 having a structure in which a positive electrode 10 and a negative electrode 20 are wound around a separator 30.
  • the power storage element 50 has a substantially cylindrical shape.
  • a drawer terminal 41 is connected to the positive electrode 10.
  • the extraction terminal 42 is connected to the negative electrode 20.
  • FIG. 2 is a cross-sectional view of the positive electrode 10, the negative electrode 20, and the separator 30 in the stacking direction.
  • the positive electrode 10 has a structure in which the positive electrode layer 12 is laminated on one surface of the positive electrode current collector 11.
  • the separator 30 is laminated on the positive electrode layer 12 of the positive electrode 10.
  • the negative electrode 20 is laminated on the separator 30.
  • the negative electrode 20 has a structure in which the negative electrode layer 22 is laminated on the surface of the negative electrode current collector 21 on the positive electrode 10 side.
  • the separator 30 is laminated on the negative electrode current collector 21 of the negative electrode 20.
  • the laminated units of the positive electrode 10, the separator 30, the negative electrode 20, and the separator 30 are wound.
  • the positive electrode layer 12 may be provided on both sides of the positive electrode current collector 11.
  • the negative electrode layer 22 may be provided on both sides of the negative electrode current collector 21.
  • a drawer terminal 41 and a drawer terminal 42 are inserted into two through holes of a substantially cylindrical sealing rubber 60 having a diameter substantially the same as that of the power storage element 50. Further, the power storage element 50 is housed in a bottomed substantially cylindrical container 70.
  • the sealing rubber 60 is crimped around the opening of the container 70. As a result, the hermeticity of the power storage element 50 is maintained.
  • the non-aqueous electrolyte solution is sealed in the container 70 and impregnated with the active material of the positive electrode 10 and the active material of the negative electrode 20, or the separator 30.
  • the positive electrode current collector 11 is a metal foil, for example, an aluminum foil or the like. This aluminum foil may be a perforated foil.
  • the positive electrode layer 12 may have a known material and structure used for the electrode layer of an electric double layer capacitor or a redox capacitor, and may include, for example, polyacene (PAS), polyaniline (PAN), activated carbon, carbon black, graphite, and the like. It contains an active material such as carbon nanotubes, and also contains other components such as a conductive auxiliary agent and a binder used for an electrode layer such as an electric double layer capacitor, if necessary.
  • the negative electrode current collector 21 is a metal foil, for example, a copper foil or the like. This copper foil may be a perforated foil.
  • the negative electrode layer 22 contains an active material such as graphitized carbon, graphite, tin oxide, or silicon oxide, and is a conductive auxiliary agent such as carbon black or metal powder, polytetrafluoroethylene (PTFE), or polyfluoridene fluoride. Binders such as vinylidene fluoride (PVDF) and styrene-butadiene rubber (SBR) are also contained as required.
  • PVDF vinylidene fluoride
  • SBR styrene-butadiene rubber
  • Separator By providing the separator 30 between the positive electrode 10 and the negative electrode 20, for example, a short circuit due to contact between these two electrodes is prevented.
  • the separator 30 forms a conductive path between the electrodes by holding the non-aqueous electrolyte solution in the pores.
  • porous cellulose, polypropylene, polyethylene, a fluororesin, or the like can be used as the material of the separator 30, for example.
  • the lithium metal sheet is electrically connected to the negative electrode 20.
  • lithium in the lithium metal sheet is dissolved in the non-aqueous electrolyte solution, and lithium ions are pre-doped into the negative electrode layer 22 of the negative electrode 20.
  • the potential of the negative electrode 20 becomes lower than the potential of the positive electrode 10 by, for example, about 3 V in the state before charging.
  • the lithium ion capacitor 100 has a structure in which the power storage element 50 having a wound structure is enclosed in a cylindrical container 70, but the present invention is not limited thereto.
  • the power storage element 50 may have a laminated structure.
  • the container 70 in this case may be a square can or the like.
  • Non-aqueous electrolyte solution is prepared by dissolving an electrolyte in a non-aqueous solvent as described below and adding an additive to the electrolyte.
  • Non-aqueous solvent Cyclic carbonate and chain carbonate are used as the non-aqueous solvent.
  • the cyclic carbonate is, for example, a cyclic carbonate ester such as propylene carbonate (PC) or ethylene carbonate (EC). Since the cyclic carbonic acid ester has a high dielectric constant, it has a property of dissolving a lithium salt well. Further, the non-aqueous electrolytic solution using the cyclic carbonate as a non-aqueous solvent has high ionic conductivity. Therefore, when cyclic carbonate is used as a non-aqueous solvent, the initial characteristics of the lithium ion capacitor 100 are improved. Further, when the cyclic carbonate is used as a non-aqueous solvent, sufficient electrochemical stability during operation of the lithium ion capacitor 100 is realized after the film is formed on the negative electrode 20.
  • the chain carbonate is, for example, ethyl methyl carbonate (EMC) or diethyl carbonate (DEC), which are chain carbonates.
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the ratio of the cyclic carbonate to the chain carbonate in the non-aqueous solvent is 40:60 to 20:80 in volume ratio.
  • the lower limit of the ratio of the chain carbonate is set to 60 because if the amount of the chain carbonate is less than this, the low temperature characteristics are extremely deteriorated.
  • the upper limit of the ratio of the chain carbonate is set to 80 because if the amount of the chain carbonate is larger than this, the high temperature reliability is extremely deteriorated.
  • the ratio of the cyclic carbonate to the chain carbonate in the non-aqueous solvent is preferably 35:65 to 25:75 in volume ratio.
  • Electrodes As the electrolyte, a mixture of an imide-based lithium salt and a non-imide-based lithium salt is used.
  • the imide-based lithium salt is, for example, LiFSI (lithium bisfluorosulfonylimide).
  • LiFSI lithium bisfluorosulfonylimide
  • LiFSI improves the capacity and DCR of the lithium ion capacitor 100 at low temperatures.
  • the non-imide-based lithium salt is, for example, LiPF 6 (lithium hexafluorophosphate). Since LiPF 6 has a high degree of dissociation among general-purpose lithium salts, it realizes good initial characteristics (capacity and DCR) of the lithium ion capacitor 100.
  • LiPF 6 lithium hexafluorophosphate
  • the molar ratio of the imide-based lithium salt to the non-imide-based lithium salt in the electrolyte is set to 40:60 to 99.9: 0.1.
  • the reason why the lower limit of the molar ratio of the imide-based lithium salt is set to 40 is that if the amount of the imide-based lithium salt is less than this, the low temperature characteristics are extremely deteriorated.
  • the lower limit of the molar ratio of the non-imide lithium salt is set to 0.1 because the high temperature reliability deteriorates in the electrolyte composed of only the imide-based lithium salt.
  • the molar ratio of the imide-based lithium salt to the non-imide-based lithium salt in the electrolyte is preferably 60:40 to 99.5: 0.5, preferably 70:30 to 99.0: 1.0. More preferred.
  • the concentration of the electrolyte in the non-aqueous solvent is preferably 0.7 mol / L to 1.5 mol / L.
  • the lower limit of the electrolyte concentration is set to 0.7 mol / L because if the electrolyte concentration is lower than this, the internal resistance increases due to the decrease in the number of ions that act effectively.
  • the upper limit of the concentration of the electrolyte is set to 1.5 mol / L because if the concentration of the electrolyte is higher than this, the internal resistance increases due to the increase in the viscosity of the non-aqueous electrolyte solution.
  • lithium difluorophosphate LiDFP (LiPO 2 F 2 )
  • LiDFP LiPO 2 F 2
  • the concentration of the first additive in the electrolytic solution is 0.1 wt% to 0.4 wt%.
  • lithium oxalateric acid salt is added to the non-aqueous electrolytic solution as a second additive.
  • Such lithium oxalatrate salts include lithium difluorobis (oxalate) phosphate (LiDFBOP (LiP (C 2 O 4 ) 2 F 2 )) or lithium tetrafluoro (oxalate) phosphate (LiTFOP (LiP (C 2 O)). 4 ) There are F 4 )).
  • the concentration of the second additive in the electrolytic solution is 0.2 wt% to 1.2 wt%.
  • lithium oxalateborate salt is added to the non-aqueous electrolytic solution as a third additive.
  • Such lithium oxalate oxalate salts include lithium bis (oxalate) oxalate (LiBOB (LiB (C 2 O 4 ) 2 )) or lithium difluoro (oxalate) oxalate (LiDFOB (LiB (C 2 O 4 ) F 2). )).
  • the concentration of the third additive in the electrolytic solution is 0.2 wt% to 0.4 wt%.
  • the combined concentration of the first additive, the second additive, and the third additive in the non-aqueous electrolytic solution is 0.5 wt% or more and 2.0 wt% or less.
  • the ratio of the weight of the first additive to the combined weight of the second additive and the third additive is set to 1: 9 to 3: 7.
  • the ratio of the weight of the second additive to the weight of the third additive is set to 1: 1 to 3: 1.
  • the electrolytic solution of the lithium ion capacitor as an electrochemical device, but the present invention is not limited to this.
  • the non-aqueous electrolytic solution according to the present embodiment can also be used as an electrolytic solution for other electrochemical devices such as an electric double layer capacitor.
  • a lithium ion capacitor was prepared according to the above embodiment, and its characteristics were investigated.
  • Table 1 is a diagram showing test conditions for each of Examples and Comparative Examples.
  • Example 1 Activated carbon was used as the active material for the positive electrode 10.
  • a slurry was prepared using carboxymethyl cellulose and styrene-butadiene rubber as a binder, and the prepared slurry was applied onto a perforated aluminum foil to prepare a sheet.
  • Graphitized carbon was used as the active material for the negative electrode 20.
  • a slurry was prepared using carboxymethyl cellulose and styrene-butadiene rubber as a binder, and the prepared slurry was applied onto a copper foil having been subjected to perforation processing to prepare a sheet.
  • a cellulosic separator 30 is sandwiched between these electrodes 10 and 20, the extraction terminal 41 is attached to the positive electrode current collector 11 by ultrasonic welding, the extraction terminal 42 is attached to the negative electrode current collector 21, and then these are wound.
  • the power storage element 50 was fixed with a polyimide adhesive tape. After attaching the sealing rubber 60 to the produced power storage element 50 and vacuum-drying it at about 180 ° C., a lithium foil was attached to the negative electrode 20 and the power storage element 50 was placed in the container 70.
  • a non-aqueous electrolyte solution was prepared by dissolving an electrolyte in which LiFSI and LiPF 6 were mixed in a molar ratio of 7: 3 in a non-aqueous solvent in which PC and EMC were mixed in a volume ratio of 3: 7. bottom.
  • the concentration of the electrolyte in the non-aqueous electrolyte solution was 1.0 mol / L.
  • lithium difluorophosphate (LiPO 2 F 2 ) was added to the non-aqueous electrolyte solution as a first additive at a concentration of 0.1 wt%, and lithium difluorobis (oxalate) phosphate (LiP (C)) was added as a second additive.
  • lithium bis (oxalate) borate LiB (C 2 O 4 ) 2
  • LiB (C 2 O 4 ) 2 lithium bis (oxalate) borate
  • Example 2 In Example 2, the concentration of the second additive was 0.5 wt%, and the concentration of the third additive was 0.4 wt%. Other conditions were the same as in Example 1.
  • Example 3 In Example 3, the concentration of the first additive was 0.2 wt%, the concentration of the second additive was 0.6 wt%, and the concentration of the third additive was 0.2 wt%. Other conditions were the same as in Example 1.
  • Example 4 In Example 4, the concentration of the second additive was 0.5 wt%, and the concentration of the third additive was 0.3 wt%. Other conditions were the same as in Example 3.
  • Example 5 In Example 5, the concentration of the second additive was 0.4 wt%, and the concentration of the third additive was 0.4 wt%. Other conditions were the same as in Example 3.
  • Example 6 In Example 6, the concentration of the first additive was 0.3 wt%, the concentration of the second additive was 0.5 wt%, and the concentration of the third additive was 0.2 wt%. Other conditions were the same as in Example 1.
  • Example 7 In Example 7, the concentration of the second additive was 0.4 wt%, and the concentration of the third additive was 0.3 wt%. Other conditions were the same as in Example 6.
  • Example 8 In Example 8, the concentration of the first additive was 0.1 wt%, the concentration of the second additive was 0.2 wt%, and the concentration of the third additive was 0.2 wt%. Other conditions were the same as in Example 1.
  • Example 9 In Example 9, the concentration of the first additive was 0.2 wt%, the concentration of the second additive was 0.9 wt%, and the concentration of the third additive was 0.4 wt%. Other conditions were the same as in Example 1.
  • Example 10 In Example 10, the concentration of the first additive was 0.4 wt%, the concentration of the second additive was 1.2 wt%, and the concentration of the third additive was 0.4 wt%. Other conditions were the same as in Example 1.
  • Comparative Example 1 In Comparative Example 1, the concentration of the second additive was 0.7 wt%, and the concentration of the third additive was 0.2 wt%. Other conditions were the same as in Example 1.
  • Comparative Example 2 In Comparative Example 2, the concentration of the second additive was 0.4 wt%, and the concentration of the third additive was 0.5 wt%. Other conditions were the same as in Example 1.
  • Comparative Example 3 In Comparative Example 3, the concentration of the second additive was 0.7 wt%, and the concentration of the third additive was 0.1 wt%. Other conditions were the same as in Example 3.
  • Comparative Example 4 In Comparative Example 4, the concentration of the second additive was 0.3 wt%, and the concentration of the third additive was 0.5 wt%. Other conditions were the same as in Example 3.
  • Comparative Example 5 Comparative Example 5
  • the concentration of the second additive was 0.6 wt%
  • the concentration of the third additive was 0.1 wt%.
  • Other conditions were the same as in Example 6.
  • Comparative Example 6 Comparative Example 6, the concentration of the second additive was 0.3 wt%, and the concentration of the third additive was 0.4 wt%. Other conditions were the same as in Example 6.
  • Comparative Example 7 In Comparative Example 7, the concentration of the first additive was 0.4 wt%, the concentration of the second additive was 0.3 wt%, and the concentration of the third additive was 0.3 wt%. Other conditions were the same as in Example 1.
  • Comparative Example 8 In Comparative Example 8, the concentration of the first additive was 0.05 wt%, the concentration of the second additive was 0.1 wt%, and the concentration of the third additive was 0.1 wt%. Other conditions were the same as in Example 1.
  • Comparative Example 9 In Comparative Example 9, the concentration of the first additive was 0.5 wt%, the concentration of the second additive was 1.5 wt%, and the concentration of the third additive was 0.5 wt%. Other conditions were the same as in Example 1.
  • Comparative Example 10 Comparative Example 10
  • the concentration of the second additive was 0.5 wt%
  • the concentration of the third additive was 0.5 wt%.
  • the first additive was not added to the electrolytic solution.
  • Other conditions were the same as in Example 1.
  • Comparative Example 11 In Comparative Example 11, the concentration of the first additive was 0.3 wt%, and the concentration of the third additive was 0.7 wt%. No second additive was added to the electrolytic solution. Other conditions were the same as in Example 1.
  • Comparative Example 12 In Comparative Example 12, the concentration of the first additive was 0.3 wt%, and the concentration of the second additive was 0.7 wt%. The third additive was not added to the electrolytic solution. Other conditions were the same as in Example 1.
  • Lithium ion capacitors 100 of Examples 1 to 10 and Comparative Examples 1 to 12 were produced. Then, as an initial characteristic, DCR (internal resistance) at room temperature (25 ° C.) was measured.
  • the low temperature characteristics were evaluated based on the rate of change of this value from 25 ° C. by measuring the DCR at ⁇ 40 ° C. after leaving the cell at ⁇ 40 ° C. for 2 hours.
  • a float test was conducted in which the battery was continuously charged at a voltage of 3.5 V for 1000 hours in a constant temperature bath at 85 ° C. After the float test, the cell was allowed to cool to room temperature (25 ° C.), DCR was measured, and the rate of change of the value before and after the test was calculated. Table 2 shows the test results of each of the examples and comparative examples.
  • the criteria for judging the quality of the low temperature characteristics at ⁇ 40 ° C. was that the resistance increase rate was within 1500%, and if this criterion was not met, it was judged to be defective.
  • the rate of increase in resistance is the rate of increase in internal resistance when the temperature is 25 ° C. as a reference.
  • the criteria for judging the quality of high temperature reliability was that the resistance increase rate was within 200%, and if this criterion was not met, it was judged to be defective.
  • the rate of increase in resistance is the rate of increase in internal resistance before and after the float test.
  • the total concentration of each of the first additive, the second additive, and the third additive is 0.5 wt% to 2.0 wt%. It was confirmed that the high temperature reliability deteriorated when the value was out of the range of. As shown in Comparative Example 11, if the electrolytic solution does not contain the second additive lithium difluorobis (oxalate) phosphate, not only the high temperature reliability is poor, but also the low temperature characteristics are deteriorated. Obtained.
  • the sum of the concentrations of the first additive, the second additive, and the third additive respectively. Is 0.5 wt% or more and 2.0 wt% or less, and the ratio of the weight of the first additive to the combined weight of the second additive and the third additive is 1: 9 to 3: 7. The ratio of the weight of the second additive to the weight of the third additive is 1: 1 to 3: 1.
  • the total concentration of each of the first additive, the second additive, and the third additive should be 0.5 wt% or more and 2.0 wt% or less.
  • the ratio of the weight of the 1 additive to the combined weight of the 2nd additive and the 3rd additive is 1: 9 to 3: 7, and the ratio of the weight of the 2nd additive to the weight of the 3rd additive. It was confirmed that it is effective to set the value to 1: 1 to 3: 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

This electrolytic solution for electrochemical devices comprises a solvent and an electrolyte dissolved therein, the electrolytic solution being characterized in that the solvent comprises a cyclic carbonate and a chain carbonate and the electrolyte comprises an imide-based lithium salt and a non-imide-based lithium salt and that an additive comprising lithium difluorophosphate, lithium oxalatophosphate, and lithium oxalatoborate has been added to the electrolytic solution and the concentration of the additive in the electrolytic solution is 0.5-2.0 wt%, the ratio between the weight of the lithium difluorophosphate and the total weight of the lithium oxalatophosphate and the lithium oxalatoborate being 1:9 to 3:7 and the ratio between the weight of the lithium oxalatophosphate and the weight of the lithium oxalatoborate being 1:1 to 3:1. 

Description

電気化学デバイス用電解液および電気化学デバイスElectrolytes for electrochemical devices and electrochemical devices
 本発明は、電気化学デバイス用電解液および電気化学デバイスに関する。 The present invention relates to an electrolytic solution for an electrochemical device and an electrochemical device.
 非水電解液を用いた電気二重層キャパシタやリチウムイオンキャパシタ等の電気化学デバイスは、非水溶媒の電気分解電圧が高いため耐電圧を高くすることができ、大きなエネルギを蓄えることが可能である。 Electrochemical devices such as electric double-layer capacitors and lithium-ion capacitors that use non-aqueous electrolytes can have a high withstand voltage because the electrolysis voltage of the non-aqueous solvent is high, and can store a large amount of energy. ..
 近年、電気化学デバイスは、低温時における内部抵抗の低減や高温状態における信頼性の確保が求められている。低温特性に関しては、電解液中の電解質の解離が起こりにくくなったり、非水電解液の粘度が高くなったりすることで内部抵抗が上昇すると考えられている。 In recent years, electrochemical devices have been required to reduce internal resistance at low temperatures and ensure reliability at high temperatures. Regarding the low temperature characteristics, it is considered that the internal resistance increases due to the difficulty of dissociation of the electrolyte in the electrolytic solution and the increase in the viscosity of the non-aqueous electrolytic solution.
 また、高温信頼性に関しては、電解質であるPF 等のアニオンが分解してフッ化水素等の分解物が発生したり、非水電解液が負極近傍で還元分解して高抵抗な被膜を形成したりすることが原因で、セルの諸特性が悪化していると考えられている。 As for the high-temperature reliability, PF 6 is an electrolyte - or anions decomposition products such as hydrogen fluoride and decomposing occurs such non-aqueous electrolyte solution reductive decomposition to a high resistance film on the negative electrode near It is thought that various characteristics of the cell are deteriorated due to the formation.
 上記問題を解決するために、例えば特許文献1では、イミド構造を有したイミド系リチウム塩を用い、ハンセンの溶解度パラメータに基づくRED(Relative Energy Difference)値が1よりも大きくなるようなポリマーを含むバインダーを用いたリチウムイオンキャパシタが提案されている。 In order to solve the above problem, for example, Patent Document 1 uses an imide-based lithium salt having an imide structure and includes a polymer having a RED (Relative Energy Difference) value larger than 1 based on the Hansen solubility parameter. A lithium ion capacitor using a binder has been proposed.
 また、特許文献2では、イミド系リチウム塩とLiPFとを非水系有機溶媒に加えた電解液に複数の添加剤を添加したリチウムイオン二次電池が提案されている。 Further, Patent Document 2 proposes a lithium ion secondary battery in which a plurality of additives are added to an electrolytic solution obtained by adding an imide-based lithium salt and LiPF 6 to a non-aqueous organic solvent.
 そして、特許文献3では、鎖状カーボネートと環状カーボネートとの混合溶媒に、LiPFとLiBFのいずれか一方とLiFSIとを加えた電解液に、特定の添加剤を加えたリチウムイオンキャパシタが提案されている。 Then, Patent Document 3 proposes a lithium ion capacitor in which a specific additive is added to an electrolytic solution obtained by adding either LiPF 6 or LiBF 4 and LiFSI to a mixed solvent of chain carbonate and cyclic carbonate. Has been done.
 更に、特許文献4では、電解液にイミド系リチウム塩、アルキルスルホン酸リチウム塩、ジフルオロリン酸リチウム塩、リチウムオキサラトホウ酸塩、および炭酸ビニレンを添加することにより、高温保存後の電気抵抗を抑えたリチウムイオン二次電池が提案されている。 Further, in Patent Document 4, by adding an imide-based lithium salt, an alkylsulfonic acid lithium salt, a difluorophosphate lithium salt, a lithium oxalate borate, and a vinylene carbonate to the electrolytic solution, the electric resistance after high temperature storage is increased. A suppressed lithium-ion secondary battery has been proposed.
特開2017-17299号公報Japanese Unexamined Patent Publication No. 2017-17299 特表2016-503571号公報Special Table 2016-503571A WO2016/006632号公報WO2016 / 006632 特開2019-175578号公報JP-A-2019-175578
 特許文献1では、イミド系リチウム塩としてLiFSIを用い、ハンセンの溶解度パラメータに基づくRED値が1よりも大きくなるようなポリマーを含むバインダーを用いることで、85℃程度の高温におけるリチウムイオンキャパシタのフロート信頼性が良好になることが記載されている。しかしながら、低温特性に関しては、電解質の析出の有無やイオン電導度の値から議論しているものの、具体的にセルでの評価は行っていない。 In Patent Document 1, LiFSI is used as the imide-based lithium salt, and a binder containing a polymer such that the RED value based on the Hansen solubility parameter is larger than 1 is used to float the lithium ion capacitor at a high temperature of about 85 ° C. It is stated that the reliability will be good. However, although the low temperature characteristics have been discussed based on the presence or absence of electrolyte precipitation and the value of ionic conductivity, no specific cell evaluation has been performed.
 特許文献2では、非水系有機溶媒にイミド系リチウム塩とLiPFとを加えた電解液に、リチウムジフルオロオキサレートホスフェート、トリメチルシリルプロピルホスフェート、1,3-プロペンスルトン、およびエチレンスルフェートからなる群から1種類以上を添加することで、低温(-30℃)と高温(60℃)での出力特性が改善されることが記載されている。しかしながら、高温側は60℃までしか評価しておらず、85℃のような高い温度にも耐えられるかは不明である。 In Patent Document 2, a group consisting of lithium difluorooxalate phosphate, trimethylsilylpropyl phosphate, 1,3-propensulton, and ethylene sulfate is added to an electrolytic solution obtained by adding an imide-based lithium salt and LiPF 6 to a non-aqueous organic solvent. It is described that the addition of one or more types improves the output characteristics at low temperature (-30 ° C) and high temperature (60 ° C). However, the high temperature side is evaluated only up to 60 ° C., and it is unclear whether it can withstand a high temperature such as 85 ° C.
 特許文献3では、エチレンカーボネート(EC)とプロピレンカーボネート(PC)のいずれかと、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、及びエチルメチルカーボネート(EMC)のいずれかとを混合してなる混合溶媒を使用している。そして、この混合溶媒に、LiPFとLiBFのいずれか一方とLiFSIとを電解質として加えて電解液を作製している。更に、この電解液に、鎖状エーテル、フッ素化鎖状エーテル、及びプロピオン酸エステルのいずれかの化合物を添加するか、又はスルトン化合物、環状ホスファゼン、含フッ素環状カーボネート、環状炭酸エステル、環状カルボン酸エステル、及び環状酸無水物のいずれかの化合物を加えることが特許文献3に記載されている。これにより、-30℃におけるリチウムイオンキャパシタの出力特性が向上し、かつリチウムイオンキャパシタを60℃で貯蔵したときのガスの発生が抑制されることが特許文献3に記載されている。しかしながら、高温側は60℃までしか評価しておらず、85℃のような高い温度にも耐えられるかは不明である。 In Patent Document 3, a mixed solvent prepared by mixing either ethylene carbonate (EC) or propylene carbonate (PC) with any one of dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) is used. I'm using it. Then, one of LiPF 6 and LiBF 4 and LiFSI are added to this mixed solvent as an electrolyte to prepare an electrolytic solution. Further, any compound of a chain ether, a fluorinated chain ether, and a propionic acid ester is added to this electrolytic solution, or a sulton compound, a cyclic phosphazene, a fluorocyclic carbonate, a cyclic carbonate, and a cyclic carboxylic acid. It is described in Patent Document 3 that any compound of ester and cyclic acid anhydride is added. It is described in Patent Document 3 that this improves the output characteristics of the lithium ion capacitor at −30 ° C. and suppresses the generation of gas when the lithium ion capacitor is stored at 60 ° C. However, the high temperature side is evaluated only up to 60 ° C., and it is unclear whether it can withstand a high temperature such as 85 ° C.
 特許文献4では、非水系有機溶媒にLiPFとイミド系リチウム塩とを加えた電解液にトリフルオロメタンスルホン酸リチウム、ジフルオロリン酸リチウム、(オキサラト)ホウ酸リチウム、および炭酸ビニレンを添加することで、80℃で48時間保存した後でも-20℃における抵抗上昇率が低減できるリチウムイオン二次電池が開示されている。しかしながら、高温に保存する時間は48時間だけであり、1000時間のような長期間高温で保存してもリチウムイオン二次電池の特性が悪化するかは不明である。 In Patent Document 4, Lithium trifluoromethanesulfonate, lithium difluorophosphate, lithium (oxalate) borate, and vinylene carbonate are added to an electrolytic solution obtained by adding LiPF 6 and an imide-based lithium salt to a non-aqueous organic solvent. , A lithium ion secondary battery capable of reducing the rate of increase in resistance at −20 ° C. even after storage at 80 ° C. for 48 hours is disclosed. However, the time for storing at a high temperature is only 48 hours, and it is unclear whether the characteristics of the lithium ion secondary battery deteriorate even if the lithium ion secondary battery is stored at a high temperature for a long period of time such as 1000 hours.
 本発明は、上記課題に鑑みてなされたものであり、電気化学デバイスの低温特性と高温信頼性の両方を改善することができる電気化学デバイス用電解液、及びそれを備えた電気化学デバイスを提供することを目的とする。 The present invention has been made in view of the above problems, and provides an electrolytic solution for an electrochemical device capable of improving both low temperature characteristics and high temperature reliability of an electrochemical device, and an electrochemical device including the same. The purpose is to do.
 本発明に係る電気化学デバイス用電解液は、溶媒に電解質が溶解した電解液であって、前記溶媒は、環状カーボネートと鎖状カーボネートとを含み、前記電解質は、イミド系リチウム塩と非イミド系リチウム塩とを含み、前記電解液に、ジフルオロリン酸リチウム、オキサラトリン酸リチウム塩、及びオキサラトホウ酸リチウム塩を含む添加剤が添加され、前記電解液における前記添加剤の濃度が0.5wt%以上2.0wt%以下であり、前記ジフルオロリン酸リチウムの重量と、前記オキサラトリン酸リチウム塩と前記オキサラトホウ酸リチウム塩とを合わせた重量との比が1:9~3:7であり、前記オキサラトリン酸リチウム塩の重量と、前記オキサラトホウ酸リチウム塩の重量との比が1:1~3:1であることを特徴とする。 The electrolytic solution for an electrochemical device according to the present invention is an electrolytic solution in which an electrolyte is dissolved in a solvent, the solvent contains a cyclic carbonate and a chain carbonate, and the electrolyte is an imide-based lithium salt and a non-imide-based electrolyte. An additive containing a lithium salt, a lithium difluorophosphate, a lithium oxalateric acid salt, and a lithium oxalatoboate salt is added to the electrolytic solution, and the concentration of the additive in the electrolytic solution is 0.5 wt% or more 2 It is 0.0 wt% or less, and the ratio of the weight of the lithium difluorophosphate to the combined weight of the lithium oxalatrate salt and the lithium oxalateborate salt is 1: 9 to 3: 7, and the lithium oxalaterate is obtained. The ratio of the weight of the salt to the weight of the lithium oxalate borate salt is 1: 1 to 3: 1.
 上記電気化学デバイス用電解液において、前記オキサラトリン酸リチウム塩は、ジフルオロビス(オキサラト)リン酸リチウム又はテトラフルオロ(オキサラト)リン酸リチウムであってもよい。 In the electrolytic solution for an electrochemical device, the lithium oxalatric acid salt may be lithium difluorobis (oxalat) or lithium tetrafluoro (oxalat) phosphate.
 上記電気化学デバイス用電解液において、前記オキサラトホウ酸リチウム塩は、ビス(オキサラト)ホウ酸リチウム又はジフルオロ(オキサラト)ホウ酸リチウムであってもよい。 In the electrolytic solution for an electrochemical device, the lithium oxalate borate salt may be lithium bis (oxalate) borate or lithium difluoro (oxalate) borate.
 上記電気化学デバイス用電解液において、前記環状カーボネートは、プロピレンカーボネート又はエチレンカーボネートであり、前記鎖状カーボネートは、エチルメチルカーボネート又はジエチルカーボネートであってもよい。 In the electrolytic solution for an electrochemical device, the cyclic carbonate may be propylene carbonate or ethylene carbonate, and the chain carbonate may be ethyl methyl carbonate or diethyl carbonate.
 上記電気化学デバイス用電解液において、前記イミド系リチウム塩はリチウムビスフルオロスルホニルイミドであり、前記非イミド系リチウム塩はリチウムヘキサフルオロホスフェートであってもよい。 In the electrolytic solution for an electrochemical device, the imide-based lithium salt may be lithium bisfluorosulfonylimide, and the non-imide-based lithium salt may be lithium hexafluorophosphate.
 本発明に係る電気化学デバイスは、正極及び負極がセパレータを介して積層された蓄電素子を備え、前記正極の活物質及び前記負極の活物質、又は前記セパレータに、上記いずれかの電気化学デバイス用電解液が含浸されていることを特徴とする。 The electrochemical device according to the present invention includes a power storage element in which a positive electrode and a negative electrode are laminated via a separator, and is used for any of the above electrochemical devices on the active material of the positive electrode and the active material of the negative electrode, or the separator. It is characterized in that it is impregnated with an electrolytic solution.
 本発明によれば、電気化学デバイスの低温特性と高温信頼性の両方を改善することができる電気化学デバイス用電解液、及びそれを備えた電気化学デバイスを提供することができる。 According to the present invention, it is possible to provide an electrolytic solution for an electrochemical device capable of improving both low temperature characteristics and high temperature reliability of the electrochemical device, and an electrochemical device provided with the electrolytic solution.
リチウムイオンキャパシタの分解図である。It is an exploded view of a lithium ion capacitor. リチウムイオンキャパシタの正極、負極およびセパレータの積層方向の断面図である。It is sectional drawing in the stacking direction of the positive electrode, the negative electrode and a separator of a lithium ion capacitor. リチウムイオンキャパシタの分解図である。It is an exploded view of a lithium ion capacitor. リチウムイオンキャパシタの外観図である。It is an external view of a lithium ion capacitor.
 以下、図面を参照しつつ、実施形態について説明する。
(実施形態)
 まず、電気化学デバイスの一例として、リチウムイオンキャパシタについて説明する。図1は、リチウムイオンキャパシタ100の分解図である。図1で例示するように、リチウムイオンキャパシタ100は、正極10および負極20がセパレータ30を介して捲回された構造を有する蓄電素子50を備える。蓄電素子50は、略円柱形状を有している。正極10には、引出端子41が接続されている。引出端子42は、負極20に接続されている。
Hereinafter, embodiments will be described with reference to the drawings.
(Embodiment)
First, a lithium ion capacitor will be described as an example of an electrochemical device. FIG. 1 is an exploded view of the lithium ion capacitor 100. As illustrated in FIG. 1, the lithium ion capacitor 100 includes a power storage element 50 having a structure in which a positive electrode 10 and a negative electrode 20 are wound around a separator 30. The power storage element 50 has a substantially cylindrical shape. A drawer terminal 41 is connected to the positive electrode 10. The extraction terminal 42 is connected to the negative electrode 20.
 図2は、正極10、負極20およびセパレータ30の積層方向の断面図である。図2で例示するように、正極10は、正極集電体11の一面に正極電極層12が積層された構造を有している。正極10の正極電極層12上に、セパレータ30が積層されている。セパレータ30上に、負極20が積層されている。負極20は、負極集電体21の正極10側の面に負極電極層22が積層された構造を有している。負極20の負極集電体21上に、セパレータ30が積層されている。蓄電素子50においては、これらの正極10、セパレータ30、負極20およびセパレータ30の積層単位が捲回されている。なお、正極電極層12は、正極集電体11の両面に設けられていてもよい。負極電極層22は、負極集電体21の両面に設けられていてもよい。 FIG. 2 is a cross-sectional view of the positive electrode 10, the negative electrode 20, and the separator 30 in the stacking direction. As illustrated in FIG. 2, the positive electrode 10 has a structure in which the positive electrode layer 12 is laminated on one surface of the positive electrode current collector 11. The separator 30 is laminated on the positive electrode layer 12 of the positive electrode 10. The negative electrode 20 is laminated on the separator 30. The negative electrode 20 has a structure in which the negative electrode layer 22 is laminated on the surface of the negative electrode current collector 21 on the positive electrode 10 side. The separator 30 is laminated on the negative electrode current collector 21 of the negative electrode 20. In the power storage element 50, the laminated units of the positive electrode 10, the separator 30, the negative electrode 20, and the separator 30 are wound. The positive electrode layer 12 may be provided on both sides of the positive electrode current collector 11. The negative electrode layer 22 may be provided on both sides of the negative electrode current collector 21.
 図3で例示するように、蓄電素子50と略同一の径を有する略円柱形状の封口ゴム60の2つの貫通孔に引出端子41および引出端子42がそれぞれ挿入されている。また、蓄電素子50は、有底の略円筒形状の容器70内に収容されている。 As illustrated in FIG. 3, a drawer terminal 41 and a drawer terminal 42 are inserted into two through holes of a substantially cylindrical sealing rubber 60 having a diameter substantially the same as that of the power storage element 50. Further, the power storage element 50 is housed in a bottomed substantially cylindrical container 70.
 図4で例示するように、封口ゴム60が容器70の開口周辺でかしめられている。それにより、蓄電素子50の密封性が保たれている。非水電解液は、容器70内に封入され、正極10の活物質および負極20の活物質、またはセパレータ30に含浸されている。 As illustrated in FIG. 4, the sealing rubber 60 is crimped around the opening of the container 70. As a result, the hermeticity of the power storage element 50 is maintained. The non-aqueous electrolyte solution is sealed in the container 70 and impregnated with the active material of the positive electrode 10 and the active material of the negative electrode 20, or the separator 30.
(正極)
 正極集電体11は、金属箔であり、例えばアルミニウム箔などである。このアルミニウム箔は、孔空き箔であってもよい。正極電極層12は、電気二重層キャパシタやレドックスキャパシタの電極層に用いられる公知の材質及び構造を有していればよく、例えばポリアセン(PAS)、ポリアニリン(PAN)、活性炭、カーボンブラック、グラファイト、カーボンナノチューブ等の活物質を含有し、電気二重層キャパシタ等の電極層に用いられる導電助剤やバインダー等の他の成分も必要に応じて含有している。
(Positive electrode)
The positive electrode current collector 11 is a metal foil, for example, an aluminum foil or the like. This aluminum foil may be a perforated foil. The positive electrode layer 12 may have a known material and structure used for the electrode layer of an electric double layer capacitor or a redox capacitor, and may include, for example, polyacene (PAS), polyaniline (PAN), activated carbon, carbon black, graphite, and the like. It contains an active material such as carbon nanotubes, and also contains other components such as a conductive auxiliary agent and a binder used for an electrode layer such as an electric double layer capacitor, if necessary.
(負極)
 負極集電体21は、金属箔であり、例えば銅箔などである。この銅箔は、孔空き箔であってもよい。負極電極層22は、例えば易黒鉛化炭素、グラファイト、錫酸化物、珪素酸化物等の活物質を含有し、カーボンブラックや金属粉末等の導電助剤や、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVDF)やスチレンブタジエンゴム(SBR)等のバインダーも必要に応じて含有している。
(Negative electrode)
The negative electrode current collector 21 is a metal foil, for example, a copper foil or the like. This copper foil may be a perforated foil. The negative electrode layer 22 contains an active material such as graphitized carbon, graphite, tin oxide, or silicon oxide, and is a conductive auxiliary agent such as carbon black or metal powder, polytetrafluoroethylene (PTFE), or polyfluoridene fluoride. Binders such as vinylidene fluoride (PVDF) and styrene-butadiene rubber (SBR) are also contained as required.
(セパレータ)
 セパレータ30は、例えば、正極10と負極20との間に設けられることにより、これら両電極の接触に伴う短絡を防止する。セパレータ30は、空孔内に非水電解液を保持することにより、電極間の導電経路を形成する。セパレータ30の材質としては、例えば、多孔性の、セルロース、ポリプロピレン、ポリエチレン、フッ素系樹脂等を用いることができる。
(Separator)
By providing the separator 30 between the positive electrode 10 and the negative electrode 20, for example, a short circuit due to contact between these two electrodes is prevented. The separator 30 forms a conductive path between the electrodes by holding the non-aqueous electrolyte solution in the pores. As the material of the separator 30, for example, porous cellulose, polypropylene, polyethylene, a fluororesin, or the like can be used.
 なお、蓄電素子50と非水電解液を容器70内に封入する際に、リチウム金属シートを負極20と電気的に接続する。これにより、リチウム金属シートのリチウムが非水電解液内に溶解するとともに、リチウムイオンが負極20の負極電極層22にプレドープされる。これにより、充電前の状態で負極20の電位が正極10の電位に比べて例えば3V程度低くなる。 When the power storage element 50 and the non-aqueous electrolytic solution are sealed in the container 70, the lithium metal sheet is electrically connected to the negative electrode 20. As a result, lithium in the lithium metal sheet is dissolved in the non-aqueous electrolyte solution, and lithium ions are pre-doped into the negative electrode layer 22 of the negative electrode 20. As a result, the potential of the negative electrode 20 becomes lower than the potential of the positive electrode 10 by, for example, about 3 V in the state before charging.
 また、本実施形態においては、リチウムイオンキャパシタ100は、捲回構造の蓄電素子50が円筒型の容器70に封入された構造を有しているが、それに限られない。例えば、蓄電素子50は、積層構造を有していてもよい。また、この場合の容器70は、角型の缶等であってもよい。 Further, in the present embodiment, the lithium ion capacitor 100 has a structure in which the power storage element 50 having a wound structure is enclosed in a cylindrical container 70, but the present invention is not limited thereto. For example, the power storage element 50 may have a laminated structure. Further, the container 70 in this case may be a square can or the like.
(非水電解液)
 非水電解液は、以下のように非水溶媒に電解質を溶解させ、これに添加剤を加えて作製する。
(Non-aqueous electrolyte)
A non-aqueous electrolyte solution is prepared by dissolving an electrolyte in a non-aqueous solvent as described below and adding an additive to the electrolyte.
(非水溶媒)
 非水溶媒として、環状カーボネートと鎖状カーボネートとを用いる。環状カーボネートは、例えば環状炭酸エステルであるプロピレンカーボネート(PC)やエチレンカーボネート(EC)である。環状炭酸エステルは、高い誘電率を有しているため、リチウム塩を良く溶かす性質を有している。また、環状炭酸エステルを非水溶媒に用いた非水電解液は、高いイオン電導度を有している。したがって、環状カーボネートを非水溶媒として用いると、リチウムイオンキャパシタ100の初期特性が良好となる。また、環状カーボネートを非水溶媒として用いた場合、負極20上に被膜が形成された後は、リチウムイオンキャパシタ100の動作時の十分な電気化学的安定性が実現される。
(Non-aqueous solvent)
Cyclic carbonate and chain carbonate are used as the non-aqueous solvent. The cyclic carbonate is, for example, a cyclic carbonate ester such as propylene carbonate (PC) or ethylene carbonate (EC). Since the cyclic carbonic acid ester has a high dielectric constant, it has a property of dissolving a lithium salt well. Further, the non-aqueous electrolytic solution using the cyclic carbonate as a non-aqueous solvent has high ionic conductivity. Therefore, when cyclic carbonate is used as a non-aqueous solvent, the initial characteristics of the lithium ion capacitor 100 are improved. Further, when the cyclic carbonate is used as a non-aqueous solvent, sufficient electrochemical stability during operation of the lithium ion capacitor 100 is realized after the film is formed on the negative electrode 20.
 一方、鎖状カーボネートは、例えば鎖状炭酸エステルであるエチルメチルカーボネート(EMC)やジエチルカーボネート(DEC)である。 On the other hand, the chain carbonate is, for example, ethyl methyl carbonate (EMC) or diethyl carbonate (DEC), which are chain carbonates.
 本実施形態では、非水溶媒における環状カーボネートと鎖状カーボネートとの割合を、体積比で40:60~20:80とする。鎖状カーボネートの割合の下限を60としたのは、これよりも鎖状カーボネートが少ないと低温特性が極端に悪化するためである。また、鎖状カーボネートの割合の上限を80としたのは、これよりも鎖状カーボネートが多いと高温信頼性が極端に悪化するためである。更に、非水溶媒における環状カーボネートと鎖状カーボネートとの割合は、体積比で35:65~25:75であるのが好ましい。 In the present embodiment, the ratio of the cyclic carbonate to the chain carbonate in the non-aqueous solvent is 40:60 to 20:80 in volume ratio. The lower limit of the ratio of the chain carbonate is set to 60 because if the amount of the chain carbonate is less than this, the low temperature characteristics are extremely deteriorated. Further, the upper limit of the ratio of the chain carbonate is set to 80 because if the amount of the chain carbonate is larger than this, the high temperature reliability is extremely deteriorated. Further, the ratio of the cyclic carbonate to the chain carbonate in the non-aqueous solvent is preferably 35:65 to 25:75 in volume ratio.
(電解質)
 電解質としては、イミド系リチウム塩と非イミド系リチウム塩とを混合したものを用いる。
(Electrolytes)
As the electrolyte, a mixture of an imide-based lithium salt and a non-imide-based lithium salt is used.
 このうち、イミド系リチウム塩は、例えばLiFSI(リチウムビスフルオロスルホニルイミド)である。LiFSIは、低温におけるリチウムイオンキャパシタ100の容量やDCRを改善する。 Of these, the imide-based lithium salt is, for example, LiFSI (lithium bisfluorosulfonylimide). LiFSI improves the capacity and DCR of the lithium ion capacitor 100 at low temperatures.
 一方、非イミド系リチウム塩は、例えばLiPF(リチウムヘキサフルオロホスフェート)である。LiPFは、汎用的なリチウム塩の中でも高い解離度を有しているため、リチウムイオンキャパシタ100の良好な初期特性(容量およびDCR)を実現する。 On the other hand, the non-imide-based lithium salt is, for example, LiPF 6 (lithium hexafluorophosphate). Since LiPF 6 has a high degree of dissociation among general-purpose lithium salts, it realizes good initial characteristics (capacity and DCR) of the lithium ion capacitor 100.
 本実施形態では、電解質におけるイミド系リチウム塩と非イミド系リチウム塩のモル比を40:60~99.9:0.1とする。イミド系リチウム塩のモル比の下限を40としたのは、これよりもイミド系リチウム塩が少ないと低温特性が極端に悪化するためである。また、非イミドリチウム塩のモル比の下限を0.1としたのは、イミド系リチウム塩のみからなる電解質では高温信頼性が悪化するためである。更に、電解質におけるイミド系リチウム塩と非イミド系リチウム塩のモル比は60:40~99.5:0.5であるのが好ましく、70:30~99.0:1.0であるのがより好ましい。 In the present embodiment, the molar ratio of the imide-based lithium salt to the non-imide-based lithium salt in the electrolyte is set to 40:60 to 99.9: 0.1. The reason why the lower limit of the molar ratio of the imide-based lithium salt is set to 40 is that if the amount of the imide-based lithium salt is less than this, the low temperature characteristics are extremely deteriorated. Further, the lower limit of the molar ratio of the non-imide lithium salt is set to 0.1 because the high temperature reliability deteriorates in the electrolyte composed of only the imide-based lithium salt. Further, the molar ratio of the imide-based lithium salt to the non-imide-based lithium salt in the electrolyte is preferably 60:40 to 99.5: 0.5, preferably 70:30 to 99.0: 1.0. More preferred.
 なお、非水溶媒における電解質の濃度は、0.7mol/L~1.5mol/Lが好ましい。電解質の濃度の下限を0.7mol/Lとしたのは、電解質の濃度をこれよりも低くすると有効に作用するイオンが少なくなることが原因で内部抵抗が上昇するためである。また、電解質の濃度の上限を1.5mol/Lとしたのは、電解質の濃度をこれよりも高くすると非水電解液の粘度が高くなることが原因で内部抵抗が上昇するためである。 The concentration of the electrolyte in the non-aqueous solvent is preferably 0.7 mol / L to 1.5 mol / L. The lower limit of the electrolyte concentration is set to 0.7 mol / L because if the electrolyte concentration is lower than this, the internal resistance increases due to the decrease in the number of ions that act effectively. Further, the upper limit of the concentration of the electrolyte is set to 1.5 mol / L because if the concentration of the electrolyte is higher than this, the internal resistance increases due to the increase in the viscosity of the non-aqueous electrolyte solution.
(第1添加剤)
 リチウムイオンキャパシタ100の内部抵抗を低減するために、非水電解液に第1添加剤としてジフルオロリン酸リチウム(LiDFP(LiPO))を添加する。
(First additive)
In order to reduce the internal resistance of the lithium ion capacitor 100, lithium difluorophosphate (LiDFP (LiPO 2 F 2 )) is added as a first additive to the non-aqueous electrolytic solution.
 第1添加剤の効果を十分に得るために、第1添加剤の濃度に下限を設けることが好ましい。一方、電解液における第1添加剤の濃度が高すぎると、リチウムイオンキャパシタ100の高温時のフロート信頼性が低下するおそれがある。そこで、電解液における第1添加剤の濃度に上限を設けることが好ましい。本実施形態においては、電解液における第1添加剤の濃度を0.1wt%~0.4wt%とする。 It is preferable to set a lower limit on the concentration of the first additive in order to sufficiently obtain the effect of the first additive. On the other hand, if the concentration of the first additive in the electrolytic solution is too high, the float reliability of the lithium ion capacitor 100 at a high temperature may decrease. Therefore, it is preferable to set an upper limit on the concentration of the first additive in the electrolytic solution. In the present embodiment, the concentration of the first additive in the electrolytic solution is 0.1 wt% to 0.4 wt%.
 (第2添加剤)
 リチウムイオンキャパシタ100の内部抵抗を低減し、かつ高温時のフロート信頼性を高めるために、非水電解液に第2添加剤としてオキサラトリン酸リチウム塩を添加する。そのようなオキサラトリン酸リチウム塩としては、ジフルオロビス(オキサラト)リン酸リチウム(LiDFBOP(LiP(C))又はテトラフルオロ(オキサラト)リン酸リチウム(LiTFOP(LiP(C)F4))がある。
(Second additive)
In order to reduce the internal resistance of the lithium ion capacitor 100 and increase the float reliability at high temperature, a lithium oxalateric acid salt is added to the non-aqueous electrolytic solution as a second additive. Such lithium oxalatrate salts include lithium difluorobis (oxalate) phosphate (LiDFBOP (LiP (C 2 O 4 ) 2 F 2 )) or lithium tetrafluoro (oxalate) phosphate (LiTFOP (LiP (C 2 O)). 4 ) There are F 4 )).
 第2添加剤の効果を十分に得るために、第2添加剤の濃度に下限を設けることが好ましい。一方、電解液における第2添加剤の濃度が高すぎると、リチウムイオンキャパシタ100の内部抵抗が上昇したり、高温時のフロート信頼性が低下したりするおそれがある。そこで、電解液における第2添加剤の濃度に上限を設けることが好ましい。本実施形態においては、電解液における第2添加剤の濃度を0.2wt%~1.2wt%とする。 In order to obtain the full effect of the second additive, it is preferable to set a lower limit on the concentration of the second additive. On the other hand, if the concentration of the second additive in the electrolytic solution is too high, the internal resistance of the lithium ion capacitor 100 may increase, or the float reliability at high temperatures may decrease. Therefore, it is preferable to set an upper limit on the concentration of the second additive in the electrolytic solution. In the present embodiment, the concentration of the second additive in the electrolytic solution is 0.2 wt% to 1.2 wt%.
 (第3添加剤)
 リチウムイオンキャパシタ100の高温時のフロート信頼性を高めるために、非水電解液に第3添加剤としてオキサラトホウ酸リチウム塩を添加する。そのようなオキサラトホウ酸リチウム塩としては、ビス(オキサラト)ホウ酸リチウム(LiBOB(LiB(C))又はジフルオロ(オキサラト)ホウ酸リチウム(LiDFOB(LiB(C)F))がある。
(Third additive)
In order to improve the float reliability of the lithium ion capacitor 100 at high temperature, a lithium oxalateborate salt is added to the non-aqueous electrolytic solution as a third additive. Such lithium oxalate oxalate salts include lithium bis (oxalate) oxalate (LiBOB (LiB (C 2 O 4 ) 2 )) or lithium difluoro (oxalate) oxalate (LiDFOB (LiB (C 2 O 4 ) F 2). )).
 第3添加剤の効果を十分に得るために、第3添加剤の濃度に下限を設けることが好ましい。一方、電解液における第3添加剤の濃度が高すぎると、リチウムイオンキャパシタ100の内部抵抗が上昇するおそれがある。そこで、電解液における第3添加剤の濃度に上限を設けることが好ましい。本実施形態においては、電解液における第3添加剤の濃度を0.2wt%~0.4wt%とする。 It is preferable to set a lower limit on the concentration of the third additive in order to sufficiently obtain the effect of the third additive. On the other hand, if the concentration of the third additive in the electrolytic solution is too high, the internal resistance of the lithium ion capacitor 100 may increase. Therefore, it is preferable to set an upper limit on the concentration of the third additive in the electrolytic solution. In the present embodiment, the concentration of the third additive in the electrolytic solution is 0.2 wt% to 0.4 wt%.
 また、本実施形態では、非水電解液において第1添加剤、第2添加剤、及び第3添加剤を合わせた濃度を0.5wt%以上2.0wt%以下とする。更に、第1添加剤の重量と、第2添加剤と第3添加剤とを合わせた重量との比を1:9~3:7とする。そして、第2添加剤の重量と第3添加剤の重量との比を1:1~3:1とする。これにより、リチウムイオンキャパシタ100の低温時の内部抵抗が低減し、かつ高温時のフロート信頼性を高めることができ、リチウムイオンキャパシタ100の低温特性と高温信頼性の両方を改善することができる。 Further, in the present embodiment, the combined concentration of the first additive, the second additive, and the third additive in the non-aqueous electrolytic solution is 0.5 wt% or more and 2.0 wt% or less. Further, the ratio of the weight of the first additive to the combined weight of the second additive and the third additive is set to 1: 9 to 3: 7. Then, the ratio of the weight of the second additive to the weight of the third additive is set to 1: 1 to 3: 1. As a result, the internal resistance of the lithium ion capacitor 100 at low temperature can be reduced, the float reliability at high temperature can be improved, and both the low temperature characteristics and high temperature reliability of the lithium ion capacitor 100 can be improved.
 なお、本実施形態においては、電気化学デバイスとしてリチウムイオンキャパシタの電解液に着目したが、それに限られない。例えば、本実施形態に係る非水電解液を、電気二重層キャパシタなどの他の電気化学デバイスの電解液として用いることもできる。 In the present embodiment, attention was paid to the electrolytic solution of the lithium ion capacitor as an electrochemical device, but the present invention is not limited to this. For example, the non-aqueous electrolytic solution according to the present embodiment can also be used as an electrolytic solution for other electrochemical devices such as an electric double layer capacitor.
 上記実施形態に従って、リチウムイオンキャパシタを作製し、特性について調べた。表1は、実施例と比較例の各々の試験条件を示す図である。
Figure JPOXMLDOC01-appb-T000001
A lithium ion capacitor was prepared according to the above embodiment, and its characteristics were investigated. Table 1 is a diagram showing test conditions for each of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 正極10の活物質として、活性炭を用いた。カルボキシメチルセルロース及びスチレンブタジエンゴムをバインダーとしてスラリを調製し、調製されたスラリを孔空き加工の施されたアルミ箔上に塗布してシート状に作製した。負極20の活物質として、易黒鉛化炭素を用いた。カルボキシメチルセルロース及びスチレンブタジエンゴムをバインダーとしてスラリを調製し、調製されたスラリを孔空き加工の施された銅箔上に塗布してシート状に作製した。これらの電極10、20間にセルロース系のセパレータ30を挟み、超音波溶接により引出端子41を正極集電体11に取り付け、引出端子42を負極集電体21に取り付けてからこれらを捲回し、ポリイミドの粘着テープで蓄電素子50を固定した。作製した蓄電素子50に封口ゴム60を取付けて約180℃で真空乾燥した後、負極20にリチウム箔を貼りつけ、蓄電素子50を容器70に入れた。
(Example 1)
Activated carbon was used as the active material for the positive electrode 10. A slurry was prepared using carboxymethyl cellulose and styrene-butadiene rubber as a binder, and the prepared slurry was applied onto a perforated aluminum foil to prepare a sheet. Graphitized carbon was used as the active material for the negative electrode 20. A slurry was prepared using carboxymethyl cellulose and styrene-butadiene rubber as a binder, and the prepared slurry was applied onto a copper foil having been subjected to perforation processing to prepare a sheet. A cellulosic separator 30 is sandwiched between these electrodes 10 and 20, the extraction terminal 41 is attached to the positive electrode current collector 11 by ultrasonic welding, the extraction terminal 42 is attached to the negative electrode current collector 21, and then these are wound. The power storage element 50 was fixed with a polyimide adhesive tape. After attaching the sealing rubber 60 to the produced power storage element 50 and vacuum-drying it at about 180 ° C., a lithium foil was attached to the negative electrode 20 and the power storage element 50 was placed in the container 70.
 その後、PCとEMCとを体積比で3:7の割合で混合した非水溶媒に、LiFSIとLiPFとをモル比で7:3の割合で混合した電解質を溶解した非水電解液を作製した。その非水電解液における電解質の濃度は1.0mol/Lとした。更に、非水電解液に第1添加剤としてジフルオロリン酸リチウム(LiPO)を0.1wt%の濃度で添加し、第2添加剤としてジフルオロビス(オキサラト)リン酸リチウム(LiP(C)を0.6wt%の濃度で添加し、第3添加剤としてビス(オキサラト)ホウ酸リチウム(LiB(C)を0.3wt%の濃度で添加した。そして、この非水電解液を容器70に注入した後、封口ゴム60の部分をかしめてリチウムイオンキャパシタ100を作製した。 Then, a non-aqueous electrolyte solution was prepared by dissolving an electrolyte in which LiFSI and LiPF 6 were mixed in a molar ratio of 7: 3 in a non-aqueous solvent in which PC and EMC were mixed in a volume ratio of 3: 7. bottom. The concentration of the electrolyte in the non-aqueous electrolyte solution was 1.0 mol / L. Further, lithium difluorophosphate (LiPO 2 F 2 ) was added to the non-aqueous electrolyte solution as a first additive at a concentration of 0.1 wt%, and lithium difluorobis (oxalate) phosphate (LiP (C)) was added as a second additive. 2 O 4 ) 2 F 2 ) was added at a concentration of 0.6 wt%, and lithium bis (oxalate) borate (LiB (C 2 O 4 ) 2 ) was added at a concentration of 0.3 wt% as a third additive. bottom. Then, after injecting this non-aqueous electrolytic solution into the container 70, the portion of the sealing rubber 60 was crimped to prepare a lithium ion capacitor 100.
(実施例2)
 実施例2では、第2添加剤の濃度を0.5wt%とし、第3添加剤の濃度を0.4wt%とした。その他の条件は実施例1と同様とした。
(Example 2)
In Example 2, the concentration of the second additive was 0.5 wt%, and the concentration of the third additive was 0.4 wt%. Other conditions were the same as in Example 1.
(実施例3)
 実施例3では、第1添加剤の濃度を0.2wt%とし、第2添加剤の濃度を0.6wt%とし、第3添加剤の濃度を0.2wt%とした。その他の条件は実施例1と同様とした。
(Example 3)
In Example 3, the concentration of the first additive was 0.2 wt%, the concentration of the second additive was 0.6 wt%, and the concentration of the third additive was 0.2 wt%. Other conditions were the same as in Example 1.
(実施例4)
 実施例4では、第2添加剤の濃度を0.5wt%とし、第3添加剤の濃度を0.3wt%とした。その他の条件は実施例3と同様とした。
(Example 4)
In Example 4, the concentration of the second additive was 0.5 wt%, and the concentration of the third additive was 0.3 wt%. Other conditions were the same as in Example 3.
(実施例5)
 実施例5では、第2添加剤の濃度を0.4wt%とし、第3添加剤の濃度を0.4wt%とした。その他の条件は実施例3と同様とした。
(Example 5)
In Example 5, the concentration of the second additive was 0.4 wt%, and the concentration of the third additive was 0.4 wt%. Other conditions were the same as in Example 3.
(実施例6)
 実施例6では、第1添加剤の濃度を0.3wt%とし、第2添加剤の濃度を0.5wt%とし、第3添加剤の濃度を0.2wt%とした。その他の条件は実施例1と同様とした。
(Example 6)
In Example 6, the concentration of the first additive was 0.3 wt%, the concentration of the second additive was 0.5 wt%, and the concentration of the third additive was 0.2 wt%. Other conditions were the same as in Example 1.
(実施例7)
 実施例7では、第2添加剤の濃度を0.4wt%とし、第3添加剤の濃度を0.3wt%とした。その他の条件は実施例6と同様とした。
(Example 7)
In Example 7, the concentration of the second additive was 0.4 wt%, and the concentration of the third additive was 0.3 wt%. Other conditions were the same as in Example 6.
(実施例8)
 実施例8では、第1添加剤の濃度を0.1wt%とし、第2添加剤の濃度を0.2wt%とし、第3添加剤の濃度を0.2wt%とした。その他の条件は実施例1と同様とした。
(Example 8)
In Example 8, the concentration of the first additive was 0.1 wt%, the concentration of the second additive was 0.2 wt%, and the concentration of the third additive was 0.2 wt%. Other conditions were the same as in Example 1.
(実施例9)
 実施例9では、第1添加剤の濃度を0.2wt%とし、第2添加剤の濃度を0.9wt%とし、第3添加剤の濃度を0.4wt%とした。その他の条件は実施例1と同様とした。
(Example 9)
In Example 9, the concentration of the first additive was 0.2 wt%, the concentration of the second additive was 0.9 wt%, and the concentration of the third additive was 0.4 wt%. Other conditions were the same as in Example 1.
(実施例10)
 実施例10では、第1添加剤の濃度を0.4wt%とし、第2添加剤の濃度を1.2wt%とし、第3添加剤の濃度を0.4wt%とした。その他の条件は実施例1と同様とした。
(Example 10)
In Example 10, the concentration of the first additive was 0.4 wt%, the concentration of the second additive was 1.2 wt%, and the concentration of the third additive was 0.4 wt%. Other conditions were the same as in Example 1.
(比較例1)
 比較例1では、第2添加剤の濃度を0.7wt%とし、第3添加剤の濃度を0.2wt%とした。その他の条件は実施例1と同様とした。
(Comparative Example 1)
In Comparative Example 1, the concentration of the second additive was 0.7 wt%, and the concentration of the third additive was 0.2 wt%. Other conditions were the same as in Example 1.
(比較例2)
 比較例2では、第2添加剤の濃度を0.4wt%とし、第3添加剤の濃度を0.5wt%とした。その他の条件は実施例1と同様とした。
(Comparative Example 2)
In Comparative Example 2, the concentration of the second additive was 0.4 wt%, and the concentration of the third additive was 0.5 wt%. Other conditions were the same as in Example 1.
(比較例3)
 比較例3では、第2添加剤の濃度を0.7wt%とし、第3添加剤の濃度を0.1wt%とした。その他の条件は実施例3と同様とした。
(Comparative Example 3)
In Comparative Example 3, the concentration of the second additive was 0.7 wt%, and the concentration of the third additive was 0.1 wt%. Other conditions were the same as in Example 3.
(比較例4)
 比較例4では、第2添加剤の濃度を0.3wt%とし、第3添加剤の濃度を0.5wt%とした。その他の条件は実施例3と同様とした。
(Comparative Example 4)
In Comparative Example 4, the concentration of the second additive was 0.3 wt%, and the concentration of the third additive was 0.5 wt%. Other conditions were the same as in Example 3.
(比較例5)
 比較例5では、第2添加剤の濃度を0.6wt%とし、第3添加剤の濃度を0.1wt%とした。その他の条件は実施例6と同様とした。
(Comparative Example 5)
In Comparative Example 5, the concentration of the second additive was 0.6 wt%, and the concentration of the third additive was 0.1 wt%. Other conditions were the same as in Example 6.
(比較例6)
 比較例6では、第2添加剤の濃度を0.3wt%とし、第3添加剤の濃度を0.4wt%とした。その他の条件は実施例6と同様とした。
(Comparative Example 6)
In Comparative Example 6, the concentration of the second additive was 0.3 wt%, and the concentration of the third additive was 0.4 wt%. Other conditions were the same as in Example 6.
(比較例7)
 比較例7では、第1添加剤の濃度を0.4wt%とし、第2添加剤の濃度を0.3wt%とし、第3添加剤の濃度を0.3wt%とした。その他の条件は実施例1と同様とした。
(Comparative Example 7)
In Comparative Example 7, the concentration of the first additive was 0.4 wt%, the concentration of the second additive was 0.3 wt%, and the concentration of the third additive was 0.3 wt%. Other conditions were the same as in Example 1.
(比較例8)
 比較例8では、第1添加剤の濃度を0.05wt%とし、第2添加剤の濃度を0.1wt%とし、第3添加剤の濃度を0.1wt%とした。その他の条件は実施例1と同様とした。
(Comparative Example 8)
In Comparative Example 8, the concentration of the first additive was 0.05 wt%, the concentration of the second additive was 0.1 wt%, and the concentration of the third additive was 0.1 wt%. Other conditions were the same as in Example 1.
(比較例9)
 比較例9では、第1添加剤の濃度を0.5wt%とし、第2添加剤の濃度を1.5wt%とし、第3添加剤の濃度を0.5wt%とした。その他の条件は実施例1と同様とした。
(Comparative Example 9)
In Comparative Example 9, the concentration of the first additive was 0.5 wt%, the concentration of the second additive was 1.5 wt%, and the concentration of the third additive was 0.5 wt%. Other conditions were the same as in Example 1.
(比較例10)
 比較例10では、第2添加剤の濃度を0.5wt%とし、第3添加剤の濃度を0.5wt%とした。なお、電解液に第1添加剤は添加しなかった。その他の条件は実施例1と同様とした。
(Comparative Example 10)
In Comparative Example 10, the concentration of the second additive was 0.5 wt%, and the concentration of the third additive was 0.5 wt%. The first additive was not added to the electrolytic solution. Other conditions were the same as in Example 1.
(比較例11)
 比較例11では、第1添加剤の濃度を0.3wt%とし、第3添加剤の濃度を0.7wt%とした。なお、電解液に第2添加剤は添加しなかった。その他の条件は実施例1と同様とした。
(Comparative Example 11)
In Comparative Example 11, the concentration of the first additive was 0.3 wt%, and the concentration of the third additive was 0.7 wt%. No second additive was added to the electrolytic solution. Other conditions were the same as in Example 1.
(比較例12)
 比較例12では、第1添加剤の濃度を0.3wt%とし、第2添加剤の濃度を0.7wt%とした。なお、電解液に第3添加剤は添加しなかった。その他の条件は実施例1と同様とした。
(Comparative Example 12)
In Comparative Example 12, the concentration of the first additive was 0.3 wt%, and the concentration of the second additive was 0.7 wt%. The third additive was not added to the electrolytic solution. Other conditions were the same as in Example 1.
(評価方法)
 実施例1~10と比較例1~12の各々のリチウムイオンキャパシタ100を作製した。その後、初期特性として、室温(25℃)におけるDCR(内部抵抗)を測定した。
(Evaluation method)
Lithium ion capacitors 100 of Examples 1 to 10 and Comparative Examples 1 to 12 were produced. Then, as an initial characteristic, DCR (internal resistance) at room temperature (25 ° C.) was measured.
 低温特性は、セルを-40℃で2時間放置した後、-40℃でDCRを測定し、この値の25℃からの変化率に基づいて評価した。 The low temperature characteristics were evaluated based on the rate of change of this value from 25 ° C. by measuring the DCR at −40 ° C. after leaving the cell at −40 ° C. for 2 hours.
 また、高温信頼性を評価するために、85℃の恒温槽中において3.5Vの電圧で1000時間連続充電するフロート試験を行った。フロート試験後、セルを室温(25℃)まで放冷し、DCRを測定し、試験前後の値の変化率を算出した。実施例と比較例の各々の試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Further, in order to evaluate the high temperature reliability, a float test was conducted in which the battery was continuously charged at a voltage of 3.5 V for 1000 hours in a constant temperature bath at 85 ° C. After the float test, the cell was allowed to cool to room temperature (25 ° C.), DCR was measured, and the rate of change of the value before and after the test was calculated. Table 2 shows the test results of each of the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000002
(低温特性)
 -40℃での低温特性の良否の判定基準は、抵抗上昇率が1500%以内とし、この基準が満たされない場合には不良と判定した。なお、抵抗上昇率は、25℃のときを基準としたときの内部抵抗の上昇率である。
(Low temperature characteristics)
The criteria for judging the quality of the low temperature characteristics at −40 ° C. was that the resistance increase rate was within 1500%, and if this criterion was not met, it was judged to be defective. The rate of increase in resistance is the rate of increase in internal resistance when the temperature is 25 ° C. as a reference.
 実施例1~7及び比較例1~7、10~12の結果から明らかなように、低温特性に最も影響を及ぼすのは第3添加剤のビス(オキサラト)ホウ酸リチウムであり、その添加量が増えるほど低温特性が悪化する傾向が確認された。また、第1添加剤のジフルオロリン酸リチウムの添加量が増えると、低温特性は良くなる傾向が見られた。 As is clear from the results of Examples 1 to 7 and Comparative Examples 1 to 7, 10 to 12, it is the third additive lithium bis (oxalate) borate that has the greatest effect on the low temperature characteristics, and the amount thereof added. It was confirmed that the low temperature characteristics tended to deteriorate as the amount increased. Further, as the amount of the first additive lithium difluorophosphate added increased, the low temperature characteristics tended to improve.
 一方、実施例8~10及び比較例8~9の結果によれば、第1添加剤、第2添加剤、及び第3添加剤のそれぞれの濃度の合計が2.0wt%よりも高いと低温特性の判定基準を満たさないことが確認された。 On the other hand, according to the results of Examples 8 to 10 and Comparative Examples 8 to 9, when the total concentration of each of the first additive, the second additive, and the third additive is higher than 2.0 wt%, the temperature is low. It was confirmed that the criteria for the characteristics were not met.
(高温信頼性)
 高温信頼性の良否の判断基準は、抵抗上昇率が200%以内とし、この基準が満たされない場合には不良と判定した。抵抗上昇率は、フロート試験の前後における内部抵抗の上昇率である。
(High temperature reliability)
The criteria for judging the quality of high temperature reliability was that the resistance increase rate was within 200%, and if this criterion was not met, it was judged to be defective. The rate of increase in resistance is the rate of increase in internal resistance before and after the float test.
 実施例1~7及び比較例1~7、10~12の結果から明らかなように、第3添加剤のビス(オキサラト)ホウ酸リチウムの添加量が増えるほど高温信頼性は良くなるものの、その添加量が多すぎるとかえって高温信頼性が悪化することが確認された。また、第1添加剤のジフルオロリン酸リチウムの添加量が増えると、高温信頼性は悪化する傾向が見られた。 As is clear from the results of Examples 1 to 7 and Comparative Examples 1 to 7, 10 to 12, the higher the amount of the third additive lithium bis (oxalate) borate added, the better the high temperature reliability, but the higher the reliability. It was confirmed that if the amount added was too large, the high temperature reliability would rather deteriorate. Further, as the amount of lithium difluorophosphate added as the first additive increased, the high temperature reliability tended to deteriorate.
 一方、実施例8~10及び比較例8~9の結果によれば、第1添加剤、第2添加剤、及び第3添加剤のそれぞれの濃度の合計が0.5wt%~2.0wt%の範囲を外れると、高温信頼性が悪化することが確認された。なお、比較例11に示されるように、電解液に第2添加剤のジフルオロビス(オキサラト)リン酸リチウムが含まれていないと、高温信頼性が悪いだけでなく、低温特性も悪化する結果が得られた。 On the other hand, according to the results of Examples 8 to 10 and Comparative Examples 8 to 9, the total concentration of each of the first additive, the second additive, and the third additive is 0.5 wt% to 2.0 wt%. It was confirmed that the high temperature reliability deteriorated when the value was out of the range of. As shown in Comparative Example 11, if the electrolytic solution does not contain the second additive lithium difluorobis (oxalate) phosphate, not only the high temperature reliability is poor, but also the low temperature characteristics are deteriorated. Obtained.
 また、表2によれば、低温特性と高温信頼性の両方の判定基準を満たす実施例1~10においては、第1添加剤、第2添加剤、及び第3添加剤のそれぞれの濃度の合計が0.5wt%以上2.0wt%以下であり、第1添加剤の重量と、第2添加剤と第3添加剤とを合わせた重量との比が1:9~3:7であり、第2添加剤の重量と第3添加剤の重量との比が1:1~3:1である。 Further, according to Table 2, in Examples 1 to 10 that satisfy the criteria for both low temperature characteristics and high temperature reliability, the sum of the concentrations of the first additive, the second additive, and the third additive, respectively. Is 0.5 wt% or more and 2.0 wt% or less, and the ratio of the weight of the first additive to the combined weight of the second additive and the third additive is 1: 9 to 3: 7. The ratio of the weight of the second additive to the weight of the third additive is 1: 1 to 3: 1.
 よって、低温特性と高温信頼性を両立するためには、第1添加剤、第2添加剤、及び第3添加剤のそれぞれの濃度の合計を0.5wt%以上2.0wt%以下とし、第1添加剤の重量と、第2添加剤と第3添加剤とを合わせた重量との比を1:9~3:7とし、第2添加剤の重量と第3添加剤の重量との比を1:1~3:1とするのが有効であることが確認された。
 
 
Therefore, in order to achieve both low temperature characteristics and high temperature reliability, the total concentration of each of the first additive, the second additive, and the third additive should be 0.5 wt% or more and 2.0 wt% or less. The ratio of the weight of the 1 additive to the combined weight of the 2nd additive and the 3rd additive is 1: 9 to 3: 7, and the ratio of the weight of the 2nd additive to the weight of the 3rd additive. It was confirmed that it is effective to set the value to 1: 1 to 3: 1.

Claims (6)

  1.  溶媒に電解質が溶解した電解液であって、
     前記溶媒は、環状カーボネートと鎖状カーボネートとを含み、
     前記電解質は、イミド系リチウム塩と非イミド系リチウム塩とを含み、
     前記電解液に、ジフルオロリン酸リチウム、オキサラトリン酸リチウム塩、及びオキサラトホウ酸リチウム塩を含む添加剤が添加され、
     前記電解液における前記添加剤の濃度が0.5wt%以上2.0wt%以下であり、
     前記ジフルオロリン酸リチウムの重量と、前記オキサラトリン酸リチウム塩と前記オキサラトホウ酸リチウム塩とを合わせた重量との比が1:9~3:7であり、
     前記オキサラトリン酸リチウム塩の重量と、前記オキサラトホウ酸リチウム塩の重量との比が1:1~3:1であることを特徴とする電気化学デバイス用電解液。
    An electrolytic solution in which an electrolyte is dissolved in a solvent.
    The solvent contains a cyclic carbonate and a chain carbonate.
    The electrolyte contains an imide-based lithium salt and a non-imide-based lithium salt.
    An additive containing lithium difluorophosphate, lithium oxalateric acid salt, and lithium oxalatoboate salt was added to the electrolytic solution, and the mixture was added.
    The concentration of the additive in the electrolytic solution is 0.5 wt% or more and 2.0 wt% or less.
    The ratio of the weight of the lithium difluorophosphate to the combined weight of the lithium oxalatrate salt and the lithium oxalatoboate salt is 1: 9 to 3: 7.
    An electrolytic solution for an electrochemical device, wherein the ratio of the weight of the lithium oxalatric acid salt to the weight of the lithium oxalate borate salt is 1: 1 to 3: 1.
  2.  前記オキサラトリン酸リチウム塩は、ジフルオロビス(オキサラト)リン酸リチウム又はテトラフルオロ(オキサラト)リン酸リチウムであることを特徴とする請求項1に記載の電気化学デバイス用電解液。 The electrolytic solution for an electrochemical device according to claim 1, wherein the lithium oxalatric acid salt is lithium difluorobis (oxalate) phosphate or lithium tetrafluoro (oxalate) phosphate.
  3.  前記オキサラトホウ酸リチウム塩は、ビス(オキサラト)ホウ酸リチウム又はジフルオロ(オキサラト)ホウ酸リチウムであることを特徴とする請求項1又は請求項2に記載の電気化学デバイス用電解液。 The electrolytic solution for an electrochemical device according to claim 1 or 2, wherein the lithium oxalate borate salt is lithium bis (oxalate) borate or lithium difluoro (oxalate) borate.
  4.  前記環状カーボネートは、プロピレンカーボネート又はエチレンカーボネートであり、前記鎖状カーボネートは、エチルメチルカーボネート又はジエチルカーボネートであることを特徴とする請求項1~3のいずれか一項に記載の電気化学デバイス用電解液。 The electrolysis for an electrochemical device according to any one of claims 1 to 3, wherein the cyclic carbonate is propylene carbonate or ethylene carbonate, and the chain carbonate is ethyl methyl carbonate or diethyl carbonate. liquid.
  5.  前記イミド系リチウム塩はリチウムビスフルオロスルホニルイミドであり、前記非イミド系リチウム塩はリチウムヘキサフルオロホスフェートであることを特徴とする請求項1~4のいずれか一項に記載の電気化学デバイス用電解液。 The electrolysis for an electrochemical device according to any one of claims 1 to 4, wherein the imide-based lithium salt is lithium bisfluorosulfonylimide, and the non-imide-based lithium salt is lithium hexafluorophosphate. liquid.
  6.  正極及び負極がセパレータを介して積層された蓄電素子を備え、
     前記正極の活物質及び前記負極の活物質、又は前記セパレータに、請求項1~5のいずれか一項に記載の電気化学デバイス用電解液が含浸されていることを特徴とする電気化学デバイス。
     
    A power storage element in which a positive electrode and a negative electrode are laminated via a separator is provided.
    An electrochemical device, wherein the active material of the positive electrode, the active material of the negative electrode, or the separator is impregnated with the electrolytic solution for an electrochemical device according to any one of claims 1 to 5.
PCT/JP2021/005681 2020-04-07 2021-02-16 Electrolytic solution for electrochemical device, and electrochemical device WO2021205750A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-069022 2020-04-07
JP2020069022A JP2021166244A (en) 2020-04-07 2020-04-07 Electrolyte for electrochemical device and electrochemical device

Publications (1)

Publication Number Publication Date
WO2021205750A1 true WO2021205750A1 (en) 2021-10-14

Family

ID=78022234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005681 WO2021205750A1 (en) 2020-04-07 2021-02-16 Electrolytic solution for electrochemical device, and electrochemical device

Country Status (2)

Country Link
JP (1) JP2021166244A (en)
WO (1) WO2021205750A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566712A (en) * 2022-03-03 2022-05-31 湖北亿纬动力有限公司 High-voltage lithium ion battery electrolyte containing lithium difluorophosphate, preparation method thereof and lithium ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079565A1 (en) * 2009-01-06 2010-07-15 株式会社村田製作所 Nonaqueous electrolyte secondary battery
JP2016100100A (en) * 2014-11-19 2016-05-30 セントラル硝子株式会社 Electrolyte for nonaqueous electrolyte battery, and lithium nonaqueous electrolyte battery
JP2017004947A (en) * 2015-06-09 2017-01-05 ステラケミファ株式会社 Nonaqueous electrolyte solution for secondary batteries and secondary battery comprising the same
WO2019054418A1 (en) * 2017-09-12 2019-03-21 セントラル硝子株式会社 Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte battery
JP2019175578A (en) * 2018-03-27 2019-10-10 三井化学株式会社 Nonaqueous electrolyte solution for battery and lithium secondary battery
JP2020053488A (en) * 2018-09-25 2020-04-02 太陽誘電株式会社 Electrochemical device electrolyte solution and electrochemical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079565A1 (en) * 2009-01-06 2010-07-15 株式会社村田製作所 Nonaqueous electrolyte secondary battery
JP2016100100A (en) * 2014-11-19 2016-05-30 セントラル硝子株式会社 Electrolyte for nonaqueous electrolyte battery, and lithium nonaqueous electrolyte battery
JP2017004947A (en) * 2015-06-09 2017-01-05 ステラケミファ株式会社 Nonaqueous electrolyte solution for secondary batteries and secondary battery comprising the same
WO2019054418A1 (en) * 2017-09-12 2019-03-21 セントラル硝子株式会社 Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte battery
JP2019175578A (en) * 2018-03-27 2019-10-10 三井化学株式会社 Nonaqueous electrolyte solution for battery and lithium secondary battery
JP2020053488A (en) * 2018-09-25 2020-04-02 太陽誘電株式会社 Electrochemical device electrolyte solution and electrochemical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566712A (en) * 2022-03-03 2022-05-31 湖北亿纬动力有限公司 High-voltage lithium ion battery electrolyte containing lithium difluorophosphate, preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
JP2021166244A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
KR101954600B1 (en) Aqueous electrolyte solution for electrical storage device, and electrical storage device including said aqueous electrolyte solution
KR100570359B1 (en) The hybrid battery
JP6818723B2 (en) Electrolyte for electrochemical devices and electrochemical devices
US10483049B2 (en) Lithium ion capacitor
JP5165862B2 (en) Non-aqueous electrolyte and electrochemical energy storage device using the same
JP7352781B2 (en) Electrochemical device and its manufacturing method
JP4281030B2 (en) Non-aqueous electrolyte battery
WO2021205750A1 (en) Electrolytic solution for electrochemical device, and electrochemical device
CN109559903B (en) Electrolyte solution for electrochemical device and electrochemical device
JPH1012272A (en) Nonaqueous electrolyte secondary battery
JP2016167476A (en) Power storage device
US10580589B2 (en) Lithium ion capacitor
JP6718905B2 (en) Lithium ion capacitor
JP2019179609A (en) Electrolyte solution for batteries and lithium secondary battery
CN111354977A (en) Lithium ion battery electrolyte, preparation method thereof and lithium battery comprising lithium ion battery electrolyte
JPWO2019188760A1 (en) Electrochemical device
WO2022004166A1 (en) Electrochemical device
WO2021200778A1 (en) Electrochemical device
WO2020262440A1 (en) Electrochemical device
JP7200465B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2018190569A (en) Nonaqueous electrolyte solution for battery, additive agent for battery, and lithium secondary battery
JP2019169700A (en) Electrolyte solution for electrochemical device, and electrochemical device
JP2016086153A (en) Electrochemical device
JP2021177470A (en) Nonaqueous electrolyte solution, semisolid electrolyte layer, secondary battery sheet and secondary battery
KR100706714B1 (en) Hybrid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21783991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21783991

Country of ref document: EP

Kind code of ref document: A1