JP2019169700A - Electrolyte solution for electrochemical device, and electrochemical device - Google Patents

Electrolyte solution for electrochemical device, and electrochemical device Download PDF

Info

Publication number
JP2019169700A
JP2019169700A JP2018238824A JP2018238824A JP2019169700A JP 2019169700 A JP2019169700 A JP 2019169700A JP 2018238824 A JP2018238824 A JP 2018238824A JP 2018238824 A JP2018238824 A JP 2018238824A JP 2019169700 A JP2019169700 A JP 2019169700A
Authority
JP
Japan
Prior art keywords
carbonate
electrolyte
electrochemical device
additive
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018238824A
Other languages
Japanese (ja)
Inventor
武男 続木
Takeo Tsuzuki
武男 続木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2018238824A priority Critical patent/JP2019169700A/en
Publication of JP2019169700A publication Critical patent/JP2019169700A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide an electrolyte solution for an electrochemical device, which can increase the high-temperature reliability of an electrochemical device, and an electrochemical device containing the electrolyte solution.SOLUTION: An electrolyte solution for an electrochemical device comprises: an electrolyte solution containing a solvent of a cyclic carbonate and as an electrolyte, 0.8 mol/L or more and 1.6 mol/L or less of LiPF; and a chain carbonate of which the addition amount to the electrolyte solution is equal to or more than 0.1 wt% and less than 10.0 wt%.SELECTED DRAWING: Figure 1

Description

本発明は、電気化学デバイス用電解液および電気化学デバイスに関する。   The present invention relates to an electrolytic solution for an electrochemical device and an electrochemical device.

非水電解液を用いた電気二重層キャパシタやリチウムイオンキャパシタ等の電気化学デバイスは、溶媒の電気分解電圧が高いために耐電圧を高くすることができ、大きなエネルギーを蓄えることが可能である。   Electrochemical devices such as electric double layer capacitors and lithium ion capacitors using a non-aqueous electrolyte can increase the withstand voltage because of the high electrolysis voltage of the solvent, and can store a large amount of energy.

近年、電気化学デバイスは、高温状態における信頼性の確保が求められている。高温信頼性に関しては、電解質であるPF 等のアニオンが分解してフッ化水素等の分解物が発生する、電解液が負極近傍で還元分解して高抵抗な被膜を形成する等により、セルの諸特性が悪化していると考えられている。 In recent years, electrochemical devices are required to ensure reliability at high temperatures. For the high-temperature reliability, PF 6 is an electrolyte - decomposition products such as hydrogen fluoride anions is decomposed such occurs, the like which the electrolytic solution is reduced and decomposed at the anode vicinity to form a high-resistance film, It is believed that the cell characteristics are deteriorating.

上記問題を解決するために、例えば特許文献1は、リチウムテトラフルオロボレート(LiBF)とリチウムビス(ペンタフルオロエチルスルホニル)イミド(LiBETI)とを一定の割合で混合した電解液を用いたリチウムイオン電池を開示している。特許文献2は、リチウムヘキサフルオロホスフェート(LiPF)に、高温貯蔵特性を向上させるために一部LiBFを加えた電解液を用いたリチウムイオン電池を開示している。特許文献3は、炭酸エチレンと炭酸エチルメチルとの混合溶媒を用いた電解液にメチレンビススルホネート誘導体を添加することにより、リチウムイオン電池のサイクル特性や短期間の高温保持試験後の特性が改善できる電解液を提案している。 In order to solve the above problem, for example, Patent Document 1 discloses lithium ions using an electrolytic solution in which lithium tetrafluoroborate (LiBF 4 ) and lithium bis (pentafluoroethylsulfonyl) imide (LiBETI) are mixed at a certain ratio. A battery is disclosed. Patent Document 2 discloses a lithium ion battery using an electrolytic solution in which LiBF 4 is partially added to lithium hexafluorophosphate (LiPF 6 ) in order to improve high-temperature storage characteristics. In Patent Document 3, by adding a methylene bissulfonate derivative to an electrolytic solution using a mixed solvent of ethylene carbonate and ethyl methyl carbonate, the cycle characteristics of a lithium ion battery and the characteristics after a short-term high-temperature holding test can be improved. Proposed electrolyte.

特開2001−236990号公報JP 2001-236990 A 特開2003−346898号公報JP 2003-346898 A 国際公開第2012/017999号International Publication No. 2012/017999

特許文献1のようにLiBFとLiBETIとを一定の比率で混合した電解液を用いると、電解質の耐熱性の高さとLiBETIの電気伝導度の高さから、LiPFを電解質とした電解液と比べて高温における電解液の安定性は向上するものの、LiBETIは正極電位が4V(vs Li/Li)付近で集電箔(アルミニウム)を腐食するため、長期信頼性に課題がある。 When an electrolytic solution in which LiBF 4 and LiBETI are mixed at a certain ratio as in Patent Document 1 is used, an electrolytic solution using LiPF 6 as an electrolyte is obtained from the high heat resistance of the electrolyte and the high electrical conductivity of LiBETI. Although the stability of the electrolytic solution at a high temperature is improved, LiBETI corrodes the current collector foil (aluminum) when the positive electrode potential is around 4 V (vs Li / Li + ), so that there is a problem in long-term reliability.

特許文献2では、LiPFに一部LiBFを混合した電解液を用いて高温貯蔵後の電池の劣化を抑制することが開示されているが、高温(60℃)ではLiPFがあまり熱分解しないために効果があっても、85℃の環境ではLiPFの熱分解が無視できなくなり、電池の信頼性の向上は見込めない。 In Patent Document 2, it is disclosed to suppress the deterioration of the battery after high temperature storage using an electrolytic solution obtained by mixing a part LiBF 4 to LiPF 6, LiPF 6 at a high temperature (60 ° C.) is too pyrolysis Even if it is effective, the thermal decomposition of LiPF 6 cannot be ignored in an environment of 85 ° C., and the reliability of the battery cannot be improved.

特許文献3では、長期間にわたって高温保持すると、負極表面の皮膜がさらに形成される点、電解液の分解などが起こる点などの問題が生じ得る。   In Patent Document 3, when a high temperature is maintained for a long period of time, problems such as further formation of a coating on the negative electrode surface and decomposition of the electrolytic solution may occur.

本発明は、上記課題に鑑みなされたものであり、電気化学デバイスの高温信頼性を向上させることができる電気化学デバイス用電解液、およびそれを備えた電気化学デバイスを提供することを目的とする。   This invention is made | formed in view of the said subject, and aims at providing the electrolyte solution for electrochemical devices which can improve the high temperature reliability of an electrochemical device, and an electrochemical device provided with the same. .

本発明に係る電気化学デバイス用電解液は、環状カーボネートの溶媒に0.8mol/L以上1.6mol/L以下のLiPFが電解質として含まれる電解液と、前記電解液に対する添加量が0.1wt%以上10.0wt%未満の鎖状カーボネートと、を含むことを特徴とする。 The electrolytic solution for electrochemical devices according to the present invention includes an electrolytic solution in which 0.8 mol / L or more and 1.6 mol / L or less of LiPF 6 is contained as an electrolyte in a cyclic carbonate solvent, and an addition amount to the electrolytic solution is 0.1. 1% by weight or more and less than 10.0% by weight of chain carbonate.

上記電気化学デバイス用電解液において、前記電解液に対する添加量が0.1wt%以上5.0wt%以下の添加剤として、炭酸エステル、スルホン酸エステル、およびリチウムのオキサラト錯体塩の少なくともいずれかをさらに含んでいてもよい。   In the electrochemical device electrolyte, the additive amount of the electrolyte solution is 0.1 wt% or more and 5.0 wt% or less, and at least one of a carbonate ester, a sulfonate ester, and an oxalate complex salt of lithium is further added. May be included.

上記電気化学デバイス用電解液において、前記炭酸エステルは、ビニレンカーボネートおよびフルオロエチレンカーボネートの少なくともいずれかとしてもよい。   In the electrolytic solution for electrochemical devices, the carbonate ester may be at least one of vinylene carbonate and fluoroethylene carbonate.

上記電気化学デバイス用電解液において、前記スルホン酸エステルは、ビス(エタンスルホン酸)メチレンとしてもよい。   In the electrolytic solution for electrochemical devices, the sulfonic acid ester may be bis (ethanesulfonic acid) methylene.

上記電気化学デバイス用電解液において、前記オキサラト錯体塩は、ビス(オキサラト)ホウ酸リチウム、ジフルオロビス(オキサラト)リン酸リチウム、およびテトラフルオロオキサラトリン酸リチウムの少なくともいずれかとしてもよい。   In the electrolytic solution for electrochemical devices, the oxalato complex salt may be at least one of lithium bis (oxalato) borate, lithium difluorobis (oxalato) phosphate, and lithium tetrafluorooxalatophosphate.

上記電気化学デバイス用電解液において、前記鎖状カーボネートは、ジメチルカーボネート、エチルメチルカーボネート、およびジエチルカーボネートの少なくともいずれかとしてもよい。   In the electrochemical device electrolyte, the chain carbonate may be at least one of dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.

本発明に係る電気化学デバイスは、正極および負極がセパレータを介して積層された蓄電素子を備え、前記正極の活物質および前記負極の活物質、または前記セパレータに、上記いずれかの記載の電気化学デバイス用電解液が含浸されていることを特徴とする。   An electrochemical device according to the present invention includes a power storage element in which a positive electrode and a negative electrode are stacked via a separator, and the positive electrode active material and the negative electrode active material, or the separator according to any one of the above It is impregnated with an electrolytic solution for a device.

本発明によれば、電気化学デバイスの高温信頼性を向上させることができる電気化学デバイス用電解液、およびそれを備えた電気化学デバイスを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrolyte solution for electrochemical devices which can improve the high temperature reliability of an electrochemical device, and an electrochemical device provided with the same can be provided.

リチウムイオンキャパシタの分解図である。It is an exploded view of a lithium ion capacitor. 正極、負極およびセパレータの積層方向の断面図である。It is sectional drawing of the lamination direction of a positive electrode, a negative electrode, and a separator. リチウムイオンキャパシタの分解図である。It is an exploded view of a lithium ion capacitor. リチウムイオンキャパシタの外観図である。It is an external view of a lithium ion capacitor. 試験結果を示す図である。It is a figure which shows a test result.

以下、図面を参照しつつ、実施形態について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

(実施形態)
まず、電気化学デバイスの一例として、リチウムイオンキャパシタについて説明する。図1は、リチウムイオンキャパシタ100の分解図である。図1で例示するように、リチウムイオンキャパシタ100は、正極10および負極20がセパレータ30を介して捲回された構造を有する蓄電素子50を備える。蓄電素子50は、略円柱形状を有している。正極10には、引出端子41が接続されている。引出端子42は、負極20に接続されている。
(Embodiment)
First, a lithium ion capacitor will be described as an example of an electrochemical device. FIG. 1 is an exploded view of the lithium ion capacitor 100. As illustrated in FIG. 1, the lithium ion capacitor 100 includes a storage element 50 having a structure in which a positive electrode 10 and a negative electrode 20 are wound through a separator 30. The electricity storage element 50 has a substantially cylindrical shape. A lead terminal 41 is connected to the positive electrode 10. The lead terminal 42 is connected to the negative electrode 20.

図2は、正極10、負極20およびセパレータ30の積層方向の断面図である。図2で例示するように、正極10は、正極集電体11の一面に正極電極層12が積層された構造を有している。正極10の正極電極層12上に、セパレータ30が積層されている。セパレータ30上に、負極20が積層されている。負極20は、負極集電体21の正極10側の面に負極電極層22が積層された構造を有している。負極20の負極集電体21上に、セパレータ30が積層されている。蓄電素子50においては、これらの正極10、セパレータ30、負極20およびセパレータ30の積層単位が捲回されている。なお、正極電極層12は、正極集電体11の両面に設けられていてもよい。負極電極層22は、負極集電体21の両面に設けられていてもよい。   FIG. 2 is a cross-sectional view of the positive electrode 10, the negative electrode 20, and the separator 30 in the stacking direction. As illustrated in FIG. 2, the positive electrode 10 has a structure in which a positive electrode layer 12 is laminated on one surface of a positive electrode current collector 11. A separator 30 is stacked on the positive electrode layer 12 of the positive electrode 10. The negative electrode 20 is laminated on the separator 30. The negative electrode 20 has a structure in which a negative electrode layer 22 is laminated on the surface of the negative electrode current collector 21 on the positive electrode 10 side. A separator 30 is stacked on the negative electrode current collector 21 of the negative electrode 20. In the electric storage element 50, the stacked units of the positive electrode 10, the separator 30, the negative electrode 20, and the separator 30 are wound. The positive electrode layer 12 may be provided on both surfaces of the positive electrode current collector 11. The negative electrode layer 22 may be provided on both surfaces of the negative electrode current collector 21.

図3で例示するように、蓄電素子50と略同一の径を有する略円柱形状の封口ゴム60の2つの貫通孔に引出端子41および引出端子42がそれぞれ挿入されている。また、蓄電素子50は、有底の略円筒形状の容器70内に収容されている。図4で例示するように、封口ゴム60が容器70の開口周辺でかしめられている。それにより、蓄電素子50の密封性が保たれている。非水電解液は、容器70内に封入され、正極10の活物質および負極20の活物質、またはセパレータ30に含浸されている。   As illustrated in FIG. 3, a lead terminal 41 and a lead terminal 42 are inserted into two through holes of a substantially cylindrical sealing rubber 60 having substantially the same diameter as the power storage element 50. The power storage element 50 is housed in a bottomed, substantially cylindrical container 70. As illustrated in FIG. 4, the sealing rubber 60 is caulked around the opening of the container 70. Thereby, the sealing property of the electrical storage element 50 is maintained. The nonaqueous electrolytic solution is sealed in the container 70 and impregnated in the active material of the positive electrode 10 and the active material of the negative electrode 20 or the separator 30.

(正極)
正極集電体11は、金属箔であり、例えばアルミニウム箔などである。このアルミニウム箔は、孔空き箔であってもよい。正極電極層12は、電気二重層キャパシタやレドックスキャパシタの電極層に用いられる公知の材質及び構造を有していればよく、例えばポリアセン(PAS)、ポリアニリン(PAN)、活性炭、カーボンブラック、グラファイト、カーボンナノチューブ等の活物質を含有し、電気二重層キャパシタ等の電極層に用いられる導電助剤やバインダ等の他の成分も必要に応じて含有している。
(Positive electrode)
The positive electrode current collector 11 is a metal foil, such as an aluminum foil. This aluminum foil may be a perforated foil. The positive electrode layer 12 only needs to have a known material and structure used for an electrode layer of an electric double layer capacitor or a redox capacitor. For example, polyacene (PAS), polyaniline (PAN), activated carbon, carbon black, graphite, It contains an active material such as carbon nanotube, and also contains other components such as a conductive additive and a binder used for electrode layers such as electric double layer capacitors, as necessary.

(負極)
負極集電体21は、金属箔であり、例えば銅箔などである。この銅箔は、孔空き箔であってもよい。負極電極層22は、例えば難黒鉛化炭素、グラファイト、錫酸化物、珪素酸化物等の活物質を含有し、カーボンブラックや金属粉末等の導電助剤や、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVDF)やスチレンブタジエンゴム(SBR)等のバインダも必要に応じて含有している。
(Negative electrode)
The negative electrode current collector 21 is a metal foil, such as a copper foil. This copper foil may be a perforated foil. The negative electrode layer 22 contains an active material such as non-graphitizable carbon, graphite, tin oxide, silicon oxide, and the like, and includes conductive assistants such as carbon black and metal powder, polytetrafluoroethylene (PTFE), and polyfluoride. Binders such as vinylidene chloride (PVDF) and styrene butadiene rubber (SBR) are also contained as required.

(セパレータ)
セパレータ30は、例えば、正極10と負極20との間に設けられることにより、これら両電極の接触に伴う短絡を防止する。セパレータ30は、空孔内に非水電解液を保持することにより、電極間の導電経路を形成する。セパレータ30の材質としては、例えば、多孔性の、セルロース、ポリプロピレン、ポリエチレン、フッ素系樹脂等を用いることができる。
(Separator)
For example, the separator 30 is provided between the positive electrode 10 and the negative electrode 20, thereby preventing a short circuit due to the contact between these two electrodes. The separator 30 forms a conductive path between the electrodes by holding the nonaqueous electrolytic solution in the pores. As a material for the separator 30, for example, porous cellulose, polypropylene, polyethylene, fluorine resin, or the like can be used.

なお、蓄電素子50と非水電解液を容器70内に封入する際に、リチウム金属シートを負極20と電気的に接続する。これにより、リチウム金属シートのリチウムが非水電解液内に溶解するとともに、リチウムイオンが負極20の負極電極層22にプレドープされる。これにより、充電前の状態で負極20の電位が正極10の電位に比べて例えば3V程度低くなる。   Note that the lithium metal sheet is electrically connected to the negative electrode 20 when the storage element 50 and the non-aqueous electrolyte are sealed in the container 70. Thereby, lithium of the lithium metal sheet is dissolved in the nonaqueous electrolytic solution, and lithium ions are pre-doped in the negative electrode layer 22 of the negative electrode 20. Thereby, the potential of the negative electrode 20 becomes lower than the potential of the positive electrode 10 by, for example, about 3 V before charging.

また、本実施形態においては、リチウムイオンキャパシタ100は、捲回構造の蓄電素子50が円筒型の容器70に封入された構造を有しているが、それに限られない。例えば、蓄電素子50は、積層構造を有していてもよい。また、この場合の容器70は、角型の缶等であってもよい。   Further, in the present embodiment, the lithium ion capacitor 100 has a structure in which the storage element 50 having a wound structure is enclosed in the cylindrical container 70, but is not limited thereto. For example, the power storage element 50 may have a stacked structure. Further, the container 70 in this case may be a square can or the like.

(非水電解液)
非水電解液は、非水溶媒に電解質を溶解させ、さらに添加剤を加えて作製することができる。まず、非水溶媒として、環状カーボネートを用いる。環状カーボネートは、環状炭酸エステルである炭酸プロピレン(PC)、炭酸エチレン(EC)等である。環状炭酸エステルは、高い誘電率を有しているため、リチウム塩を良く溶かす性質を有している。また、環状炭酸エステルを非水溶媒に用いた非水電解液は、高いイオン電導度を有している。したがって、環状カーボネートを非水溶媒として用いると、リチウムイオンキャパシタ100の初期特性が良好となる。また、環状カーボネートを非水溶媒として用いた場合、負極20上に被膜が形成された後は、リチウムイオンキャパシタ100の動作時の十分な電気化学的安定性が実現される。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution can be prepared by dissolving an electrolyte in a nonaqueous solvent and further adding an additive. First, cyclic carbonate is used as a non-aqueous solvent. The cyclic carbonate is a cyclic carbonate such as propylene carbonate (PC) or ethylene carbonate (EC). Since the cyclic carbonate has a high dielectric constant, it has a property of dissolving lithium salt well. Moreover, the non-aqueous electrolyte using cyclic carbonate as a non-aqueous solvent has high ionic conductivity. Therefore, when the cyclic carbonate is used as the non-aqueous solvent, the initial characteristics of the lithium ion capacitor 100 are improved. Further, when cyclic carbonate is used as the non-aqueous solvent, sufficient electrochemical stability during operation of the lithium ion capacitor 100 is realized after the coating is formed on the negative electrode 20.

電解質には、リチウム塩であるLiPFを用いる。LiPFは、汎用的なリチウム塩の中でも高い解離度を有しているため、リチウムイオンキャパシタ100の良好な初期特性(容量およびDCR)を実現する。非水電解液における電解質の濃度(電解液濃度)が高すぎると、電解液の粘度が上昇するために、必要な量のイオンが電極に供給されるまでに時間がかかるため、初期内部抵抗が上昇するおそれがある。一方、電解液濃度が低すぎると、必要な量のイオンが電極に供給されなくなる、もしくは供給されるまでに時間がかかるために、初期容量が低下し初期内部抵抗が上昇するおそれがある。そこで、電解液濃度に、上限および下限を設ける。本実施形態においては、電解液濃度を0.8mol/L以上1.6mol/L以下とする。電解液濃度は、1.0mol/L以上1.4mol/L以下であることが好ましい。なお、本実施形態においては、電解質にLiBFTIを用いないため、正極10の腐食が抑制される。 LiPF 6 that is a lithium salt is used as the electrolyte. Since LiPF 6 has a high degree of dissociation among general-purpose lithium salts, it achieves good initial characteristics (capacitance and DCR) of the lithium ion capacitor 100. If the concentration of the electrolyte in the non-aqueous electrolyte (electrolyte concentration) is too high, the viscosity of the electrolyte will increase, and it will take time for the required amount of ions to be supplied to the electrode. May rise. On the other hand, if the electrolyte concentration is too low, a necessary amount of ions is not supplied to the electrode, or it takes time to be supplied, so that the initial capacity may be reduced and the initial internal resistance may be increased. Therefore, an upper limit and a lower limit are set for the electrolyte concentration. In the present embodiment, the electrolyte concentration is 0.8 mol / L or more and 1.6 mol / L or less. The electrolyte concentration is preferably 1.0 mol / L or more and 1.4 mol / L or less. In this embodiment, since LiBFTI is not used for the electrolyte, corrosion of the positive electrode 10 is suppressed.

(第1添加剤)
非水電解液に添加する第1添加剤として、鎖状カーボネートを用いる。鎖状カーボネートを用いるのは、リチウムイオンキャパシタ100が高温に晒された場合の容量維持率を高くし、内部抵抗変化を小さくするためである。これは、鎖状カーボネートを電解液に少量添加する事で電解液の粘度が低下し、その結果、被膜形成材が負極20により均一に作用して、更に薄く均質で強固な被膜が形成されるからであると考えられる。鎖状カーボネートとして、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)等を用いることができる。これらを組み合わせて第1添加剤として用いてもよい。非水電解液における第1添加剤の濃度が低すぎると、第1添加剤の効果を十分に得ることが困難となる。そこで、非水電解液における第1添加剤の濃度に下限を設ける。一方、非水電解液における第1添加剤の濃度が高すぎると、電解液中のLiPFの解離が妨げられ、高温でLiPFの熱分解が促進されるおそれがある。そこで、非水電解液における第1添加剤の濃度に上限を設ける。本実施形態においては、非水電解液における第1添加剤の濃度は、0.1wt%以上10.0wt%未満とする。なお、非水電解液における第1添加剤の濃度は、9.0wt%以下であることが好ましく、5.0wt%以下であることがより好ましい。また、非水電解液における第1添加剤の濃度は、0.5wt%以上であることが好ましく、1.0wt%以上であることがより好ましい。
(First additive)
As the first additive added to the non-aqueous electrolyte, a chain carbonate is used. The reason why the chain carbonate is used is to increase the capacity maintenance ratio when the lithium ion capacitor 100 is exposed to a high temperature and to reduce the internal resistance change. This is because by adding a small amount of chain carbonate to the electrolytic solution, the viscosity of the electrolytic solution is lowered, and as a result, the film forming material acts more uniformly on the negative electrode 20 to form a thinner, homogeneous and firm coating. It is thought that it is from. As the chain carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) or the like can be used. These may be used in combination as the first additive. If the concentration of the first additive in the non-aqueous electrolyte is too low, it is difficult to sufficiently obtain the effect of the first additive. Therefore, a lower limit is set for the concentration of the first additive in the non-aqueous electrolyte. On the other hand, if the concentration of the first additive in the nonaqueous electrolytic solution is too high, dissociation of LiPF 6 in the electrolytic solution is hindered, and thermal decomposition of LiPF 6 may be promoted at a high temperature. Therefore, an upper limit is set for the concentration of the first additive in the non-aqueous electrolyte. In the present embodiment, the concentration of the first additive in the non-aqueous electrolyte is 0.1 wt% or more and less than 10.0 wt%. Note that the concentration of the first additive in the nonaqueous electrolytic solution is preferably 9.0 wt% or less, and more preferably 5.0 wt% or less. In addition, the concentration of the first additive in the non-aqueous electrolyte is preferably 0.5 wt% or more, and more preferably 1.0 wt% or more.

(第2添加剤)
リチウムイオンキャパシタ100が高温に晒された場合の内部抵抗変化をさらに小さくするために、第1添加剤の他に、さらに炭酸エステル、スルホン酸エステル、およびリチウムのオキサラト錯体塩の少なくともいずれかを第2添加剤として添加してもよい。この第2添加剤は、非水電解液の非水溶媒よりも還元電位が高く、負極20に作用して安定な被膜を形成する。炭酸エステルとして、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)等を用いることができる。スルホン酸エステルとして、ビス(エタンスルホン酸)メチレン(MBES)等を用いることができる。リチウムのオキサラト錯体塩として、ビス(オキサラト)ホウ酸リチウム(LiB(C)、ジフルオロビス(オキサラト)リン酸リチウム(LiPF(C)、テトラフルオロオキサラトリン酸リチウム(LiPF(C))等を用いることができる。第2添加剤の効果を十分に得るために、第2添加剤濃度に下限を設けることが好ましい。一方、非水電解液における第2添加剤濃度が高すぎると、負極20上に厚い被膜が形成されるために初期の内部抵抗が高くなり、また内部抵抗変化も大きくなるおそれがある。そこで、非水電解液における第2添加剤濃度に上限を設けることが好ましい。本実施形態においては、非水電解液における第2添加剤濃度は、0.1wt%以上であることが好ましく、0.2wt%以上であることがより好ましく、0.5wt%以上であることがさらに好ましい。また、非水電解液における第2添加剤濃度は、5.0wt%以下であることが好ましく、3.0wt%以下であることがより好ましく、1.0wt%以下であることがさらに好ましい。
(Second additive)
In order to further reduce the internal resistance change when the lithium ion capacitor 100 is exposed to a high temperature, in addition to the first additive, at least one of a carbonate ester, a sulfonate ester, and a lithium oxalato complex salt is added. Two additives may be added. The second additive has a reduction potential higher than that of the non-aqueous solvent of the non-aqueous electrolyte, and acts on the negative electrode 20 to form a stable film. As the carbonate ester, vinylene carbonate (VC), fluoroethylene carbonate (FEC), or the like can be used. As the sulfonic acid ester, bis (ethanesulfonic acid) methylene (MBES) or the like can be used. Lithium oxalate complex salts include lithium bis (oxalato) borate (LiB (C 2 O 4 ) 2 ), lithium difluorobis (oxalato) phosphate (LiPF 2 (C 2 O 4 ) 2 ), tetrafluorooxalatoline Lithium acid (LiPF 4 (C 2 O 4 )) or the like can be used. In order to sufficiently obtain the effect of the second additive, it is preferable to provide a lower limit for the concentration of the second additive. On the other hand, if the concentration of the second additive in the non-aqueous electrolyte is too high, a thick film is formed on the negative electrode 20, so that the initial internal resistance increases and the internal resistance change may also increase. Therefore, it is preferable to set an upper limit for the concentration of the second additive in the nonaqueous electrolytic solution. In the present embodiment, the concentration of the second additive in the nonaqueous electrolytic solution is preferably 0.1 wt% or more, more preferably 0.2 wt% or more, and 0.5 wt% or more. Further preferred. Further, the concentration of the second additive in the non-aqueous electrolyte is preferably 5.0 wt% or less, more preferably 3.0 wt% or less, and further preferably 1.0 wt% or less.

本実施形態においては、環状カーボネートを非水溶媒とし、0.8mol/L以上1.6mol/L以下のLiPFを電解質とする非水電解液において、非水電解液に対する添加量が0.1wt%以上10.0wt%未満の鎖状カーボネートを含むことから、リチウムイオンキャパシタ100を高温に晒した場合であっても、良好な容量維持率が得られるとともに、内部抵抗変化を十分に低減できる。したがって、高温信頼性を向上させることができる。 In this embodiment, in a non-aqueous electrolyte solution using cyclic carbonate as a non-aqueous solvent and 0.8 mol / L or more and 1.6 mol / L or less of LiPF 6 as an electrolyte, the amount added to the non-aqueous electrolyte solution is 0.1 wt. %, More than less than 10.0 wt% of chain carbonate, it is possible to obtain a good capacity retention ratio and sufficiently reduce the change in internal resistance even when the lithium ion capacitor 100 is exposed to a high temperature. Therefore, high temperature reliability can be improved.

なお、本実施形態においては、電気化学デバイスとしてリチウムイオンキャパシタの電解液に着目したが、それに限られない。例えば、本実施形態に係る非水電解液を、電気二重層キャパシタなどの他の電気化学デバイスの電解液として用いることもできる。   In the present embodiment, attention is focused on the electrolyte solution of a lithium ion capacitor as an electrochemical device, but the present invention is not limited thereto. For example, the nonaqueous electrolytic solution according to this embodiment can be used as an electrolytic solution for other electrochemical devices such as an electric double layer capacitor.

上記実施形態に従って、リチウムイオンキャパシタを作製し、特性について調べた。   According to the above embodiment, a lithium ion capacitor was manufactured and examined for characteristics.

(実施例1)
正極10の活物質として、PASを用いた。カルボキシメチルセルロースおよびスチレンブタジエンゴムをバインダとしてスラリを調製し、調製されたスラリを孔空き加工の施されたアルミ箔上に塗布してシート状に作製した。負極20の活物質として、フェノール樹脂原料から成る難黒鉛化炭素を用いた。カルボキシメチルセルロースおよびスチレンブタジエンゴムをバインダとしてスラリを調製し、調製されたスラリを孔空き加工の施された銅箔上に塗布してシート状に作製した。これらの電極間にセルロース系のセパレータ30を挟み、超音波溶接により引出端子41を正極集電体11に取り付け、引出端子42を負極集電体21に取り付けてからこれらを捲回し、ポリイミドの粘着テープで蓄電素子50を固定した。作製した蓄電素子50に封口ゴム60を取付けて約180℃で真空乾燥した後、負極20にリチウム箔を貼りつけ、蓄電素子50を容器70に入れた。その後、PC(100vol%)にLiPFを溶解した溶液(1.10mol/L)に対して、第1添加剤としてEMCを3.0wt%添加し、さらに第2添加剤としてVCを0.1wt%添加し、得られた非水電解液を容器70に注入した後、封口ゴム60の部分をかしめることで、リチウムイオンキャパシタ100を作製した。
Example 1
PAS was used as the active material of the positive electrode 10. A slurry was prepared using carboxymethyl cellulose and styrene butadiene rubber as a binder, and the prepared slurry was applied onto an aluminum foil that had been perforated to prepare a sheet. As the active material of the negative electrode 20, non-graphitizable carbon made of a phenol resin raw material was used. A slurry was prepared using carboxymethyl cellulose and styrene butadiene rubber as a binder, and the prepared slurry was applied on a copper foil having a perforated process to prepare a sheet. A cellulose-based separator 30 is sandwiched between these electrodes, the extraction terminal 41 is attached to the positive electrode current collector 11 by ultrasonic welding, the extraction terminal 42 is attached to the negative electrode current collector 21, and these are wound to obtain a polyimide adhesive. The electricity storage element 50 was fixed with a tape. A sealing rubber 60 was attached to the produced electricity storage device 50 and vacuum-dried at about 180 ° C. Then, a lithium foil was attached to the negative electrode 20, and the electricity storage device 50 was placed in a container 70. Then, 3.0 wt% of EMC as a first additive is added to a solution (1.10 mol / L) of LiPF 6 dissolved in PC (100 vol%), and further VC is 0.1 wt as a second additive. %, And the obtained non-aqueous electrolyte was poured into the container 70, and then the sealing rubber 60 was caulked to produce the lithium ion capacitor 100.

(実施例2)
実施例2では、VCの添加量を0.5wt%とした。その他の条件は、実施例1と同様とした。
(Example 2)
In Example 2, the amount of VC added was 0.5 wt%. Other conditions were the same as in Example 1.

(実施例3)
実施例3では、VCの添加量を1.0wt%とした。その他の条件は、実施例1と同様とした。
Example 3
In Example 3, the amount of VC added was 1.0 wt%. Other conditions were the same as in Example 1.

(実施例4)
実施例4では、EMCの添加量を0.1wt%とした。その他の条件は、実施例3と同様とした。
Example 4
In Example 4, the amount of EMC added was 0.1 wt%. Other conditions were the same as in Example 3.

(実施例5)
実施例5では、EMCの添加量を1.0wt%とした。その他の条件は、実施例3と同様とした。
(Example 5)
In Example 5, the amount of EMC added was 1.0 wt%. Other conditions were the same as in Example 3.

(実施例6)
実施例6では、EMCの添加量を5.0wt%とした。その他の条件は、実施例3と同様とした。
(Example 6)
In Example 6, the amount of EMC added was 5.0 wt%. Other conditions were the same as in Example 3.

(実施例7)
実施例7では、EMCの添加量を9.0wt%とした。その他の条件は、実施例3と同様とした。
(Example 7)
In Example 7, the amount of EMC added was 9.0 wt%. Other conditions were the same as in Example 3.

(実施例8)
実施例8では、EMCの代わりにDMCを3.0wt%添加した。その他の条件は、実施例3と同様とした。
(Example 8)
In Example 8, 3.0 wt% of DMC was added instead of EMC. Other conditions were the same as in Example 3.

(実施例9)
実施例9では、EMCの代わりにDECを3.0wt%添加した。その他の条件は、実施例3と同様とした。
Example 9
In Example 9, 3.0 wt% of DEC was added instead of EMC. Other conditions were the same as in Example 3.

(実施例10)
実施例10では、非水溶媒としてPC(80vol%)およびEC(20vol%)を用いた。その他の条件は、実施例3と同様とした。
(Example 10)
In Example 10, PC (80 vol%) and EC (20 vol%) were used as non-aqueous solvents. Other conditions were the same as in Example 3.

(実施例11)
実施例11では、VCの代わりにFECを1.0wt%添加した。その他の条件は、実施例3と同様とした。
(Example 11)
In Example 11, 1.0 wt% of FEC was added instead of VC. Other conditions were the same as in Example 3.

(実施例12)
実施例12では、VCの代わりにFECを3.0wt%添加した。その他の条件は、実施例3と同様とした。
Example 12
In Example 12, 3.0 wt% of FEC was added instead of VC. Other conditions were the same as in Example 3.

(実施例13)
実施例13では、VCの代わりにFECを5.0wt%添加した。その他の条件は、実施例3と同様とした。
(Example 13)
In Example 13, 5.0 wt% of FEC was added instead of VC. Other conditions were the same as in Example 3.

(実施例14)
実施例14では、VCの代わりにMBESを1.0wt%添加した。その他の条件は、実施例3と同様とした。
(Example 14)
In Example 14, 1.0 wt% of MBES was added instead of VC. Other conditions were the same as in Example 3.

(実施例15)
実施例15では、VCの代わりにLiB(Cを1.0wt%添加した。その他の条件は、実施例3と同様とした。
(Example 15)
In Example 15, 1.0 wt% LiB (C 2 O 4 ) 2 was added instead of VC. Other conditions were the same as in Example 3.

(実施例16)
実施例16では、VCの代わりにLiPF(Cを1.0wt%添加した。その他の条件は、実施例3と同様とした。
(Example 16)
In Example 16, 1.0 wt% of LiPF 2 (C 2 O 4 ) 2 was added instead of VC. Other conditions were the same as in Example 3.

(実施例17)
実施例17では、VCの代わりにLiPF(C)を1.0wt%添加した。その他の条件は、実施例3と同様とした。
(Example 17)
In Example 17, 1.0 wt% of LiPF 4 (C 2 O 4 ) was added instead of VC. Other conditions were the same as in Example 3.

(実施例18)
実施例18では、EMCの代わりにDMCを3.0wt%添加し、第2添加剤を添加しなかった。その他の条件は、実施例1と同様とした。
(Example 18)
In Example 18, 3.0 wt% of DMC was added instead of EMC, and the second additive was not added. Other conditions were the same as in Example 1.

(実施例19)
実施例19では、第2添加剤を添加しなかった。その他の条件は、実施例1と同様とした。
(Example 19)
In Example 19, the second additive was not added. Other conditions were the same as in Example 1.

(実施例20)
実施例20では、EMCの代わりにDECを3.0wt%添加し、第2添加剤を添加しなかった。その他の条件は、実施例1と同様とした。
(Example 20)
In Example 20, 3.0 wt% of DEC was added instead of EMC, and the second additive was not added. Other conditions were the same as in Example 1.

(比較例1)
比較例1では、第1添加剤も第2添加剤も添加しなかった。その他の条件は、実施例1と同様とした。
(Comparative Example 1)
In Comparative Example 1, neither the first additive nor the second additive was added. Other conditions were the same as in Example 1.

(比較例2)
比較例2では、第1添加剤を添加しなかった。その他の条件は、実施例3と同様とした。
(Comparative Example 2)
In Comparative Example 2, the first additive was not added. Other conditions were the same as in Example 3.

(比較例3)
比較例3では、第1添加剤を添加しなかった。その他の条件は、実施例11と同様とした。
(Comparative Example 3)
In Comparative Example 3, the first additive was not added. Other conditions were the same as in Example 11.

(比較例4)
比較例4では、第1添加剤を添加しなかった。その他の条件は、実施例14と同様とした。
(Comparative Example 4)
In Comparative Example 4, the first additive was not added. Other conditions were the same as in Example 14.

(比較例5)
比較例5では、EMCの添加量を18.0wt%とした。その他の条件は、実施例3と同様とした。
(Comparative Example 5)
In Comparative Example 5, the amount of EMC added was 18.0 wt%. Other conditions were the same as in Example 3.

(評価方法)
実施例1〜20および比較例1〜5のリチウムイオンキャパシタを作製後、初期特性として、室温における静電容量及び内部抵抗を測定した。その後、85℃の恒温槽中で3.8Vの電圧で1000時間連続充電するフロート試験を行った。フロート試験後、セルを室温まで放冷し、静電容量および内部抵抗を測定し、試験前後の変化率を算出した。この結果(容量維持率及び内部抵抗変化率)を図5に示す。
(Evaluation methods)
After the lithium ion capacitors of Examples 1 to 20 and Comparative Examples 1 to 5 were fabricated, the capacitance at room temperature and the internal resistance were measured as initial characteristics. Then, the float test which continuously charges for 1000 hours with the voltage of 3.8V in the 85 degreeC thermostat was done. After the float test, the cell was allowed to cool to room temperature, the capacitance and internal resistance were measured, and the rate of change before and after the test was calculated. The results (capacity maintenance rate and internal resistance change rate) are shown in FIG.

(初期特性)
実施例1〜20および比較例1〜5において、初期特性における静電容量および内部抵抗は、良好な値を示した。これは、環状カーボネートを非水溶媒とし、LiPFの濃度を0.8mol/L以上1.6mol/L以下としたからであると考えられる。なお、実施例4〜7の結果からすると、第1添加剤の添加量が多くなるほど、初期の内部抵抗が低くなることが確認された。
(Initial characteristics)
In Examples 1-20 and Comparative Examples 1-5, the electrostatic capacity and internal resistance in the initial characteristics showed good values. This is presumably because cyclic carbonate was used as the non-aqueous solvent and the concentration of LiPF 6 was set to 0.8 mol / L or more and 1.6 mol / L or less. From the results of Examples 4 to 7, it was confirmed that the initial internal resistance was decreased as the amount of the first additive added was increased.

(高温信頼性)
比較例1では、容量維持率が低くなり、内部抵抗変化率が大きくなった。これは、実施例1と比較例1との比較結果から、非水電解液に第1添加剤も第2添加剤も添加しなかったからであると考えられる。次に、比較例2では、比較例1との比較において容量維持率の低下および内部抵抗変化率の増加は抑制されたものの、内部抵抗変化率は200%以上であり十分に小さくならなかった。これは、実施例3と比較例2との比較結果から、非水電解液に第1添加剤を添加しなかったからであると考えられる。次に、比較例3では、比較例1との比較において容量維持率の低下および内部抵抗変化率の増加は抑制されたものの、内部抵抗変化率は200%以上であり十分に小さくならなかった。これは、実施例11と比較例3との比較結果から、非水電解液に第1添加剤を添加しなかったからであると考えられる。次に、比較例4では、比較例1との比較において容量維持率の低下および内部抵抗変化率の増加は抑制されたものの、内部抵抗変化率は200%以上であり十分に小さくならなかった。これは、実施例14と比較例4との比較結果から、非水電解液に第1添加剤を添加しなかったからであると考えられる。次に、比較例5では、容量維持率が低くなった。これは、実施例3と比較例5との比較結果から、第1添加剤の添加量が多すぎたためであると考えられる。
(High temperature reliability)
In Comparative Example 1, the capacity retention rate was low and the internal resistance change rate was high. This is considered to be because neither the first additive nor the second additive was added to the non-aqueous electrolyte from the comparison result between Example 1 and Comparative Example 1. Next, in Comparative Example 2, although the decrease in the capacity retention rate and the increase in the internal resistance change rate were suppressed in comparison with Comparative Example 1, the internal resistance change rate was 200% or more and was not sufficiently small. This is considered to be because the first additive was not added to the non-aqueous electrolyte from the comparison result between Example 3 and Comparative Example 2. Next, in Comparative Example 3, the decrease in the capacity retention rate and the increase in the internal resistance change rate were suppressed in comparison with Comparative Example 1, but the internal resistance change rate was 200% or more and was not sufficiently small. This is considered to be because the first additive was not added to the non-aqueous electrolyte from the comparison result between Example 11 and Comparative Example 3. Next, in Comparative Example 4, although the decrease in the capacity retention rate and the increase in the internal resistance change rate were suppressed in comparison with Comparative Example 1, the internal resistance change rate was 200% or more and was not sufficiently small. This is considered to be because the first additive was not added to the non-aqueous electrolyte from the comparison result between Example 14 and Comparative Example 4. Next, in Comparative Example 5, the capacity retention rate was low. From the comparison result between Example 3 and Comparative Example 5, this is considered to be because the amount of the first additive added was too large.

これらに対して、実施例1〜実施例20では、容量維持率の低下が抑制されるとともに、内部抵抗変化率が十分に小さくなった(200%未満)。これは、環状カーボネートを非水溶媒とし、0.8mol/L以上1.6mol/L以下のLiPFを電解質とする非水電解液において、非水電解液に対する添加量が0.1wt%以上10.0wt%未満の鎖状カーボネートを含んでいたからであると考えられる。 On the other hand, in Examples 1 to 20, a decrease in the capacity maintenance rate was suppressed, and the internal resistance change rate was sufficiently small (less than 200%). This is because, in a non-aqueous electrolyte solution using cyclic carbonate as a non-aqueous solvent and LiPF 6 of 0.8 mol / L or more and 1.6 mol / L or less as an electrolyte, the addition amount to the non-aqueous electrolyte solution is 0.1 wt% or more and 10 This is probably because the chain carbonate contained less than 0.0 wt%.

なお、実施例18〜20と実施例1〜17とを比較すると、実施例1〜17では、内部抵抗変化率がより小さくなった。これは、実施例1〜17では、第2添加剤を添加したからであると考えられる。実施例1〜17と実施例18〜20との比較結果からすると、第1添加剤および第2添加剤の種類は影響していないことがわかる。   In addition, when Examples 18-20 and Examples 1-17 were compared, in Examples 1-17, the internal resistance change rate became smaller. This is considered to be because in Examples 1 to 17, the second additive was added. From the comparison results between Examples 1 to 17 and Examples 18 to 20, it can be seen that the types of the first additive and the second additive are not affected.

また、実施例1〜3の各結果を比較すると、第2添加剤の添加量を0.5wt%以上とすることが好ましいことがわかる。一方で、実施例11〜13の各結果を比較すると、第2添加剤の添加量を3.0wt%以下とすることが好ましいことがわかる。   Moreover, when each result of Examples 1-3 is compared, it turns out that it is preferable that the addition amount of a 2nd additive shall be 0.5 wt% or more. On the other hand, when each result of Examples 11-13 is compared, it turns out that it is preferable that the addition amount of a 2nd additive shall be 3.0 wt% or less.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

10 正極
11 正極集電体
12 正極電極層
20 負極
21 負極集電体
22 負極電極層
30 セパレータ
41,42 引出端子
50 蓄電素子
60 封口ゴム
70 容器
100 リチウムイオンキャパシタ
DESCRIPTION OF SYMBOLS 10 Positive electrode 11 Positive electrode collector 12 Positive electrode layer 20 Negative electrode 21 Negative electrode collector 22 Negative electrode layer 30 Separator 41, 42 Lead terminal 50 Power storage element 60 Sealing rubber 70 Container 100 Lithium ion capacitor

Claims (7)

環状カーボネートの溶媒に0.8mol/L以上1.6mol/L以下のLiPFが電解質として含まれる電解液と、
前記電解液に対する添加量が0.1wt%以上10.0wt%未満の鎖状カーボネートと、を含むことを特徴とする電気化学デバイス用電解液。
An electrolytic solution in which 0.8 mol / L or more and 1.6 mol / L or less of LiPF 6 is contained as an electrolyte in a cyclic carbonate solvent;
An electrolytic solution for an electrochemical device, comprising: a chain carbonate having an addition amount to the electrolytic solution of 0.1 wt% or more and less than 10.0 wt%.
前記電解液に対する添加量が0.1wt%以上5.0wt%以下の添加剤として、炭酸エステル、スルホン酸エステル、およびリチウムのオキサラト錯体塩の少なくともいずれかをさらに含むことを特徴とする請求項1記載の電気化学デバイス用電解液。   2. The additive according to claim 1, further comprising at least one of a carbonate ester, a sulfonate ester, and a lithium oxalate complex salt as an additive having an addition amount to the electrolyte of 0.1 wt% to 5.0 wt%. Electrolyte solution for electrochemical devices as described. 前記炭酸エステルは、ビニレンカーボネートおよびフルオロエチレンカーボネートの少なくともいずれかであることを特徴とする請求項2記載の電気化学デバイス用電解液。   The electrolytic solution for an electrochemical device according to claim 2, wherein the carbonate ester is at least one of vinylene carbonate and fluoroethylene carbonate. 前記スルホン酸エステルは、ビス(エタンスルホン酸)メチレンであることを特徴とする請求項2記載の電気化学デバイス用電解液。   The electrolyte solution for an electrochemical device according to claim 2, wherein the sulfonic acid ester is bis (ethanesulfonic acid) methylene. 前記オキサラト錯体塩は、ビス(オキサラト)ホウ酸リチウム、ジフルオロビス(オキサラト)リン酸リチウム、およびテトラフルオロオキサラトリン酸リチウムの少なくともいずれかであることを特徴とする請求項2記載の電気化学デバイス用電解液。   The electrochemical device according to claim 2, wherein the oxalato complex salt is at least one of lithium bis (oxalato) borate, lithium difluorobis (oxalato) phosphate, and lithium tetrafluorooxalatophosphate. Electrolyte. 前記鎖状カーボネートは、ジメチルカーボネート、エチルメチルカーボネート、およびジエチルカーボネートの少なくともいずれかであることを特徴とする請求項1〜5のいずれか一項に記載の電気化学デバイス用電解液。   The said chain carbonate is at least any one of dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate, The electrolyte solution for electrochemical devices as described in any one of Claims 1-5 characterized by the above-mentioned. 正極および負極がセパレータを介して積層された蓄電素子を備え、
前記正極の活物質および前記負極の活物質、または前記セパレータに、請求項1〜6のいずれか一項に記載の電気化学デバイス用電解液が含浸されていることを特徴とする電気化学デバイス。
A power storage element in which a positive electrode and a negative electrode are stacked via a separator,
An electrochemical device, wherein the positive electrode active material, the negative electrode active material, or the separator is impregnated with the electrolytic solution for an electrochemical device according to claim 1.
JP2018238824A 2018-12-20 2018-12-20 Electrolyte solution for electrochemical device, and electrochemical device Pending JP2019169700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018238824A JP2019169700A (en) 2018-12-20 2018-12-20 Electrolyte solution for electrochemical device, and electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018238824A JP2019169700A (en) 2018-12-20 2018-12-20 Electrolyte solution for electrochemical device, and electrochemical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018055207A Division JP6718905B2 (en) 2018-03-22 2018-03-22 Lithium ion capacitor

Publications (1)

Publication Number Publication Date
JP2019169700A true JP2019169700A (en) 2019-10-03

Family

ID=68107558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018238824A Pending JP2019169700A (en) 2018-12-20 2018-12-20 Electrolyte solution for electrochemical device, and electrochemical device

Country Status (1)

Country Link
JP (1) JP2019169700A (en)

Similar Documents

Publication Publication Date Title
KR102380895B1 (en) Methods for solid electrolyte interphase formation and anode pre-lithiation of lithium ion capacitors
JP5392355B2 (en) Electric double layer capacitor
JP6765857B2 (en) Lithium ion capacitor
JP6818723B2 (en) Electrolyte for electrochemical devices and electrochemical devices
CN109559903B (en) Electrolyte solution for electrochemical device and electrochemical device
JPWO2019216219A1 (en) Electrochemical devices and their manufacturing methods
US10115535B2 (en) Electric storage device
JP6718905B2 (en) Lithium ion capacitor
WO2021205750A1 (en) Electrolytic solution for electrochemical device, and electrochemical device
CN110100332B (en) Electrochemical device
US10580589B2 (en) Lithium ion capacitor
JP2019169700A (en) Electrolyte solution for electrochemical device, and electrochemical device
JP2017017281A (en) Electric double layer capacitor
WO2020262440A1 (en) Electrochemical device
JP2016086153A (en) Electrochemical device
WO2021200778A1 (en) Electrochemical device
CN110462888B (en) Positive electrode for electrochemical device and electrochemical device provided with same
KR101101695B1 (en) Electrolyte for Lithium ion capacitor and Lithium ion capacitor comprising the same
JPWO2019111981A1 (en) Electrochemical device
JP2003332176A (en) Electrolytic solution for electrochemical capacitor and electrochemical capacitor using the same