JP3722685B2 - Electrolyte for electrochemical device and battery using the same - Google Patents

Electrolyte for electrochemical device and battery using the same Download PDF

Info

Publication number
JP3722685B2
JP3722685B2 JP2000303437A JP2000303437A JP3722685B2 JP 3722685 B2 JP3722685 B2 JP 3722685B2 JP 2000303437 A JP2000303437 A JP 2000303437A JP 2000303437 A JP2000303437 A JP 2000303437A JP 3722685 B2 JP3722685 B2 JP 3722685B2
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
battery
group
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000303437A
Other languages
Japanese (ja)
Other versions
JP2002110235A (en
Inventor
辻岡  章一
高瀬  浩成
幹弘 高橋
博美 杉本
誠 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2000303437A priority Critical patent/JP3722685B2/en
Priority to EP01123577A priority patent/EP1195834B1/en
Priority to DE60143070T priority patent/DE60143070D1/en
Priority to US09/969,127 priority patent/US6783896B2/en
Publication of JP2002110235A publication Critical patent/JP2002110235A/en
Application granted granted Critical
Publication of JP3722685B2 publication Critical patent/JP3722685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム電池、リチウムイオン電池、電気二重層キャパシタ等の電気化学ディバイス用として利用される新規の化学構造を有する電解質及びそれを用いた電池に関する。
【0002】
【従来の技術および発明が解決しようとする問題点】
近年の携帯機器の発展に伴い、その電源として電池やキャパシタのような電気化学的現象を利用した電気化学ディバイスの開発が盛んに行われるようになった。また、電源以外の電気化学ディバイスとしては、電気化学反応により色の変化が起こるエレクトロクロミックディスプレイ(ECD)が挙げられる。
【0003】
これらの電気化学ディバイスは、一般に一対の電極とその間を満たすイオン伝導体から構成される。このイオン伝導体には溶媒、高分子またはそれらの混合物中に電解質と呼ばれるカチオン(A+)とアニオン(B-)からなる塩類(AB)を溶解したものが用いられる。この電解質は、溶解することにより、カチオンとアニオンに解離して、イオン伝導する。ディバイスに必要なイオン伝導度を得るためには、この電解質が溶媒や高分子に十分な量溶解することが必要である。実際には、水以外のものを溶媒として用いる場合が多く、このような有機溶媒や高分子に十分な溶解度を持つ電解質は、現状では数種類に限定される。例えば、リチウム電池用電解質としては、LiClO4、LiPF6、LiBF4 、LiAsF6、LiN(CF3SO22、およびLiCF3SO3等が用いられる。カチオンの部分は、リチウム電池のリチウムイオンのように、ディバイスにより決まっているものが多いが、アニオンの部分は、溶解性が高いという条件を満たせば使用可能である。
【0004】
ディバイスの応用範囲が多種多様化している中で、それぞれの用途に対する最適な電解質が探索されているが、現状ではアニオンの種類が少ないため最適化も限界に達している。また、既存の電解質は種々の問題を持っており、そのため新規のアニオン部を有する電解質が要望されている。具体的には、ClO4イオンは、爆発性、AsF6イオンは、毒性を有するため安全上の理由で使用できない。LiN(CF3SO22およびLiCF3SO3は、電池内のアルミニウムの集電体を電位がかかった状態で腐食するため使用が困難である。唯一実用化されているLiPF6も耐熱性、耐加水分解性などの問題を有する。
【0005】
【問題点を解決するための具体的手段】
本発明者らは、かかる従来技術の問題点に鑑み鋭意検討の結果、新規の化学構造的な特徴を有する電解質を見出し本発明に到達したものである。
【0006】
すなわち本発明は、一般式(1)で示される化学構造式よりなる電気化学ディバイス用電解質で、
【0007】
【化2】
【0008】
ただし、Mは、B、またはP、Aa+は、Liイオン、aは、1、bは、1、pは、、mは、1〜、nは、1〜、qは、0または1をそれぞれ表し、R1は、C1〜C10のアルキレン、C1〜C10のハロゲン化アルキレン、C〜C20のアリーレン、またはC〜C20のハロゲン化アリーレンで(これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を持ってもよく、また、m個存在するR1はそれぞれが結合してもよい。)、R2は、ハロゲン、X1、X2は、Oをそれぞれ示し、さらに該電解質を用いた電池を提供するものである。
【0009】
なお、本発明で用いるアルキル、ハロゲン化アルキル、アリール、ハロゲン化アリール、アルキレン、ハロゲン化アルキレン、アリーレン、ハロゲン化アリーレンは、分岐や水酸基、エーテル結合等の他の官能基を持つものも含む。
【0010】
以下に、本発明をより詳細に説明する。
【0011】
ここで、本発明の一般式(1)で示される化合物の具体例を次に示す。
【0012】
【化3】
【0013】
【化4】
【0015】
【化6】
【0016】
ここで、本発明の一般式(1)で示される化合物のAa+として、リチウムイオンが挙げられる。
【0018】
本発明の電解質は、イオン性金属錯体構造を採っており、その中心となるMは、遷移金属、周期律表のIII族、IV族、またはV族元素から選ばれる。好ましくは、Al、B、V、Ti、Si、Zr、Ge、Sn、Cu、Y、Zn、Ga、Nb、Ta、Bi、P、As、Sc、Hf、またはSbのいずれかであり、さらに好ましくは、B、またはPである。種々の元素を中心のMとして利用することは可能であるが、Al、B、V、Ti、Si、Zr、Ge、Sn、Cu、Y、Zn、Ga、Nb、Ta、Bi、P、As、Sc、Hf、またはSbの場合、比較的合成も容易であり、さらに、B、またはPの場合、合成の容易性のほか、低毒性、安定性、コストとあらゆる面で優れた特性を有する。
【0019】
次に、本発明の電解質(イオン性金属錯体)の特徴となる配位子の部分について説明する。以下、ここではMに結合している有機または無機の部分を配位子と呼ぶ。
【0020】
一般式(1)中のR1は、C1〜C10のアルキレン、C1〜C10のハロゲン化アルキレン、 〜C20のアリーレン、または 〜C20のハロゲン化アリーレンから選ばれるものよりなるが、これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を持ってもよい。具体的には、アルキレン及びアリーレン上の水素の代わりにハロゲン、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、水酸基、また、アルキレン及びアリーレン上の炭素の代わりに、窒素、イオウ、酸素が導入された構造等を挙げることができる。さらには、複数存在するR1はそれぞれが結合してもよく、例えば、エチレンジアミン四酢酸のような配位子を挙げることができる。
【0021】
2は、ハロゲン、好ましくは電子吸引性の基がよく、特にフッ素がよい。R2がフッ素の場合、その強い電子吸引性による電解質の解離度の向上とサイズが小さくなることによる移動度の向上の効果により、イオン伝導度が非常に高くなる。
【0022】
1、X2は、それぞれ独立で、O、であり、これらのヘテロ原子を介して配位子がMに結合する。ここで、O、以外で結合することは、不可能ではないが合成上非常に煩雑なものとなる。この化合物の特徴として同一の配位子内にX1とX2によるMとの結合があるため、これらの配位子がMとキレート構造を構成している。このキレートの効果により、この化合物の耐熱性、化学的安定性、耐加水分解性が向上している。この配位子中の定数qは0または1であるが、特に、0の場合はこのキレートリングが五員環になるため、キレート効果が最も強く発揮され安定性が増すため好ましい。
【0024】
また、ここまでに説明した配位子の数に関係する定数mおよびnは、中心のMの種類によって決まってくるものであるが、mは、1から、nは、1からが好ましい。
【0025】
以上、本発明のイオン性金属錯体からなる新規な電気化学ディバイス用電解質の説明であるが、さらに、詳述すると、本発明による一般式(1)で示される化合物は、強力な電子吸引性のカルボニル基(C=O基)を有することにより、アニオンが安定化され、アニオンとカチオンの電荷の分離が容易になる。言い換えれば、アニオンとカチオンが解離しやすい状態となる。これは電気化学ディバイスの電解質として使用する場合、非常に重要な要素である。電解質と呼ばれる塩類は、無数に存在するが、大部分は水には溶解・解離してイオン伝導をする。しかし、水以外の有機溶媒等には溶解すらしない場合が多い。このような水溶液も電気化学ディバイスに使用することは可能であるが、溶媒である水の分解電位が低く、酸化還元に弱いため、制約が多い。例えば、リチウム電池などでは、そのディバイスの電極間の電位差が3V以上になるため、水は水素と酸素に電気分解されてしまう。一方、有機溶媒や高分子はその構造により、水よりも酸化還元に強いものも多いので、リチウム電池や電気二重層キャパシタといった高電圧を必要とするディバイスに用いられる。
【0026】
本発明の電解質は、上記のようにC=O基の効果と従来の電解質に比べ、アニオンサイズを大きくした効果により、有機溶媒に非常に溶解しやすく、しかも、解離しやすいため、これらの有機溶媒との溶液は、リチウム電池等のディバイスの優秀なイオン伝導体として使用できる。一般に有機物と金属の錯体は加水分解を受けやすく、化学的にも不安定なものが多い。また、本発明の電解質は、キレート構造を有するため、非常に安定であり、加水分解などを受けにくい。また、化学式(1)で示される化学構造中にフッ素を有するものは更にその効果により、イオン伝導度が向上し、耐酸化性等の化学的安定性もさらに増加しより好ましい。
【0027】
さらには、上記化学式(1)の構造を最適化することにより、従来の電解質では溶解しないような有機溶媒、例えば、トルエンやヘキサン、また、フロンのような含フッ素有機溶媒などにも溶解する電解質を得ることもできる。
【0028】
本発明の電解質は、上述したようにリチウム電池、リチウムイオン電池、電気二重層キャパシタといった電気化学ディバイスの電解質として用いられるが、その他の用途として、有機合成反応の触媒やポリマーの重合触媒、オレフィン重合の助触媒等が挙げられる。
【0029】
また、これらの電解質の合成法は、特に限定されるものではないが、例えば、次に示した化学式の化合物の場合、非水溶媒中でLiBF4と2倍モルのリチウムアルコキシドを反応させた後、シュウ酸を添加して、ホウ素に結合しているアルコキシドをシュウ酸で置換することにより合成できる。
【0030】
【化7】
【0031】
本発明の電解質を用いて電気化学ディバイスを構成する場合、その基本構成要素としては、イオン伝導体、負極、正極、集電体、セパレーターおよび容器等から成る。
【0032】
イオン伝導体としては、電解質と非水系溶媒又はポリマーの混合物が用いられる。非水系溶媒を用いれば、一般にこのイオン伝導体は電解液と呼ばれ、ポリマーを用いれば、ポリマー固体電解質と呼ばれるものになる。ポリマー固体電解質には可塑剤として非水系溶媒を含有するものも含まれる。ここに挙げられた電解質としては、本発明の電解質を一種類、又は二種類以上の混合物で用いる。二種類以上混合する場合は、一種類は、必ず本発明の電解質が必要であり、その他は、一般的なリチウム塩類、例えば、LiClO4 、LiPF6 、LiBF4 、LiCF3SO3 、LiN(CF3SO2)2およびLiSbF6 等を使用することもできる。
【0033】
非水溶媒としては、本発明の電解質を溶解できる非プロトン性の溶媒であれば特に限定されるものではなく、例えば、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、アミド類、スルホン類等が使用できる。また、単一の溶媒だけでなく、二種類以上の混合溶媒でもよい。具体例としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、およびγ−ブチロラクトン等を挙げられる。
【0034】
また、電解質に混合するポリマーとしては、該化合物を溶解できる非プロトン性のポリマーであれば特に限定されるものではない。例えば、ポリエチレンオキシドを主鎖または側鎖に持つポリマー、ポリビニリデンフロライドのホモポリマーまたはコポリマー、メタクリル酸エステルポリマー、ポリアクリロニトリルなどが挙げられる。これらのポリマーに可塑剤を加える場合は、上記の非プロトン性非水溶媒が使用可能である。これらのイオン伝導体中における本発明の電解質濃度は、0.1mol/dm3以上、飽和濃度以下、好ましくは、0.5mol/dm3以上、1.5mol/dm3以下である。0.1mol/dm3より濃度が低いとイオン伝導度が低いため好ましくない。
【0035】
負極材料としては、特に限定されないが、リチウム電池の場合、リチウム金属やリチウムと他の金属との合金が使用される。また、リチウムイオン電池の場合、ポリマー、有機物、ピッチ等をを焼成して得られたカーボンや天然黒鉛、金属酸化物等のインターカレーションと呼ばれる現象を利用した材料が使用される。電気二重層キャパシタの場合、活性炭、多孔質金属酸化物、多孔質金属、導電性ポリマー等が用いられる。
【0036】
正極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、例えば、LiCoO2 、LiNiO2 、LiMnO2 、LiMn24 等のリチウム含有酸化物、TiO2 、V25 、MoO3 等の酸化物、TiS2 、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、およびポリピロール等の導電性高分子が使用される。電気二重層キャパシタの場合、活性炭、多孔質金属酸化物、多孔質金属、導電性ポリマー等が用いられる。
【0037】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
【0038】
実施例1
テトラフルオロホウ酸リチウム(LiBF4)1.37gを10mlのアセトニトリルに室温で溶解した。次にリチウムヘキサフルオロイソプロポキシド(LiOCH(CF32)5.09gをこの溶液にゆっくりと添加した。その後、60℃で3時間撹拌して反応させた。このとき、フッ化リチウムが析出した。こうして得られた反応液にシュウ酸1.31gを添加して、60℃で1時間撹拌して反応させた。次にこの反応液をろ過して、フッ化リチウムを分離し、得られたろ液の溶媒を60℃、10-1Paの減圧条件で除去し、白色の固体が1.90g得られた。この固体を100℃、10-1Paの減圧条件で24時間乾燥することにより、ジフルオロ(オキサラト)ホウ酸リチウム1.90g(収率:91%)を得た。得られた化合物の組成は元素分析により確認された。
【0039】
【化8】
【0040】
ジフルオロ(オキサラト)ホウ酸リチウムのNMRスペクトルについて以下に示す。
【0041】
実施例2
次に、実施例1で得られた電解質をエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合溶媒(EC:DMC=1:1)に溶解して、濃度1mol/dm3の電解液を調製した。この電解液について、交流二極式セルによりイオン伝導度を測定した。その結果、イオン伝導度は、8.6mS/cmであった。
【0042】
また、この電解液をフッ素樹脂製の容器に入れて、100℃で1ヶ月保存したところ、電解液の変色等の劣化は観察されなかった。また、この電解液中に水を添加して、NMRにより観察したところ、全く加水分解を受けていなかった。
【0043】
この電解液を用いてアルミニウム集電体の腐食試験を実施した。試験用セルは、作用極としてアルミニウム、対極及び参照極としてリチウム金属を有するビーカー型のものを用いた。作用極を5V(Li/Li+)に保持したところ、全く電流は流れなかった。試験後に作用極表面をSEMで観察したが試験前と比べて変化は認められなかった。
【0044】
実施例3
実施例2の電解液を用いて実際に電池の充放電試験を実施した。試験用セルはは以下のように作製した。正極は、LiCoO2粉末90重量%、バインダーとしてポリフッ化ビニリデン(PVDF)重量5%、導電材としてアセチレンブラック5重量%を混合し、さらにN,N−ジメチルホルムアミドを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。負極にはリチウム金属を使用した。そして、グラスファイバーフィルターをセパレーターとしてこのセパレータに実施例2の電解液を浸み込ませてセルを組み立てた。
【0045】
次に、以下のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.35mA/cm2 で行い、充電は、4.2V、放電は、3.0V(vs.Li/Li+ )まで行った。その結果、初回の放電容量は、125mAh/gであった。また、20回充放電を繰り返したが20回目の容量は初回の88%という結果が得られた。
【0046】
実施例4
実施例2の電解液を用いて実際に電池の充放電試験を実施した。試験用セルは以下のように作製した。天然黒鉛を負極材料としてハーフセルを作製し、充放電試験を行った。具体的には、天然黒鉛粉末90重量%に、バインダーとしてポリフッ化ビニリデン(PVDF)10%重量を混合し、さらにN,N−ジメチルホルムアミドを添加し、スラリー状にした。このスラリーをニッケルメッシュ上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。対極にはリチウム金属を使用した。そして、グラスファイバーフィルターをセパレーターとしてこのセパレータに実施例2の電解液を浸み込ませてハーフセルを組み立てた。次のような条件で定電流充放電試験を実施した。充電、放電ともに電流密度0.3mA/cm2 で行い、充電は0.0V、放電は1.5V(vs.Li/Li+ )まで行った。その結果、初回の放電容量は、320mAh/gであった。また、20回充放電を繰り返したが20回目の容量は初回の95%という結果が得られた。
【0047】
比較例1
LiPF6をエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合溶媒(EC:DMC=1:1)に溶解して、濃度1mol/dm3の電解液を調製した。次に、この電解液をフッ素樹脂製の容器に入れて、100℃で1ヶ月保存して耐熱性試験を行ったところ、電解液は黄色に変色していた。
【0048】
また、この耐熱試験前の電解液中に水を添加して、NMRにより観察したところ、種々の加水分解生成物が観察された。加水分解生成物としてはフッ化水素、オキシ塩化リンなどが検出された。
【0049】
比較例2
LiN(CF3SO22をエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合溶媒(EC:DMC=1:1)に溶解して、濃度1mol/dm3の電解液を調製した。次に、この電解液を用いてアルミニウム集電体の腐食試験を実施した。試験用セルは作用極としてアルミニウム、対極及び参照極としてリチウム金属を有するビーカー型のものを用いた。作用極を5V(Li/Li+)に保持したところ、電流が流れ電流値は時間と共に上昇した。試験後に作用極表面をSEMで観察するとアルミニウム表面に激しい孔食が観られた。
【0050】
【発明の効果】
本発明の電解質は、リチウム電池、リチウムイオン電池、電気二重層キャパシタ等の電気化学ディバイス用として利用される従来の電解質に比べ、耐熱性、耐加水分解性の高い電解質であり、また該電解質を用いた電池を可能としたものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolyte having a novel chemical structure used for electrochemical devices such as lithium batteries, lithium ion batteries, and electric double layer capacitors, and a battery using the same.
[0002]
[Prior art and problems to be solved by the invention]
With the development of portable devices in recent years, the development of electrochemical devices using electrochemical phenomena such as batteries and capacitors as a power source has become active. Further, as an electrochemical device other than the power source, an electrochromic display (ECD) in which a color change is caused by an electrochemical reaction can be given.
[0003]
These electrochemical devices are generally composed of a pair of electrodes and an ionic conductor filling them. As the ionic conductor, a solution in which a salt (AB) composed of a cation (A + ) and an anion (B ) called an electrolyte is dissolved in a solvent, a polymer, or a mixture thereof is used. When this electrolyte is dissolved, it dissociates into a cation and an anion to conduct ions. In order to obtain the ionic conductivity necessary for the device, it is necessary that this electrolyte is dissolved in a sufficient amount in a solvent or a polymer. In practice, a solvent other than water is often used as a solvent, and there are currently only a few types of electrolytes having sufficient solubility in such organic solvents and polymers. For example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 and the like are used as the electrolyte for the lithium battery. The cation portion is often determined by the device, such as the lithium ion of a lithium battery, but the anion portion can be used if the condition that the solubility is high is satisfied.
[0004]
While the application range of devices is diversifying, the optimum electrolyte for each application is being searched for, but at present, optimization is reaching its limit because there are few types of anions. Moreover, the existing electrolyte has various problems, and therefore, an electrolyte having a novel anion portion is desired. Specifically, ClO 4 ions are explosive and AsF 6 ions are toxic and cannot be used for safety reasons. LiN (CF 3 SO 2 ) 2 and LiCF 3 SO 3 are difficult to use because they corrode the aluminum current collector in the battery with a potential applied. The only practically used LiPF 6 also has problems such as heat resistance and hydrolysis resistance.
[0005]
[Concrete means for solving the problem]
As a result of intensive studies in view of the problems of the prior art, the present inventors have found an electrolyte having a novel chemical structural feature and have reached the present invention.
[0006]
That is, the present invention is an electrolyte for an electrochemical device having a chemical structural formula represented by the general formula (1).
[0007]
[Chemical formula 2]
[0008]
However, M is B or P, A a + is Li ion, a is 1, b is 1, p is 1 , m is 1 to 2 , n is 1 to 4 , and q is 0 Or R 1 is C 1 -C 10 alkylene, C 1 -C 10 halogenated alkylene, C 6 -C 20 arylene, or C 6 -C 20 halogenated arylene (these Alkylene and arylene may have a substituent or a hetero atom in the structure, and m R 1 may be bonded to each other.), R 2 is halogen, X 1 , X 2 are , O, and a battery using the electrolyte.
[0009]
The alkyl, halogenated alkyl, aryl, halogenated aryl, alkylene, halogenated alkylene, arylene, and halogenated arylene used in the present invention include those having other functional groups such as a branch, a hydroxyl group, and an ether bond.
[0010]
Hereinafter, the present invention will be described in more detail.
[0011]
Here, the specific example of a compound shown by General formula (1) of this invention is shown next.
[0012]
[Chemical 3]
[0013]
[Formula 4]
[0015]
[Chemical 6]
[0016]
Here, a lithium ion is mentioned as A <a +> of the compound shown by General formula (1) of this invention.
[0018]
The electrolyte of the present invention has an ionic metal complex structure, and the central M is selected from transition metals, Group III, Group IV, or Group V elements of the Periodic Table. Preferably, any of Al, B, V, Ti, Si, Zr, Ge, Sn, Cu, Y, Zn, Ga, Nb, Ta, Bi, P, As, Sc, Hf, or Sb, and B or P is preferable. Although various elements can be used as the central M, Al, B, V, Ti, Si, Zr, Ge, Sn, Cu, Y, Zn, Ga, Nb, Ta, Bi, P, As , Sc, Hf, or Sb is relatively easy to synthesize, and in the case of B or P, in addition to the ease of synthesis, it has excellent properties in all aspects such as low toxicity, stability, and cost. .
[0019]
Next, the part of the ligand that is a feature of the electrolyte (ionic metal complex) of the present invention will be described. Hereinafter, the organic or inorganic part bonded to M is referred to as a ligand.
[0020]
R 1 in the general formula (1) is selected from C 1 to C 10 alkylene, C 1 to C 10 halogenated alkylene, C 6 to C 20 arylene, or C 6 to C 20 halogenated arylene. These alkylenes and arylenes may have a substituent or a hetero atom in the structure. Specifically, instead of hydrogen on alkylene and arylene, halogen, chain or cyclic alkyl group, aryl group, alkenyl group, alkoxy group, aryloxy group, sulfonyl group, amino group, cyano group, carbonyl group, acyl group , An amide group, a hydroxyl group, and a structure in which nitrogen, sulfur, or oxygen is introduced in place of carbon on alkylene and arylene. Furthermore, plural R 1 s may be bonded to each other, and examples thereof include a ligand such as ethylenediaminetetraacetic acid.
[0021]
R 2 is preferably a halogen, preferably an electron-withdrawing group, particularly fluorine. When R 2 is fluorine, the ion conductivity is very high due to the improvement in dissociation of the electrolyte due to its strong electron-withdrawing property and the effect of improving the mobility due to the reduction in size.
[0022]
X 1 and X 2 are each independently O, and the ligand is bonded to M through these heteroatoms. Here, it is not impossible to combine other than O, but it is very complicated in synthesis. Since this compound has a bond of M by X 1 and X 2 in the same ligand, these ligands constitute a chelate structure with M. Due to the effect of this chelate, the heat resistance, chemical stability, and hydrolysis resistance of this compound are improved. The constant q in this ligand is 0 or 1. Particularly, 0 is preferable because this chelate ring is a five-membered ring, so that the chelate effect is exerted most strongly and the stability is increased.
[0024]
The constants m and n related to the number of ligands described so far are determined by the type of M at the center, and m is preferably 1 to 2 and n is preferably 1 to 4. .
[0025]
The above is an explanation of a novel electrolyte for an electrochemical device comprising the ionic metal complex of the present invention. More specifically, the compound represented by the general formula (1) according to the present invention has a strong electron-withdrawing property. By having a carbonyl group (C═O group), the anion is stabilized, and the charge of the anion and the cation can be easily separated. In other words, the anion and cation are easily dissociated. This is a very important factor when used as an electrolyte in electrochemical devices. There are countless salts called electrolytes, but most of them dissolve and dissociate in water to conduct ions. However, it often does not even dissolve in organic solvents other than water. Such an aqueous solution can also be used for an electrochemical device, but there are many restrictions because the decomposition potential of water as a solvent is low and it is vulnerable to redox. For example, in a lithium battery or the like, since the potential difference between the electrodes of the device is 3 V or more, water is electrolyzed into hydrogen and oxygen. On the other hand, organic solvents and polymers are more resistant to redox than water due to their structures, and are therefore used in devices that require high voltage, such as lithium batteries and electric double layer capacitors.
[0026]
As described above, the electrolyte of the present invention is very soluble in an organic solvent and easily dissociated due to the effect of the C═O group and the effect of increasing the anion size compared to the conventional electrolyte. A solution with a solvent can be used as an excellent ion conductor of a device such as a lithium battery. In general, organic and metal complexes are susceptible to hydrolysis, and are often chemically unstable. Moreover, since the electrolyte of the present invention has a chelate structure, it is very stable and hardly receives hydrolysis. In addition, those having fluorine in the chemical structure represented by the chemical formula (1) are more preferable because of their effects, which improves ionic conductivity and further increases chemical stability such as oxidation resistance.
[0027]
Furthermore, by optimizing the structure of the above chemical formula (1), an electrolyte that dissolves in an organic solvent that does not dissolve in a conventional electrolyte, such as a fluorine-containing organic solvent such as toluene or hexane, or chlorofluorocarbon. You can also get
[0028]
As described above, the electrolyte of the present invention is used as an electrolyte for electrochemical devices such as lithium batteries, lithium ion batteries, and electric double layer capacitors. As other applications, it can be used as a catalyst for organic synthesis reaction, a polymer polymerization catalyst, and an olefin polymerization. And the like.
[0029]
The method for synthesizing these electrolytes is not particularly limited. For example, in the case of a compound having the following chemical formula, after reacting LiBF 4 with 2 moles of lithium alkoxide in a non-aqueous solvent, It can be synthesized by adding oxalic acid and replacing the alkoxide bonded to boron with oxalic acid.
[0030]
[Chemical 7]
[0031]
When an electrochemical device is constituted using the electrolyte of the present invention, its basic components are composed of an ion conductor, a negative electrode, a positive electrode, a current collector, a separator, a container, and the like.
[0032]
As the ionic conductor, a mixture of an electrolyte and a non-aqueous solvent or polymer is used. If a non-aqueous solvent is used, this ionic conductor is generally called an electrolytic solution, and if a polymer is used, it becomes a polymer solid electrolyte. The polymer solid electrolyte includes those containing a non-aqueous solvent as a plasticizer. As the electrolyte listed here, the electrolyte of the present invention is used in one kind or a mixture of two or more kinds. When two or more types are mixed, the electrolyte of the present invention is always required for one type, and the other is a general lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiSbF 6 can also be used.
[0033]
The non-aqueous solvent is not particularly limited as long as it is an aprotic solvent capable of dissolving the electrolyte of the present invention, and examples thereof include carbonates, esters, ethers, lactones, nitriles, amides, sulfones. Can be used. Moreover, not only a single solvent but 2 or more types of mixed solvents may be sufficient. Specific examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide. , Sulfolane, and γ-butyrolactone.
[0034]
The polymer mixed with the electrolyte is not particularly limited as long as it is an aprotic polymer capable of dissolving the compound. Examples thereof include polymers having polyethylene oxide in the main chain or side chain, homopolymers or copolymers of polyvinylidene fluoride, methacrylic acid ester polymers, polyacrylonitrile and the like. When a plasticizer is added to these polymers, the above-mentioned aprotic non-aqueous solvent can be used. Electrolyte concentration of the present invention in these ion conductors in the, 0.1 mol / dm 3 or more, the saturation concentration or less, preferably, 0.5 mol / dm 3 or more and 1.5 mol / dm 3 or less. When the concentration is lower than 0.1 mol / dm 3 , the ionic conductivity is low, which is not preferable.
[0035]
Although it does not specifically limit as a negative electrode material, In the case of a lithium battery, the alloy of lithium metal and lithium and another metal is used. In the case of a lithium ion battery, a material using a phenomenon called intercalation such as carbon, natural graphite, or metal oxide obtained by firing a polymer, an organic substance, pitch or the like is used. In the case of an electric double layer capacitor, activated carbon, porous metal oxide, porous metal, conductive polymer, or the like is used.
[0036]
As the cathode material is not particularly limited, a lithium battery and a lithium ion battery, for example, LiCoO 2, LiNiO 2, LiMnO 2, lithium-containing oxides such as LiMn 2 O 4, TiO 2, V 2 O 5, MoO Oxides such as 3 , sulfides such as TiS 2 and FeS, or conductive polymers such as polyacetylene, polyparaphenylene, polyaniline, and polypyrrole are used. In the case of an electric double layer capacitor, activated carbon, porous metal oxide, porous metal, conductive polymer, or the like is used.
[0037]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this Example.
[0038]
Example 1
1.37 g of lithium tetrafluoroborate (LiBF 4 ) was dissolved in 10 ml of acetonitrile at room temperature. Next, 5.09 g of lithium hexafluoroisopropoxide (LiOCH (CF 3 ) 2 ) was slowly added to this solution. Then, it was made to react by stirring at 60 degreeC for 3 hours. At this time, lithium fluoride was deposited. To the reaction solution thus obtained, 1.31 g of oxalic acid was added and stirred at 60 ° C. for 1 hour for reaction. Next, this reaction solution was filtered to separate lithium fluoride, and the solvent of the obtained filtrate was removed under reduced pressure conditions of 60 ° C. and 10 −1 Pa to obtain 1.90 g of a white solid. This solid was dried under reduced pressure conditions at 100 ° C. and 10 −1 Pa for 24 hours to obtain 1.90 g (yield: 91%) of lithium difluoro (oxalato) borate. The composition of the obtained compound was confirmed by elemental analysis.
[0039]
[Chemical 8]
[0040]
The NMR spectrum of lithium difluoro (oxalato) borate is shown below.
[0041]
Example 2
Next, the electrolyte obtained in Example 1 is dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC: DMC = 1: 1) to prepare an electrolytic solution having a concentration of 1 mol / dm 3. did. About this electrolyte solution, the ionic conductivity was measured with the alternating current bipolar cell. As a result, the ionic conductivity was 8.6 mS / cm.
[0042]
Further, when this electrolytic solution was put in a fluororesin container and stored at 100 ° C. for one month, no deterioration such as discoloration of the electrolytic solution was observed. Moreover, when water was added to this electrolyte solution and observed by NMR, it was not hydrolyzed at all.
[0043]
A corrosion test of the aluminum current collector was performed using this electrolytic solution. The test cell used was a beaker type having aluminum as a working electrode, a counter electrode and lithium metal as a reference electrode. When the working electrode was held at 5 V (Li / Li + ), no current flowed. After the test, the surface of the working electrode was observed with SEM, but no change was observed compared to before the test.
[0044]
Example 3
A battery charge / discharge test was actually performed using the electrolytic solution of Example 2. The test cell was produced as follows. The positive electrode was prepared by mixing 90% by weight of LiCoO 2 powder, 5% by weight of polyvinylidene fluoride (PVDF) as a binder, and 5% by weight of acetylene black as a conductive material, and further adding N, N-dimethylformamide to form a paste. The paste was applied on an aluminum foil and dried to obtain a test positive electrode body. Lithium metal was used for the negative electrode. Then, using the glass fiber filter as a separator, the cell was assembled by immersing the electrolytic solution of Example 2 in this separator.
[0045]
Next, a constant current charge / discharge test was performed under the following conditions. Both charging and discharging were performed at a current density of 0.35 mA / cm 2 , charging was performed at 4.2 V, and discharging was performed up to 3.0 V (vs. Li / Li + ). As a result, the initial discharge capacity was 125 mAh / g. Moreover, although charging / discharging was repeated 20 times, the 20th capacity | capacitance obtained the result of 88% of the first time.
[0046]
Example 4
A battery charge / discharge test was actually performed using the electrolytic solution of Example 2. The test cell was produced as follows. A half cell was produced using natural graphite as a negative electrode material, and a charge / discharge test was performed. Specifically, 90% by weight of natural graphite powder was mixed with 10% by weight of polyvinylidene fluoride (PVDF) as a binder, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on a nickel mesh and dried at 150 ° C. for 12 hours to obtain a test negative electrode body. Lithium metal was used for the counter electrode. And the electrolytic solution of Example 2 was immersed in this separator by using a glass fiber filter as a separator, and a half cell was assembled. A constant current charge / discharge test was conducted under the following conditions. Both charging and discharging were performed at a current density of 0.3 mA / cm 2 , charging was performed at 0.0 V, and discharging was performed up to 1.5 V (vs. Li / Li + ). As a result, the initial discharge capacity was 320 mAh / g. Moreover, although charging / discharging was repeated 20 times, the 20th capacity | capacitance obtained the result of 95% of the first time.
[0047]
Comparative Example 1
LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC: DMC = 1: 1) to prepare an electrolyte solution having a concentration of 1 mol / dm 3 . Next, when this electrolytic solution was put in a fluororesin container and stored at 100 ° C. for 1 month to conduct a heat resistance test, the electrolytic solution was yellow.
[0048]
Moreover, when water was added to the electrolyte before this heat test and observed by NMR, various hydrolysis products were observed. Hydrogen fluoride, phosphorus oxychloride and the like were detected as hydrolysis products.
[0049]
Comparative Example 2
LiN (CF 3 SO 2 ) 2 was dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC: DMC = 1: 1) to prepare an electrolytic solution having a concentration of 1 mol / dm 3 . Next, a corrosion test of the aluminum current collector was performed using this electrolytic solution. The test cell used was a beaker type having aluminum as a working electrode, a counter electrode and lithium metal as a reference electrode. When the working electrode was held at 5 V (Li / Li + ), current flowed and the current value increased with time. When the working electrode surface was observed by SEM after the test, severe pitting corrosion was observed on the aluminum surface.
[0050]
【The invention's effect】
The electrolyte of the present invention is an electrolyte having higher heat resistance and hydrolysis resistance than conventional electrolytes used for electrochemical devices such as lithium batteries, lithium ion batteries, and electric double layer capacitors. The battery used is made possible.

Claims (2)

一般式(1)で示される化学構造式よりなる電気化学ディバイス用電解質。
Mは、B、またはP、
a+は、Liイオン、
aは、1、
bは、1、
pは、1、
mは、1〜
nは、1〜
qは、0または1をそれぞれ表し、
1は、C1〜C10のアルキレン、C1〜C10のハロゲン化アルキレン、C〜C20のアリーレン、またはC〜C20のハロゲン化アリーレン(これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を持ってもよく、またm個存在するR1はそれぞれが結合してもよい。)、
2は、ハロゲン、
1、X2は、Oをそれぞれ示す。
An electrolyte for an electrochemical device having a chemical structural formula represented by the general formula (1).
M is B or P,
A a + is Li ion,
a is 1,
b is 1,
p is 1,
m is 1-2 ,
n is 1 to 4 ,
q represents 0 or 1 respectively;
R 1 is C 1 -C 10 alkylene, C 1 -C 10 halogenated alkylene, C 6 -C 20 arylene, or C 6 -C 20 halogenated arylene (these alkylene and arylene are in the structure) May have a substituent or a hetero atom, and m R 1 may be bonded to each other.)
R 2 is halogen,
X 1 and X 2 each represents O.
少なくとも正極、負極、電解液からなり、該電解液に請求項1に記載の一般式(1)で示される化学構造式よりなる電解質を含むことを特徴とする電池。  A battery comprising at least a positive electrode, a negative electrode, and an electrolytic solution, wherein the electrolytic solution includes an electrolyte having a chemical structural formula represented by the general formula (1) according to claim 1.
JP2000303437A 2000-10-03 2000-10-03 Electrolyte for electrochemical device and battery using the same Expired - Fee Related JP3722685B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000303437A JP3722685B2 (en) 2000-10-03 2000-10-03 Electrolyte for electrochemical device and battery using the same
EP01123577A EP1195834B1 (en) 2000-10-03 2001-10-01 Electrolyte for electrochemical device
DE60143070T DE60143070D1 (en) 2000-10-03 2001-10-01 Electrolyte for electrochemical device
US09/969,127 US6783896B2 (en) 2000-10-03 2001-10-03 Electrolyte for electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000303437A JP3722685B2 (en) 2000-10-03 2000-10-03 Electrolyte for electrochemical device and battery using the same

Publications (2)

Publication Number Publication Date
JP2002110235A JP2002110235A (en) 2002-04-12
JP3722685B2 true JP3722685B2 (en) 2005-11-30

Family

ID=18784638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303437A Expired - Fee Related JP3722685B2 (en) 2000-10-03 2000-10-03 Electrolyte for electrochemical device and battery using the same

Country Status (1)

Country Link
JP (1) JP3722685B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140040283A (en) 2011-08-31 2014-04-02 샌트랄 글래스 컴퍼니 리미티드 Electrolytic solution for nonaqueous electrolytic solution cell, and nonaqueous electrolytic solution cell
KR20170021335A (en) 2014-07-02 2017-02-27 샌트랄 글래스 컴퍼니 리미티드 Ionic complex, electrolyte for nonaqueous electrolyte battery, nonaqueous electrolyte battery and ionic complex synthesis method
US10186733B2 (en) 2015-01-23 2019-01-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
US10454139B2 (en) 2015-01-23 2019-10-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
WO2020022142A1 (en) 2018-07-26 2020-01-30 三井化学株式会社 Lithium borate compound, additive for lithium secondary cell, nonaqueous liquid electrolyte for lithium secondary cell, lithium secondary cell precursor, and lithium secondary cell and method for manufacturing same
WO2020184690A1 (en) 2019-03-14 2020-09-17 三井化学株式会社 Lithium borate compound, additive for lithium secondary battery, nonaqueous electrolytic solution for lithium secondary battery, precursor for lithium secondary battery, and production method for lithium secondary battery

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186115B2 (en) 2003-06-11 2008-11-26 ソニー株式会社 Lithium ion secondary battery
JP4579587B2 (en) * 2003-06-16 2010-11-10 株式会社豊田中央研究所 Lithium ion secondary battery
JP2005032715A (en) * 2003-06-16 2005-02-03 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery and manufacturing method of the same
JP4728598B2 (en) * 2003-06-16 2011-07-20 株式会社豊田中央研究所 Lithium ion secondary battery
JP4795654B2 (en) * 2003-06-16 2011-10-19 株式会社豊田中央研究所 Lithium ion secondary battery
JP4579588B2 (en) * 2003-06-16 2010-11-10 株式会社豊田中央研究所 Lithium ion secondary battery
JP2006032809A (en) * 2004-07-21 2006-02-02 Central Glass Co Ltd Electrolyte for electrochemistry capacitor and electrochemistry capacitor
JP4349321B2 (en) 2004-12-10 2009-10-21 ソニー株式会社 battery
JP2007123631A (en) * 2005-10-28 2007-05-17 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolyte for electrochemical capacitor
JP4273433B2 (en) 2006-06-14 2009-06-03 ソニー株式会社 Ionic compounds, electrolytes, electrochemical devices and secondary batteries
JP2008166342A (en) * 2006-12-27 2008-07-17 Fuji Heavy Ind Ltd Lithium ion capacitor
JP4544270B2 (en) * 2007-05-21 2010-09-15 ソニー株式会社 Secondary battery electrolyte and secondary battery
JP5192897B2 (en) * 2008-04-25 2013-05-08 株式会社豊田中央研究所 Lithium ion secondary battery
JP5875954B2 (en) * 2012-01-20 2016-03-02 株式会社日本触媒 Cyanoborate compound and electrolyte using the same
JP6098684B2 (en) 2015-08-12 2017-03-22 セントラル硝子株式会社 Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery using the same
US10756384B2 (en) * 2015-10-22 2020-08-25 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
JP6245312B2 (en) 2016-05-30 2017-12-13 セントラル硝子株式会社 Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery using the same
JP6260735B1 (en) 2016-07-06 2018-01-17 セントラル硝子株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP7168851B2 (en) 2017-12-06 2022-11-10 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP7116314B2 (en) 2017-12-06 2022-08-10 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
WO2019111983A1 (en) 2017-12-06 2019-06-13 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
WO2019111958A1 (en) 2017-12-06 2019-06-13 セントラル硝子株式会社 Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used
JPWO2022113913A1 (en) 2020-11-24 2022-06-02

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140040283A (en) 2011-08-31 2014-04-02 샌트랄 글래스 컴퍼니 리미티드 Electrolytic solution for nonaqueous electrolytic solution cell, and nonaqueous electrolytic solution cell
US10777847B2 (en) 2011-08-31 2020-09-15 Central Glass Company, Limited Electrolytic solution for nonaqueous electrolytic solution cell, and nonaqueous electrolytic solution cell
KR20170021335A (en) 2014-07-02 2017-02-27 샌트랄 글래스 컴퍼니 리미티드 Ionic complex, electrolyte for nonaqueous electrolyte battery, nonaqueous electrolyte battery and ionic complex synthesis method
US10424794B2 (en) 2014-07-02 2019-09-24 Central Glass Co., Ltd. Ionic complex, electrolyte for nonaqueous electrolyte battery, nonaqueous electrolyte battery and ionic complex synthesis method
US10186733B2 (en) 2015-01-23 2019-01-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
US10454139B2 (en) 2015-01-23 2019-10-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
WO2020022142A1 (en) 2018-07-26 2020-01-30 三井化学株式会社 Lithium borate compound, additive for lithium secondary cell, nonaqueous liquid electrolyte for lithium secondary cell, lithium secondary cell precursor, and lithium secondary cell and method for manufacturing same
WO2020184690A1 (en) 2019-03-14 2020-09-17 三井化学株式会社 Lithium borate compound, additive for lithium secondary battery, nonaqueous electrolytic solution for lithium secondary battery, precursor for lithium secondary battery, and production method for lithium secondary battery

Also Published As

Publication number Publication date
JP2002110235A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP3722685B2 (en) Electrolyte for electrochemical device and battery using the same
EP1195834B1 (en) Electrolyte for electrochemical device
JP3498905B2 (en) Electrolyte for electrochemical devices
US6787267B2 (en) Electrolyte for electrochemical device
JP4175792B2 (en) Electrolytic solution or gel electrolyte for electrochemical device and battery
JP3730855B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4226844B2 (en) Method for inhibiting corrosion of electrochemical device member and battery
JP3730830B2 (en) Electrolyte for electrochemical devices
JP4076738B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP3974012B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730860B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730861B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP2001325989A (en) Electrolyte for electrochemistry device, its electrolyte solution, and cell
JP4190207B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3730856B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP3712358B2 (en) Electrolyte for electrochemical device, electrolyte or solid electrolyte thereof, and battery
JP4076748B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP4104294B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4076727B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP4175798B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4076726B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP4190206B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP4104291B2 (en) Electrolyte for electrochemical device, electrolyte or solid electrolyte thereof, and battery
JP4076735B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP2002260727A (en) Electrolyte for electrochemical device, its electrolyte solution or solid electrolyte and battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3722685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees