JP4225759B2 - 長尺光ファイバセンサー - Google Patents

長尺光ファイバセンサー Download PDF

Info

Publication number
JP4225759B2
JP4225759B2 JP2002274892A JP2002274892A JP4225759B2 JP 4225759 B2 JP4225759 B2 JP 4225759B2 JP 2002274892 A JP2002274892 A JP 2002274892A JP 2002274892 A JP2002274892 A JP 2002274892A JP 4225759 B2 JP4225759 B2 JP 4225759B2
Authority
JP
Japan
Prior art keywords
optical fiber
long
section
strip
fiber sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002274892A
Other languages
English (en)
Other versions
JP2004109039A (ja
Inventor
雅則 寺崎
帆高 萱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP2002274892A priority Critical patent/JP4225759B2/ja
Publication of JP2004109039A publication Critical patent/JP2004109039A/ja
Application granted granted Critical
Publication of JP4225759B2 publication Critical patent/JP4225759B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、長い光ファイバを複列状態(並走状態)に組み立てた長尺光ファイバセンサーに関し、詳しくは、光ファイバを条材にて固定支持する長尺光ファイバセンサーに関する。
このような長尺光ファイバセンサーは、例えば、光ファイバのブリルアン散乱光を利用して光ファイバの長手方向の歪み分布を測定するBOTDR(Brillouin Optical Time Domain Reflectometry)等を行うに際して、測定端子(検出子・検出端)として有用である。
【0002】
【従来の技術】
地滑り等の環境条件変動を監視するために監視対象箇所に長い光ファイバを設置する技術として、可撓性ケーシング管(条材)に光ファイバを挿入して充填材で固定したものや(例えば、特許文献1参照。)、塩ビパイプ(条材)を継ぎ足しながら外周に光ファイバをバンド等で固定したもの(例えば、特許文献2参照。)、光ファイバに長手方向の伸び歪を与えた状態で固定するもの(例えば、特許文献3参照。)、短尺管体(条材)を繋ぎ合わせながら光ファイバに張力を掛けた状態で固定するもの(例えば、特許文献4参照。)、光ファイバに張力を掛けたままで構造物表面に骨材入反応硬化性樹脂で覆装するものが(例えば、特許文献5参照。)、知られている。
【0003】
【特許文献1】
特開平2−52222号公報 (第1頁、第6図)
【特許文献2】
特開平10−197298号公報 (第1頁、図4)
【特許文献3】
特開2001−296112号公報 (第1頁、図2−3)
【特許文献4】
特開2002−54956号公報 (第1頁、図3)
【特許文献5】
特開2002−131024号公報 (第1−2頁、図1)
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の長尺光ファイバセンサーでは、光ファイバの配設や張設が施工現場で行われていた。条材の継ぎ足しも一緒に施工現場で行われていた。
このため、作業環境が一定しないうえ、使える道具や治具など作業上の制約も多くて、適正な施工を成すには作業負担が重かった。
【0005】
そこで、施工作業の負担が軽減され、しかも適切な施工結果が得られるよう、工場など環境の整ったところで施工準備してから現場へ運び込めるものに改良することが技術的な課題となる。
この発明は、このような課題を解決するためになされたものであり、施工容易な長尺光ファイバセンサーを実現することを目的とする。
【0006】
【課題を解決するための手段】
このような課題を解決するためになされた本発明の長尺光ファイバセンサーは、環境条件変動観測用の長い光ファイバが複列配置されている長尺光ファイバセンサーであって、これを長手方向に沿って長尺区間と短尺区間とが交互に現れるように区間割り付けし、前記長尺区間については前記光ファイバを条材にて横断面内一様な位置関係に固定し、前記短尺区間については前記光ファイバを前記条材から自由にした、というものである。
ここで、上記の「横断面」とは、条材の長手方向に直交する断面をいう。
【0007】
このような長尺光ファイバセンサーにあっては、条材に光ファイバを固定支持させることで、横断面内一様な位置関係が確保される。そして、長尺区間は、条材の曲げ変形が光ファイバの伸縮変形を引き起こすので、歪等を測定可能な言わばセンシング区間となる。また、短尺区間は、固定されない自由状態なので、測定には使えないが、測定を妨げるものでなく、光ファイバの曲げ伸ばしが自在に行える言わば渡り区間となる。
この場合、条材に光ファイバを固定する作業は、現場で行っても良いが、現場以外の工場等でも行える。
【0008】
そして、現場以外で準備作業を済ませたときには、短尺区間が曲げ伸ばし自在であることを利用して、長尺光ファイバセンサーを長尺区間単位で折り畳んでから、現場へ運び込む。現場では、屈曲した短尺区間を開いて、条材を長手方向に連ねることで、必要な長さに長尺区間を伸ばす。
このように光ファイバの必要な位置関係を確保したうえで長尺光ファイバセンサーを折り畳んで運べるようにしたことにより、位置関係確保の準備作業も、現場での施工作業も、負担が軽減される。
したがって、この発明によれば、施工容易な長尺光ファイバセンサーを実現することができる。
【0009】
【発明の実施の形態】
このような解決手段で達成された本発明の長尺光ファイバセンサーについて、これを実施するための形態を幾つか説明する。
【0010】
本発明の第1の実施形態は、上述した解決手段の長尺光ファイバセンサーであって、前記条材の横断面が等方的か又はZ軸ないし1軸対称的になっている、というものである。
これにより、長尺区間においては、条材での固定支持によって光ファイバの横断面内一様な位置関係が確保されることに加えて、条材に断面形状が等方的か対称なものを採用したことにより、環境条件変動が条材にその変形として的確に反映されるので、環境条件変動をより正確に測定することができる。
【0011】
本発明の第2の実施形態は、上述した解決手段および実施形態の長尺光ファイバセンサーであって、前記長尺区間においては、前記光ファイバに対し、前記条材に反力をとって張力が付加されている、というものである。
これにより、張力付加の工程を長尺区間ごとに局所化して行えるので、作業が更に楽になる。
【0012】
本発明の第3の実施形態は、上述した解決手段および実施形態の長尺光ファイバセンサーであって、前記短尺区間において前記光ファイバが可撓性部材にて結束されている、というものである。
これにより、条材に固定されていない短尺区間のところでも、光ファイバの損傷を防止することができる。
【0013】
本発明の第4の実施形態は、上述した解決手段および実施形態の長尺光ファイバセンサーであって、前記光ファイバを固定する手段はコーキング封止である、というものである。
これにより、光ファイバの固定が確実になされるうえ、環境変動に応じて生じた条材の変形が的確に光ファイバへ伝わる。
【0014】
本発明の第5の実施形態は、上述した解決手段および実施形態の長尺光ファイバセンサーであって、前記条材は、その長手方向に連続した溝を有するものであって、前記光ファイバは、前記溝の中に収容される形で、前記条材に固定支持されている、というものである。
これにより、光ファイバの条材への取付作業が容易になるうえ、光ファイバが条材に隠れて壊れ難くなる。しかも、条材が曲がっても光ファイバが条材から外れ難くなるうえ、条材の変形が的確に光ファイバへ伝わるようになる。
【0015】
本発明の第6の実施形態は、上述した解決手段および実施形態の長尺光ファイバセンサーであって、前記短尺区間において前記光ファイバがその屈曲を妨げない部材にて結束されている、というものである。
これにより、短尺区間の折り曲げ自在性を損なうことなく、短尺区間においては条材から自由な状態の光ファイバが絡まったりして不所望な状態になるのを防止することができる。
【0016】
本発明の第7の実施形態は、上述した解決手段および実施形態の長尺光ファイバセンサーであって、前記光ファイバは、金属製の鞘体により、この鞘体から張力を及ぼされる形で、覆装されている、というものである。
これにより、保護と張力付与とを同時に叶えることができる。
【0017】
本発明の第8の実施形態は、上述した第7実施形態の長尺光ファイバセンサーであって、前記短尺区間を構成する光ファイバの長さが、前記条材の外径のπ倍〜50倍になっている、というものである。なお、「π」は、円周率であり、約3.14である。
これにより、長尺光ファイバセンサーの折り畳みが光ファイバに損傷を与えることなく行える。
【0018】
本発明の第9の実施形態は、上述した第7,第8実施形態の長尺光ファイバセンサーであって、前記短尺区間において前記鞘体が除去されている、というものである。あるいは前記短尺区間において前記鞘体が数珠つなぎ状に分断されている、というものである。
これにより、短尺区間がより容易に且つより小さく折り曲げられるようになる。
【0019】
本発明の第10の実施形態は、上述した第7〜第9実施形態の長尺光ファイバセンサーであって、前記短尺区間に、両側の長尺区間の条材に渡っていてその両条材を曲折可能に連結する連結部材が設けられている、というものである。
これにより、長尺光ファイバセンサーの折り畳みや展開時に、短尺区間を挟む両長尺区間の不所望な相対変位が規制されるので、短尺区間の光ファイバの損傷を防止することができる。
【0020】
本発明の第11の実施形態は、上述した解決手段および実施形態の長尺光ファイバセンサーであって、前記複列配置された光ファイバの束には前記長尺区間に係る或る長尺区間から次の長尺区間に渡る前記短尺区間において前記条材の軸線の回りに2nπ(ここで、nは正の整数、πは180゜)の捻りがかけられており、更に、前記次の長尺区間から次の次の長尺区間に渡る前記短尺区間においては、同様に−2nπの(即ち逆極性の)捻りがかけられている、というものである。
これにより、短尺区間を伸縮したときの径変化を抑制することができる。
【0021】
このような解決手段や実施形態で達成された本発明の長尺光ファイバセンサーについて、これを実施するための具体的な形態を、以下の第1〜第8実施例により説明する。
図1〜図3に示した第1実施例は、上述した解決手段および第1,第2,第8,第10実施形態(出願当初請求項1,2,6,8)を具現化したものであり、図4及び図5に示した第2実施例は、上述した第4,第5,第7の実施形態(出願当初請求項3,5)を具現化したものであり、図6に示した第3実施例は、上述した第3実施形態(出願当初請求項4)を具現化したものであり、、図7に示した第4実施例は、それらの変形例である。また、図8に示した第5実施例は、上述した第9,第10の実施形態(出願当初請求項7,8)を具現化したものであり、図9に示した第6実施例や、図10に示した第7実施例は、その変形例である。さらに、図10に示した第7実施例は、上述した第11の実施形態(出願当初請求項9)を具現化したものである。
【0022】
【第1実施例】
本発明の長尺光ファイバセンサーの第1実施例について、その具体的な構成を、図面を引用して説明する。図1は、全体構造を示し、(a)〜(d)何れも平面図であり、(a)が折り畳んだ状態、(b)が少し開いた状態、(c)及び(d)が真っ直ぐ伸ばした状態を示している。図2は、(a)〜(c)何れも部分拡大図であり、(a)が条材の一端面、(b)が条材長手方向のA−A断面、(c)が条材連結部のA−A断面である。図3は、ファイバ挟持ユニットについて、(a)が平面図、(b)及び(c)が正面図である。
【0023】
この長尺光ファイバセンサーは(図1参照)、BOTDRで土壌の歪み(環境条件変動)を測定するために、その測定端子となる複数条の光ファイバ10を具えたものであって、それに長手方向に関して交互に長尺区間20(センシング区間)と短尺区間30(渡り区間、連結区間)とが発現するようにしたものである。長尺区間20では、光ファイバ10が条材21に固定支持されている。これに対し、短尺区間30では、光ファイバ10が、条材21に固定されることなく、開放された自由状態になっているか、あるいは図示しない可撓性の保護鞘か保護副木を伴った半自由状態になっていて、何れにしても屈曲可能な状態となっている。これにより、この長尺光ファイバセンサーは、光ファイバケーブルと条材とが複合化され、長尺区間が断続的に設けられ、短尺区間が長尺区間の合間に現れるものとなる。すなわち測定用の長尺区間と曲折用の短尺区間とが交互に現れるものとなる。
【0024】
光ファイバ10は、例えば特許文献1〜5記載の公知のもので足りるが、測定目的に適うものであれば、それ以外のものでも良い。その典型的な直径は2mmである。その長さは、測定個所に応じて適宜選定され、数mの場合もあれば、数kmの場合もある。
条材21は、例えばアルミニウムの真っ直ぐな筒材からなり、光ファイバ10の支持部材としては十分機能する程度に硬くて強く、固定設置先の地滑りなど土壌の変形には追随して変形する程度に柔軟なものである。その典型的なサイズは、太さが20mm〜200mm、長さが1m〜10mであるが、それを上回るものも下回るものも測定状況に応じて適宜採用される。
このような条材21の端部には自在折畳手段・連結部材としてステンレス等からなるヒンジ31が取り付けられていて、隣り合う条材21同士がヒンジ31を基点として折り畳めるようになっている。この例では(図2(c)参照)、条材21の端部であって、ヒンジ31の反対側に、フック32も付設されている。
【0025】
ヒンジ31の両側の条材21の間が短尺区間30であり(図1参照)、この短尺区間30においては、両端境界を除いて光ファイバ10が条材21に固定されておらず、光ファイバ10が300mm以上に亘って自由状態になっている。この長さは光ファイバ10を180゜屈曲可能な値として選定されたものであり、光ファイバ10の材質や構造によって更には条材21の太さによっても異なるので、上記値は一例にすぎない。また、短尺区間30の区間長さは、それが長いほど光ファイバ10の屈曲伸展が容易かつ安全になるが、長すぎると無駄が増えるうえ絡んだりもするので、屈曲可能な範囲から小さな値が選択される。このような観点から、短尺区間30を構成する光ファイバ10の好適な長さを一般化すると、その長さは条材21を基準にしてその外径のπ倍〜10倍にすると良い。また、鞘体11が太い場合には、10倍〜50倍にするのも良い。さらに、そのような自由状態の光ファイバ10を保護するために、短尺区間30においては、例えば後述する鞘体11のような可撓性の保護鞘などが光ファイバ10に係合させる形で配備されている。設置時に取り外すような場合には保護鞘より保護副木の方が便利である。
【0026】
条材21の端面は(図2(a)参照)、横断面も同じであるが、正四角形の角に丸みを持たせた略四辺形状で、等方的なものとなっている。そして、その各辺の中央位置で、中空側の内壁面に、ファイバ挟持ユニット22が装着されている。ファイバ挟持ユニット22は(図2(b)参照)、4個組が条材21の両端部に設けられ、各条材21に8個存在する。両端で対向する一対のファイバ挟持ユニット22によって1本の光ファイバ10が固定支持されるので、この長尺光ファイバセンサーは、4本の光ファイバ10が各長尺区間20において横断面内一様な位置関係で複列配置されたものとなっている。
【0027】
ファイバ挟持ユニット22は(図3(a),(b)参照)、ステンレスやアルミニウム製の固定部22aと可動部22bと調節ネジ22cとからなり、可動部22bに光ファイバ10を挟み込んでネジ締め等にて固定するようになっている。固定部22aは条材21に固定されるが、可動部22bは固定部22aによって条材21長手方向へスライド可能(滑動可能・移動可能)に保持されている。調節ネジ22cは、固定部22aの貫通穴を遊挿状態で貫いてから可動部22bの雌ネジに螺合しており、進入方向に回すと、可動部22bを引いて進行させるようになっている(図3(c)参照)。条材21の両端で対向するファイバ挟持ユニット22は互いに逆向きに取り付けられているので、両者の可動部22bが離れる向きに調節ネジ22cを操作することで、条材21に圧縮力が生じると同時に、同じ大きさの張力が光ファイバ10に付加される。
【0028】
これにより、この長尺光ファイバセンサーは、長尺区間においては光ファイバ10に対し条材21に反力をとって張力が付加されるものとなっている。しかも、その張力が調節ネジ22cの回転回数にて容易かつ確実に調節しうるようにもなっている。なお、固定部22aを条材21の内壁に固定する代わりに、条材21の端面を塞ぐ単板に調節ネジ22c貫通穴を複数形成することで、4個の固定部22aを単板に纏めて一体化することも可能である。
なお、ヒンジ31やファイバ挟持ユニット22が条材21とは異材質の導電体である場合には、局部電池が形成されないよう、適宜の電気絶縁処置を講じることが望ましい。
【0029】
この第1実施例の長尺光ファイバセンサーについて、その使用態様及び動作を、図面を引用して説明する。図1(a)は、長尺光ファイバセンサーを折り畳んだ状態、図1(b)及び図2(b)は、長尺光ファイバセンサーを少し開いた状態、図1(c),(d),及び図2(c)は、長尺光ファイバセンサーを真っ直ぐ伸ばした状態を示している。図3(b)は、ファイバを挟持した直後の状態、図3(c)は張力を付加している状態を示している。
この長尺光ファイバセンサーは、工場での組み立て、折り畳んだ状態で保管や運搬を行い、現場で伸ばして設置し、測定装置に接続して使用に供するようになっているので、以下、その順に説明する。
【0030】
工場での組立では、それぞれが現場の測定長をカバーする長さの光ファイバ10を4本と、その長さを合計でカバーする複数本・多数本の条材21と、その本数より1つ少ない個数のヒンジ31及びフック32と、条材21の本数の8倍の個数のファイバ挟持ユニット22とを準備し、上述した構造に組み上げる。その際(図1参照)、条材21に対するヒンジ31及びフック32の取付位置は両端で逆向きにする。また(図3参照)、ファイバ挟持ユニット22による光ファイバ10の挟持は、可動部22bを条材21中央側へ後退させた状態で、光ファイバ10を軽く引っ張って行い、光ファイバ10を可動部22bに固定する。それから、調節ネジ22cを回し、可動部22bを条材21端部側へ前進させて、光ファイバ10に張力を付与する。張力付与は、測定目的に応じて必要なとき必要なだけ行うが、一般に、歪み測定では、光ファイバ10を例えば0.5%伸ばす程度にする。そうすることで、伸びだけでなく縮みも測定可能となる。組み立てた長尺光ファイバセンサーは(図1(a)参照)、折り畳んで保管する。その際、短尺区間30の光ファイバ10に保護副木も付けると安全である。
【0031】
現場への搬入では、嵩張らないよう、長尺光ファイバセンサーを折り畳んだまま運搬する(図1(a)参照)。
現場での設置では、ヒンジ31を基点として条材21を少しずつ開き(図1(b),図2(b)参照)、短尺区間30の光ファイバ10が折損しないようその部分を丸めながら条材21の中空内に収納し隣接条材21同士が真っ直ぐになったらフック32で止める(図2(c)参照)。その作業を繰り返して(図1(c)参照)、全体を一本の棒状にする(図1(d)参照)。これを図示しない土壌掘削穴に埋設する。
こうして、この長尺光ファイバセンサーにあっては、組立も運搬も設置も楽に行える。
【0032】
設置が済んだら、光ファイバ10の端部をBOTDRの測定装置に接続して、土壌歪み等を測定する。その測定手法や,測定装置は、公知のもので足りるので、詳細な説明は割愛するが、測定装置については本発明の長尺光ファイバセンサーの特徴に応じて一部改造を施すと使い易いので、その改造について言及する。すなわち、この測定装置は、データ処理プログラムや表示処理プログラムの改造にて、長尺区間20及び短尺区間30の長さデータを記憶保持していて、短尺区間30に関する取得データは距離確認や補正など内部演算にだけ用い、長尺区間20に関する取得データを連ねて有効な測定結果として表示するのである。各区間20,30の長さデータは、テーブル形式や配列形式で、各光ファイバ10毎に保持され、メニューによるデフォルト値の選択や,設計値のキーボード入力にて、一括で設定できる他、組立後の実測値で上書き修正できる。
【0033】
【第2実施例】
本発明の長尺光ファイバセンサーの第2実施例について、その具体的な構成を、図面を引用して説明する。図4は、(a)が、光ファイバを覆装してかしめていない部分の横断面図であり、(b)が、光ファイバを覆装後にかしめた部分の横断面図であり、(c)が、それらの外観図である。図5は、(a)が、条材のみの横断面図、(b)が、光ファイバ装着後の条材の横断面図である。
この長尺光ファイバセンサーが上述した第1実施例のものと相違するのは、光ファイバ10が鞘体11で覆装されている点(図4参照)と、条材21が四辺形状筒体から略円筒状筒体に変更された点(図5参照)である。
【0034】
鞘体11は、ステンレス製の薄いチューブであり、光ファイバ10の保護および張力付与のために、光ファイバ10を中空内に納め(図4(a)参照)、光ファイバ10に張力を与えた状態で所定ピッチ毎に「かしめ」を行って(図4(b),(c)参照)、光ファイバ10の張力および鞘体11の反力が恒常的に維持されるようになっている。鞘体11の厚みは0.2mmで、「かしめ」ピッチは、1000mmであるが、これらは典型値であり、応用目的に応じて適宜設計変更される。
【0035】
条材21は(図5(a)参照)、断面形状が略円状で、やはり等方的かつ2軸対称的なものである。断面上で90゜ずつ方向の異なる4箇所それぞれに溝21aが形成されている。溝21aは、条材21の外壁を内側え凹ました形で、光ファイバ10を収納可能な大きさになっている。この条材21は、アルミニウムの押出成形等で量産され、外面に刻まれた4本の溝21aは長手方向に連続したものとなっている。
【0036】
この場合(図5(b)参照)、それぞれの溝21aに、1本ずつ鞘体11付きの光ファイバ10が収容され、それから、エポキシ樹脂等からなるコーキング材23も充填される。それが固化すると、光ファイバ10が条材21に固定支持される。その状態で光ファイバ10には鞘体11から張力が付与されている。
また、ヒンジ31等の自在折畳手段にて条材21を端部で折り畳み自在に連結させて、長尺区間20と短尺区間30とを交互に確保すること等は、上述した第1実施例と同様なので、繰り返しとなる説明は割愛するが、この長尺光ファイバセンサーも、組立,運搬,及び設置が楽に行える。
【0037】
【第3実施例】
図6に短尺区間30部分の正面図を示した本発明の長尺光ファイバセンサーが上述した第1,2実施例のものと相違するのは、短尺区間30に結束バンド36が付加されていることである。
結束バンド36は、プラスチック等からなる柔軟な細いバンド(可撓性部材、屈曲を妨げない部材)がコイル状に成形されており、電気配線を束ねるときなどに多用されている汎用品を適宜長さに切断したものである。
【0038】
この場合、短尺区間30において複数条の光ファイバ10が結束バンド36によって緩く結束されているので、光ファイバ10の曲げ伸ばしを妨げることなく、光ファイバ10を保護することができる。また、結束バンド36がコイル状なのでそれを端から順に巻き付けたり解いたりすることで、結束バンド36の着脱が容易に行える。
【0039】
【第4実施例】
図7に折畳状態の正面図と側面図を示した本発明の長尺光ファイバセンサーが上述した第1〜3実施例のものと相違するのは、条材21に対するヒンジ31の取付位置が数本毎に(図示の例では5本毎に)90゜変更されている点である。この場合、上述した第1実施例のように平面的に折り畳めるのに加えて、多段に重ねて折り畳むこともできるので、概ね立方体状や直方体状のコンパクトな形状にして保管や運搬することができる。
【0040】
【第5実施例】
本発明の長尺光ファイバセンサーの第5実施例について、その具体的な構成を、図面を引用して説明する。図8は、条材連結部である短尺区間30の構造を示し、(a)がB−B断面矢視図、(b)及び(c)が蛇腹を透かして見た正面図、(d)が光ファイバ10の外観図である。
この長尺光ファイバセンサーが上述した第1実施例引用の第2実施例と相違するのは、短尺区間30における連結部材(自在折畳手段と保護手段も兼用)としてヒンジ31に代えてインナーチューブ33及びアウターチューブ34が導入された点と、短尺区間30においては光ファイバ10から鞘体11が除去されている点である。
【0041】
インナーチューブ33は(図8(a)〜(c)参照)、柔軟で曲げやすいプラスチックチューブ等からなり、外寸が条材21の中空より少し小さく、長さが短尺区間30より長く、作られている。そして、両端が短尺区間30の両側の条材21にそれぞれ遊挿されて、両側の長尺区間21の条材に渡るとともに、その両条材21を曲折可能に連結するものとなっている。
アウターチューブ34は、やはり柔軟なプラスチック等からなり、曲げ伸ばししやすく且つ潰れにくいよう蛇腹状に形成されている。その内径が条材21の外径より少し大きめになっており、両端が短尺区間30の両側の条材21の端部外周面にそれぞれ固定されて、両側の長尺区間の条材21に渡るとともに、その両条材21を曲折可能に連結するものとなる。また、両側の長尺区間の条材21の最大離間距離を規定して、条材21からのインナーチューブ33の抜けを防止するようにもなっている。
【0042】
光ファイバ10は、条材21にて固定支持されている長尺区間20においては上述の実施例と同様に鞘体11から張力を及ぼされる形で鞘体11に覆装されているが、条材21から自由になっている短尺区間30においては、鞘体11が切除等にて剥ぎ取られて、ファイバだけになっている(図8(d)参照)。
このような光ファイバ10は、インナーチューブ33とアウターチューブ34との間に納められ保護される。また、アウターチューブ34を条材21に取り付ける際に両側の条材21を軸中心で数回程度相対回転させてから固定することで、短尺区間30においては光ファイバ10がインナーチューブ33の周りに緩く捲回された状態となる(図8(b),(c)参照)。
【0043】
この場合、インナーチューブ33もアウターチューブ34も曲げやすい部材であるから、条材21間の距離を十分に長く確保した状態では(図8(b)参照)、短尺区間30を曲げることで容易に、長尺光ファイバセンサーをコンパクトに折り畳むことができる。もちろん、展開も自在にできる。また、短尺区間30では光ファイバ10の変形が鞘体11によって規制されないことから、光ファイバ10は鞘体11付きに比べて極めて柔軟に変形するので、光ファイバ10は長尺光ファイバセンサーのコンパクトな曲げ伸ばしにも適合する。なお、光ファイバ10が鞘体11によって保護されない短尺区間30については代わりにインナーチューブ33及びアウターチューブ34によって内外から保護されるので、損傷を受ける心配が無く、絡まるおそれも無い。
【0044】
そして、長尺光ファイバセンサーの設置時には、短尺区間30の両側の条材21を近づけると(図8(c)参照)、インナーチューブ33が条材21中空内に滑り込むと同時にアウターチューブ34が縮むので、短尺区間30も縮んで長さがほぼ零になる。これにより、センシング区間の間に発現する測定不能区間が無くなるか又は無視可能ほど小さくなる。しかも、短尺区間30においては光ファイバ10が予めインナーチューブ33の周りに緩く捲回されていることから、軸方向に大きく伸縮させても、径の増減は僅かなもので済むため、インナーチューブ33とアウターチューブ34との径差を無理に広げなくて良いので、アウターチューブ34は条材21より少しだけ太ければ使用に耐える。そのため、長尺光ファイバセンサーの設置時に掘る穴が大きくなくても良い、という更なる効果もある。
【0045】
【第6実施例】
本発明の長尺光ファイバセンサーの第6実施例について、その具体的な構成を、図面を引用して説明する。図9は、条材連結部である短尺区間30の構造を示し、(a)がセンサー折り畳み時の平面図、(b)がセンサー伸長時の平面図、(c)がその正面図、(d)がその底面図、(e)が複数本の条材に亘る底面図、(f)が光ファイバ10の外観図である。
この長尺光ファイバセンサーが上述した第1〜第5実施例のものと相違するのは、短尺区間30における連結部材(自在折畳手段)としてヒンジ31に代えてリンク35が導入された点と、光ファイバ10を覆装している鞘体11が短尺区間30においては何箇所か切断されて数珠状になっている点である。
【0046】
リンク35は、細い金属棒等からなり、その両端には自在継手のような枢着部材が設けられていて、該当する短尺区間30の両側の条材21の端部にそれぞれ取り付けられる(図9(a)〜(e)参照)。図示の例では短尺区間30においては光ファイバ10の保護のために上述のアウターチューブ34が設けられているが、上述した結束バンド36や、その他のコイル等でも良い。
光ファイバ10は(図9(f)参照)、短尺区間30については、鞘体11が数珠つなぎ状に分断されて、或る程度の保護機能を維持しつつ曲折容易性の向上が図られている。短尺区間30では、自由状態なので、歪み測定には寄与しないが、測定の邪魔をすることもない。長尺区間20においては、上述のように鞘体11に覆装されて張力が付与されているので、引張・圧縮いずれの歪み測定にも寄与する。
【0047】
この場合、長尺光ファイバセンサー折り畳み時に(図9(a)参照)、両側の条材21が密着するのでなく、それらがリンク35の長さの分だけ離れることから、そこの短尺区間30における光ファイバ10やアウターチューブ34の曲げが緩やかになるので、光ファイバ10やアウターチューブ34に掛かるストレスが少なくなる。また、長尺光ファイバセンサー展開伸長時には(図9(b)〜(e)参照)、リンク35を基点にして回転させながら両条材21を逆向き(図では左右方向)にし、それから両条材21を逆向きに引っ張ると、両条材21はほぼ直径分だけ横にずれるが長手方向にはほぼ完全に連続したものとなる。また、短尺区間30の光ファイバ10は自然にアウターチューブ34と共に一回りのループ状になるので、設置時の展開伸長作業が容易に行えて而も安全なものとなる。なお、短尺区間30における鞘体11の切断ピッチは、曲げ伸ばし時の曲率に応じて適宜選定される。
【0048】
【第7実施例】
本発明の長尺光ファイバセンサーの第7実施例について、その具体的な構成を、図面を引用して説明する。図10(a)は、アウターチューブを透かして見た短尺区間部の正面図、同図(b)は、その一部の拡大図であり条材は描いていない。
この長尺光ファイバセンサーが上述した第5実施例と相違するのは、短尺区間30の構造の一部である。具体的には、インナーチューブ33に代えて割嵌チューブ37及び金属コイル38が導入された点と、アウターチューブ34が熱収縮チューブになった点とが、相違する。
【0049】
金属コイル38は、例えば細いステンレス製のスプリングで、その両端がそれぞれ両側の条材21に締結や蝋付け等にて固定されている。
割嵌チューブ37は、内径数mm程度の柔らかいプラスチックチューブからなり、縦に切り割かれて、割目37aが長手方向全長に亘って形成されている。
アウターチューブ34は、上述した図8の例と同様に柔軟で曲げやすいプラスチックチューブであるが、蛇腹状に形成されているのでなく、熱収縮前には内径が条材21や金属コイル38の外径より大きい単純なチューブある。
【0050】
この場合、短尺区間30については、複数本の光ファイバ10を金属コイル38に沿って纏め、それらに割嵌チューブ37を被せる。これにより、光ファイバ10をコイル状の捲回状態に支持するとともに保護することができる。また、その際には、割目37aを開いて金属コイル38等を割嵌チューブ37の中空に納めることで、割嵌チューブ37の装着が容易に行える。さらに、短尺区間30にそれより少し長いアウターチューブ34を被せ、それから熱風等で加熱する。そうすると、熱収縮によってアウターチューブ34が縮み、これによって、アウターチューブ34は、両側の条材21を折り曲げ自在な状態で連結するとともに、割嵌チューブ37を包絡線状に周りから包み込んで保護するものとなる。その後は上述の第5実施例と同様にして使用される。
【0051】
【第8実施例】
本発明の長尺光ファイバセンサーの第8実施例について、その具体的な構成を、図面を引用して説明する。図11は、(a)〜(c)何れも複数区間に亘る正面図であり、(a)が捻る前の状態、(b)が捻っているときの状態、(c)が捻った後の状態である。
この長尺光ファイバセンサーは、上記第5実施例において述べたような短尺区間30における光ファイバ10の捲回状態を簡便に実現できるものである。
【0052】
具体的には、先ず短尺区間30において光ファイバ10が真っ直ぐに延びた状態で長尺光ファイバセンサーを組み上げ(図11(a)参照)、それから条材21を軸回りに回転させる(図11(b)参照)。その際、両側の条材21は回転しないようにしておく。そして、n回(nは正の整数)回転させると(図11(c)参照)、回転させた条材21の両側の短尺区間30に関して、一方には2nπの捻りがかけられ、他方には−2nπの捻りがかけられた状態となる。このような作業を一連の条材21について一個おきに行うことにより、総ての短尺区間30において光ファイバ10の束に捻りがかけられる。
【0053】
これにより、この長尺光ファイバセンサーは、複列配置された4本の光ファイバ10の束について、間欠的に連なる多数の長尺区間20,20,…に係る或る長尺区間20(図では左方の条材21参照)から次の長尺区間(図では中央の条材21参照)に渡る短尺区間30(図では左側)において条材20(図では中央の条材21参照)の軸線の回りに2nπすなわちn回転の捻りがかけられており、更に、次の長尺区間20(図では中央の条材21参照)から次の次の長尺区間(図では右方の条材21参照)に渡る短尺区間30(図では右側)においては、同様に−2nπの即ち逆回転の捻りがかけられている、というものになる。
【0054】
【その他】
なお、上記の各実施例では、監視対象の環境条件変動の具体例として土壌の歪みを挙げたが、本発明の応用は、これに限られるものでなく、構造物の変形など、光ファイバケーブルの光学的状態に影響を及ぼす環境条件であれば良い。
また、上記の各実施例では、複数条の長尺光ファイバ10が複列配置されている場合を述べたが、長尺光ファイバ10は樹脂条材20の端部等で折り返してから逆走することで複列配置状態になっていても良い。
さらに、条材21は、上述したように等方的な横断面を有するものが好ましいが、それに限定される訳でなく、Z軸ないし1軸対称な横断面を有するものでも良い。例えば、円筒形は、Z軸を基準として軸対称的な横断面を有するものであり、断面「I」字または「H」字の形状をしているものは、縦軸と横軸との2軸を基準として対称的であり、1軸対称性を多重に具備している。
また、自在折畳手段は、光ファイバの屈曲を妨げるものでなければ、上述したヒンジやリンクに限らず、その他の係合手段等を利用したものでも良く、その設置部位も、条材21の端部に限らず、短尺区間の中や、その隣接部に及んでいても良い。
【0055】
【発明の効果】
以上の説明から明らかなように、本発明の長尺光ファイバセンサーにあっては、光ファイバの必要な位置関係を確保したうえで長尺光ファイバセンサーを折り畳んで運べるようにしたことにより、位置関係確保の準備作業も現場での施工作業も負担が軽減され、その結果、施工容易な長尺光ファイバセンサーを実現することができたという有利な効果が有る。
【図面の簡単な説明】
【図1】 本発明の長尺光ファイバセンサーの第1実施例について、(a)〜(d)何れも平面図であり、(a)が折り畳んだ状態、(b)が少し開いた状態、(c)及び(d)が真っ直ぐ伸ばした状態を示している。
【図2】 (a)〜(c)何れも部分拡大図であり、(a)が条材の一端面、(b)が条材長手方向のA−A断面、(c)が条材連結部のA−A断面である。
【図3】 ファイバ挟持ユニットについて、(a)が平面図、(b)及び(c)が正面図である。
【図4】 本発明の長尺光ファイバセンサーの第2実施例について、(a),(b)は何れも光ファイバの横断面図であり、(c)は外観図である。
【図5】 (a)が条材のみの横断面図、(b)が光ファイバ装着後の条材の横断面図である。
【図6】 本発明の長尺光ファイバセンサーの第3実施例について、短尺区間部の正面図である。
【図7】 本発明の長尺光ファイバセンサーの第4実施例について、(a)が正面図、(b)が側面図である。
【図8】 本発明の長尺光ファイバセンサーの第5実施例について、条材連結部の構造を示し、(a)がB−B断面矢視図、(b)及び(c)が蛇腹を透かして見た正面図、(d)が光ファイバ10の外観図である。
【図9】 本発明の長尺光ファイバセンサーの第6実施例について、条材連結部の構造を示し、(a)がセンサー折り畳み時の平面図、(b)がセンサー伸長時の平面図、(c)がその正面図、(d)がその底面図、(e)が複数本の条材に亘る底面図、(f)が光ファイバ10の外観図である。
【図10】 本発明の長尺光ファイバセンサーの第7実施例について、(a)が、アウターチューブを透かして見た短尺区間部の正面図、(b)が、その一部の拡大図である。
【図11】 本発明の長尺光ファイバセンサーの第8実施例について、何れも複数区間に亘る正面図であり、(a)が捻る前の状態、(b)が捻っているときの状態、(c)が捻った後の状態である。
【符号の説明】
10 光ファイバ
11 鞘体(保護鞘、張力付加手段)
20 長尺区間(歪等センシング区間)
21 条材
21a 溝(外周面における長手方向連続溝)
22 ファイバ挟持ユニット(固定、支持、反力発生、張力付加手段)
22a 固定部
22b 可動部(バインダ+スライダ、挟持兼滑動部材)
22c 調節ネジ(反力・張力)
23 コーキング材(溝内封止手段、ファイバ固定手段)
30 短尺区間(渡り区間、連結区間)
31 ヒンジ(蝶番、回動・回転支持、自在折畳手段、連結部材)
32 フック
33 インナーチューブ(保護手段、自在折畳手段、連結部材)
34 アウターチューブ(保護手段、自在折畳手段、連結部材)
35 リンク(自在継手、枢着部材、自在折畳手段、連結部材)
36 結束バンド(保護手段、可撓性部材、屈曲を妨げない部材)
37 割嵌チューブ(保護手段、可撓性部材、屈曲を妨げない部材)
38 金属コイル(弾性体、捻り状態・捲回状態を保持する手段)

Claims (5)

  1. 環境条件変動観測用の長い光ファイバが複列配置されている長尺光ファイバセンサーであって、これを長手方向に沿って長尺区間と短尺区間とが交互に現れるように区間割り付けし、前記長尺区間については前記光ファイバを条材にて横断面内一様な位置関係に固定したことにより前記長尺区間が測定可能区間となり、前記短尺区間については前記光ファイバを前記条材から自由にしたことにより前記短尺区間が長尺区間単位での折り畳みを可能にするほど曲げ伸ばし自在な区間であって測定には使えないが測定を妨げないものになっていることを特徴とする長尺光ファイバセンサー。
  2. 前記光ファイバは、金属製の鞘体により、この鞘体から張力を及ぼされる形で、覆装されていることを特徴とする請求項1記載の長尺光ファイバセンサー。
  3. 前記光ファイバ金属製の鞘体によって覆装されており、前記長尺区間においては前記光ファイバが前記鞘体から張力を及ぼされており、前記短尺区間において前記鞘体が除去または数珠つなぎ状に分断されていることを特徴とする請求項1記載の長尺光ファイバセンサー。
  4. 前記短尺区間に、両側の長尺区間の条材に渡っていてその両条材を曲折可能に連結する連結部材が設けられていることを特徴とする請求項3記載の長尺光ファイバセンサー。
  5. 前記複列配置された光ファイバの束には或る長尺区間から次の長尺区間に渡る短尺区間において前記条材の軸線の回りに捻りがかけられており、更に、前記次の長尺区間から次の次の長尺区間に渡る短尺区間においては、同様に逆極性の捻りがかけられていることを特徴とする請求項1乃至請求項4の何れかに記載の長尺光ファイバセンサー。
JP2002274892A 2002-09-20 2002-09-20 長尺光ファイバセンサー Expired - Fee Related JP4225759B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274892A JP4225759B2 (ja) 2002-09-20 2002-09-20 長尺光ファイバセンサー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274892A JP4225759B2 (ja) 2002-09-20 2002-09-20 長尺光ファイバセンサー

Publications (2)

Publication Number Publication Date
JP2004109039A JP2004109039A (ja) 2004-04-08
JP4225759B2 true JP4225759B2 (ja) 2009-02-18

Family

ID=32271242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274892A Expired - Fee Related JP4225759B2 (ja) 2002-09-20 2002-09-20 長尺光ファイバセンサー

Country Status (1)

Country Link
JP (1) JP4225759B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5385516B2 (ja) * 2007-07-10 2014-01-08 エヌ・ティ・ティ・インフラネット株式会社 変形量センサ、変形量測定装置、変形量測定方法
JP4932625B2 (ja) * 2007-07-12 2012-05-16 日鐵住金溶接工業株式会社 光ファイバセンサ及び歪観測システム
JP6440858B2 (ja) * 2015-10-06 2018-12-19 ニューブレクス株式会社 Dptssケーブル
CN115388801B (zh) * 2022-10-26 2023-03-24 苏州光格科技股份有限公司 海底电缆应变监测方法、装置、计算机设备、存储介质

Also Published As

Publication number Publication date
JP2004109039A (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
RU2537967C2 (ru) Опрессованный соединитель и сборочный узел для композитных кабелей и способы их изготовления и использования
US8731362B2 (en) Optical fiber management device
CN101052908B (zh) 圆形多纤维缆线组件及其形成方法
CA2497217A1 (en) Cable sleeve and method of installation
NO315901B1 (no) Utstrekkbart, kveilbart element
JP4225759B2 (ja) 長尺光ファイバセンサー
JP3929378B2 (ja) 長尺光ファイバセンサー及びその製造方法
US20210021114A1 (en) Flexible cover for wires or cables
JP2007114218A (ja) 光ファイバケーブルおよびこれを用いた光ファイバセンサ
JP4979541B2 (ja) ケーブル固定具の固定方法
JPH0926534A (ja) 光ファイバ複合架空線
JP2003185897A (ja) 光ファイバグレーティングを用いた歪センサ
JP4327015B2 (ja) 光ファイバ搭載長尺条体およびその製造方法
JPH0475412A (ja) 多導体送電線路の添線架設方法
JP3939081B2 (ja) 光ファイバケーブル
AU2010227148A1 (en) An optical fibre conduit, an electrical power cable and a method of manufacturing same
JP4833095B2 (ja) 緊急復旧用クロージャ
CN219890627U (zh) 一种光纤光栅锚杆测力计
JP6018156B2 (ja) 光ケーブル用保護具の装着方法
JP3415590B2 (ja) 補強部材を有するシースを被覆する光ファイバーを含むケーブル
CN217767909U (zh) 改良式导线断裂加固装置
JPH084651Y2 (ja) 束状電線
JPS6211139Y2 (ja)
JPS5922006A (ja) 光フアイバケ−ブルの製造方法
Berthold III Measurement of axial and bending strain in pipelines using Bragg grating sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4225759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees