JP4225594B2 - 窒化ガリウム系化合物半導体装置 - Google Patents

窒化ガリウム系化合物半導体装置 Download PDF

Info

Publication number
JP4225594B2
JP4225594B2 JP20885897A JP20885897A JP4225594B2 JP 4225594 B2 JP4225594 B2 JP 4225594B2 JP 20885897 A JP20885897 A JP 20885897A JP 20885897 A JP20885897 A JP 20885897A JP 4225594 B2 JP4225594 B2 JP 4225594B2
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
gallium nitride
type
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20885897A
Other languages
English (en)
Other versions
JPH1154796A (ja
Inventor
雅幸 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20885897A priority Critical patent/JP4225594B2/ja
Publication of JPH1154796A publication Critical patent/JPH1154796A/ja
Application granted granted Critical
Publication of JP4225594B2 publication Critical patent/JP4225594B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、青色発光ダイオード、青色レーザダイオードなどの青色の色の発光デバイスに用いて好適な窒化物系化合物半導体装置に関する。
【0002】
【従来の技術】
窒化インジウムガリウム(InxGa1-xN)化合物半導体膜は、そのIn組成(x)を変化させることにより、可視全域の波長の発光を得る材料として注目されており、この材料を用いた青色及び緑色発光ダイオードが実用化されている。
【0003】
図9は、上記InxGa1-xN化合物半導体膜を発光層として用いた発光ダイオード(LED)チップの縦断面側面図である。このLEDチップは、サファイア基板91上に窒化アルミニウム(AlN)バッファ層92を介して膜厚2μm程度のn型窒化ガリウム(GaN)膜93と、発光層としての膜厚2.5nm程度のIn0.35Ga0.65N層94と、膜厚0.5μm程度のp型GaN層95と、がこの順に積層された構造を有しており、前記n型GaN層93におけるメサエッチングされた表面上にn電極96が形成され、p型GaN層95上にp電極97が形成されている。
【0004】
上記したGaN系化合物半導体では、p型GaN層95のキャリア濃度が5×1017cm-3程度以上のものは得られておらず、p型GaN層95の抵抗が大きくなり、p電極97とのコンタクト抵抗が大きくなる。
【0005】
p型GaN層95の抵抗が大きく、p電極97とのコンタクト抵抗が大きいと、p電極97からの電流は電極の下を中心として流れるだけで、p型GaN層95全体には拡がりにくくなる。このため、電極97部分を中心として発光することになり、電極97により発光が阻害され、外部量子効率が著しく低下するという問題がある。
【0006】
この欠点を解消するために、発光観測面側の化合物半導体層に形成する電極を透光性の全面電属とし、全面電極の一部にパッド用電極を設けて外部量子効率を向上させることが提案されている(例えば、特開平7−302770号公報、特開平7−94782号公報等参照)。
【0007】
また、窒化インジウムガリウム(InxGa1-xN)化合物半導体膜を活性層に用いた半導体レーザ素子が特開平9−36430号公報に提案されている。
【0008】
上記した半導体レーザ素子においては、p型GaN上にμmオーダーの狭い幅の正電極を設け、電流を集中させ、活性層へ電子を注入させる構造が採られている。
【0009】
【発明が解決しようとする課題】
しかしながら、上記したようにp型GaN層の比抵抗は大きく正電極をμmオーダーに形成すると、そのコンタクト抵抗が極めて大きくなり、10V以上の動作電圧が必要になるなどの問題があった。
【0010】
この発明は、上記した従来の問題点を解消するためになされたものにして、p型GaN層のコンタクト抵抗を低減させ、動作電圧の低い窒化ガリウム系半導体装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
この発明の窒化ガリウム系化合物半導体装置は、基板上にn型窒化ガリウム系半導体層と活性層とp型窒化ガリウム系化合物半導体からなるクラッド層とキャップ層とがこの順に積層された窒化ガリウム系半導体装置であって、前記クラッド層と前記キャップ層とは、前記クラッド層と前記キャップ層とからなるストライプリッジ導波路で接続されており、前記ストライプリッジ導波路以外の前記クラッド層と前記キャップ層との間には、電流狭窄層と、該電流狭窄層上に形成されているアンドープの窒化ガリウム系化合物半導体層とp型ドーパントをドープし且つ前記アンドープの窒化ガリウム系化合物半導体層よりも広いバンドギャップを有する窒化ガリウム系化合物半導体とからなる変調ドーピング層とが設けられていることを特徴とする。
【0012】
前記変調ドープ層は、アンドープのGaN化合物半導体層とp型ドーパントをドープしたAlxGa1-xN化合物半導体層で構成するとよい。
【0013】
また、前記AlxGa1-xN化合物半導体層のxが0.25≦x≦0.4の範囲に設定するとよい
【0014】
【0015】
化インジウムガリウム化合物半導体層を前記発光層として用いるとよい
【0017】
前記変調ドープ層は前記変調ドープ層は、アンドープの窒化ガリウム系化合物半導体層を井戸層、p型ドーパントをドープし且つ前記アンドープの窒化ガリウム系化合物半導体層よりも広いバンドギャップを有する窒化ガリウム系化合物半導体を障壁層とする多重量子井戸構造で構成することができる。
【0018】
上記したように構成すると、変調ドープ層は、p型ドーパントをドープし且つ前記アンドープの窒化ガリウム系化合物半導体層よりも広いバンドギャップを有する窒化ガリウム系化合物半導体層のアクセプタからアンドープの窒化ガリウム系化合物半導体層にホールが供給され、ホールの移動度が高い層となる。この結果、キャリア濃度と移動度が向上し、この変調ドープ層上に設けられるp型GaN層の導電性が向上する。従って、p型GaN層の下部に変調ドープ層を設けることにより、ホールは基板面内方向に流れやすくなり、p型GaN層のコンタクト抵抗を下げることができる。
【0019】
また、この発明は、前記p型窒化ガリウム系半導体層上にp電極を形成することを特徴とする。
【0020】
パッド電極程度の大きさのp電極をp型GaN層に設けるだけで、p電極からの電流は変調ドーピング層により、基板面内方向に流れることになり、発光層及び活性層に電流が効率よく流れる
【0021】
【0022】
【0023】
【発明の実施の形態】
下、この発明の実施の形態を図面を参照して説明する。
【0024】
図1は、この発明の窒化ガリウム系化合物半導体装置の第1の参考の形態を示し、InyGa1-yN化合物半導体膜を発光層として用いた発光ダイオード(LED)チップの縦断面側面図である。
【0025】
このLEDチップは、サファイア基板1上にn型窒化物系化合物半導体としての膜厚5nm程度のAlNバッファ層2が形成されている。このAlNバッファ層2上に膜厚0.4μm程度のn型窒化ガリウム(GaN)膜3と、青色の発光層としての膜厚2.5nm程度のIn0.2Ga0.8N層4が形成されている。このIn0.2Ga0.8N層4上にMg、Zn、Ca、Be等のp型ドーパントをドーピングしたAlGaN層とアンドープのGaN層からなる変調ドーピング層5を介して膜厚0.5μm程度のp型GaN層6が積層形成されている。そして、前記n型GaN層3におけるメサエッチングされた表面上にn電極7が形成され、p型GaN層6上にp電極8が形成されている。
【0026】
さて、この参考の形態における変調ドーピング層5は、In0.2Ga0.8N層4上に設けられる膜厚0.1μm程度のMgをドープしたAl0.35Ga0.65N層5aとその上に設けられる膜厚0.02μm程度のアンドープのGaN(u−GaN)層5bとで構成されている。そして、Al0.35Ga0.65N層5aのMgのドープ量は2×1019cm-3程度である。上記Al0.35Ga0.65N層5aが障壁層、u−GaN)層5bが井戸層となる。
【0027】
このように形成された変調ドープ層5は、図2のバンド構造図に示すように、Al0.35Ga0.65N層5aのアクセプタからu−GaN層5bにホールが供給され、ホールの移動度が高い層となる。この結果、キャリア濃度と移動度が向上し、この変調ドープ層5上に設けられるp型GaN層6の導電性が向上する。従って、p型GaN層6の下部に変調ドープ層5を設けることにより、ホールは基板面内方向に流れやすくなり、p型GaN層6のコンタクト抵抗を下げることができる。このため、パッド電極程度の大きさのp電極8をp型GaN層6に設けるだけで、p電極8からの電流は変調ドーピング層5により、基板面内方向に流れることになり、発光層4の全面から光が発光することになる。
【0028】
上記した障壁層となるAlxGa1-xN層5aは、Alの組成比xが0.25未満であると、AlxGa1-xN層5aとu−GaN層5bとのバンドギャップの差が小さくなり、AlxGa1-xN層5a中のイオン化されたアクセプタ不純物のエネルギーがu−GaN層5bにおける価電子帯端のエネルギーよりも大きくなるため、変調ドープの効果がでない。また、Alの組成比xが0.4より大きくなると、AlxGa1-xN層5aの抵抗が大きくなるため、第1の参考の形態のようなAlxGa1-xN層5aの膜厚方向に電流が流れる構成のデバイスには適用できない。従って、AlxGa1-xN層5aにおけるAlの組成比xは、0.25≦x≦0.4の範囲であることが好ましい。
【0029】
上記の図1に示した参考の形態におけるLEDチップの特性を測定したところ、動作電圧は4V、動作電流は20mA、発光ピーク波長は455nm、輝度は2cdであり、従来の構造よりも動作電圧及び発光輝度が向上していることが確認できた。
【0030】
上記図1に示すLEDチップの各化合物半導体膜はMOCVD法によりサファイア基板1上に形成される。図3は、上記各化合物半導体膜の成膜に用いられる横型MOCVD装置の一例を示す模式図である。
【0031】
この横型MOCVD装置は、2層流構造になっており、2層流ガスが交わる形成室30内のところにサファイア基板1が図示しないサセプタにより傾斜を有して保持される。この形成室30は、図示しない真空ポンプにより所定の真空度に排気される。また、サセプタは高周波コイルなどにより所定の成長温度に加熱されるようになっている。
【0032】
そして、形成室30内には、原料ガス供給ライン31より原料ガスが基板1の表面に供給されると共に、その原料ガス供給ライン31より上層に配置された上層流ガスライン32より水素及び/又は窒素ガスが供給される。この上層流ガスライン32は、バルブを介して水素(H2)ガスボンベ、窒素(N2)ガスボンベに接続されている。そして、この上層流ガスライン32から供給される水素(H2)ガス及び/又は窒素(N2)ガスにより、原料ガスが基板1面に押圧され、原料ガスが基板1に接触される。
【0033】
原料ガスとしてのトリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、トリメチルインジウム(TMI)の有機金属化合物ソースは、微量のバブリングガスにより気化され、図示しないバルブを介して原料ガス供給ライン31に与えられる。また、アンモニア(NH3)、Siを含むn型ドーパントガス(例えば、SiH4)、Mgを含むp型ドーパントガス(例えば、Cp2Mg)も図示しないバルブを介して原料ガス供給ライン31に与えられる。
【0034】
上記のように構成された横型MOCVD装置を用いて、図1に示すLEDチップを製造する方法について説明する。
【0035】
まず、基板1上に低温AlNバッファ層2を形成する。原料ガスとして、TMAとNH3を形成室30内に供給し、基板温度を500℃に保ち基板1上に膜厚5nmの低温AlNバッファ層2を形成する。
【0036】
続いて、原料ガスをTMG、NH3、ドーパントガスをSiH4に切り替え形成室30内にそれぞれ供給し、基板温度を1000℃に保ちAlNバッファ層2上に膜厚0.4μmのn型窒化ガリウム(GaN)膜3を形成する。
【0037】
そして、原料ガスを、TMI、TMGとNH3に切り替え形成室30内にそれぞれ供給し、基板温度を800℃に保ち、n型窒化ガリウム(GaN)膜3上に発光層としての膜厚2.5nmIn0.4Ga0.58N層4を形成する。
【0038】
次に、原料ガスを、TMA、TMGとNH3、ドーパントガスをCp2Mgに切り替えて形成室30内にそれぞれ供給し、基板温度を1000℃に保ち、MgがドープされたAl0.35Ga0.65N層5aを形成する。この時Mgのドープ量が2×1019cm-3となるように、ドーパントガスが制御される。続いて、原料ガスを、TMGとNH3に切り替えて形成室30内にそれぞれ供給し、基板温度を1000℃に保ち、Al0.35Ga0.65N層5a上膜厚0.02μmのアンドープのGaN層5bを形成し、変調ドープ層5が形成される。
【0039】
そして、原料ガスを、TMGとNH3、ドーパントガスをCp2Mgに切り替えて形成室30内にそれぞれ供給し、基板温度を1000℃に保ち、変調ドープ層5上にp型の窒化物系化合物半導体としての膜厚0.5μmのp型GaN層6を形成する。
【0040】
上記のように形成することで、p型GaN層6の下部に変調ドープ層5が設けられ、ホールは基板面内方向に流れやすくなり、p型GaN層6のコンタクト抵抗を下げることができる。このため、パッド電極程度の大きさのp電極8をp型GaN層6に設けるだけで、p電極8からの電流は変調ドーピング層5により、基板面内方向に流れることになり、発光層4の全面から光を発光させることができる。
【0041】
図4は、この発明の窒化ガリウム系化合物半導体装置の第2の参考の形態を示し、InyGa1-yN化合物半導体膜を発光層として用いた発光ダイオード(LED)チップの縦断面側面図である。
【0042】
このLEDチップは、サファイア基板1上にn型窒化物系化合物半導体としての膜厚5nm程度のAlNバッファ層2が形成されている。このAlNバッファ層2上に膜厚0.4μm程度のn型窒化ガリウム(GaN)膜3と、青色の発光層としての膜厚2.5nm程度のIn0.2Ga0.8N層4が形成されている。このIn0.2Ga0.8N層4上にMg、Zn、Ca、Be等のp型ドーパントをデルタドーピングした膜厚5nm程度のAl0.3Ga0.7Nの障壁層50aと膜厚10nm程度のアンドープのGaNの井戸層50bを交互に積層した多重量子井戸構造(MQW)からなる変調ドーピング層50を介して膜厚0.5μm程度のp型GaN層6が積層形成されている。そして、前記n型GaN層3におけるメサエッチングされた表面上にn電極7が形成され、p型GaN層6上にp電極8が形成されている。
【0043】
さて、この参考の形態における変調ドーピング層50は、図5に示すように、膜厚5nm程度のMgを1×1013cm-2のドーズ量でデルタドープしたAl0.3Ga0.7N層からなる障壁層50aと膜厚10nm程度のアンドープのGaN層からなる井戸層50bとで構成されている。尚、この実施の形態においては、障壁層50aは101層、井戸層50bは100層である。
【0044】
また、上記障壁層50aは、Mgをドーズ量1×1013cm-2でデルタ(delta)ドープを行っている。このデルタドープは、まず、アンドープのAlGaN層を2.5nmの膜厚で成長させ、次いで、NH3およびCp2Mgガスのみを供給してMgのドーズ量が1×1013cm-2となるようにデルタドープする。その後、さらにアンドープのAlGaN層を2.5nmの膜厚で成長させ、最終的に膜厚5nmのデルタドープAlGaN層からなる障壁層50aが形成される。
【0045】
この変調ドープ層50は、図6のバンド構造図に示すように、Al0.35Ga0.7N層50aのアクセプタからGaN層50bにホールが供給され、ホールの移動度が高い層となる。この結果、キャリア濃度と移動度が向上し、p型GaN層6の導電性が向上する。従って、p型GaN層6の下部に変調ドープ層50を設けることにより、ホールは基板面内方向に流れやすくなり、p型GaN層6のコンタクト抵抗を下げることができる。
【0046】
上記図4に示すLEDチップの各化合物半導体膜は図1に示すLEDチップと同様に図3に示す横型MOCVD装置を用いてサファイア基板1上に形成される。
【0047】
図7は、この発明の窒化ガリウム系化合物半導体装置の第3の参考の形態を示し、2つのInyGa1-yN化合物半導体膜を発光層として用いたモノリシック型2色発光ダイオード(LED)チップの縦断面側面図である。
【0048】
このLEDチップは、サファイア基板1上にn型窒化物系化合物半導体としての膜厚5nm程度のAlNバッファ層2が形成されている。このAlNバッファ層2上に膜厚3μm程度のn型窒化ガリウム(GaN)膜3と、緑色の発光層としての膜厚2.5nm程度のIn0.4Ga0.6N層10が形成されている。このIn0.4Ga0.6N層4上にMg、Zn、Ca、Be等のp型ドーパントをドーピングした膜厚5nm程度のAl0.3Ga0.7Nの障壁層50aと膜厚10nm程度のアンドープのGaNの井戸層50bを交互に積層した多重量子井戸構造(MQW)からなる変調ドーピング層50が形成されている。この変調ドーピング層50上に膜厚0.5μm程度のp型GaN層6が積層形成されている。そして、このp型GaN層6上に膜厚0.1μm程度のp型Al0.1Ga0.9N層11が設けられ、この上に、青色の発光層としての膜厚2.5nm程度のIn0.2Ga0.8N層12が形成され、更にこの上に膜厚0.5μm程度のn型GaN層13が設けられている。
【0049】
そして、前記n型GaN層3におけるメサエッチングされた表面上に緑色の発光層用のn電極14が形成され、p型GaN層6におけるメサエッチングされた表面上に緑色、青色共用のp電極15が形成され、更に、n型GaN層13上に青色の発光層用のn電極16が形成されている。
【0050】
さて、この参考の形態における変調ドーピング層50も、前述した第2の参考の形態と同じく膜厚5nm程度のMgを1×1013cm-2のドーズ量でデルタドープしたAl0.35Ga0.65N層からなる障壁層50aと膜厚10nm程度のアンドープのGaN層からなる井戸層50bが形成されている。尚、障壁層50aは101層、井戸層50bは100層である。
【0051】
この変調ドープ層50は、図6のバンド構造図に示すように、Al0.35Ga0.65N層50aのアクセプタからGaN層50bにホールが供給され、ホールの移動度が高い層となる。この結果、キャリア濃度と移動度が向上し、p型GaN層6の導電性が向上する。従って、p型GaN層6の下部に変調ドープ層5を設けることにより、ホールは基板面内方向に流れる。このため、緑色発光層10および青色発光層12からそれぞれ発光させることができる。
【0052】
変調ドープ層を設けずに図7に示す構造と同様のモノリシックの2色LEDでは、p型GaN層6のコンタクト抵抗が高く、基板面内方向に電流が殆ど流れないので、青色発光層12からは殆ど発光させることができず、動作電圧を100V以上にしても輝度は0.2cd程度しか得られない。これに対して、変調ドープ層50を設けたこの参考の形態においては、発光層12は、動作電圧4V、動作電流20mAで発光ピーク波長455nm、輝度2cdの発光が得られた。また、発光層10は、動作電圧4.5V、動作電流20mAで発光ピーク波長520nm、輝度2cdの発光が得られた。
【0053】
上記図7に示すLEDチップの各化合物半導体膜は図1に示すLEDチップと同様に図2に示す横型MOCVD装置を用いてサファイア基板1上に形成される。
【0054】
図8は、この発明の窒化ガリウム系化合物半導体装置の第の実施の形態を示し、AlxInyGa1-x-yN化合物半導体膜を障壁層及びInyGa1-yN化合物半導体膜を井戸層とした多重量子井戸(MQW)を活性層として用いた半導体レーザダイオードチップの縦断面側面図である。
【0055】
この半導体レーザチップは、サファイア基板1上にn型窒化物系化合物半導体としての膜厚5nmのAlNバッファ層2が形成されている。このAlNバッファ層2上に膜厚3μm程度のn型窒化ガリウム(GaN)膜21と、膜厚0.5μm程度のn型Al0.15Ga0.85Nのクラッド層22が形成されている。このクラッド層22上に多重量子井戸(MQW)からなるInGaN組成の光活性層23と、膜厚0.5μm程度のp型Al0.15Ga0.85Nのクラッド層24と、膜厚0.5μm程度のp型GaNのキャップ層25とがこの順に積層され形成されている。クラッド層24とキャップ層25とはストライプリッジ導波路24aで接続され、導波路24a以外のクラッド層24とキャップ層25の間には、膜厚0.3μmのn型GaNの電流狭窄層26とこの電流狭窄層26上に、膜厚0.1μm程度のMgをドープした障壁層なるAl0.35Ga0.65N層27aとその上に設けられる膜厚0.02μm程度の井戸層となるアンドープのGaN(u−GaN)層27bとで構成される変調ドープ層27が設けられている。上記Al0.35Ga0.65N層27aのMgのドープ量は2×1019cm-3程度である。そして、前記n型GaN層21におけるメサエッチングされた表面上にn電極28が形成され、p型GaN層のキャップ層25上にp電極29が形成されている。
【0056】
このように形成された変調ドープ層27は、前述した図2のバンド構造図に示すように、Al0.35Ga0.65N層27aのアクセプタからu−GaN層27bにホールが供給され、ホールの移動度が高い層となる。この結果、キャリア濃度と移動度が向上し、この変調ドープ層27上に設けられるp型GaN層からなるキャップ25の導電性が向上する。従って、p型GaN層25の下部に変調ドープ層5を設けることにより、ホールは基板面内方向に流れやすくなり、p型GaN層25のコンタクト抵抗を下げることができる。このため、p電極29からの電流は変調ドーピング層27により、基板面内方向に流れることになり、ストライプリッジ導波路24aに電流が集中して与えられることになる。
【0057】
リッジ導波路を設けずに、クラッド層全面にキャップ層を設け、電極をミクロンオーダで形成したものが、閾値電圧が8V程度であるのに対して、この実施の形態においては、閾値電圧5V、閾値電流80mA、発信波長420nmのレーザが得られた。
【0058】
上記図8に示す半導体レーザダイオードの各化合物半導体膜は図1に示すLEDチップと同様に図3に示す横型MOCVD装置を用いてサファイア基板1上に形成することができる。
【0059】
上記した障壁層となるAlxGa1-xN層27aは、前述した第1の実施の形態と同様にAlの組成比xが0.25未満であると、AlxGa1-xN層27aとu−GaN層27bとのバンドギャップの差が小さくなり、AlxGa1-xN層27a中のイオン化されたアクセプタ不純物のエネルギーがu−GaN層5bにおける価電子帯端のエネルギーよりも大きくなるため、変調ドープの効果がでない。一方、この第4の実施の形態においては、電流がAlxGa1-xN層27a層中に流れない構造であるので、AlxGa1-xN層27aの抵抗が増加しても支障はない。従って、AlxGa1-xN層27aにおけるAlの組成比xは、0.25≦x≦0.1の範囲であることが好ましい。
【0060】
上記した実施の形態においては、変調ドープ層27を膜厚0.1μm程度のMgをドープしたAl0.35Ga0.65N層27aとその上に設けられる膜厚0.02μm程度のアンドープのGaN(u−GaN)層27bとで構成したが、膜厚5nm程度のMgを1×1013cm-2のドーズ量でデルタドープしたAl0.3Ga0.7N層からなる障壁層50aと膜厚10nm程度のアンドープのGaN層からなる井戸層50bとで構成してもよい。
【0061】
また、上記した実施の形態においては、変調ドープ層を構成する障壁層はp型ドーパントをドープしたAlGaNを用い、井戸層はアンドープのGaN層を用いたが、井戸層はアンドープの窒化ガリウム系化合物半導体材料で、障壁層がp型ドーパントをドープし且つアンドープの窒化ガリウム系化合物半導体層よりも広いバンドギャップを有する窒化ガリウム系化合物半導体材料であれば良く、次の表に示すような組み合わせの半導体材料を用いることができる。
【0062】
【表1】
┌──┬───────┬─────────┐
│ │p型障壁層 │ アンドープ井戸層│
├──┼───────┼─────────┤
│ 1 │GaN │ InGaN │
├──┼───────┼─────────┤
│ 2 │GaN │ GaNP │
├──┼───────┼─────────┤
│ 3 │GaN │ GaAsN │
├──┼───────┼─────────┤
│ 4 │AlGaN │ InGaN │
├──┼───────┼─────────┤
│ 5 │AlGaN │ GaNP │
├──┼───────┼─────────┤
│ 6 │AlGaN │ GaAsN │
├──┼───────┼─────────┤
│ 7 │AlGaInP│ InGaN │
├──┼───────┼─────────┤
│ 8 │AlGaNp │ GaNP │
├──┼───────┼─────────┤
│ 9 │AlGaAsN│ GaAsN │
├──┼───────┼─────────┤
│10│AlyGa1-yN│ AlxGa1-xN │
│ │ │(y>x) │
└──┴───────┴─────────┘
【0063】
【発明の効果】
以上説明したように、この発明によれば、変調ドープ層が、p型ドーパントをドープした窒化ガリウム系化合物半導体層のアクセプタからアンドープの窒化ガリウム系化合物半導体層にホールが供給され、ホールの移動度が高い層となる。この結果、キャリア濃度と移動度が向上し、この変調ドープ層上に設けられるp型GaN層の導電性が向上する。従って、p型GaN層の下部に変調ドープ層を設けることにより、ホールは基板面内方向に流れやすくなり、p型GaN層のコンタクト抵抗を下げることができる。
【図面の簡単な説明】
【図1】 この発明の窒化ガリウム系化合物半導体装置の第1の参考の形態にかかるLEDチップの縦断面側面図である。
【図2】 図1に示す変調ドープ層のバンド構造を示す図である。
【図3】 窒化ガリウム系化合物半導体膜の成膜に用いられる横型MOCVD装置の一例を示す模式図である。
【図4】 この発明の窒化ガリウム系化合物半導体装置の第2の参考の形態にかかるLEDチップの縦断面側面図である。
【図5】 多重量子井戸構造の変調ドープ層を示す模式図である。
【図6】 図5に示す変調ドープ層のバンド構造を示す図である。
【図7】 この発明の窒化ガリウム系化合物半導体装置の第3の参考の形態を示し、2つのInyGa1-yN化合物半導体膜を発光層として用いたモノリシック型2色LEDチップの縦断面側面図である。
【図8】 この発明の窒化ガリウム系化合物半導体装置の第の実施の形態を示し、AlxInyGa1-x-yN化合物半導体膜を障壁層及びInyGa1-yN化合物半導体膜を井戸層とした多重量子井戸(MQW)を活性層として用いた半導体レーザダイオードチップの縦断面側面図である。
【図9】 従来の発明の窒化ガリウム系化合物半導体を用いたLEDチップの縦断面側面図である。
【符号の説明】
1 サファイア基板
2 AlNバッファ層
3 n型GaN層
4 In0.2Ga0.8N層
5 変調ドープ層
5a p型ドーパントをドーピングしたAlGaN層
5b アンドープのGaN層
6 p型GaN層6
7 n電極7
8 p電極8

Claims (5)

  1. 基板上にn型窒化ガリウム系半導体層と活性層とp型窒化ガリウム系化合物半導体からなるクラッド層とキャップ層とがこの順に積層された窒化ガリウム系半導体装置であって、前記クラッド層と前記キャップ層とは、前記クラッド層と前記キャップ層とからなるストライプリッジ導波路で接続されており、前記ストライプリッジ導波路以外の前記クラッド層と前記キャップ層との間には、電流狭窄層と、該電流狭窄層上に形成されているアンドープの窒化ガリウム系化合物半導体層とp型ドーパントをドープし且つ前記アンドープの窒化ガリウム系化合物半導体層よりも広いバンドギャップを有する窒化ガリウム系化合物半導体とからなる変調ドーピング層とが設けられていることを特徴とする窒化ガリウム系化合物半導体装置。
  2. 前記変調ドープ層は、アンドープのGaN化合物半導体層とp型ドーパントをドープしたAlxGa1-xN化合物半導体層で構成されていることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体装置。
  3. 窒化インジウムガリウム化合物半導体層を前記活性層として用いることを特徴とする請求項1ないしのいずれかに記載の窒化ガリウム系化合物半導体装置。
  4. 前記変調ドープ層は、アンドープの窒化ガリウム系化合物半導体層を井戸層、p型ドーパントをドープし且つ前記アンドープの窒化ガリウム系化合物半導体層よりも広いバンドギャップを有する窒化ガリウム系化合物半導体を障壁層とする多重量子井戸構造で構成されていることを特徴とする請求項1ないしに記載の窒化ガリウム系化合物半導体装置。
  5. 前記p型窒化ガリウム系半導体層上にp電極を形成したことを特徴とする請求項1ないしに記載の窒化ガリウム系化合物半導体装置。
JP20885897A 1997-08-04 1997-08-04 窒化ガリウム系化合物半導体装置 Expired - Fee Related JP4225594B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20885897A JP4225594B2 (ja) 1997-08-04 1997-08-04 窒化ガリウム系化合物半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20885897A JP4225594B2 (ja) 1997-08-04 1997-08-04 窒化ガリウム系化合物半導体装置

Publications (2)

Publication Number Publication Date
JPH1154796A JPH1154796A (ja) 1999-02-26
JP4225594B2 true JP4225594B2 (ja) 2009-02-18

Family

ID=16563291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20885897A Expired - Fee Related JP4225594B2 (ja) 1997-08-04 1997-08-04 窒化ガリウム系化合物半導体装置

Country Status (1)

Country Link
JP (1) JP4225594B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357820A (ja) * 1999-06-15 2000-12-26 Pioneer Electronic Corp 窒化ガリウム系半導体発光素子及びその製造方法
KR100662191B1 (ko) 2004-12-23 2006-12-27 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
CN100399590C (zh) * 2005-06-15 2008-07-02 上海蓝光科技有限公司 Mocvd生长氮化物发光二极管结构外延片的方法
KR101438806B1 (ko) 2007-08-28 2014-09-12 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP4640427B2 (ja) 2008-03-14 2011-03-02 ソニー株式会社 GaN系半導体発光素子、発光素子組立体、発光装置、GaN系半導体発光素子の製造方法、GaN系半導体発光素子の駆動方法、及び、画像表示装置
KR101510057B1 (ko) * 2014-06-24 2015-04-08 엘지이노텍 주식회사 반도체 발광소자
CN110635007A (zh) * 2019-09-12 2019-12-31 佛山市国星半导体技术有限公司 一种抗静电外延结构及其制备方法

Also Published As

Publication number Publication date
JPH1154796A (ja) 1999-02-26

Similar Documents

Publication Publication Date Title
JP2785254B2 (ja) 窒化ガリウム系化合物半導体発光素子
WO2014178248A1 (ja) 窒化物半導体発光素子
KR20010023092A (ko) 질화갈륨계 화합물 반도체 장치
JP2008182275A (ja) 窒化物系半導体発光素子
JP3660446B2 (ja) 窒化物半導体素子及びその製造方法
KR100380536B1 (ko) 터널접합 구조를 가지는 질화물반도체 발광소자
EP0973207A2 (en) Semiconductor light emitting device
JP4225594B2 (ja) 窒化ガリウム系化合物半導体装置
JPH11214746A (ja) 窒化物半導体発光素子
JPH11354843A (ja) Iii族窒化物系量子ドット構造の製造方法およびその用途
JPH077182A (ja) 窒化ガリウム系化合物半導体発光素子
JPH11195812A (ja) 窒化物半導体発光素子
JP3763701B2 (ja) 窒化ガリウム系半導体発光素子
JP3605907B2 (ja) コンタクト抵抗低減層を有する半導体装置
JP2000174341A (ja) 窒化ガリウム系化合物半導体発光素子
JP2000058916A (ja) 窒化ガリウム系化合物半導体発光素子
JPH10173231A (ja) 窒化ガリウム系化合物半導体発光素子
JPH0883956A (ja) 半導体発光素子
JP2001313441A (ja) 半導体発光素子
US20240194821A1 (en) Light emitting element
JPH08167737A (ja) 3族窒化物半導体発光装置
JP4954407B2 (ja) 窒化物半導体発光素子
JP3684841B2 (ja) 窒化ガリウム系化合物半導体発光素子
JP2024083013A (ja) 発光素子
JPH10341059A (ja) 窒化ガリウム系半導体レーザ素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees