JP4221922B2 - Flow control device, throttle device, and air conditioner - Google Patents

Flow control device, throttle device, and air conditioner Download PDF

Info

Publication number
JP4221922B2
JP4221922B2 JP2001271335A JP2001271335A JP4221922B2 JP 4221922 B2 JP4221922 B2 JP 4221922B2 JP 2001271335 A JP2001271335 A JP 2001271335A JP 2001271335 A JP2001271335 A JP 2001271335A JP 4221922 B2 JP4221922 B2 JP 4221922B2
Authority
JP
Japan
Prior art keywords
throttle
flow
flow path
refrigerant
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001271335A
Other languages
Japanese (ja)
Other versions
JP2003083641A (en
Inventor
厚志 望月
悟 平國
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001271335A priority Critical patent/JP4221922B2/en
Publication of JP2003083641A publication Critical patent/JP2003083641A/en
Application granted granted Critical
Publication of JP4221922B2 publication Critical patent/JP4221922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Valves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、凝縮熱または蒸発熱を利用する冷凍サイクルにおいて、内部を流れる流体を減圧する絞り装置、および内部を流れる冷媒の流量を制御する流量制御装置に関するものである。また、この絞り装置および流量制御装置を用い、室内の冷房、暖房、除湿を行う空気調和装置に関するものである。
【0002】
【従来の技術】
従来の空気調和装置では、空調負荷の変動に対応するためにインバーターなどの容量可変型圧縮機が用いられ、空調負荷の大小に応じて圧縮機の回転周波数が制御されている。ところが冷房運転時に圧縮機回転が小さくなると蒸発温度も上昇し、蒸発器での除湿能力が低下したり、あるいは蒸発温度が室内の露点温度以上に上昇し、除湿できなくなったりする問題点があった。
【0003】
この冷房低容量運転時の除湿能力を向上させる手段としては次のような空気調和装置が考案されている。図21は例えば特開平11−51514号公報に示された従来の空気調和装置を示す冷媒回路図である。図において、1は圧縮機、2は四方弁、3は室外熱交換器、4は第1流量制御装置、5は第1室内熱交換器、6は第2流量制御装置、7は第2室内熱交換器であり、これらは配管で順次接続され冷凍サイクルを構成している。9aは第2流量制御装置6の一方側の流路である第一流路接続配管、9bは第2流量制御装置6の他方側の流路である第二流路接続配管である。さらに、第1流量制御装置4は、主絞り装置41と二方弁42とが並列に接続された構成である。この空気調和装置は、室外ユニット51と室内ユニット52とに分離して配置されている。
【0004】
次に従来の空気調和装置の動作について説明する。冷房運転では二方弁42を閉、第2流量制御装置6を全開とする。圧縮機1を出た冷媒は四方弁2を通過して、室外熱交換器3で凝縮液化し、第1流量制御装置4に流入する。二方弁42は閉じられているため、主絞り装置41で減圧され室内熱交換器5、7において蒸発気化し、再び四方弁2を介して圧縮機1に戻る。また、暖房運転でも二方弁を閉、第2流量制御装置6を全開とし、四方弁2における冷媒流れを切換える。圧縮機1を出た冷媒は冷房運転とは逆に四方弁2を通過して、室内熱交換器7、5で凝縮液化し、第1流量制御装置4に流入する。二方弁42は閉じられているため主絞り装置41で減圧され室外熱交換器3において蒸発気化し、再び四方弁2を介して圧縮機1に戻る。
【0005】
一方、冷房運転及び暖房運転での除湿運転時には、第1流量制御装置4の主絞り装置41を閉、二方弁42を開とし、第2流量制御装置6で冷媒流量を制御する。このように構成すると、例えば第1室内熱交換器5と第2室内熱交換器7の一方が凝縮器すなわち再熱器、他方が蒸発器として動作する。室内空気は蒸発器で冷却・除湿されると共に、再熱器で加熱されるため、室内に吹出す空気の温度をあまり下げずに湿度を下げる除湿運転が可能となる。以下、このような運転を再熱除湿運転と称する。
また、図22は従来の空気調和装置の第2流量制御装置6を示す部分断面図である。第2流量制御装置6内に複数の切り込み溝43と弁体44からなるオリフィス状の絞り流路を設けている。
【0006】
【発明が解決しようとする課題】
上記のような従来の空気調和装置では、室内ユニット52内に設置する第2流量制御装置6として、通常は図22に示したようなオリフィス状の絞り流路を有する流量制御装置を用いている。特に除湿運転時には第2流量制御装置6の入口が気液二相冷媒となるため、第2流量制御装置6のオリフィスを通過する冷媒の流動音が大きくなるという問題があった。この流動音は室内環境を悪化させる要因となり、第2流量制御装置6の周囲に遮音材や制振材を設けるなどの追加の対策が必要となり、コスト増加や設置性の悪化およびリサイクル性の悪化などの問題もあった。
【0007】
また従来の空気調和装置の流量制御装置6では、第一流路接続配管9aから第二流路接続配管9bへの一方向の流れでしか流量制御ができず、流れが逆の場合には全開の状態となるため、暖房再熱除湿運転ができないという問題があった。また流量を制御する場合の絞り量が固定のため、温度制御の範囲が非常に狭くなるという問題もあった。
【0008】
この除湿運転時の第2流量制御装置の冷媒流動音低減策として、特願平12−127778号明細書に示されたものがある。その第2流量制御装置6の断面図を図23に示す。図のようにオリフィス12の前後に多孔質透過材11を挟み込み、多孔質透過材11で気液二相冷媒を整流し、発生する騒音を低下させるようにしている。この第2流量制御装置6は、冷媒流動音の低減には効果があり、ほとんど圧力損失のないように冷媒を流す通常冷房運転や通常暖房運転のときのためには、図24のように別に開閉弁45を設けて、開閉弁45の開閉で流量制御をしていた。この流量制御装置6を図のように配管に接続した場合、第一流路接続配管9aから第二流路接続配管9bへの一方向の流れでしか流量制御ができないため、流れが逆になる暖房再熱除湿運転ができないという問題があった。
【0009】
この発明は、以上に述べたような問題点を解決するためになされたものであり、凝縮熱または蒸発熱を利用する冷凍サイクル装置の構成機器である絞り装置および流量制御装置において、冷媒の流動制御に適し、冷媒流動音を低減でき、正逆の方向の冷媒流れに対して、異なる絞り量に設定できる絞り装置および流量制御装置を得ることを目的としている。
また、この発明は、冷凍サイクルの凝縮熱を室内空気への加熱源として利用する空気調和装置において、冷房、除湿、暖房、各運転時における、温度と湿度の制御性を高め、冷房シーズン、暖房シーズンを問わず再熱除湿運転を実現するとともに、冷媒流動音を低減できる空気調和装置を得ることを目的としている。
【0016】
【課題を解決するための手段】
この発明の請求項に係る絞り装置は、一端が第一流路、他端が第二流路に接続されて流路に配設される筐体と、この筐体内を流れる流体を減圧して通過させる第1絞り部を有する弁体と、前記第1絞り部と第一流路の間および前記第1絞り部と第二流路の間の少なくともいずれか一方に隙間を設けて配設された前記流体を通過させる多孔質透過材と、前記筐体内を流れる流体の流れ方向に稼動する稼動弁と、前記稼動弁と前記第二流路の間に設け流路を有する仕切板と、前記稼動弁または前記弁体に設けた第2絞り装置と、を備え、前記第1絞り部および第2絞り部を、前記多孔質透過材の通気孔を通過して整流された蒸気冷媒と液冷媒が同時に通過するオリフィスとするとともに、前記第一流路から前記第二流路方向へ流体が流れる時、前記稼動弁は前記仕切板で停止して前記流体は第1絞り部及び前記仕切板の流路を流れ、前記第二流路から前記第一流路方向へ流体が流れる時、前記稼動弁は前記弁体で停止して前記第1絞り部を塞ぎ、前記流体は第2絞り部を流れることにより、流体の流れ方向で絞り量を異なるように構成したことを特徴とするものである。
【0017】
また、この発明の請求項に係る流量制御装置は、第一流路と第二流路を連通する連通流路と、この連通流路に並列に請求項記載の絞り装置を接続して成る絞り流路と、前記連通流路と前記絞り流路を切換える切換手段と、を備え、流体が前記絞り流路の前記第一流路から前記第二流路へ流れる時、前記絞り装置の第1絞り部で減圧し、流体が前記絞り流路の前記第二流路から前記第一流路へ流れる時、前記絞り装置の第2絞り部または前記第2絞り部と前記第1絞り部で減圧して、前記絞り流路の流体の流れ方向で絞り量が異なるように構成したことを特徴とするものである。
【0018】
また、この発明の請求項に係る空気調和装置は、圧縮機、室外熱交換器、第1流路制御装置、第1室内熱交換器、第2流量制御装置、第2室内熱交換器を順次接続した冷凍サイクルを備え、請求項に記載の流量制御装置を前記第2流量制御装置とし、第1、第2室内熱交換器を共に蒸発器または凝縮器として運転する際、前記第2流量制御装置は連通流路を介して第1、第2室内熱交換器を接続するようにし、第1、第2室内熱交換器のうちの一方を蒸発器、他方を凝縮器として運転する際、前記第2流量制御装置は絞り流路を介して第1、第2室内熱交換器を接続するように前記切換手段を切換えるように構成したことを特徴とするものである。
【0019】
また、この発明の請求項に係る空気調和装置は、第1室内熱交換器を蒸発器とし第2室内熱交換器を凝縮器とする暖房再熱除湿運転での第2流量制御装置の絞り量を、第1室内熱交換器を凝縮器とし第2室内熱交換器を蒸発器とする冷房再熱除湿運転での絞り量よりも大きくしたことを特徴とするものである。
【0020】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1による空気調和装置を示す冷媒回路図である。空気調和装置は、冷凍サイクルの凝縮熱または蒸発熱を利用して室内の冷房や暖房を行っている。図において、1は圧縮機、2は冷房運転および暖房運転の冷媒の流れを切換える流路切換手段で例えば四方弁、3は室外熱交換器、4は第1流量制御装置、5は第1室内熱交換器、6は第2流量制御装置、7は第2室内熱交換器であり、これらは配管によって順次接続され冷凍サイクルを構成している。この冷凍サイクルの冷媒には、R32とR125の混合冷媒であるR410Aが用いられ、冷凍機油としてはアルキルベンゼン系油が用いられている。
【0021】
図2は第2流量制御装置6を示す回路構成図であり、(a)、(b)、(c)はそれぞれ作動状態を示している。図において、8は切換手段で例えば開閉弁、9aは第一流路でここでは第一流路接続配管、9bは第二流路でここでは第二流路接続配管、13は絞り装置、14は逆止弁、15はキャピラリーチューブ、16a、16bは流路を構成する配管である。第一流路接続配管9aは二つの流路、連通流路16aと絞り流路16bに分かれ、一方の連通流路16aには開閉弁8が連結され、開閉弁8を開とした時には連通流路16aに流体が流れ、閉とした時には絞り流路16bに冷媒が流れる。絞り流路16bは第1絞り部を有する絞り装置13と第2絞り部となるキャピラリーチューブ15が連結されている。さらに、キャピラリーチューブ15に並列に逆止弁14が連結され、配管16bは開閉弁8からの配管16aと合流している。逆止弁14は第一流路接続配管9aから第二流路接続配管9bへの流れ方向、即ちA方向を順方向として流体を通過させ、B方向の流れを阻止するように設置されている。
ここで、連通流路とは、流体の圧力損失がほぼ0である流路のことであり、第一流路と第二流路を連通するとは、第一流路と第二流路とを圧力損失がほぼ0の状態で接続することである。
【0022】
また、図3は絞り装置13を示す断面図であり、図において、11a、11bは多孔質透過材、12は第1絞り部となるオリフィス、17は筐体、18は弁体である。多孔質透過材11a、11bは弁体18に固定されている。この多孔質透過材11a、11bは、例えば通気孔の気孔径が500μm程度のもので、オリフィス12と配管16bの間の流路に配設され、流体である冷媒を透過させる際、冷媒蒸気スラグや蒸気気泡を微細化する。その材質は、例えば発泡金属で、ウレタンフォームに金属粉末あるいは合金粉末を塗布後、熱処理をしてウレタンフォームを焼失させ、金属を3次元の格子状に成形したものであり、材料はNi(ニッケル)である。強度を上げるため、Cr(クロム)をメッキ処理してもよい。そしてその形状は、円盤状あるいは多角形状で、流路方向にある程度の厚みを有する。
【0023】
また、多孔質透過材11a、11bとオリフィス12の間には、一定隙間19a、19bが生じるように段差がつけられている。この隙間19a、19bは、例えば0〜3mmの間で設定される。多孔質透過材11a、11bは厚さ1mm〜5mm、通過面積70mm2〜700mm2に設定されている。そして多孔質透過材11a、オリフィス12、多孔質透過材11bが設置された弁体18は筐体17に圧入され固定されている。
【0024】
図2(a)のように開閉弁8を開け、冷媒をA方向に流すと、冷媒はほとんど連通流路16aに流れ、流量制御装置6の内部を流れる冷媒には圧力損失がほとんどない状態になる。逆に冷媒をB方向に流しても同様である。次に開閉弁8を閉じて図2(b)のようにA方向に冷媒を流すと、冷媒は絞り流路16bに流れて絞り装置13で減圧される。このときに逆止弁14は圧損がなく流れる方向に設置されているで、キャピラリーチューブ15にはほとんど冷媒は流れない。次に開閉弁8を閉じた状態で、B方向に冷媒を流すと(c)のように絞り流路16bに流れるが、逆止弁14には流れずにキャピラリーチューブ15に冷媒の全量が流れる。この冷媒は、キャピラリーチューブ15で減圧され、さらに、絞り装置13のオリフィス12を通って減圧される。即ち、(b)のように冷媒を流すときは、絞り装置13でのオリフィス12によって絞られ、(c)のように冷媒を流すときは、キャピラリーチューブ15と絞り装置13でのオリフィス12によって絞られる。以上のように、この実施の形態による第2流量制御装置6は、冷媒の流れ方向により冷媒の絞り量を変えることができる。
【0025】
次にこの実施の形態による空気調和装置の冷凍サイクルの動作について説明する。図1では冷房時の冷媒の流れを実線矢印で示している。冷房運転は、起動時や夏季時など部屋の空調顕熱負荷と潜熱負荷が共に大きい場合に対応する通常冷房運転と、中間期や梅雨時期のように空調顕熱負荷は小さいが潜熱負荷が大きな場合に対応する冷房除湿運転がある。通常冷房運転は、第2流量制御装置6の開閉弁8を開け、図2(a)のように冷媒を流し、第1室内熱交換器5と第2室内熱交換器7との間をほとんど圧力損失がない状態で接続する。
【0026】
この時、空調負荷に応じた回転数で運転されている圧縮機1を出た高温高圧の蒸気冷媒は四方弁2を通過して、室外熱交換器3で凝縮液化する。そして、第1流量制御装置4で減圧され低圧二相冷媒となって第1室内熱交換器5に流入し蒸発気化する。さらに、第2流量制御装置6をほとんど圧力損失なしに通過して再び第2室内熱交換器7で蒸発気化し、低圧蒸気冷媒となって再び四方弁2を介して圧縮機1に戻る。
【0027】
この通常冷房運転では、第2流量制御装置6は圧力損失がほとんどない状態になっているため、冷房能力や効率低下などは起こらない。また、第1流量制御装置4は例えば圧縮機1の吸入部分で冷媒の過熱度が10℃となるように制御されている。このような冷凍サイクルでは室内熱交換器5、7は共に蒸発器として動作し、ここで冷媒が蒸発することにより室内から熱を奪う。そして、室外熱交換器3は凝縮器として動作し、ここで冷媒が凝縮することで室内で奪った熱を室外で放出している。これにより室内の冷房が行われる。
【0028】
図4は冷房除湿運転時の動作状態を表わす特性図で、圧力-エンタルピー線図である。冷房除湿運転時の動作について、図4を用いて説明する。なお、図4に示したA点〜G点は、図1に示したA点〜G点の部分での冷媒の状態をそれぞれの英文字と対応して示している。この冷房除湿運転時は、第2流量制御装置6の開閉弁8を閉じ、図2(b)のように冷媒を流す。
【0029】
この時、空調負荷に応じた回転数で運転されている圧縮機1を出た高温高圧の蒸気冷媒は四方弁2を通過して(A点)、室外熱交換器3で外気と熱交換して凝縮し気液二相冷媒となる(B点)。この高圧二相冷媒は第1流量制御装置4で若干減圧され、中間圧の気液二相冷媒となって第1室内熱交換器5に流入する(C点)。そして第1室内熱交換器で、室内空気と熱交換を行いさらに凝縮する(D点)。第1室内熱交換器5を流出した気液二相冷媒は第2流量制御装置6に流入する。
【0030】
この時、第2流量制御装置6の絞り装置19を通る冷媒はオリフィス12で減圧されて、低圧の気液二相冷媒となって、第2室内熱交換器7に流入する(E点)。第2室内熱交換器7に流入した冷媒は、室内空気の顕熱および潜熱を奪って蒸発する。第2室内熱交換器7を出た低圧蒸気冷媒(F点)は再び四方弁2を通り(G点)、圧縮機1に戻る。この冷房除湿運転では、室内空気は、凝縮器として動作する第1室内熱交換器5で加熱され、蒸発器として動作する第2室内熱交換器7で冷却除湿されるため、部屋の室温低下を防ぎながら除湿を行うことができる。このような冷房除湿運転は、第1室内熱交換器5を再熱器として利用するため、冷房再熱除湿運転とも称する。
【0031】
なお、この除湿運転では、圧縮機1の回転周波数や室外熱交換器3のファン回転数を調整して、室外熱交換器3の熱交換量を制御し、第1室内熱交換器5による室内空気の加熱量を制御して吹出し温度を広範囲に制御できる。また、第1流量制御装置4の開度や第1室内熱交換器5のファン回転数を制御して第1室内熱交換器5の凝縮温度を制御し、第1室内熱交換器5による室内空気の加熱量を制御することもできる。また、第2流量制御装置6は例えば圧縮機1の吸入部分で冷媒の過熱度が10℃となるように制御される。
【0032】
図1において暖房時の冷媒の流れを点線矢印で示している。暖房運転には通常暖房運転と暖房除湿運転がある。この時四方弁2を点線のように接続して流路を構成する。
通常暖房運転は、第2流量制御装置6の開閉弁8を開け、第1室内熱交換器5と第2室内熱交換器7との間をほとんど圧力損失がない状態で接続する。
【0033】
この時、圧縮機1は空調負荷に応じた回転数で運転されている。この圧縮機1を出た高温高圧の蒸気冷媒は四方弁2を通過して、第2室内熱交換器7で凝縮液化する。そして、第2流量制御装置6をほとんど圧力損失なしに通過し、再び第1室内熱交換器5で液化する。さらに、第1流量制御装置4で減圧され低圧二相冷媒となって室外熱交換器3に流入し蒸発気化し、低圧蒸気冷媒となって再び四方弁2を介して圧縮機1に戻る。
【0034】
この通常暖房運転では、第2流量制御装置6は圧力損失がほとんどない状態になっているため、暖房能力や効率低下などは起こらない。また、第1流量制御装置4は例えば圧縮機1の吸入部分で冷媒の過熱度が10℃となるように制御されている。このような冷凍サイクルでは、室外熱交換器3は蒸発器として動作し、ここで冷媒が蒸発することにより室外から熱を奪う。そして、室内熱交換器7、5は共に凝縮器として動作し、ここで冷媒が凝縮することによって室外で奪った熱を室内に放出している。これにより室内の暖房が行われる。
【0035】
図5は暖房除湿運転時の動作状態を表す特性図で、圧力―エンタルピー線図である。暖房除湿運転の動作について、図5を用いて説明する。図5中のA点〜G点は、図1に示したA点〜G点の部分での冷媒の状態をそれぞれの英文字に対応して示している。この暖房除湿運転時は、開閉弁8を閉として図2(c)に示す状態となり、冷房除湿運転時の冷媒の流れとは逆の流れになる。
【0036】
圧縮機1から吐出され、四方弁2を通った冷媒は、F点から第2室内熱交換器7で室内空気と熱交換して凝縮し気液二相冷媒または液冷媒となり(E点)、第2流量制御弁6に流入する。第2流量制御装置6のオリフィス12を通る冷媒は減圧され、D点となって第1室内熱交換器5に流入する。そして第1室内熱交換器5に流入した冷媒は、室内空気の顕熱および潜熱を奪って蒸発する。この後C点を通りさらに第1流量制御装置4を通って室外熱交換器3、圧縮機1の吸入側(G点)に戻る冷凍サイクルとなる。なおこの例ではE点にて過冷却がついている状態について説明したが、運転状態によって、過冷却がつかない場合がありその時は図5の点線となる。また第1流量制御装置4は全開となっており圧力損失がつかないようになっている。
【0037】
この運転において冷媒が第1室内熱交換器5で蒸発して除湿するには、第1室内熱交換器5での蒸発温度が室内空気の露点温度以下にならなければいけないので、室内送風機の風量の調整や圧縮機回転数の調整などにより蒸発温度を制御して、室内空気の露点温度以下としてやればよい。これにより室内ユニット52では、外気温条件によらずに第1室内熱交換器5で冷却除湿された空気と第2室内熱交換器7で加熱された空気が混合されて吹き出される。また図5の場合で第1室内熱交換器5での蒸発温度が低くなりすぎて、室内の吹き出し温度が下がりすぎる場合は、第1流量制御装置4を調整して図6の様に、蒸発温度を調整することもできる。
【0038】
このような暖房除湿運転では、室内空気は、凝縮器として動作する第2室内熱交換器7で加熱され、蒸発器として動作する第1室内熱交換器5で冷却除湿されるため、部屋の室温低下を防ぎながら除湿を行うことができる。このような暖房除湿運転は、第2室内熱交換器7を再熱器として利用するため、暖房再熱除湿運転とも称する。暖房再熱除湿運転を行うことにより、室温低下がない除湿、または室温を上げつつも除湿することが可能となる。
【0039】
即ち、外気温条件、冷房シーズン、暖房シーズンに関わらずに、必要とされる空調負荷に応じて冷房再熱除湿運転と暖房再熱除湿運転を切り換えれば、室温を制御(低下、同等、上昇)しながらの除湿を行うことができる。
【0040】
この実施の形態の第2流量制御装置6は冷媒の流れが逆でも流量制御が可能なため、冷房再熱除湿、暖房再熱除湿のともに実現できる。また図4の圧力―エンタルピー曲線により、冷房除湿運転時は流量制御装置5の入口(D点)では冷媒は気液2相状態であるが、図5の圧力―エンタルピー曲線により暖房除湿運転時の流量制御装置6の入口(E点)は、冷媒が液の状態である場合もある。同じ断面積のオリフィスを冷媒が通過するときは、液状態よりも気液2相状態のほうが圧力損失が大きい。このため、所定の冷媒量を流すためには、暖房除湿運転時の絞り量は冷房除湿運転時よりも大きくする必要がある。この実施の形態による流量制御装置6では、冷媒の流れ方向によって冷媒の減圧量を異なるように設定できる。このため冷房除湿運転時と暖房除湿運転時で絞り量を変えることが可能となり、最適な除湿運転が制御可能となる。
【0041】
流量制御装置6の絞り量を異なるように設定する構成の具体例について示す。例えば、通常冷房運転と通常暖房運転時は、流量制御装置6を、開閉弁8を開けて図2(a)の状態にし、ほとんど圧力損失がない状態にする。次に冷房除湿運転時は、開閉弁8を閉じ、図2(b)の状態にする。この時、第2室内熱交換器7での冷媒の蒸発温度が冷房除湿運転時に最適な絞り量になるように、絞り装置13のオリフィス12の断面積を設定する。次に暖房除湿運転時は、流れ方向が逆になるため図2(c)の状態になる。このときはキャピラリーチューブ15と絞り装置13に冷媒が流れるため、キャピラリーチューブ15での絞り量分だけ、冷房除湿運転時よりも絞り量が多くなる。そこで第1室内熱交換器5の冷媒の蒸発温度が暖房除湿運転時に最適な絞り量になるように、オリフィス12の断面積と長さ、及びキャピラリーチューブ15の断面積と長さを設定する。
【0042】
通常、オリフィス12に気液二相冷媒が通過する際には騒音が発生するが、この実施の形態による絞り装置13では、オリフィス12の前後の絞り流路16bに多孔質透過材11a、11bがあるため、気液二相冷媒が通過する際に発生する冷媒流動音を大幅に低減できる。即ち、第一流路接続配管9aから第2流量制御装置6に流れ込む気液二相状態または液状態の冷媒は、多孔質透過材11aの微細で無数の通気孔を通過して流れが整流される。このため、気液が断続して流れるスラグ流等の蒸気スラグ(大気泡)は小さな気泡になり冷媒の流動状態が蒸気冷媒と液冷媒とがよく混合された均質気液二相流となるため、蒸気冷媒と液冷媒が同時にオリフィス12を通過する。このため速度変動が生じず、圧力も変動しない。またオリフィス12の下流の高速気液二相噴流は多孔質透過材11bにより、その内部で冷媒の流速が十分に減速され、速度分布も一様化されるため、高速気液二相冷媒が壁面に衝突することもなく、流れに大きな渦が発生することもないので、噴流騒音を小さくできる。
従って従来装置では流量制御装置6の周囲に遮音材や制振材を巻きつけるなどの対策が必要であったが、この実施の形態による流量制御装置6においては不要でコスト低減となり、さらに空気調和装置のリサイクル性も向上する。
さらに、多孔質透過材11aとオリフィス12の間の空間19a、及び多孔質透過材11bとオリフィス12の間の空間19bによって、多孔質透過材11a、11bの大部分が冷媒流路となるので、絞り装置としての機能を保つことができ、信頼性を確保できる。
【0043】
なお、この実施の形態では、暖房再熱除湿運転時に室外熱交換器3にも冷媒を流す構成について説明したが、図7のように第1室内熱交換器5から出た冷媒が室外熱交換器3をバイパスし、流量制御装置10を介して圧縮機1へ直接吸入されるバイパス回路を追加してもよい。このバイパス回路の追加により、外気温度に左右されず、第1室内熱交換器5での蒸発温度の制御が可能となり、除湿能力をより一層安定的に制御することができる。
【0044】
実施の形態2.
図8は、この発明の実施の形態2による第2流量制御装置6を示す回路構成図であり、(a)、(b)、(c)はそれぞれ作動状態を示している。図において、8は切換手段で例えば開閉弁、9aは第一流路でここでは第一流路接続配管、9bは第二流路でここでは第二流路接続配管、13は第1絞り部を有する第1絞り装置、16a、16bは流路を構成する配管、20は第2絞り部を有する第2絞り装置である。第一流路接続配管9aは二つの流路、連通流路16aと絞り流路16bに分かれ、一方の連通流路16aには開閉弁8が連結され、開閉弁8を開とした時には連通流路16aに流体が流れ、閉とした時には絞り流路16bに冷媒が流れる。絞り流路16bには第1絞り部を有する絞り装置13と第2絞り部を有する第2絞り装置20が直列に連結されている。配管16bは開閉弁8からの配管16aと合流して第二流路接続配管9bに接続する。
【0045】
第1絞り装置13は実施の形態1の図3に示した絞り装置13と同様の構成であり、動作も同様である。ただし、この実施の形態における第1絞り装置13は、実施の形態1の構成にあるキャピラリーチューブ15との接続部はない。図3に示すように、多孔質透過材11a、11bは弁体18に固定されている。また、多孔質透過材11a、11bとオリフィス12の間には、一定隙間19a、19bが生じるように段差がつけられている。多孔質透過材11a、オリフィス12、多孔質透過材11bが設置された弁体18は筐体17に圧入され固定されている。
【0046】
図9は第2絞り装置20を示す断面図であり、(a)、(b)はそれぞれ作動状態を示している。また、図10は稼動弁23を示す平面図で、ストッパ24側から見た図である。第2絞り装置20は両端に流路口を有し、絞り流路16bに配設される。図9において、21は筐体、22は筐体21内の一端部に設けられた円錐状の開口を有する弁座、23は冷媒の流れにより図に向かって左右に稼動する稼動弁、24は筐体21内の他端部に設けられたストッパである。稼動弁23の図に向かって左端である前面は、稼動弁23が左に移動した場合、弁座22の開口に密着してその開口を塞ぐ形状になっている。稼動弁23の図に向かって右側である後ろには、例えば4つの溝25が設けられている。そして、稼動弁23の中央には第2絞り部となるオリフィス26を有する。図8に示すように第1絞り装置13は弁座22の設置されている方向に直列に接続されている。
【0047】
つぎに動作について説明する。図8(a)のように開閉弁8を開け、冷媒をA方向に流すと、冷媒はほとんど連通流路16aに流れ、流量制御装置6の内部を流れる冷媒には圧力損失がほとんどない状態になる。逆に冷媒をB方向に流しても同様である。次に開閉弁8を閉じて図8(b)のようにA方向に冷媒を流すと、冷媒は第1絞り装置13、第2絞り装置20の連結されている絞り流路16bに流れて、まず第1絞り装置13のオリフィス12で減圧される。この後、冷媒は第2絞り装置20に流入するが、図9(a)のように稼動弁23は冷媒の流れで向かって右方向に移動し、ストッパ24に当たって止まる。左方向から流入した冷媒は、矢印のように、弁座22の開口を通過し稼動弁23に設けられた溝25を通って流れる。溝25の断面積をオリフィス26に比べて十分大きく構成すれば、冷媒はほとんど圧損がない状態で流れることになる。従って図8(b)の状態では、冷媒は第1絞り装置13でのみ絞られることになる。
【0048】
次に開閉弁8を閉じたまま図8(c)のようにB方向に冷媒を流す。冷媒は第2絞り装置20、第1絞り装置13の連結されている絞り流路16bに流れて、まず第2絞り装置20に流入する。この時、図9(b)のように稼動弁23は冷媒の流れに押され、前面の円錐状の部分で弁座22に密着して開口を塞ぐ。このため冷媒はオリフィス26を流れて絞られる。この後、冷媒は第1絞り装置13に流入して多孔質透過材11b、オリフィス12、多孔質透過材11aの順に流れ、オリフィス12で減圧される。従って、図8(c)の状態では、第1絞り装置13と第2絞り装置20の両方で絞られることになる。以上のように、この実施の形態による第2流量制御装置6は、図8(a)、(b)、(c)のように冷媒の流れ方向によって、3通りの絞り量で冷媒を流すことができる。
【0049】
冷凍サイクル上での動作は実施の形態1と同様であり、通常冷房運転および通常暖房運転時は、第2流量制御装置6の開閉弁8を開けて図8(a)のように冷媒を流して、ほとんど圧損がない状態にする。冷房再熱除湿運転時は、開閉弁8を閉じ、図8(b)のように冷媒を流す。この時、第2室内熱交換器7での冷媒の蒸発温度が冷房再熱除湿運転に最適な絞り量になるように、第1絞り装置13のオリフィス12の断面積を設定する。暖房再熱除湿運転時は、流れ方向が逆になるため図8(c)のように冷媒は流れる。この時、第1絞り装置13、第2絞り装置20の両方に冷媒が流れるため、第2絞り装置20での絞り量分だけ、冷房除湿運転時よりも絞り量が多くなる。そこで、第1室内熱交換器5の冷媒の蒸発温度が暖房再熱除湿運転に最適な絞り量になるように、第1絞り装置13のオリフィス12の内径と長さ及び第2絞り装置20のオリフィス26の内径と長さを設定する。
この流量制御装置6を空気調和装置の第2流量制御装置6として用いることで、外気温条件、冷房シーズン、暖房シーズンに関わらずに、必要とされる空調負荷に応じて冷房再熱除湿運転と暖房再熱除湿運転を切り換えれば、室温を制御(低下、同等、上昇)しながらの除湿を行うことができる。特に、この実施の形態による第2流量制御装置6の絞り流路16bは、第1絞り装置13と第2絞り装置20で別体に構成しているため、図24で示した従来装置の絞り流路に第2絞り装置20を接続するという簡単な変更で、上記の効果を得ることができる。
【0050】
従来装置では冷房除湿運転時に、第1絞り装置13のオリフィス12を気液二相冷媒が通過する際には騒音が発生するが、この実施の形態による絞り装置13では、オリフィス12の前後に多孔質透過材11a、11bを設けているため、気液二相冷媒が通過する際に発生する冷媒流動音を大幅に低減できる。また、暖房除湿運転時においても、第2絞り装置20のオリフィス26で絞られた冷媒は、第1絞り装置13の多孔質透過材11a、11bを通るため、冷媒流動音を大幅に低減できる。従って従来装置では流量制御装置6の周囲に遮音材や制振材を巻きつけるなどの対策が必要であったが、この実施の形態による流量制御装置6においては不要となってコストを低減でき、さらに空気調和装置のリサイクル性も向上する。
【0051】
また、第2絞り装置20は配管16bとほぼ同径にできるため、キャピラリーチューブ15で構成した実施の形態1と比較して、小型化できる利点を有する。
【0052】
また、第2絞り装置20は図11のように構成してもよい。この構成では、オリフィス26を稼動弁23の中央に設ける代わりに弁座22に設けている。動作及び作用効果は、図9の構成と同様である。また、図12のように、弁座22に溝27を設置しても同様の効果を得る。ただし、図11(b)、図12(b)において、稼動弁23が向かって左に移動して開口を塞ぐ際、オリフィス26または溝27は稼動弁23に塞がれることなく、冷媒が流れるように構成する必要がある。
さらに図9、図11のオリフィス26や図12の溝27は、複数設けてもよいが、絞り量を増減するので、流動抵抗が設定値内になるように考慮する必要がある。
【0053】
実施の形態3.
図13は、この発明の実施の形態3による第2流量制御装置6を示す回路構成図であり、(a)、(b)、(c)はそれぞれ作動状態を示している。図において、8は切換手段で例えば開閉弁、9aは第一流路でここでは第一流路接続配管、9bは第二流路でここでは第二流路接続配管、16a、16bは流路を構成する配管、28は第1絞り部と第2絞り部を有する絞り装置である。第一流路接続配管9aは二つの流路、連通流路16aと絞り流路16bに分かれ、一方の連通流路16aには開閉弁8が連結され、開閉弁8を開とした時には連通流路16aに流体が流れ、閉とした時には絞り流路16bに冷媒が流れる。絞り流路16bには第1、第2絞り部を有する絞り装置28が連結されている。配管16bは開閉弁8からの配管16aと合流して第二流路接続配管9bに接続する。
【0054】
また、図14は絞り装置28を示す断面図であり、(a)、(b)はそれぞれ作動状態を示している。図において、実施の形態1または実施の形態2と同一符号は同一、または相当部分を示している。絞り装置28は実施の形態2における第1絞り装置13と第2絞り装置20を一体化し、筐体17、21内に構成したものである。この絞り装置28は、両端に流路口を有し、図に向かって左側に接続される第一流路接続配管9a、向かって右側に接続される第二流路接続配管9bの間の絞り流路16bに配設される。図において、11a、11bは多孔質透過材、12は弁体18の中央に空けられた第1絞り部となるオリフィス、17は筐体、18は弁体、19a、19bはオリフィス12と多孔質透過材11a,11bの間に設けられている隙間である。また、21は筐体17と一体で形成された筐体、22は円錐状の開口を有する弁座、24は冷媒の流れにより稼動する稼動弁23を停止させるストッパである。稼動弁23の第一接続配管9a接続側である前面は、稼動弁23が左に移動した場合、弁座22の開口に密着してその開口を塞ぐ形状になっている。稼動弁23の第ニ接続配管9b接続側である後ろには、例えば4つの溝25が設けられている。そして、稼動弁23の中央には第2絞り部となるオリフィス26を有する。
【0055】
つぎに動作について説明する。図13(a)のように開閉弁8を開け、冷媒をA方向に流すと、冷媒はほとんど連通流路16aに流れ、流量制御装置6の内部を流れる冷媒には圧力損失がほとんどない状態になる。逆に冷媒をB方向に流しても同様である。次に開閉弁8を閉じて図13(b)のようにA方向に冷媒を流すと、冷媒は絞り装置28の連結されている絞り流路16bに流れ、多孔質透過材11aを通って、オリフィス12で減圧され、多孔質透過材11bを通る。この後、冷媒は弁座22の開口から稼動弁23のある部分に流入するが、図14(a)のように稼動弁23は冷媒の流れで向かって右方向に移動し、ストッパ24に当たって止まる。このため矢印のように、弁座22の開口を通過した冷媒は、稼動弁23に設けられた溝25を通って流れる。溝25の断面積をオリフィス12に比べ十分大きく構成すれば、筐体21の部分では冷媒はほとんど圧損がない状態で流れることになる。従って図13(b)の状態では、絞り装置28に流入した冷媒は、第1絞り部であるオリフィス12でのみ絞られることになる。
【0056】
次に開閉弁8を閉じたまま図13(c)のようにB方向に冷媒を流す。冷媒は絞り装置28の連結されている絞り流路16bに流れて、筐体21側に流入する。この時、図14(b)のように稼動弁23は冷媒の流れに押され、前面の円錐状の部分で弁座22に密着して開口を塞ぐ。このため冷媒はオリフィス26を流れて絞られる。この後、冷媒は筐体17側に流入し、多孔質透過材11b、オリフィス12、多孔質透過材11aの順に流れ、オリフィス12で減圧される。従って、図14(b)の状態では、冷媒は絞り装置28によって、第2絞り部であるオリフィス26と、第1絞り部であるオリフィス12の両方で絞られることになる。
以上のように、この実施の形態による第2流量制御装置6は、図13(a)、(b)、(c)のように、冷媒の流れ方向によって、3通りの絞り量で冷媒を流すことができる。
【0057】
冷凍サイクル上での動作は実施の形態1と同様であり、通常冷房運転および通常暖房運転時は、第2流量制御装置6の開閉弁8を開けて図13(a)のように冷媒を流して、ほとんど圧損がない状態にする。冷房除湿運転時は、開閉弁8を閉じ、図13(b)のように冷媒を流す。この時、第2室内熱交換器7での冷媒の蒸発温度が冷房除湿運転時に最適な絞り量になるように、絞り装置28のオリフィス12の断面積を設定する。暖房除湿運転時は、流れ方向が逆になるため図13(c)のように冷媒は流れる。この時、オリフィス26とオリフィス12の両方に冷媒が流れるため、冷房除湿運転時よりも絞り量が多くなる。そこで、第1室内熱交換器5の冷媒の蒸発温度が暖房除湿運転時に最適なように、オリフィス12の内径と長さ及びオリフィス26の内径と長さを設定する。
図13で示した流量制御装置6を空気調和装置の第2流量制御装置6として用いることで、外気温条件、冷房シーズン、暖房シーズンに関わらずに、必要とされる空調負荷に応じて冷房再熱除湿運転と暖房再熱除湿運転を切り換えれば、室温を制御(低下、同等、上昇)しながらの除湿を行うことができる。
【0058】
従来装置では冷房除湿運転時に、絞り装置28のオリフィス12を気液二相冷媒が通過する際には騒音が発生するが、この実施の形態による絞り装置28では、オリフィス12の前後に多孔質透過材11a、11bを設けているため、気液二相冷媒が通過する際に発生する冷媒流動音を大幅に低減できる。また、暖房除湿運転時においても、オリフィス26で絞られた冷媒は、多孔質透過材11a、11bを通るため、冷媒流動音を大幅に低減できる。従って従来装置では流量制御装置6の周囲に遮音材や制振材を巻きつけるなどの対策が必要であったが、この実施の形態による流量制御装置6においては不要となり、コストを低減でき、さらに空気調和装置のリサイクル性も向上する。
【0059】
また、この実施の形態における流量制御装置6は、実施の形態2における第1、第2絞り装置を一体化して構成しているため、実施の形態2における第2流量制御装置6よりも小型化できる利点を有する。
【0060】
また、絞り装置28は図15のように構成してもよい。この構成では、オリフィス26を稼動弁23の中央に設ける代わりに弁座22に設けている。動作及び作用効果は、図14の構成と同様である。また、図16のように、弁座22に溝27を設けても同様の効果を得る。ただし、図15(b)、図16(b)において、稼動弁23が向かって左に移動して開口を塞ぐ際、オリフィス26または溝27は稼動弁23に塞がれることなく、冷媒が流れるように構成する必要がある。
さらに図14、図15のオリフィス26や図16の溝27は、複数設けてもよいが、絞り量を増減するので、流動抵抗が設定値内になるように考慮する必要がある。
【0061】
実施の形態4.
図17は、この発明の実施の形態4による第2流量制御装置を示す回路構成図であり、(a)、(b)、(c)はそれぞれ作動状態を示している。図において、8は切換手段で例えば開閉弁、9aは第一流路でここでは第一流路接続配管、9bは第二流路でここでは第二流路接続配管、16a、16bは流路を構成する配管、29は絞り装置である。第一流路接続配管9aは二つの流路、連通流路16aと絞り流路16bに分かれ、一方の連通流路16aには開閉弁8が連結され、開閉弁8を開とした時には連通流路16aに流体が流れ、閉とした時には絞り流路16bに冷媒が流れる。絞り流路16bには第1、第2絞り部を有する絞り装置29が連結されている。配管16bは開閉弁8からの配管16aと合流して第二流路接続配管9bに接続する。
【0062】
また、図18は絞り装置29を示す断面図であり、(a)、(b)はそれぞれ作動状態を示している。図において、実施の形態1または実施の形態2または実施の形態3と同一符号は同一、または相当部分を示している。絞り装置29は実施の形態2における第1絞り装置13の中央に第2絞り装置20の稼動弁23の機構を取り入れて構成したものである。この絞り装置29は、両端に流路口を有し、図に向かって左側に接続される第一流路接続配管9a、向かって右側に接続される第二流路接続配管9bの間の絞り流路16bに配設される。図において、11a、11bは多孔質透過材、12は弁体18の中央に空けられた第1絞り部となる円錐状のオリフィス、17は筐体、18は弁体、19a、19bはオリフィス12と多孔質透過材11a,11bの間に設けられている隙間である。弁体18のオリフィス12は、仕切板31で仕切られた空間32と接続されている。この仕切板31には流路33が一つあるいは複数設置され、空間32と隙間19bが連通されている。空間32内には冷媒の流れにより稼動する稼動弁34があり、稼動弁34の第一接続配管9a接続側である前面は、稼動弁34が左に移動した場合、円錐状のオリフィス12の穴に密着して塞ぐ形状になっている。稼動弁34が右に移動した時に仕切板31に当たって止まる。また、稼動弁34の中央部には第2絞り部となるオリフィス35を有する。
【0063】
つぎに動作について説明する。図17(a)のように開閉弁8を開け、冷媒をA方向に流すと、冷媒はほとんど連通流路16aに流れ、流量制御装置6の内部を流れる冷媒には圧力損失がほとんどない状態になる。逆に冷媒をB方向に流しても同様である。次に開閉弁8を閉じて図17(b)のようにA方向に冷媒を流すと、冷媒は絞り装置28の連結されている絞り流路16bに流れる。この時、図18(a)のように稼動弁23は冷媒の流れで向かって右方向に移動し、仕切板31に当たって止まる。このため矢印のように、多孔質透過材11a、オリフィス12を通過した冷媒は流路33、多孔質透過材11bを通って流れる。流路33の断面積をオリフィス12に比べ十分大きく構成すれば、流路33ではほとんど圧損がない状態で流れることになる。従って図17(b)の状態では、絞り装置29に流入した冷媒は、第1絞り部であるオリフィス12で絞られる。
【0064】
次に開閉弁8を閉じたまま図17(c)のように冷媒をB方向に冷媒を流す。冷媒は絞り装置29の連結されている絞り流路16bに流れて、筐体17に向かって右側から流入する。この時、図18(b)のように稼動弁34は冷媒の流れに押され、前面の円錐状の部分で弁体18に密着してオリフィス12を塞ぐ。このため、右方向から流入した冷媒は、多孔質透過材11b、流路33から空間32を通り、オリフィス35を流れて絞られる。従って、図17(b)の状態では、冷媒は絞り装置29によって、第2絞り部であるオリフィス35で絞られることになる。そこで、例えば第2絞り部であるオリフィス35と第1絞り部であるオリフィス12の径や長さ等を異なるように構成し、オリフィス35とオリフィス12の流動抵抗を変えれば、この実施の形態による第2流量制御装置6は、図17(a)、(b)、(c)のように、冷媒の流れ方向によって、3通りの絞り量で冷媒を流すことができる。
【0065】
冷凍サイクル上での動作は実施の形態1と同様であり、通常冷房運転および通常暖房運転時は、第2流量制御装置6の開閉弁8を開けて図17(a)のように冷媒を流して、ほとんど圧損がない状態にする。冷房除湿運転時は、開閉弁8を閉じ、図17(b)のように冷媒を流す。この時、第2室内熱交換器7での冷媒の蒸発温度が冷房除湿運転時に最適な絞り量になるように、絞り装置29のオリフィス12の断面積と長さを設定する。暖房除湿運転時は、流れ方向が逆になるため図17(c)のように冷媒は流れる。この時、流動抵抗を、オリフィス12の流動抵抗<オリフィス35の流動抵抗となるように構成すれば、冷房除湿運転時よりも絞り量が多くなる。そこで、第1室内熱交換器5の冷媒の蒸発温度が暖房除湿運転時に最適になるように、オリフィス35の内径と長さを設定する。
この流量制御装置6を空気調和装置の第2流量制御装置6として用いることで、外気温条件、冷房シーズン、暖房シーズンに関わらずに、必要とされる空調負荷に応じて冷房再熱除湿運転と暖房再熱除湿運転を切り換えれば、室温を制御(低下、同等、上昇)しながらの除湿を行うことができる。
【0066】
ここで、流路33の径や長さをオリフィス12の径や長さよりも小さく構成すると流路33でも冷媒を絞ることになる。即ち、冷媒が図18(a)のように流れる場合には、冷媒をオリフィス12と流路33で絞り、冷媒が図18(b)のように流れる場合には、冷媒をオリフィス35と流路33で絞る。このように構成しても、オリフィス35とオリフィス12の流動抵抗を変えれば、A方向とB方向の流れ方向で、絞り量の異なる絞り装置29を得ることができる。
この場合には、第2室内熱交換器7での冷媒の蒸発温度が冷房除湿運転時に最適な絞り量になるように、オリフィス12の断面積及び流路33の内径と長さを設定する。また、暖房除湿運転時には第1室内熱交換器5の冷媒の蒸発温度が暖房除湿運転時に最適なように、オリフィス35の内径と長さ及び流路33の内径と長さを設定する。
【0067】
従来装置では冷房除湿運転時に、絞り装置29のオリフィス12を気液二相冷媒が通過する際には騒音が発生するが、この実施の形態による絞り装置29では、オリフィス12の前後に多孔質透過材11a、11bを設けているため、気液二相冷媒が通過する際に発生する冷媒流動音を大幅に低減できる。また、暖房除湿運転時においても同様、絞り装置29のオリフィス35で絞られた冷媒は、多孔質透過材11a、11bを通るため、冷媒流動音を大幅に低減できる。従って従来装置では流量制御装置6の周囲に遮音材や制振材を巻きつけるなどの対策が必要であったが、この実施の形態による流量制御装置6においては不要となり、コストを低減でき、さらに空気調和装置のリサイクル性も向上する。
【0068】
また、実施の形態3と同様、この実施の形態における第2流量制御装置6は、実施の形態2における第1、第2絞り装置を一体化して構成しているため、実施の形態2における第2流量制御装置6よりも小型化できる利点を有する。
また、その構成から、実施の形態3における第2流量制御装置6よりもさらに小型化できる。
【0069】
また、絞り装置29は図19のように構成してもよい。この構成では、オリフィス35を稼動弁34の中央に設ける代わりに、弁体18のオリフィス12を設けていない部分に設けている。動作及び作用効果は、図18の構成と同様である。また、図20のように、オリフィス12に溝36を設けても同様の効果を得る。ただし、図19(b)、図20(b)において、稼動弁34が向かって左に移動して開口を塞ぐ際、オリフィス35または溝36は稼動弁34に塞がれることなく、冷媒が流れるように構成する必要がある。
さらに図18、図19のオリフィス35や図20の溝36は、複数設けてもよいが、絞り量を増減するので、流動抵抗が設定値内になるように考慮する必要がある。
【0070】
なお、実施の形態1〜実施の形態4では、多孔質透過材11a、11bは、例えば通気孔の径を100μmから500μmで厚さを1mmから10mmとし、例えばNiまたはNi−Crまたはステンレスからなる発泡金属を使用している。
なお、多孔質透過材は発泡金属に限るものではなく、金属の粉末を焼結した焼結金属、またはセラミックスの多孔質透過材、または金網や、金網を数枚重ねたもの、また金網を数枚重ねて焼結した焼結金網や積層金網でも同様の効果を得る。
また、冷媒を通過させる多孔質透過材11a、11bは、第1絞り部であるオリフィス12と第一接続流路9a間、及びオリフィス12と第二接続流路9bの間の少なくともいずれか一方の流路に設ければ、ある程度の低騒音効果はある。さらに、多孔質透過材11a、11bを設けているために、第2流量制御装置6を構成する配管をある程度曲げても、曲げたことによって生じる冷媒流動音を吸収できる。このため、第2流量制御装置6を室内ユニット52に格納する際、その室内ユニット52の空きスペースに合わせて格納することができ、組み立てやすくなる。
【0071】
また、実施の形態1〜実施の形態4において、第2流量制御装置6を構成する配管16a、16bで、絞り流路16bの内径を連通流路16aの内径よりも小さく構成すると、装置6自体を小さくすることができる。ただし、絞り流路16bの内径を連通流路16aの内径と比べて小さくしすぎると、その部分で冷媒流動音を発生することになるので、冷媒流動音を発生しない程度の配管径の差で構成するのが好ましい。
【0072】
また、冷媒回路中の異物の問題も多孔質透過材11a、11bの通気孔の径を一般的な冷媒回路で使用されるフィルターよりも大きい100μm〜500μmとすることにより、詰まることがなく、安定した動作を行うことができる。
【0073】
また、流量制御装置6の設置方向は冷媒の流れに対して水平、垂直、斜めのどの設置方法でもよく、同様の効果がある。また垂直、斜め設置の場合、冷媒は下から上、上から下のどちらの方向から流してもよい。
【0074】
冷凍サイクル装置の冷媒として、HFC系冷媒のR410Aを用いた。この冷媒はオゾン層を破壊しない地球環境保全に適した冷媒であると共に、従来冷媒として用いられてきたR22に比べて、冷媒蒸気密度が大きく冷媒の流速が速くなるため圧力損失が小さく、第2流量制御装置6の絞り部に配置する多孔質透過材の孔径を小さくでき、より一層冷媒流動音を低減できる。
ただし、冷媒としてR410Aに限るものではなく、HFC系冷媒であるR407CやR404A、R507Aであっても良い。また、地球温暖化防止の観点から、地球温暖化係数の小さなHFC系冷媒であるR32単独、R152a単独、またはR32/R134aなどの混合冷媒であっても良い。
また、プロパンやブタン、イソブタンなどのHC系冷媒やアンモニア、二酸化炭素、エーテルなどの自然系冷媒およびそれらの混合冷媒であっても良い。特に、プロパンやブタン、イソブタンおよびそれらの混合冷媒はR410Aに比べて動作圧力が小さく、凝縮圧力と蒸発圧力の圧力差が小さいため、オリフィスの内径を大きくすることが可能であり、詰まりに対する信頼性をさらに向上させることができる。
【0081】
【発明の効果】
以上のように、この発明の請求項に関わる絞り装置によれば、一端が第一流路、他端が第二流路に接続されて流路に配設される筐体と、この筐体内を流れる流体を減圧して通過させる第1絞り部を有する弁体と、前記第1絞り部と第一流路の間および前記第1絞り部と第二流路の間の少なくともいずれか一方に隙間を設けて配設された前記流体を通過させる多孔質透過材と、前記筐体内を流れる流体の流れ方向に稼動する稼動弁と、前記稼動弁と前記第二流路の間に設け流路を有する仕切板と、前記稼動弁または前記弁体に設けた第2絞り装置と、を備え、前記第1絞り部および第2絞り部を、前記多孔質透過材の通気孔を通過して整流された蒸気冷媒と液冷媒が同時に通過するオリフィスとするとともに、前記第一流路から前記第二流路方向へ流体が流れる時、前記稼動弁は前記仕切板で停止して前記流体は第1絞り部及び前記仕切板の流路を流れ、前記第二流路から前記第一流路方向へ流体が流れる時、前記稼動弁は前記弁体で停止して前記第1絞り部を塞ぎ、前記流体は第2絞り部を流れることにより、流体の流れ方向で絞り量を異なるように構成したことにより、小型で、低騒音で、正逆の流れ方向で異なる絞り量に設定できるという効果が得られる。
【0082】
また、この発明の請求項に関わる流量制御装置によれば、第一流路と第二流路を連通する連通流路と、この連通流路に並列に請求項記載の絞り装置を接続して成る絞り流路と、前記連通流路と前記絞り流路を切換える切換手段と、を備え、流体が前記絞り流路の前記第一流路から前記第二流路へ流れる時、前記絞り装置の第1絞り部で減圧し、流体が前記絞り流路の前記第二流路から前記第一流路へ流れる時、前記絞り装置の第2絞り部または前記第2絞り部と前記第1絞り部で減圧して、前記絞り流路の流体の流れ方向で絞り量が異なるように構成したことにより、小型で、低騒音で、第一、第二流路を連通する場合と絞り部を介する場合とを切り替えることができ、さらに正逆の流れ方向で異なる絞り量に設定できるという効果が得られる。
【0083】
また、この発明の請求項に関わる空気調和装置によれば、圧縮機、室外熱交換器、第1流路制御装置、第1室内熱交換器、第2流量制御装置、第2室内熱交換器を順次接続した冷凍サイクルを備え、請求項に記載の流量制御装置を前記第2流量制御装置とし、第1、第2室内熱交換器を共に蒸発器または凝縮器として運転する際、前記第2流量制御装置は連通流路を介して第1、第2室内熱交換器を接続するようにし、第1、第2室内熱交換器のうちの一方を蒸発器、他方を凝縮器として運転する際、前記第2流量制御装置は絞り流路を介して第1、第2室内熱交換器を接続するように前記切換手段を切換えるように構成したことにより、低騒音で安定的に冷媒の流動抵抗を制御し、冷房再熱除湿運転制御及び暖房再熱除湿運転制御に対応できるという効果が得られる。
【0084】
また、この発明の請求項に関わる空気調和装置によれば、第1室内熱交換器を蒸発器とし第2室内熱交換器を凝縮器とする暖房再熱除湿運転での第2流量制御装置の絞り量を、第1室内熱交換器を凝縮器とし第2室内熱交換器を蒸発器とする冷房再熱除湿運転での絞り量よりも大きくしたことにより、低騒音で、流量を効率よく制御でき、シーズンに関らず冷房再熱除湿運転、暖房再熱除湿運転を制御性よく運転できるという効果が得られる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による空気調和装置を示す冷媒回路図である。
【図2】 実施の形態1に係る第2流量制御装置を示す回路構成図である。
【図3】 実施の形態1に係る絞り装置を示す断面図である。
【図4】 実施の形態1に係わる空気調和装置の冷房除湿運転時の動作状態を表す特性図である。
【図5】 実施の形態1に係わる空気調和装置の暖房除湿運転時の動作状態を表す特性図である。
【図6】 実施の形態1に係わる空気調和装置の暖房除湿運転時の他の動作状態を表す特性図である。
【図7】 実施の形態1に係わる空気調和装置の他の例を示す冷媒回路図である。
【図8】 この発明の実施の形態2に係る第2流量制御装置を示す回路構成図である。
【図9】 実施の形態2に係る絞り装置を示す断面図である。
【図10】 実施の形態2に係る稼動弁を示す平面図である。
【図11】 実施の形態2に係る絞り装置の別の例を示す断面図である。
【図12】 実施の形態2に係る絞り装置のさらに別の例を示す断面図である。
【図13】 この発明の実施の形態3に係る流量制御装置を示す回路構成図である。
【図14】 実施の形態3に係る絞り装置を示す断面図である。
【図15】 実施の形態3に係る絞り装置の他の例を示す断面図である。
【図16】 実施の形態3に係る絞り装置のさらに他の例を示す断面図である。
【図17】 この発明の実施の形態4に係る流量制御装置を示す回路構成図である。
【図18】 実施の形態4に係る絞り装置を示す断面図である。
【図19】 実施の形態4に係る絞り装置の他の例を示す断面図である。
【図20】 実施の形態4に係る絞り装置のさらに他の例を示す断面図である。
【図21】 従来の空気調和装置を示す冷媒回路図である。
【図22】 従来の第2流量制御装置を示す部分断面図である。
【図23】 従来の第2流量制御装置の他の例を示す断面図である。
【図24】 従来の第2流量制御装置のさらに他の例を示す断面図である。
【符号の説明】
1 圧縮機、2 流路切換手段、3 室外熱交換器、4 第1流量制御装置、5 第1室内熱交換器、6 第2流量制御装置、7 第2室内熱交換器、8 切換手段、9a 第一流路、9b 第二流路、10 逆止弁、11a,11b 多孔質透過材、12 第1絞り部、13 第1絞り装置、14 逆止弁、15 キャピラリーチューブ、16a 連通流路、16b 絞り流路、17 筐体、18弁体、19a,19b 空間、20 第2絞り装置、21 筐体、22 弁座、23 稼動弁、24 ストッパ、25 溝、26 第2絞り部、27 溝、28 絞り装置、29 絞り装置、31 仕切板、32 空間、33 流路、34稼動弁、35 第2絞り部、36 溝、51 室外ユニット、52 室内ユニット。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a throttling device that depressurizes a fluid flowing inside and a flow rate control device that controls the flow rate of a refrigerant flowing inside in a refrigeration cycle using heat of condensation or evaporation. In addition, the present invention relates to an air conditioner that performs indoor cooling, heating, and dehumidification using the throttle device and the flow rate control device.
[0002]
[Prior art]
In a conventional air conditioner, a variable capacity compressor such as an inverter is used to cope with fluctuations in the air conditioning load, and the rotational frequency of the compressor is controlled according to the size of the air conditioning load. However, when the compressor rotation is reduced during cooling operation, the evaporation temperature also rises, and the dehumidifying ability in the evaporator decreases, or the evaporation temperature rises above the indoor dew point temperature, which makes it impossible to dehumidify. .
[0003]
The following air conditioner has been devised as means for improving the dehumidifying capacity during the cooling and low capacity operation. FIG. 21 is a refrigerant circuit diagram showing a conventional air conditioner disclosed in, for example, Japanese Patent Application Laid-Open No. 11-51514. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a first flow control device, 5 is a first indoor heat exchanger, 6 is a second flow control device, and 7 is a second chamber. These are heat exchangers, which are sequentially connected by piping to constitute a refrigeration cycle. Reference numeral 9 a denotes a first flow path connection pipe that is a flow path on one side of the second flow rate control device 6, and reference numeral 9 b denotes a second flow path connection pipe that is a flow path on the other side of the second flow rate control apparatus 6. Furthermore, the first flow rate control device 4 has a configuration in which a main throttle device 41 and a two-way valve 42 are connected in parallel. This air conditioner is arranged separately into an outdoor unit 51 and an indoor unit 52.
[0004]
Next, the operation of the conventional air conditioner will be described. In the cooling operation, the two-way valve 42 is closed and the second flow control device 6 is fully opened. The refrigerant exiting the compressor 1 passes through the four-way valve 2, is condensed and liquefied by the outdoor heat exchanger 3, and flows into the first flow rate control device 4. Since the two-way valve 42 is closed, the pressure is reduced by the main throttle device 41 and evaporated in the indoor heat exchangers 5 and 7, and then returns to the compressor 1 through the four-way valve 2 again. In the heating operation, the two-way valve is closed, the second flow rate control device 6 is fully opened, and the refrigerant flow in the four-way valve 2 is switched. The refrigerant that has exited the compressor 1 passes through the four-way valve 2, contrary to the cooling operation, condenses and liquefies in the indoor heat exchangers 7 and 5, and flows into the first flow control device 4. Since the two-way valve 42 is closed, the pressure is reduced by the main throttle device 41, evaporated in the outdoor heat exchanger 3, and returns to the compressor 1 through the four-way valve 2 again.
[0005]
On the other hand, during the dehumidifying operation in the cooling operation and the heating operation, the main throttle device 41 of the first flow rate control device 4 is closed, the two-way valve 42 is opened, and the refrigerant flow rate is controlled by the second flow rate control device 6. With this configuration, for example, one of the first indoor heat exchanger 5 and the second indoor heat exchanger 7 operates as a condenser, that is, a reheater, and the other operates as an evaporator. Since the indoor air is cooled and dehumidified by the evaporator and heated by the reheater, the dehumidifying operation for reducing the humidity without reducing the temperature of the air blown into the room is possible. Hereinafter, such an operation is referred to as a reheat dehumidifying operation.
FIG. 22 is a partial cross-sectional view showing a second flow rate control device 6 of a conventional air conditioner. In the second flow rate control device 6, an orifice-shaped throttle channel composed of a plurality of cut grooves 43 and a valve body 44 is provided.
[0006]
[Problems to be solved by the invention]
In the conventional air conditioner as described above, as the second flow rate control device 6 installed in the indoor unit 52, a flow rate control device having an orifice-like throttle channel as shown in FIG. 22 is usually used. . In particular, during the dehumidifying operation, the inlet of the second flow rate control device 6 becomes a gas-liquid two-phase refrigerant, which causes a problem that the flow noise of the refrigerant passing through the orifice of the second flow rate control device 6 becomes large. This flowing sound causes the indoor environment to deteriorate, and additional measures such as providing a sound insulating material and a vibration damping material around the second flow rate control device 6 are required, resulting in an increase in cost, deterioration in installability, and deterioration in recyclability. There were also problems such as.
[0007]
Moreover, in the flow control device 6 of the conventional air conditioner, the flow rate can be controlled only by the flow in one direction from the first flow path connection pipe 9a to the second flow path connection pipe 9b. Because of this state, there was a problem that heating reheat dehumidification operation could not be performed. There is also a problem that the range of temperature control becomes very narrow because the amount of restriction in controlling the flow rate is fixed.
[0008]
Japanese Patent Application No. 12-127778 discloses a refrigerant flow noise reduction measure for the second flow control device during the dehumidifying operation. A sectional view of the second flow rate control device 6 is shown in FIG. As shown in the figure, a porous permeable material 11 is sandwiched before and after the orifice 12, and the gas-liquid two-phase refrigerant is rectified by the porous permeable material 11 so as to reduce generated noise. The second flow rate control device 6 is effective in reducing the refrigerant flow noise. For the normal cooling operation and the normal heating operation in which the refrigerant flows with almost no pressure loss, the second flow rate control device 6 is separately provided as shown in FIG. An on-off valve 45 is provided, and the flow rate is controlled by opening and closing the on-off valve 45. When this flow rate control device 6 is connected to a pipe as shown in the figure, the flow rate can be controlled only in one direction from the first flow path connection pipe 9a to the second flow path connection pipe 9b. There was a problem that reheat dehumidification operation was not possible.
[0009]
The present invention has been made in order to solve the above-described problems. In the throttle device and the flow rate control device, which are constituent devices of a refrigeration cycle device that uses condensation heat or evaporation heat, the flow of refrigerant An object of the present invention is to obtain a throttle device and a flow rate control device that are suitable for control, can reduce the refrigerant flow noise, and can set different throttle amounts for the refrigerant flow in the forward and reverse directions.
In addition, the present invention provides an air conditioner that uses the heat of condensation of the refrigeration cycle as a heating source for indoor air, and enhances controllability of temperature and humidity during cooling, dehumidification, heating, and each operation, It aims at obtaining the air conditioning apparatus which can reduce a refrigerant | coolant flow noise while implement | achieving a reheat dehumidification driving | operation regardless of a season.
[0016]
[Means for Solving the Problems]
Claims of the invention 1 A throttling device according to the present invention includes a casing having one end connected to the first flow path and the other end connected to the second flow path and disposed in the flow path, and a first throttling section that allows the fluid flowing in the casing to pass under reduced pressure. And a porous body through which the fluid disposed with a gap is provided between at least one of the first throttle part and the first flow path and between the first throttle part and the second flow path. A permeable material, an operating valve that operates in a flow direction of the fluid that flows in the housing, a partition plate having a flow path provided between the operating valve and the second flow path, and the operating valve or the valve body. A second throttle device provided, wherein the first throttle part and the second throttle part are orifices through which the vapor refrigerant and the liquid refrigerant rectified through the vent holes of the porous permeation material simultaneously pass. At the same time, when the fluid flows from the first flow path to the second flow path, the operating valve The fluid stops at the plate and the fluid flows through the flow path of the first restrictor and the partition plate, and when the fluid flows from the second flow path toward the first flow path, the operating valve stops at the valve body. The first restricting portion is closed, and the fluid flows through the second restricting portion, so that the restricting amount is different depending on the fluid flow direction.
[0017]
Further, the claims of the present invention 2 The flow rate control device according to claim 1 is a communication channel that communicates the first channel and the second channel, and is in parallel with the communication channel. 1 And a switching means for switching between the communication channel and the throttle channel, and the fluid flows from the first channel to the second channel of the throttle channel. When flowing, the pressure is reduced by the first throttle portion of the throttle device, and when the fluid flows from the second channel of the throttle channel to the first channel, the second throttle unit or the second throttle unit of the throttle device The pressure is reduced by the first restricting portion, and the amount of restriction differs depending on the fluid flow direction of the restricting flow path.
[0018]
Further, the claims of the present invention 3 The air conditioner according to the present invention includes a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow path control device, a first indoor heat exchanger, a second flow rate control device, and a second indoor heat exchanger are sequentially connected, Claim 2 When the second flow control device is operated as an evaporator or a condenser together with the first and second indoor heat exchangers, the second flow control device is connected to the second flow control device via the communication channel. 1. When the second indoor heat exchanger is connected and one of the first and second indoor heat exchangers is operated as an evaporator and the other as a condenser, the second flow rate control device is a throttle channel. The switching means is configured to be switched so that the first and second indoor heat exchangers are connected via the switch.
[0019]
Further, the claims of the present invention 4 The air conditioner according to the present invention uses the first indoor heat exchanger for the throttle amount of the second flow control device in the heating reheat dehumidification operation using the first indoor heat exchanger as an evaporator and the second indoor heat exchanger as a condenser. It is characterized in that it is larger than the amount of throttling in the cooling reheat dehumidification operation in which the condenser is the condenser and the second indoor heat exchanger is the evaporator.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a refrigerant circuit diagram showing an air-conditioning apparatus according to Embodiment 1 of the present invention. The air conditioner performs indoor cooling and heating using the heat of condensation or evaporation of the refrigeration cycle. In the figure, 1 is a compressor, 2 is a flow path switching means for switching the flow of refrigerant in cooling operation and heating operation, for example, a four-way valve, 3 is an outdoor heat exchanger, 4 is a first flow control device, and 5 is a first room. A heat exchanger, 6 is a second flow control device, and 7 is a second indoor heat exchanger, which are sequentially connected by piping to constitute a refrigeration cycle. R410A, which is a mixed refrigerant of R32 and R125, is used as the refrigerant of this refrigeration cycle, and alkylbenzene oil is used as the refrigerator oil.
[0021]
FIG. 2 is a circuit configuration diagram showing the second flow rate control device 6, and (a), (b), and (c) each show an operating state. In the figure, 8 is a switching means, for example, an on-off valve, 9a is a first flow path, here is a first flow path connection pipe, 9b is a second flow path, here is a second flow path connection pipe, 13 is a throttle device, and 14 is the reverse A stop valve, 15 is a capillary tube, and 16a and 16b are pipes constituting the flow path. The first flow path connection pipe 9a is divided into two flow paths, a communication flow path 16a and a throttle flow path 16b, and the open / close valve 8 is connected to one of the communication flow paths 16a. When the fluid flows through 16a and is closed, the refrigerant flows through the throttle channel 16b. The throttle channel 16b is connected to a throttle device 13 having a first throttle unit and a capillary tube 15 serving as a second throttle unit. Further, the check valve 14 is connected in parallel to the capillary tube 15, and the pipe 16 b joins the pipe 16 a from the on-off valve 8. The check valve 14 is installed so as to allow the fluid to pass through the flow direction from the first flow path connection pipe 9a to the second flow path connection pipe 9b, that is, the A direction as a forward direction, and to prevent the flow in the B direction.
Here, the communication channel is a channel in which the pressure loss of the fluid is almost zero, and the communication between the first channel and the second channel means that the pressure loss between the first channel and the second channel. Is to be connected in a state of almost zero.
[0022]
FIG. 3 is a cross-sectional view showing the throttle device 13, in which 11a and 11b are porous permeable materials, 12 is an orifice serving as a first throttle portion, 17 is a housing, and 18 is a valve body. The porous permeable materials 11 a and 11 b are fixed to the valve body 18. The porous permeable materials 11a and 11b have a pore diameter of, for example, about 500 μm, and are disposed in the flow path between the orifice 12 and the pipe 16b. And refine the vapor bubbles. The material is, for example, foam metal. After applying metal powder or alloy powder to urethane foam, heat treatment is performed to burn away the urethane foam, and the metal is formed into a three-dimensional lattice. ). In order to increase the strength, Cr (chromium) may be plated. And the shape is disk shape or polygonal shape, and has a certain amount of thickness in a flow-path direction.
[0023]
Further, a step is provided between the porous permeable materials 11a and 11b and the orifice 12 so that constant gaps 19a and 19b are generated. The gaps 19a and 19b are set between 0 and 3 mm, for example. The porous permeable materials 11a and 11b have a thickness of 1 mm to 5 mm and a passage area of 70 mm. 2 ~ 700mm 2 Is set to The valve body 18 provided with the porous permeable material 11a, the orifice 12, and the porous permeable material 11b is press-fitted into the housing 17 and fixed.
[0024]
When the on-off valve 8 is opened and the refrigerant flows in the direction A as shown in FIG. 2A, the refrigerant almost flows into the communication channel 16a, and the refrigerant flowing inside the flow control device 6 has almost no pressure loss. Become. On the other hand, the same applies if the refrigerant is flowed in the B direction. Next, when the on-off valve 8 is closed and the refrigerant flows in the direction A as shown in FIG. 2B, the refrigerant flows into the throttle channel 16 b and is decompressed by the throttle device 13. At this time, the check valve 14 is installed in the direction in which there is no pressure loss, so that the refrigerant hardly flows into the capillary tube 15. Next, when the refrigerant flows in the direction B with the on-off valve 8 closed, the refrigerant flows in the throttle channel 16b as shown in (c), but does not flow in the check valve 14, but flows in the capillary tube 15 in its entirety. . This refrigerant is decompressed by the capillary tube 15 and further decompressed through the orifice 12 of the expansion device 13. That is, when the refrigerant flows as shown in (b), it is throttled by the orifice 12 in the throttle device 13, and when the refrigerant flows as shown in (c), it is throttled by the orifice 12 in the capillary tube 15 and the throttle device 13. It is done. As described above, the second flow rate control device 6 according to this embodiment can change the throttle amount of the refrigerant according to the refrigerant flow direction.
[0025]
Next, the operation of the refrigeration cycle of the air conditioner according to this embodiment will be described. In FIG. 1, the flow of the refrigerant during cooling is indicated by solid line arrows. In the cooling operation, normal cooling operation corresponding to the case where both the air conditioning sensible heat load and the latent heat load of the room are large at the time of start-up and summer, and the air conditioning sensible heat load is small but the latent heat load is large, such as in the intermediate period and the rainy season There is a cooling and dehumidifying operation corresponding to the case. In the normal cooling operation, the on-off valve 8 of the second flow rate control device 6 is opened, the refrigerant flows as shown in FIG. 2A, and the space between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 is almost the same. Connect with no pressure loss.
[0026]
At this time, the high-temperature and high-pressure vapor refrigerant that has exited the compressor 1 that is operated at the rotational speed corresponding to the air conditioning load passes through the four-way valve 2 and is condensed and liquefied by the outdoor heat exchanger 3. Then, the pressure is reduced by the first flow control device 4 to form a low-pressure two-phase refrigerant, which flows into the first indoor heat exchanger 5 and evaporates. Furthermore, it passes through the second flow rate control device 6 with almost no pressure loss, and again evaporates and vaporizes in the second indoor heat exchanger 7, becomes low-pressure vapor refrigerant, and returns to the compressor 1 through the four-way valve 2 again.
[0027]
In this normal cooling operation, the second flow rate control device 6 is in a state where there is almost no pressure loss, so that the cooling capacity and efficiency do not decrease. Further, the first flow rate control device 4 is controlled so that the superheat degree of the refrigerant becomes 10 ° C., for example, in the suction portion of the compressor 1. In such a refrigeration cycle, both the indoor heat exchangers 5 and 7 operate as evaporators, and the heat is taken away from the room by evaporating the refrigerant. And the outdoor heat exchanger 3 operate | moves as a condenser, and discharge | releases the heat | fever which was taken indoors here because a refrigerant | coolant condenses here. Thereby, indoor cooling is performed.
[0028]
FIG. 4 is a characteristic diagram showing an operating state during the cooling and dehumidifying operation, and is a pressure-enthalpy diagram. The operation during the cooling and dehumidifying operation will be described with reference to FIG. Note that points A to G shown in FIG. 4 indicate the state of the refrigerant at the points A to G shown in FIG. 1 corresponding to the respective English letters. During this cooling and dehumidifying operation, the on-off valve 8 of the second flow rate control device 6 is closed and the refrigerant flows as shown in FIG.
[0029]
At this time, the high-temperature and high-pressure vapor refrigerant that has exited the compressor 1 that is operated at a rotational speed corresponding to the air conditioning load passes through the four-way valve 2 (point A) and exchanges heat with the outside air in the outdoor heat exchanger 3. And condensed into a gas-liquid two-phase refrigerant (point B). The high-pressure two-phase refrigerant is slightly depressurized by the first flow control device 4 and becomes a gas-liquid two-phase refrigerant having an intermediate pressure and flows into the first indoor heat exchanger 5 (point C). The first indoor heat exchanger exchanges heat with room air and further condenses (point D). The gas-liquid two-phase refrigerant that has flowed out of the first indoor heat exchanger 5 flows into the second flow rate control device 6.
[0030]
At this time, the refrigerant passing through the expansion device 19 of the second flow control device 6 is depressurized by the orifice 12 to become a low-pressure gas-liquid two-phase refrigerant and flows into the second indoor heat exchanger 7 (point E). The refrigerant flowing into the second indoor heat exchanger 7 takes away sensible heat and latent heat of the room air and evaporates. The low-pressure vapor refrigerant (point F) leaving the second indoor heat exchanger 7 passes again through the four-way valve 2 (point G) and returns to the compressor 1. In this cooling and dehumidifying operation, the room air is heated by the first indoor heat exchanger 5 operating as a condenser and cooled and dehumidified by the second indoor heat exchanger 7 operating as an evaporator. Dehumidification can be performed while preventing. Such a cooling and dehumidifying operation is also referred to as a cooling and reheating dehumidifying operation because the first indoor heat exchanger 5 is used as a reheater.
[0031]
In this dehumidifying operation, the amount of heat exchange of the outdoor heat exchanger 3 is controlled by adjusting the rotational frequency of the compressor 1 and the fan rotational speed of the outdoor heat exchanger 3, and the indoor heat by the first indoor heat exchanger 5 is controlled. The blowing temperature can be controlled over a wide range by controlling the heating amount of air. Moreover, the opening degree of the first flow control device 4 and the fan rotation speed of the first indoor heat exchanger 5 are controlled to control the condensation temperature of the first indoor heat exchanger 5. The heating amount of air can also be controlled. Further, the second flow rate control device 6 is controlled so that the superheat degree of the refrigerant becomes 10 ° C., for example, in the suction portion of the compressor 1.
[0032]
In FIG. 1, the flow of the refrigerant during heating is indicated by a dotted arrow. Heating operation includes normal heating operation and heating dehumidification operation. At this time, the four-way valve 2 is connected as indicated by a dotted line to form a flow path.
In the normal heating operation, the on-off valve 8 of the second flow control device 6 is opened, and the first indoor heat exchanger 5 and the second indoor heat exchanger 7 are connected with almost no pressure loss.
[0033]
At this time, the compressor 1 is operated at a rotational speed corresponding to the air conditioning load. The high-temperature and high-pressure vapor refrigerant leaving the compressor 1 passes through the four-way valve 2 and is condensed and liquefied by the second indoor heat exchanger 7. Then, it passes through the second flow rate control device 6 with almost no pressure loss and is liquefied again by the first indoor heat exchanger 5. Further, the pressure is reduced by the first flow rate control device 4 to become a low-pressure two-phase refrigerant, flows into the outdoor heat exchanger 3 to be evaporated, and becomes low-pressure vapor refrigerant to return to the compressor 1 through the four-way valve 2 again.
[0034]
In this normal heating operation, the second flow rate control device 6 is in a state where there is almost no pressure loss. Further, the first flow rate control device 4 is controlled so that the superheat degree of the refrigerant becomes 10 ° C., for example, in the suction portion of the compressor 1. In such a refrigeration cycle, the outdoor heat exchanger 3 operates as an evaporator, and heat is taken away from the outdoors by evaporating the refrigerant. Both the indoor heat exchangers 7 and 5 operate as condensers, and here, the refrigerant condenses and releases the heat taken outside the room into the room. Thereby, indoor heating is performed.
[0035]
FIG. 5 is a characteristic diagram showing an operating state during the heating and dehumidifying operation, and is a pressure-enthalpy diagram. The operation of the heating / dehumidifying operation will be described with reference to FIG. The points A to G in FIG. 5 indicate the state of the refrigerant at the points A to G shown in FIG. 1 corresponding to the respective English letters. During the heating and dehumidifying operation, the on-off valve 8 is closed and the state shown in FIG. 2C is established, and the flow of refrigerant is opposite to that during the cooling and dehumidifying operation.
[0036]
The refrigerant discharged from the compressor 1 and passing through the four-way valve 2 is condensed by exchanging heat with indoor air in the second indoor heat exchanger 7 from the point F to become a gas-liquid two-phase refrigerant or liquid refrigerant (point E). It flows into the second flow control valve 6. The refrigerant passing through the orifice 12 of the second flow control device 6 is depressurized and flows into the first indoor heat exchanger 5 as a point D. The refrigerant flowing into the first indoor heat exchanger 5 takes away sensible heat and latent heat of the room air and evaporates. Thereafter, the refrigeration cycle passes through the point C, passes through the first flow rate control device 4, and returns to the outdoor heat exchanger 3 and the suction side (point G) of the compressor 1. In this example, the state where the supercooling is applied at the point E has been described. However, depending on the operation state, the supercooling may not be applied, and the dotted line in FIG. The first flow rate control device 4 is fully open so that no pressure loss occurs.
[0037]
In this operation, in order for the refrigerant to evaporate and dehumidify in the first indoor heat exchanger 5, the evaporation temperature in the first indoor heat exchanger 5 must be lower than the dew point temperature of the indoor air. The evaporation temperature may be controlled by adjusting the temperature or adjusting the rotation speed of the compressor so as to be equal to or lower than the dew point temperature of the room air. As a result, in the indoor unit 52, the air cooled and dehumidified by the first indoor heat exchanger 5 and the air heated by the second indoor heat exchanger 7 are mixed and blown out regardless of the outside air temperature condition. In the case of FIG. 5, if the evaporation temperature in the first indoor heat exchanger 5 becomes too low and the indoor blowing temperature is too low, the first flow control device 4 is adjusted to evaporate as shown in FIG. The temperature can also be adjusted.
[0038]
In such heating and dehumidifying operation, the room air is heated by the second indoor heat exchanger 7 operating as a condenser and cooled and dehumidified by the first indoor heat exchanger 5 operating as an evaporator. Dehumidification can be performed while preventing a decrease. Such a heating dehumidifying operation is also referred to as a heating reheat dehumidifying operation because the second indoor heat exchanger 7 is used as a reheater. By performing the heating reheat dehumidification operation, it is possible to perform dehumidification without causing a decrease in room temperature or dehumidification while raising the room temperature.
[0039]
In other words, regardless of the outside air temperature condition, cooling season, and heating season, the room temperature can be controlled (decreased, equivalent, increased) by switching between the cooling reheat dehumidification operation and the heating reheat dehumidification operation according to the required air conditioning load. ) Can be dehumidified.
[0040]
Since the second flow rate control device 6 of this embodiment can control the flow rate even when the refrigerant flow is reversed, both the cooling reheat dehumidification and the heating reheat dehumidification can be realized. In addition, according to the pressure-enthalpy curve in FIG. 4, the refrigerant is in a gas-liquid two-phase state at the inlet (point D) of the flow control device 5 during the cooling and dehumidifying operation. The inlet (point E) of the flow control device 6 may be in a liquid state. When the refrigerant passes through the orifice having the same cross-sectional area, the pressure loss is larger in the gas-liquid two-phase state than in the liquid state. For this reason, in order to flow a predetermined amount of refrigerant, it is necessary to make the throttle amount during the heating and dehumidifying operation larger than that during the cooling and dehumidifying operation. In the flow control device 6 according to this embodiment, the amount of decompression of the refrigerant can be set differently depending on the flow direction of the refrigerant. For this reason, it is possible to change the throttle amount between the cooling and dehumidifying operation and the heating and dehumidifying operation, and the optimum dehumidifying operation can be controlled.
[0041]
A specific example of a configuration in which the throttle amount of the flow control device 6 is set to be different will be described. For example, during normal cooling operation and normal heating operation, the flow control device 6 is opened as shown in FIG. 2A by opening the on-off valve 8 so that there is almost no pressure loss. Next, during the cooling and dehumidifying operation, the on-off valve 8 is closed to the state shown in FIG. At this time, the cross-sectional area of the orifice 12 of the expansion device 13 is set so that the evaporation temperature of the refrigerant in the second indoor heat exchanger 7 becomes an optimal expansion amount during the cooling and dehumidifying operation. Next, during the heating and dehumidifying operation, the flow direction is reversed, and the state shown in FIG. At this time, since the refrigerant flows through the capillary tube 15 and the expansion device 13, the amount of expansion becomes larger by the amount of expansion in the capillary tube 15 than in the cooling and dehumidifying operation. Therefore, the cross-sectional area and length of the orifice 12 and the cross-sectional area and length of the capillary tube 15 are set so that the evaporation temperature of the refrigerant in the first indoor heat exchanger 5 becomes the optimum throttle amount during the heating and dehumidifying operation.
[0042]
Normally, noise is generated when the gas-liquid two-phase refrigerant passes through the orifice 12, but in the throttling device 13 according to this embodiment, the porous permeable materials 11a and 11b are provided in the throttling flow path 16b before and after the orifice 12. Therefore, the refrigerant flow noise generated when the gas-liquid two-phase refrigerant passes can be greatly reduced. That is, the gas-liquid two-phase state or liquid state refrigerant flowing into the second flow rate control device 6 from the first flow path connecting pipe 9a passes through the fine and innumerable ventilation holes of the porous permeable material 11a and the flow is rectified. . For this reason, steam slag (large bubbles) such as slag flow in which gas and liquid flow intermittently becomes small bubbles and the flow state of the refrigerant becomes a homogeneous gas-liquid two-phase flow in which the vapor refrigerant and the liquid refrigerant are well mixed. The vapor refrigerant and the liquid refrigerant pass through the orifice 12 at the same time. For this reason, speed fluctuation does not occur and pressure does not fluctuate. Further, the high-speed gas-liquid two-phase jet downstream of the orifice 12 is sufficiently slowed down in the flow velocity of the refrigerant and the velocity distribution is made uniform by the porous permeable material 11b. No vortex is generated in the flow, and jet noise can be reduced.
Therefore, in the conventional apparatus, measures such as winding a sound insulating material or a vibration damping material around the flow control device 6 were necessary. However, the flow control device 6 according to this embodiment is unnecessary and reduces the cost, and further air conditioning. The recyclability of the equipment is also improved.
Furthermore, since the space 19a between the porous permeable material 11a and the orifice 12, and the space 19b between the porous permeable material 11b and the orifice 12, most of the porous permeable materials 11a and 11b become refrigerant flow paths. The function as a diaphragm device can be maintained and reliability can be ensured.
[0043]
In this embodiment, the configuration in which the refrigerant is allowed to flow also to the outdoor heat exchanger 3 during the heating reheat dehumidifying operation has been described. However, as shown in FIG. 7, the refrigerant discharged from the first indoor heat exchanger 5 is used for the outdoor heat exchange. A bypass circuit that bypasses the compressor 3 and is directly sucked into the compressor 1 via the flow rate control device 10 may be added. By adding this bypass circuit, the evaporation temperature in the first indoor heat exchanger 5 can be controlled regardless of the outside air temperature, and the dehumidifying ability can be controlled more stably.
[0044]
Embodiment 2. FIG.
FIG. 8 is a circuit configuration diagram showing a second flow rate control device 6 according to Embodiment 2 of the present invention, and (a), (b), and (c) each show an operating state. In the figure, 8 is a switching means, for example, an on-off valve, 9a is a first flow path, here a first flow path connection pipe, 9b is a second flow path, here a second flow path connection pipe, and 13 has a first restrictor. A first throttle device, 16a and 16b are pipes constituting the flow path, and 20 is a second throttle device having a second throttle part. The first flow path connection pipe 9a is divided into two flow paths, a communication flow path 16a and a throttle flow path 16b, and the open / close valve 8 is connected to one of the communication flow paths 16a. When the fluid flows through 16a and is closed, the refrigerant flows through the throttle channel 16b. A throttling device 13 having a first throttling portion and a second throttling device 20 having a second throttling portion are connected in series to the throttling flow path 16b. The pipe 16b joins the pipe 16a from the on-off valve 8 and connects to the second flow path connection pipe 9b.
[0045]
The first diaphragm 13 has the same configuration as the diaphragm 13 shown in FIG. 3 of the first embodiment, and the operation is also the same. However, the first throttling device 13 in this embodiment does not have a connection portion with the capillary tube 15 in the configuration of the first embodiment. As shown in FIG. 3, the porous permeable materials 11 a and 11 b are fixed to the valve body 18. Further, a step is provided between the porous permeable materials 11a and 11b and the orifice 12 so that constant gaps 19a and 19b are generated. The valve body 18 provided with the porous permeable material 11a, the orifice 12, and the porous permeable material 11b is press-fitted into the housing 17 and fixed.
[0046]
FIG. 9 is a cross-sectional view showing the second diaphragm device 20, and (a) and (b) each show an operating state. FIG. 10 is a plan view showing the operating valve 23 as seen from the stopper 24 side. The second throttle device 20 has flow channel openings at both ends, and is disposed in the throttle channel 16b. In FIG. 9, 21 is a casing, 22 is a valve seat having a conical opening provided at one end in the casing 21, 23 is an operating valve that operates to the left and right by the flow of refrigerant, and 24 is This is a stopper provided at the other end in the housing 21. The front surface, which is the left end of the working valve 23 in the figure, has a shape that closes the opening of the valve seat 22 when the working valve 23 moves to the left. For example, four grooves 25 are provided in the rear of the working valve 23 on the right side in the drawing. And in the center of the working valve 23, it has the orifice 26 used as a 2nd throttle part. As shown in FIG. 8, the first expansion device 13 is connected in series in the direction in which the valve seat 22 is installed.
[0047]
Next, the operation will be described. When the on-off valve 8 is opened and the refrigerant flows in the direction A as shown in FIG. 8A, the refrigerant almost flows into the communication flow path 16a, and the refrigerant flowing in the flow control device 6 has almost no pressure loss. Become. On the other hand, the same applies if the refrigerant is flowed in the B direction. Next, when the on-off valve 8 is closed and the refrigerant flows in the direction A as shown in FIG. 8B, the refrigerant flows into the throttle channel 16b connected to the first throttle device 13 and the second throttle device 20, First, the pressure is reduced by the orifice 12 of the first throttling device 13. Thereafter, the refrigerant flows into the second expansion device 20, but as shown in FIG. 9A, the operation valve 23 moves to the right in the flow of the refrigerant and hits the stopper 24 and stops. The refrigerant flowing in from the left direction passes through the opening of the valve seat 22 and flows through the groove 25 provided in the operating valve 23 as indicated by an arrow. If the cross-sectional area of the groove 25 is made sufficiently larger than that of the orifice 26, the refrigerant will flow with almost no pressure loss. Therefore, in the state of FIG. 8B, the refrigerant is throttled only by the first throttling device 13.
[0048]
Next, the refrigerant is caused to flow in the B direction as shown in FIG. The refrigerant flows into the throttle channel 16b connected to the second throttle device 20 and the first throttle device 13, and first flows into the second throttle device 20. At this time, as shown in FIG. 9B, the operating valve 23 is pushed by the flow of the refrigerant, and closes the opening by tightly contacting the valve seat 22 at the front conical portion. For this reason, the refrigerant flows through the orifice 26 and is throttled. Thereafter, the refrigerant flows into the first throttle device 13 and flows in the order of the porous permeable material 11b, the orifice 12, and the porous permeable material 11a, and is depressurized by the orifice 12. Therefore, in the state of FIG. 8C, the first diaphragm device 13 and the second diaphragm device 20 are both used for the diaphragm. As described above, the second flow rate control device 6 according to this embodiment causes the refrigerant to flow with three throttle amounts depending on the flow direction of the refrigerant as shown in FIGS. 8 (a), (b), and (c). Can do.
[0049]
The operation on the refrigeration cycle is the same as that in the first embodiment. During normal cooling operation and normal heating operation, the on-off valve 8 of the second flow rate control device 6 is opened and the refrigerant flows as shown in FIG. So that there is almost no pressure loss. During the cooling and reheating dehumidifying operation, the on-off valve 8 is closed and the refrigerant flows as shown in FIG. At this time, the cross-sectional area of the orifice 12 of the first expansion device 13 is set so that the evaporation temperature of the refrigerant in the second indoor heat exchanger 7 becomes the optimal amount of expansion for the cooling reheat dehumidification operation. During the heating reheat dehumidifying operation, the flow direction is reversed, so that the refrigerant flows as shown in FIG. At this time, since the refrigerant flows through both the first throttling device 13 and the second throttling device 20, the throttling amount becomes larger by the throttling amount in the second throttling device 20 than in the cooling and dehumidifying operation. Therefore, the inner diameter and length of the orifice 12 of the first expansion device 13 and the second expansion device 20 are adjusted so that the evaporation temperature of the refrigerant in the first indoor heat exchanger 5 becomes the optimal expansion amount for the heating reheat dehumidification operation. The inner diameter and length of the orifice 26 are set.
By using this flow rate control device 6 as the second flow rate control device 6 of the air conditioner, regardless of the outside air temperature condition, the cooling season, and the heating season, the cooling reheat dehumidifying operation can be performed according to the required air conditioning load. If the heating reheat dehumidification operation is switched, dehumidification can be performed while the room temperature is controlled (decreased, equivalent, increased). In particular, the throttle flow path 16b of the second flow rate control device 6 according to this embodiment is constituted by the first throttle device 13 and the second throttle device 20 separately, so that the throttle of the conventional device shown in FIG. The above effect can be obtained by a simple change of connecting the second throttle device 20 to the flow path.
[0050]
In the conventional device, noise is generated when the gas-liquid two-phase refrigerant passes through the orifice 12 of the first expansion device 13 during the cooling and dehumidifying operation. However, in the expansion device 13 according to this embodiment, a porous material is formed before and after the orifice 12. Since the material permeable materials 11a and 11b are provided, the refrigerant flow noise generated when the gas-liquid two-phase refrigerant passes can be greatly reduced. Even during the heating and dehumidifying operation, the refrigerant that has been throttled by the orifice 26 of the second throttling device 20 passes through the porous permeable materials 11a and 11b of the first throttling device 13, so that the refrigerant flow noise can be greatly reduced. Therefore, in the conventional device, measures such as winding a sound insulating material or a vibration damping material around the flow control device 6 were necessary, but the flow control device 6 according to this embodiment is unnecessary and can reduce the cost. Furthermore, the recyclability of the air conditioner is also improved.
[0051]
Further, since the second expansion device 20 can be made substantially the same diameter as the pipe 16b, the second expansion device 20 has an advantage that the size can be reduced as compared with the first embodiment configured by the capillary tube 15.
[0052]
Further, the second diaphragm device 20 may be configured as shown in FIG. In this configuration, the orifice 26 is provided in the valve seat 22 instead of being provided in the center of the operating valve 23. The operation and effect are the same as in the configuration of FIG. Also, as shown in FIG. 12, the same effect can be obtained even if the groove 27 is provided in the valve seat 22. However, in FIGS. 11B and 12B, when the operating valve 23 moves to the left and closes the opening, the orifice 26 or the groove 27 flows without being blocked by the operating valve 23. It is necessary to configure as follows.
Further, a plurality of orifices 26 in FIG. 9 and FIG. 11 and grooves 27 in FIG. 12 may be provided. However, since the amount of restriction is increased or decreased, it is necessary to consider that the flow resistance is within the set value.
[0053]
Embodiment 3 FIG.
FIG. 13 is a circuit configuration diagram showing a second flow rate control device 6 according to Embodiment 3 of the present invention, and (a), (b), and (c) each show an operating state. In the figure, 8 is a switching means, for example, an on-off valve, 9a is a first flow path, here a first flow path connection pipe, 9b is a second flow path, here a second flow path connection pipe, and 16a, 16b constitute a flow path. A pipe 28 is a throttle device having a first throttle part and a second throttle part. The first flow path connection pipe 9a is divided into two flow paths, a communication flow path 16a and a throttle flow path 16b, and the open / close valve 8 is connected to one of the communication flow paths 16a. When the fluid flows through 16a and is closed, the refrigerant flows through the throttle channel 16b. A throttle device 28 having first and second throttle portions is connected to the throttle channel 16b. The pipe 16b joins the pipe 16a from the on-off valve 8 and connects to the second flow path connection pipe 9b.
[0054]
FIG. 14 is a cross-sectional view showing the diaphragm device 28, and (a) and (b) each show an operating state. In the figure, the same reference numerals as those in the first embodiment or the second embodiment indicate the same or corresponding parts. The diaphragm device 28 is configured by integrating the first diaphragm device 13 and the second diaphragm device 20 in the second embodiment into housings 17 and 21. This throttle device 28 has flow channel openings at both ends, and a throttle channel between a first channel connection pipe 9a connected to the left side in the drawing and a second channel connection pipe 9b connected to the right side in the figure. 16b. In the figure, 11a and 11b are porous permeable materials, 12 is an orifice serving as a first constricted portion formed in the center of the valve body 18, 17 is a casing, 18 is a valve body, 19a and 19b are porous with the orifice 12, and It is a gap provided between the transmitting materials 11a and 11b. Reference numeral 21 denotes a casing formed integrally with the casing 17; 22, a valve seat having a conical opening; and 24, a stopper for stopping the operating valve 23 operated by the flow of the refrigerant. The front surface of the working valve 23 on the side of the first connection pipe 9a is shaped so as to be in close contact with the opening of the valve seat 22 when the working valve 23 moves to the left. For example, four grooves 25 are provided behind the working valve 23 on the side of the second connection pipe 9b connection side. And in the center of the working valve 23, it has the orifice 26 used as a 2nd throttle part.
[0055]
Next, the operation will be described. When the on-off valve 8 is opened as shown in FIG. 13A and the refrigerant flows in the direction A, the refrigerant almost flows into the communication channel 16a, and the refrigerant flowing through the flow control device 6 has almost no pressure loss. Become. On the other hand, the same applies if the refrigerant is flowed in the B direction. Next, when the on-off valve 8 is closed and the refrigerant flows in the direction A as shown in FIG. 13B, the refrigerant flows into the throttle channel 16b connected to the throttle device 28, passes through the porous permeable material 11a, The pressure is reduced by the orifice 12 and passes through the porous permeable material 11b. Thereafter, the refrigerant flows from the opening of the valve seat 22 into a portion of the operating valve 23. However, as shown in FIG. 14A, the operating valve 23 moves to the right in the flow of the refrigerant and hits the stopper 24 and stops. . Therefore, as indicated by the arrow, the refrigerant that has passed through the opening of the valve seat 22 flows through the groove 25 provided in the operating valve 23. If the cross-sectional area of the groove 25 is configured to be sufficiently larger than that of the orifice 12, the refrigerant flows in the casing 21 with almost no pressure loss. Accordingly, in the state shown in FIG. 13B, the refrigerant flowing into the expansion device 28 is limited only by the orifice 12 that is the first throttle portion.
[0056]
Next, the refrigerant is caused to flow in the B direction as shown in FIG. The refrigerant flows into the throttle channel 16b connected to the throttle device 28 and flows into the housing 21 side. At this time, as shown in FIG. 14B, the operating valve 23 is pushed by the flow of the refrigerant, and closes the opening by closely contacting the valve seat 22 at the conical portion on the front surface. For this reason, the refrigerant flows through the orifice 26 and is throttled. Thereafter, the refrigerant flows into the housing 17, flows in the order of the porous permeable material 11 b, the orifice 12, and the porous permeable material 11 a, and is depressurized by the orifice 12. Accordingly, in the state of FIG. 14B, the refrigerant is throttled by the throttle device 28 at both the orifice 26 as the second throttle portion and the orifice 12 as the first throttle portion.
As described above, the second flow rate control device 6 according to this embodiment causes the refrigerant to flow with three throttle amounts depending on the flow direction of the refrigerant, as shown in FIGS. 13 (a), (b), and (c). be able to.
[0057]
The operation on the refrigeration cycle is the same as that in the first embodiment. During normal cooling operation and normal heating operation, the on-off valve 8 of the second flow rate control device 6 is opened and the refrigerant flows as shown in FIG. So that there is almost no pressure loss. During the cooling and dehumidifying operation, the on-off valve 8 is closed and the refrigerant flows as shown in FIG. At this time, the cross-sectional area of the orifice 12 of the expansion device 28 is set so that the evaporation temperature of the refrigerant in the second indoor heat exchanger 7 becomes an optimal expansion amount during the cooling and dehumidifying operation. During the heating and dehumidifying operation, the flow direction is reversed, so that the refrigerant flows as shown in FIG. At this time, since the refrigerant flows through both the orifice 26 and the orifice 12, the amount of restriction is larger than that in the cooling and dehumidifying operation. Therefore, the inner diameter and length of the orifice 12 and the inner diameter and length of the orifice 26 are set so that the evaporation temperature of the refrigerant in the first indoor heat exchanger 5 is optimal during the heating and dehumidifying operation.
By using the flow rate control device 6 shown in FIG. 13 as the second flow rate control device 6 of the air conditioner, regardless of the outside air temperature condition, the cooling season, and the heating season, the cooling control can be performed according to the required air conditioning load. By switching between the heat dehumidifying operation and the heating reheat dehumidifying operation, it is possible to perform dehumidification while controlling (decreasing, equivalent, increasing) the room temperature.
[0058]
In the conventional device, noise is generated when the gas-liquid two-phase refrigerant passes through the orifice 12 of the expansion device 28 during the cooling and dehumidifying operation. However, in the expansion device 28 according to this embodiment, porous permeation is provided before and after the orifice 12. Since the materials 11a and 11b are provided, refrigerant flow noise generated when the gas-liquid two-phase refrigerant passes can be greatly reduced. Further, even during the heating and dehumidifying operation, since the refrigerant constricted by the orifice 26 passes through the porous permeable materials 11a and 11b, the refrigerant flow noise can be greatly reduced. Accordingly, in the conventional device, measures such as winding a sound insulating material or a vibration damping material around the flow rate control device 6 were necessary, but the flow rate control device 6 according to this embodiment is unnecessary and can reduce the cost. The recyclability of the air conditioner is also improved.
[0059]
Further, since the flow rate control device 6 in this embodiment is formed by integrating the first and second throttle devices in the second embodiment, it is smaller than the second flow rate control device 6 in the second embodiment. Has the advantage of being able to.
[0060]
Further, the diaphragm device 28 may be configured as shown in FIG. In this configuration, the orifice 26 is provided in the valve seat 22 instead of being provided in the center of the operating valve 23. The operation and effect are the same as in the configuration of FIG. Also, as shown in FIG. 16, the same effect can be obtained even if the groove 27 is provided in the valve seat 22. However, in FIGS. 15B and 16B, when the operating valve 23 moves to the left and closes the opening, the orifice 26 or the groove 27 flows without being blocked by the operating valve 23. It is necessary to configure as follows.
Further, a plurality of orifices 26 in FIG. 14 and FIG. 15 and grooves 27 in FIG. 16 may be provided. However, since the amount of restriction is increased or decreased, it is necessary to consider that the flow resistance is within a set value.
[0061]
Embodiment 4 FIG.
FIG. 17 is a circuit configuration diagram showing a second flow rate control apparatus according to Embodiment 4 of the present invention, and (a), (b), and (c) each show an operating state. In the figure, 8 is a switching means, for example, an on-off valve, 9a is a first flow path, here a first flow path connection pipe, 9b is a second flow path, here a second flow path connection pipe, and 16a, 16b constitute a flow path. Reference numeral 29 denotes a throttle device. The first flow path connection pipe 9a is divided into two flow paths, a communication flow path 16a and a throttle flow path 16b, and the open / close valve 8 is connected to one of the communication flow paths 16a. When the fluid flows through 16a and is closed, the refrigerant flows through the throttle channel 16b. A throttle device 29 having first and second throttle portions is connected to the throttle channel 16b. The pipe 16b joins the pipe 16a from the on-off valve 8 and connects to the second flow path connection pipe 9b.
[0062]
FIG. 18 is a cross-sectional view showing the diaphragm device 29, and (a) and (b) each show an operating state. In the figure, the same reference numerals as those in the first embodiment, the second embodiment, or the third embodiment indicate the same or corresponding parts. The expansion device 29 is configured by incorporating the mechanism of the operation valve 23 of the second expansion device 20 in the center of the first expansion device 13 in the second embodiment. This throttle device 29 has flow path openings at both ends, and a throttle flow path between a first flow path connection pipe 9a connected to the left side in the drawing and a second flow path connection pipe 9b connected to the right side in the drawing. 16b. In the figure, 11a and 11b are porous permeable materials, 12 is a conical orifice serving as a first constricted portion opened in the center of the valve body 18, 17 is a housing, 18 is a valve body, and 19a and 19b are orifices 12. And a gap provided between the porous permeable materials 11a and 11b. The orifice 12 of the valve body 18 is connected to a space 32 partitioned by a partition plate 31. One or a plurality of flow paths 33 are installed in the partition plate 31, and the space 32 and the gap 19b are communicated. In the space 32, there is an operation valve 34 that is operated by the flow of the refrigerant. The front surface of the operation valve 34 that is connected to the first connection pipe 9 a has a hole in the conical orifice 12 when the operation valve 34 moves to the left. It has a shape that closes and closes. When the operating valve 34 moves to the right, it stops against the partition plate 31. In addition, an orifice 35 serving as a second throttle portion is provided at the center of the operating valve 34.
[0063]
Next, the operation will be described. When the on-off valve 8 is opened and the refrigerant flows in the direction A as shown in FIG. 17A, the refrigerant almost flows into the communication flow path 16a, and the refrigerant flowing inside the flow control device 6 has almost no pressure loss. Become. On the other hand, the same applies if the refrigerant is flowed in the B direction. Next, when the on-off valve 8 is closed and the refrigerant flows in the direction A as shown in FIG. 17B, the refrigerant flows into the throttle channel 16b to which the throttle device 28 is connected. At this time, as shown in FIG. 18A, the operating valve 23 moves rightward in the flow of the refrigerant, and hits the partition plate 31 and stops. Therefore, as indicated by the arrows, the refrigerant that has passed through the porous permeable material 11a and the orifice 12 flows through the flow path 33 and the porous permeable material 11b. If the cross-sectional area of the flow path 33 is configured to be sufficiently larger than that of the orifice 12, the flow path 33 flows with almost no pressure loss. Accordingly, in the state of FIG. 17B, the refrigerant flowing into the expansion device 29 is throttled by the orifice 12 that is the first throttle unit.
[0064]
Next, with the on-off valve 8 closed, the refrigerant flows in the B direction as shown in FIG. The refrigerant flows into the throttle channel 16b connected to the throttle device 29 and flows into the housing 17 from the right side. At this time, as shown in FIG. 18B, the operation valve 34 is pushed by the flow of the refrigerant, and closes the orifice 12 by closely contacting the valve body 18 at the conical portion on the front surface. For this reason, the refrigerant flowing in from the right direction is throttled by flowing through the orifice 35 through the porous permeable material 11b and the flow path 33 through the space 32. Therefore, in the state of FIG. 17B, the refrigerant is throttled by the orifice 35 that is the second throttle part by the throttle device 29. Therefore, for example, if the diameter and length of the orifice 35 that is the second restrictor and the orifice 12 that is the first restrictor are configured to be different, and the flow resistance of the orifice 35 and the orifice 12 is changed, this embodiment will be described. As shown in FIGS. 17A, 17 </ b> B, and 17 </ b> C, the second flow control device 6 can cause the refrigerant to flow with three throttle amounts depending on the flow direction of the refrigerant.
[0065]
The operation on the refrigeration cycle is the same as that of the first embodiment. During normal cooling operation and normal heating operation, the on-off valve 8 of the second flow rate control device 6 is opened and the refrigerant flows as shown in FIG. So that there is almost no pressure loss. During the cooling and dehumidifying operation, the on-off valve 8 is closed and the refrigerant flows as shown in FIG. At this time, the cross-sectional area and length of the orifice 12 of the expansion device 29 are set so that the evaporation temperature of the refrigerant in the second indoor heat exchanger 7 becomes an optimal expansion amount during the cooling and dehumidifying operation. During the heating and dehumidifying operation, the flow direction is reversed, so that the refrigerant flows as shown in FIG. At this time, if the flow resistance is configured so that the flow resistance of the orifice 12 <the flow resistance of the orifice 35, the amount of restriction becomes larger than that in the cooling and dehumidifying operation. Therefore, the inner diameter and length of the orifice 35 are set so that the evaporation temperature of the refrigerant in the first indoor heat exchanger 5 is optimized during the heating and dehumidifying operation.
By using this flow rate control device 6 as the second flow rate control device 6 of the air conditioner, regardless of the outside air temperature condition, the cooling season, and the heating season, the cooling reheat dehumidifying operation can be performed according to the required air conditioning load. If the heating reheat dehumidification operation is switched, dehumidification can be performed while the room temperature is controlled (decreased, equivalent, increased).
[0066]
Here, if the diameter and length of the flow path 33 are made smaller than the diameter and length of the orifice 12, the refrigerant is also squeezed in the flow path 33. That is, when the refrigerant flows as shown in FIG. 18A, the refrigerant is throttled by the orifice 12 and the flow path 33, and when the refrigerant flows as shown in FIG. Squeeze with 33. Even with this configuration, if the flow resistances of the orifice 35 and the orifice 12 are changed, it is possible to obtain the throttle devices 29 having different throttle amounts in the flow directions of the A direction and the B direction.
In this case, the sectional area of the orifice 12 and the inner diameter and length of the flow path 33 are set so that the evaporation temperature of the refrigerant in the second indoor heat exchanger 7 becomes an optimum throttle amount during the cooling and dehumidifying operation. Further, the inner diameter and length of the orifice 35 and the inner diameter and length of the flow path 33 are set so that the evaporation temperature of the refrigerant in the first indoor heat exchanger 5 is optimal during the heating and dehumidifying operation.
[0067]
In the conventional apparatus, noise is generated when the gas-liquid two-phase refrigerant passes through the orifice 12 of the expansion device 29 during the cooling and dehumidifying operation. However, in the expansion device 29 according to this embodiment, porous permeation is provided before and after the orifice 12. Since the materials 11a and 11b are provided, refrigerant flow noise generated when the gas-liquid two-phase refrigerant passes can be greatly reduced. Similarly, during the heating and dehumidifying operation, the refrigerant squeezed by the orifice 35 of the expansion device 29 passes through the porous permeable materials 11a and 11b, so that the refrigerant flow noise can be greatly reduced. Accordingly, in the conventional device, measures such as winding a sound insulating material or a vibration damping material around the flow rate control device 6 were necessary, but the flow rate control device 6 according to this embodiment is unnecessary and can reduce the cost. The recyclability of the air conditioner is also improved.
[0068]
Further, as in the third embodiment, the second flow rate control device 6 in this embodiment is formed by integrating the first and second throttle devices in the second embodiment. 2 It has the advantage which can be reduced in size rather than the flow control device 6.
Further, the configuration can further reduce the size of the second flow rate control device 6 in the third embodiment.
[0069]
Further, the diaphragm device 29 may be configured as shown in FIG. In this configuration, instead of providing the orifice 35 in the center of the operation valve 34, the orifice 18 is provided in a portion where the orifice 12 is not provided. The operation and effect are the same as in the configuration of FIG. Also, as shown in FIG. 20, the same effect can be obtained even if the groove 36 is provided in the orifice 12. However, in FIG. 19B and FIG. 20B, when the operating valve 34 moves to the left and closes the opening, the orifice 35 or the groove 36 flows without being blocked by the operating valve 34. It is necessary to configure as follows.
Further, a plurality of orifices 35 in FIG. 18 and FIG. 19 and grooves 36 in FIG. 20 may be provided. However, since the amount of restriction is increased or decreased, it is necessary to consider that the flow resistance is within the set value.
[0070]
In the first to fourth embodiments, the porous permeable materials 11a and 11b have, for example, a diameter of the air hole of 100 μm to 500 μm and a thickness of 1 mm to 10 mm, and are made of, for example, Ni, Ni—Cr, or stainless steel. Uses foam metal.
The porous permeation material is not limited to the foam metal, but a sintered metal obtained by sintering a metal powder, a porous permeation material made of ceramics, a metal mesh, a plurality of metal meshes, or a number of metal meshes. The same effect can be obtained by using a sintered wire mesh or a laminated wire mesh that is laminated and sintered.
Further, the porous permeable materials 11a and 11b through which the refrigerant passes are at least one of the orifice 12 serving as the first throttle portion and the first connection channel 9a, and between the orifice 12 and the second connection channel 9b. If provided in the flow path, there is a certain level of low noise effect. Furthermore, since the porous permeable materials 11a and 11b are provided, even if the piping constituting the second flow rate control device 6 is bent to some extent, the refrigerant flow noise generated by the bending can be absorbed. For this reason, when storing the 2nd flow control device 6 in indoor unit 52, it can store according to the empty space of the indoor unit 52, and it becomes easy to assemble.
[0071]
In the first to fourth embodiments, when the inner diameter of the throttle channel 16b is made smaller than the inner diameter of the communication channel 16a in the pipes 16a and 16b constituting the second flow rate control device 6, the device 6 itself Can be reduced. However, if the inner diameter of the throttle channel 16b is made too small compared to the inner diameter of the communication channel 16a, a refrigerant flow noise is generated at that portion, so that the pipe diameter difference is such that no refrigerant flow noise is generated. It is preferable to configure.
[0072]
In addition, the problem of foreign matters in the refrigerant circuit can be prevented from becoming clogged by making the diameter of the air holes of the porous permeable materials 11a and 11b 100 μm to 500 μm larger than the filter used in a general refrigerant circuit. Operation can be performed.
[0073]
The installation direction of the flow rate control device 6 may be any of horizontal, vertical, and diagonal installation methods with respect to the refrigerant flow, and has the same effect. In the case of vertical or oblique installation, the refrigerant may flow from either bottom to top or top to bottom.
[0074]
As a refrigerant for the refrigeration cycle apparatus, RFCA of HFC refrigerant was used. This refrigerant is a refrigerant suitable for global environmental protection that does not destroy the ozone layer, and has a higher refrigerant vapor density and a higher flow velocity of refrigerant than R22, which has been used as a conventional refrigerant. The pore diameter of the porous permeable material disposed in the throttle portion of the flow control device 6 can be reduced, and the refrigerant flow noise can be further reduced.
However, the refrigerant is not limited to R410A, but may be R407C, R404A, or R507A that are HFC refrigerants. Moreover, from the viewpoint of preventing global warming, a mixed refrigerant such as R32 alone, R152a alone, or R32 / R134a, which is an HFC refrigerant having a small global warming potential, may be used.
Further, HC refrigerants such as propane, butane and isobutane, natural refrigerants such as ammonia, carbon dioxide and ether, and mixed refrigerants thereof may be used. In particular, propane, butane, isobutane and their mixed refrigerants have a smaller operating pressure than R410A and a small pressure difference between the condensing pressure and the evaporating pressure, so that the inner diameter of the orifice can be increased and the reliability against clogging is increased. Can be further improved.
[0081]
【The invention's effect】
As described above, the claims of the present invention 1 According to the throttling device, the first end is connected to the first flow path, the other end is connected to the second flow path, and the casing is disposed in the flow path. Passing through the valve body having a throttle part and the fluid arranged with a gap between at least one of the first throttle part and the first flow path and between the first throttle part and the second flow path A porous permeating material, an operating valve that operates in a flow direction of the fluid that flows in the housing, a partition plate that is provided between the operating valve and the second channel, and the operating valve or the valve An orifice through which the vapor refrigerant and the liquid refrigerant rectified by passing through the ventilation hole of the porous permeable material simultaneously pass through the first throttle part and the second throttle part. And when the fluid flows from the first flow path toward the second flow path, the operating valve Stopping at the partition plate, the fluid flows through the first throttle and the flow path of the partition plate, and when the fluid flows from the second flow path toward the first flow path, the operation valve stops at the valve body Then, the first throttle part is closed, and the fluid flows through the second throttle part, so that the throttle amount is different depending on the fluid flow direction. With this, it is possible to obtain an effect that different aperture amounts can be set.
[0082]
Further, the claims of the present invention 2 According to the flow control device related to the above, the communication channel that communicates the first channel and the second channel, and the communication channel in parallel with the communication channel 1 And a switching means for switching between the communication channel and the throttle channel, and the fluid flows from the first channel to the second channel of the throttle channel. When flowing, the pressure is reduced by the first throttle portion of the throttle device, and when the fluid flows from the second channel of the throttle channel to the first channel, the second throttle unit or the second throttle unit of the throttle device When the first and second flow paths communicate with each other with a small size and low noise by reducing the pressure in the flow direction of the fluid in the throttle flow path. And the case of passing through the restricting portion, and further, it is possible to obtain an effect that different restricting amounts can be set in the forward and reverse flow directions.
[0083]
Further, the claims of the present invention 3 According to the air conditioner related to the above, a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow path control device, a first indoor heat exchanger, a second flow rate control device, and a second indoor heat exchanger are connected in sequence. Prepared and claimed 2 When the second flow control device is operated as an evaporator or a condenser together with the first and second indoor heat exchangers, the second flow control device is connected to the second flow control device via the communication channel. 1. When the second indoor heat exchanger is connected and one of the first and second indoor heat exchangers is operated as an evaporator and the other as a condenser, the second flow rate control device is a throttle channel. The switching means is switched so as to connect the first and second indoor heat exchangers via the refrigerant, so that the flow resistance of the refrigerant is stably controlled with low noise, and the cooling reheat dehumidifying operation control and The effect that it can respond to heating reheat dehumidification operation control is acquired.
[0084]
Further, the claims of the present invention 4 According to the air conditioner related to the above, the throttle amount of the second flow control device in the heating reheat dehumidification operation in which the first indoor heat exchanger is the evaporator and the second indoor heat exchanger is the condenser is By making it larger than the amount of throttling in the cooling reheat dehumidification operation with the heat exchanger as the condenser and the second indoor heat exchanger as the evaporator, the flow rate can be controlled efficiently with low noise, regardless of the season. The effect that the cooling reheat dehumidification operation and the heating reheat dehumidification operation can be operated with good controllability can be obtained.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram illustrating an air conditioner according to Embodiment 1 of the present invention.
FIG. 2 is a circuit configuration diagram showing a second flow rate control device according to the first embodiment.
FIG. 3 is a cross-sectional view showing a diaphragm device according to the first embodiment.
FIG. 4 is a characteristic diagram illustrating an operating state of the air-conditioning apparatus according to Embodiment 1 during a cooling and dehumidifying operation.
FIG. 5 is a characteristic diagram illustrating an operating state of the air-conditioning apparatus according to Embodiment 1 during a heating and dehumidifying operation.
6 is a characteristic diagram showing another operation state during the heating and dehumidifying operation of the air-conditioning apparatus according to Embodiment 1. FIG.
7 is a refrigerant circuit diagram illustrating another example of the air-conditioning apparatus according to Embodiment 1. FIG.
FIG. 8 is a circuit configuration diagram showing a second flow rate control apparatus according to Embodiment 2 of the present invention.
FIG. 9 is a cross-sectional view showing a diaphragm device according to a second embodiment.
10 is a plan view showing an operating valve according to Embodiment 2. FIG.
FIG. 11 is a cross-sectional view showing another example of the diaphragm device according to the second embodiment.
12 is a cross-sectional view showing still another example of the aperture stop device according to Embodiment 2. FIG.
FIG. 13 is a circuit configuration diagram showing a flow rate control apparatus according to Embodiment 3 of the present invention.
14 is a cross-sectional view showing a diaphragm device according to Embodiment 3. FIG.
15 is a cross-sectional view showing another example of a diaphragm device according to Embodiment 3. FIG.
FIG. 16 is a cross-sectional view showing still another example of the aperture stop device according to the third embodiment.
FIG. 17 is a circuit configuration diagram showing a flow rate control apparatus according to Embodiment 4 of the present invention.
FIG. 18 is a cross-sectional view showing a diaphragm device according to a fourth embodiment.
FIG. 19 is a cross-sectional view showing another example of the aperture stop device according to the fourth embodiment.
FIG. 20 is a cross-sectional view showing still another example of the aperture stop device according to the fourth embodiment.
FIG. 21 is a refrigerant circuit diagram showing a conventional air conditioner.
FIG. 22 is a partial cross-sectional view showing a conventional second flow control device.
FIG. 23 is a cross-sectional view showing another example of a conventional second flow rate control device.
FIG. 24 is a cross-sectional view showing still another example of the conventional second flow control device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Flow path switching means, 3 Outdoor heat exchanger, 4 1st flow control device, 5 1st indoor heat exchanger, 6 2nd flow control device, 7 2nd indoor heat exchanger, 8 Switching means, 9a 1st flow path, 9b 2nd flow path, 10 check valve, 11a, 11b porous permeable material, 12 1st throttle part, 13 1st throttle device, 14 check valve, 15 capillary tube, 16a communication flow path, 16b throttle flow path, 17 housing, 18 valve body, 19a, 19b space, 20 second throttle device, 21 housing, 22 valve seat, 23 working valve, 24 stopper, 25 groove, 26 second throttle portion, 27 groove 28, throttling device, 29 throttling device, 31 partition plate, 32 space, 33 flow path, 34 working valve, 35 second throttling portion, 36 groove, 51 outdoor unit, 52 indoor unit.

Claims (4)

一端が第一流路、他端が第二流路に接続されて流路に配設される筐体と、この筐体内を流れる流体を減圧して通過させる第1絞り部を有する弁体と、前記第1絞り部と第一流路の間および前記第1絞り部と第二流路の間の少なくともいずれか一方に隙間を設けて配設された前記流体を通過させる多孔質透過材と、前記筐体内を流れる流体の流れ方向に稼動する稼動弁と、前記稼動弁と前記第二流路の間に設け流路を有する仕切板と、前記稼動弁または前記弁体に設けた第2絞り装置と、を備え、前記第1絞り部および第2絞り部を、前記多孔質透過材の通気孔を通過して整流された蒸気冷媒と液冷媒が同時に通過するオリフィスとするとともに、前記第一流路から前記第二流路方向へ流体が流れる時、前記稼動弁は前記仕切板で停止して前記流体は第1絞り部及び前記仕切板の流路を流れ、前記第二流路から前記第一流路方向へ流体が流れる時、前記稼動弁は前記弁体で停止して前記第1絞り部を塞ぎ、前記流体は第2絞り部を流れることにより、流体の流れ方向で絞り量を異なるように構成したことを特徴とする絞り装置。  A casing having one end connected to the first flow path and the other end connected to the second flow path and disposed in the flow path; and a valve body having a first restrictor that allows the fluid flowing in the casing to pass through under reduced pressure; A porous permeating material that allows the fluid to pass therethrough provided with a gap between at least one of the first throttle part and the first flow path and between the first throttle part and the second flow path; An operating valve that operates in the flow direction of the fluid flowing in the housing, a partition plate that is provided between the operating valve and the second channel, and a second throttle device that is provided on the operating valve or the valve body And the first throttle part and the second throttle part are orifices through which the vapor refrigerant and the liquid refrigerant rectified through the vent of the porous permeable material pass simultaneously, and the first flow path When the fluid flows from the second flow path direction, the operating valve stops at the partition plate and the The body flows through the flow path of the first throttle part and the partition plate, and when the fluid flows from the second flow path to the first flow path direction, the operating valve stops at the valve body and stops the first throttle part. A throttling device characterized in that the throttling device is configured so that the amount of throttling varies depending on the fluid flow direction by flowing the fluid through the second throttling portion. 第一流路と第二流路を連通する連通流路と、この連通流路に並列に請求項記載の絞り装置を接続して成る絞り流路と、前記連通流路と前記絞り流路を切換える切換手段と、を備え、流体が前記絞り流路の前記第一流路から前記第二流路へ流れる時、前記絞り装置の第1絞り部で減圧し、流体が前記絞り流路の前記第二流路から前記第一流路へ流れる時、前記絞り装置の第2絞り部または前記第2絞り部と前記第1絞り部で減圧して、前記絞り流路の流体の流れ方向で絞り量が異なるように構成したことを特徴とする流量制御装置。A communication passage for communicating the first passage and the second flow path, a throttle channel formed by connecting the expansion device of claim 1, wherein in parallel to the communication passage, the throttle flow path and the communication passage Switching means for switching, and when the fluid flows from the first flow path of the throttle flow path to the second flow path, the pressure is reduced by the first throttle portion of the throttle device, and the fluid is the first of the throttle flow path. When flowing from the two flow paths to the first flow path, the pressure is reduced by the second throttle part or the second throttle part and the first throttle part of the throttle device, and the throttle amount is reduced in the fluid flow direction of the throttle channel. A flow control device characterized by being configured differently. 圧縮機、室外熱交換器、第1流路制御装置、第1室内熱交換器、第2流量制御装置、第2室内熱交換器を順次接続した冷凍サイクルを備え、請求項に記載の流量制御装置を前記第2流量制御装置とし、第1、第2室内熱交換器を共に蒸発器または凝縮器として運転する際、前記第2流量制御装置は連通流路を介して第1、第2室内熱交換器を接続するようにし、第1、第2室内熱交換器のうちの一方を蒸発器、他方を凝縮器として運転する際、前記第2流量制御装置は絞り流路を介して第1、第2室内熱交換器を接続するように前記切換手段を切換えるように構成したことを特徴とする空気調和装置。The flow rate according to claim 2 , comprising a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow path control device, a first indoor heat exchanger, a second flow rate control device, and a second indoor heat exchanger are sequentially connected. When the control device is the second flow rate control device and the first and second indoor heat exchangers are both operated as an evaporator or a condenser, the second flow rate control device is connected to the first and second flow channels via the communication channel. When the indoor heat exchanger is connected and one of the first and second indoor heat exchangers is operated as an evaporator and the other is operated as a condenser, the second flow rate control device is connected to the first through a throttle channel. 1. An air conditioner configured to switch the switching means to connect a second indoor heat exchanger. 第1室内熱交換器を蒸発器とし第2室内熱交換器を凝縮器とする暖房再熱除湿運転での第2流量制御装置の絞り量を、第1室内熱交換器を凝縮器とし第2室内熱交換器を蒸発器とする冷房再熱除湿運転での絞り量よりも大きくしたことを特徴とする請求項記載の空気調和装置。The throttle amount of the second flow control device in the heating reheat dehumidification operation in which the first indoor heat exchanger is an evaporator and the second indoor heat exchanger is a condenser, and the second indoor heat exchanger is a second condenser. 4. The air conditioner according to claim 3 , wherein the air conditioner is larger than a throttle amount in a cooling reheat dehumidifying operation in which the indoor heat exchanger is an evaporator.
JP2001271335A 2001-09-07 2001-09-07 Flow control device, throttle device, and air conditioner Expired - Lifetime JP4221922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271335A JP4221922B2 (en) 2001-09-07 2001-09-07 Flow control device, throttle device, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271335A JP4221922B2 (en) 2001-09-07 2001-09-07 Flow control device, throttle device, and air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008199736A Division JP2008261626A (en) 2008-08-01 2008-08-01 Flow control device, restricting device and air conditioner

Publications (2)

Publication Number Publication Date
JP2003083641A JP2003083641A (en) 2003-03-19
JP4221922B2 true JP4221922B2 (en) 2009-02-12

Family

ID=19096857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271335A Expired - Lifetime JP4221922B2 (en) 2001-09-07 2001-09-07 Flow control device, throttle device, and air conditioner

Country Status (1)

Country Link
JP (1) JP4221922B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106354A1 (en) * 2004-04-22 2005-11-10 Ice Energy, Inc A mixed-phase regulator for managing coolant in a refrigerant based high efficiency energy storage and cooling system
JP4616672B2 (en) * 2005-03-14 2011-01-19 カヤバ工業株式会社 Filter integrated orifice, slow return valve, hydraulic drive unit
JP4818154B2 (en) * 2007-02-15 2011-11-16 三菱電機株式会社 Expansion valve mechanism and flow path switching device
WO2013061365A1 (en) * 2011-10-26 2013-05-02 三菱電機株式会社 Air conditioning device
CN104930763A (en) * 2014-03-19 2015-09-23 海尔集团公司 Air conditioner refrigerating system
CN107559433B (en) * 2016-06-30 2020-11-06 重庆华超金属有限公司 Dehumidification electronic expansion valve of air conditioning system
CN109631424A (en) * 2018-12-06 2019-04-16 珠海格力电器股份有限公司 Coolant distributor, three-pipe heating and reclaiming air-conditioning system and its control method
CN111623565A (en) * 2020-06-02 2020-09-04 青岛海尔空调器有限总公司 Throttling device, refrigerant circulation system and dehumidifier

Also Published As

Publication number Publication date
JP2003083641A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP3918421B2 (en) Air conditioner, operation method of air conditioner
JP5665981B2 (en) Air conditioner
JP3428516B2 (en) Aperture device
JP2007085730A (en) Air conditioner and method of operating air conditioner
WO2012085965A1 (en) Air conditioner
JP4103363B2 (en) Flow control device, refrigeration cycle device, and air conditioner
JP4221922B2 (en) Flow control device, throttle device, and air conditioner
JP2001082761A (en) Air conditioner
JP2002221353A (en) Air conditioner
JP3901103B2 (en) Air conditioner
JP3900976B2 (en) Air conditioner and method of operating air conditioner
JP3395761B2 (en) Throttling device, refrigeration cycle device.
JP3870768B2 (en) Air conditioner and method of operating air conditioner
JP3817981B2 (en) Refrigeration cycle apparatus and air conditioner
JP2008261626A (en) Flow control device, restricting device and air conditioner
JP4269306B2 (en) Multi-room air conditioner
JP2000346493A5 (en)
JP2000346493A (en) Throttle device, refrigerating cycle apparatus and air conditioner
JP2003050061A (en) Air conditioner
JP4151236B2 (en) Flow control device and air conditioner
JP3417351B2 (en) Aperture device
CN110207417B (en) Air conditioning system
JP3435759B2 (en) Air conditioner
JP4106867B2 (en) Flow control device, air conditioner
JP4063465B2 (en) Air conditioner and multi-type air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R151 Written notification of patent or utility model registration

Ref document number: 4221922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term