JP4818154B2 - Expansion valve mechanism and flow path switching device - Google Patents

Expansion valve mechanism and flow path switching device Download PDF

Info

Publication number
JP4818154B2
JP4818154B2 JP2007035325A JP2007035325A JP4818154B2 JP 4818154 B2 JP4818154 B2 JP 4818154B2 JP 2007035325 A JP2007035325 A JP 2007035325A JP 2007035325 A JP2007035325 A JP 2007035325A JP 4818154 B2 JP4818154 B2 JP 4818154B2
Authority
JP
Japan
Prior art keywords
pressure
fluid
flow path
low
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007035325A
Other languages
Japanese (ja)
Other versions
JP2008196832A (en
JP2008196832A5 (en
Inventor
琢也 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007035325A priority Critical patent/JP4818154B2/en
Priority to EP08002486A priority patent/EP1959214B1/en
Priority to ES08002486T priority patent/ES2381387T3/en
Priority to CN200810005650XA priority patent/CN101245960B/en
Publication of JP2008196832A publication Critical patent/JP2008196832A/en
Publication of JP2008196832A5 publication Critical patent/JP2008196832A5/ja
Application granted granted Critical
Publication of JP4818154B2 publication Critical patent/JP4818154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Check Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は膨張弁機構および流路切り替え装置、特に、蒸気圧縮式ヒートポンプ型空調機に好適な膨張弁機構および流路切り替え装置に関するものである。   The present invention relates to an expansion valve mechanism and a flow path switching device, and more particularly to an expansion valve mechanism and a flow path switching device suitable for a vapor compression heat pump type air conditioner.

従来の冷凍サイクルに設置される膨張弁機構として、オリフィス(堰)やキャピラリチューブ(毛細管)からなる固定絞りと、電子制御式膨張弁からなる可変絞りとが知られている。
また、冷凍サイクルを用いて暖房性能を得ようとする発明(いわゆる「ヒートポンプ運転」に同じ)が開示されている(例えば、特許文献1参照)。
As an expansion valve mechanism installed in a conventional refrigeration cycle, a fixed throttle composed of an orifice (weir) and a capillary tube (capillary tube) and a variable throttle composed of an electronically controlled expansion valve are known.
Moreover, the invention (same as what is called "heat pump driving | operation") which is trying to acquire heating performance using a refrigerating cycle is disclosed (for example, refer patent document 1).

特開2002−106994号公報(第4−5頁、図1)JP 2002-106994 A (page 4-5, FIG. 1)

特許文献1に開示された発明は、圧縮機の下流に四方弁を設置し、冷房時においては、高圧高温冷媒を外部熱交換器に供給した後、低圧で開通する定差圧弁およびオリフィスを経由して内部熱交換器に流し込み、さらに、圧力が高い場合には、低圧で開通する定差圧弁およびオリフィスと高圧で開通する定差圧弁およびオリフィスとの両方を経由した後、内部熱交換器をバイパスするものである。一方、暖房時には、高圧高温冷媒を内部熱交換器に供給した後、高圧で開通する定差圧弁およびオリフィスに流し込むものである。したがって、暖房性能を得ることができるとしている。   In the invention disclosed in Patent Document 1, a four-way valve is installed downstream of a compressor. During cooling, a high-pressure high-temperature refrigerant is supplied to an external heat exchanger, and then passed through a constant differential pressure valve and an orifice that are opened at a low pressure. If the pressure is high, after passing through both the differential pressure valve and orifice opened at low pressure and the constant pressure valve and orifice opened at high pressure, the internal heat exchanger is Bypass. On the other hand, at the time of heating, a high-pressure high-temperature refrigerant is supplied to the internal heat exchanger and then poured into a constant differential pressure valve and an orifice opened at high pressure. Therefore, the heating performance can be obtained.

しかしながら、前記発明は、
(a)暖房時には、高圧高温冷媒は一方のオリフィスのみに流入するため、流量制御ができないという問題があった。
(b)さらに、前記オリフィスに替えて電子制御式膨張弁を設置したのでは、きめ細かな流量制御によって省エネ性を向上させることができる反面、構成する部品点数が多いため、製造コストが高価になるという問題があった。
However, the invention
(A) At the time of heating, since the high-pressure and high-temperature refrigerant flows into only one orifice, there is a problem that the flow rate cannot be controlled.
(B) Furthermore, if an electronically controlled expansion valve is installed in place of the orifice, energy saving can be improved by fine flow rate control, but on the other hand, since the number of components is large, the manufacturing cost becomes expensive. There was a problem.

この発明は、上記のような問題を解決するためになされたものであって、暖房運転(ヒートポンプ運転)が可能な冷凍サイクルに設置される、簡素な構造で、製造コストを安価に押さえることができ、かつ、流量調整ができる膨張弁機構と、当該膨張弁機構に好適な流路切り替え装置とを得ることを目的とする。   The present invention has been made to solve the above-described problems, and has a simple structure installed in a refrigeration cycle capable of heating operation (heat pump operation), and can suppress manufacturing costs at a low cost. It is possible to obtain an expansion valve mechanism capable of adjusting the flow rate and a flow path switching device suitable for the expansion valve mechanism.

本発明に係る流路切り替え装置は、流体が流入する流体入口と、該流体入口から流入した流体が流出自在な低圧流体出口および連通出口と、を具備する供給流体流路と、
前記連通出口に連通した高圧流体入口と、該高圧流体入口から流入した流体が流出する高圧流体出口と、を具備する高圧流体流路と、
前記供給流体流路に配置され、前記連通出口を開通または閉塞するスライダと、
前記供給流体流路に配置され、前記スライダを前記流体入口方向に押圧する付勢手段と、を有し、
前記流体入口から流入する流体の圧力が所定の圧力以下である場合、前記スライダにより前記連通出口が閉塞されて当該流体が前記低圧流体出口から流出し、一方、前記流体入口から流入する流体の圧力が所定の圧力を超えた場合、前記連通出口が開通されて当該流体が前記低圧流体出口および前記連通出口から流出し、
前記供給流体流路に、前記スライダを前記流体入口方向に移動するための流体が流入する移動流体入口が設けられ、
該移動流体入口から前記供給流体流路に流体が流入された場合、前記低圧流体出口および前記連通出口が閉塞されることを特徴とする。
A flow path switching device according to the present invention includes a fluid inlet through which a fluid flows, and a low-pressure fluid outlet and a communication outlet through which fluid flowing in from the fluid inlet can freely flow out,
A high-pressure fluid flow path comprising: a high-pressure fluid inlet communicating with the communication outlet; and a high-pressure fluid outlet through which fluid flowing in from the high-pressure fluid inlet flows out;
A slider disposed in the supply fluid flow path to open or close the communication outlet;
An urging means disposed in the supply fluid flow path and pressing the slider in the fluid inlet direction;
When the pressure of the fluid flowing in from the fluid inlet is equal to or lower than a predetermined pressure, the communication outlet is closed by the slider and the fluid flows out of the low-pressure fluid outlet, while the pressure of the fluid flowing in from the fluid inlet When the pressure exceeds a predetermined pressure, the communication outlet is opened and the fluid flows out of the low pressure fluid outlet and the communication outlet ,
The supply fluid flow path is provided with a moving fluid inlet into which a fluid for moving the slider in the fluid inlet direction flows,
When a fluid flows into the supply fluid channel from the moving fluid inlet, the low-pressure fluid outlet and the communication outlet are closed .

したがって、本発明に係る流路切り替え装置は、圧力応動弁の機能を、スライダとバネとによって構成しているため、流路を切り替える条件(トリガー)、すなわち差圧の閾値を、バネのバネ定数とスライダの動くストロークによって設定することができるから、構造が簡素になるだけでなく、動作の信頼性が担保される
Therefore, since the flow path switching device according to the present invention has the function of the pressure responsive valve by the slider and the spring, the condition (trigger) for switching the flow path, that is, the threshold value of the differential pressure is set to the spring constant of the spring. Therefore, not only the structure is simplified but also the reliability of the operation is ensured .

[実施の形態1]
(冷凍サイクル)
図1は本発明の実施形態1に係る膨張弁機構が設置された冷凍サイクルを模式的に説明する構成図である。
図1において、冷凍サイクル100は、冷媒を圧縮する圧縮機1と、供給された冷媒と外気との間で熱交換をする室外側熱交換器3および室内側熱交換器5と、圧縮機1によって圧縮された冷媒(以下「高温冷媒」と称す)を室外側熱交換器3または室内側熱交換器5の一方に選択的に供給する四方切替弁2と、供給された冷媒を減圧する膨張弁機構4と、を有している。
すなわち、室内を冷房する場合、高温冷媒を室内側熱交換器5に供給して、これを凝縮器として使用する。一方、室内を暖房する場合、高温冷媒を室外側熱交換器3を経由して膨張弁機構4に供給し、膨張弁機構4において生成された冷媒(以下「低温冷媒」と称す)を室内側熱交換器5に供給して、これを蒸発器として使用する。
したがって、膨張弁機構4には、図1において、右方向および右方向の冷媒流れが生じることになる。
[Embodiment 1]
(Refrigeration cycle)
FIG. 1 is a configuration diagram schematically illustrating a refrigeration cycle in which an expansion valve mechanism according to Embodiment 1 of the present invention is installed.
In FIG. 1, a refrigeration cycle 100 includes a compressor 1 that compresses refrigerant, an outdoor heat exchanger 3 and an indoor heat exchanger 5 that exchange heat between the supplied refrigerant and outside air, and the compressor 1. The four-way switching valve 2 that selectively supplies the refrigerant compressed by the refrigerant (hereinafter referred to as “high-temperature refrigerant”) to one of the outdoor heat exchanger 3 and the indoor heat exchanger 5, and expansion that depressurizes the supplied refrigerant. And a valve mechanism 4.
That is, when the room is cooled, the high-temperature refrigerant is supplied to the indoor heat exchanger 5 and used as a condenser. On the other hand, when the room is heated, high-temperature refrigerant is supplied to the expansion valve mechanism 4 via the outdoor heat exchanger 3, and refrigerant generated in the expansion valve mechanism 4 (hereinafter referred to as “low-temperature refrigerant”) is indoors. The heat exchanger 5 is supplied and used as an evaporator.
Therefore, the refrigerant flow in the right direction and the right direction in FIG. 1 is generated in the expansion valve mechanism 4.

(膨張弁機構)
図2は本発明の実施形態1に係る膨張弁機構を模式的に説明する構成図である。
図2において、膨張弁機構4には、逆止弁6が設置された第1系列4aと、逆止弁13が設置された第2系列4bとが並列に配置されている。なお、説明の便宜上、両者の分岐点を分岐点A、Dとし、分岐点Aは室外側熱交換器3に連通し、分岐点Dは室内側熱交換器5に連通しているとする。
第1系列4aは、分岐点B1、C1において分岐した互いに並列に配置された低負荷用毛細管7と高負荷用毛細管9とを具備し、高負荷用毛細管9の上流側(分岐点B1側、逆止弁6に同じ)に圧力応動弁8が設置されている。
第2系列4bは、分岐点B2、C2において分岐した互いに並列に配置された低負荷用毛細管12と高負荷用毛細管10とを具備し、高負荷用毛細管10の上流側(分岐点C2側、逆止弁13に同じ)に圧力応動弁11が設置されている。
(Expansion valve mechanism)
FIG. 2 is a configuration diagram schematically illustrating the expansion valve mechanism according to the first embodiment of the present invention.
In FIG. 2, the expansion valve mechanism 4 includes a first series 4a in which the check valve 6 is installed and a second series 4b in which the check valve 13 is installed in parallel. For convenience of explanation, it is assumed that the branch points of the two are branch points A and D, the branch point A communicates with the outdoor heat exchanger 3, and the branch point D communicates with the indoor heat exchanger 5.
The first series 4a includes a low-load capillary tube 7 and a high-load capillary tube 9 that are branched in parallel at the branch points B1 and C1, and are upstream of the high-load capillary tube 9 (the branch point B1 side, A pressure responsive valve 8 is provided on the check valve 6).
The second series 4b includes a low-load capillary 12 and a high-load capillary 10 that are arranged in parallel with each other at the branch points B2 and C2. The upstream side of the high-load capillary 10 (the branch point C2 side, The pressure responsive valve 11 is installed on the check valve 13.

(膨張弁機構の動作)
次に、冷房運転時の動作について説明する。
このように構成された膨張弁機構4においては、冷房運転の時、室外側熱交換器3で凝縮された高圧の冷媒(高温冷媒)は、逆止弁6を通過して第1系列に流入し、逆止弁13によって閉塞されている第2系列には流入しない。
そして、第1系列の流入した高温冷媒は、低負荷用毛細管7で減圧され(低温冷媒となって)、室内側熱交換器5に向かって流出する。ここで、冷凍サイクルの運転状態が高負荷条件となり、冷凍サイクルの高圧圧力が上昇するにつれ、低負荷用毛細管7前後の圧力差が増大するため、この圧力差が、圧力応動弁8に対して設定されたある値を超えると、圧力応動弁8が開弁する。したがって、高負荷条件の冷房運転時では、低負荷用毛細管7と高負荷用毛細管9との両方に高温冷媒が流入することになり、冷凍サイクル100内の冷媒の循環流量が増加する。
(Operation of expansion valve mechanism)
Next, operation during cooling operation will be described.
In the expansion valve mechanism 4 configured as described above, during the cooling operation, the high-pressure refrigerant (high-temperature refrigerant) condensed in the outdoor heat exchanger 3 passes through the check valve 6 and flows into the first series. However, it does not flow into the second system closed by the check valve 13.
Then, the high-temperature refrigerant that has flowed in in the first series is reduced in pressure by the low-load capillary 7 (becomes a low-temperature refrigerant) and flows out toward the indoor heat exchanger 5. Here, as the operating state of the refrigeration cycle becomes a high load condition and the high pressure of the refrigeration cycle increases, the pressure difference across the low load capillary 7 increases. When a certain set value is exceeded, the pressure responsive valve 8 opens. Therefore, during the cooling operation under a high load condition, the high-temperature refrigerant flows into both the low load capillary 7 and the high load capillary 9, and the circulation flow rate of the refrigerant in the refrigeration cycle 100 increases.

また、暖房運転時の動作について説明する。
このように構成された膨張弁機構4においては、暖房運転の時、室内側熱交換器5で凝縮された高圧の冷媒(高温冷媒)は、逆止弁13を通過して第2系列に流入し、逆止弁6によって閉塞されている第1系列には流入しない。
そして、第2系列の流入した高温冷媒は、低負荷用毛細管12で減圧され(低温冷媒となって)、室外側熱交換器3に向かって流出する。ここで、冷凍サイクルの運転状態が高負荷条件となり、冷凍サイクルの高圧圧力が上昇するにつれ、低負荷用毛細管12前後の圧力差が増大するため、この圧力差が、圧力応動弁11に対して設定されたある値を超えると、圧力応動弁11が開弁する。したがって、高負荷条件の暖房運転時は、低負荷用毛細管12と高負荷用毛細管10との両方に高温冷媒が流入することになり、冷凍サイクル100内の冷媒の循環流量が増加する。
Moreover, the operation | movement at the time of heating operation is demonstrated.
In the expansion valve mechanism 4 configured as described above, during the heating operation, the high-pressure refrigerant (high-temperature refrigerant) condensed in the indoor heat exchanger 5 passes through the check valve 13 and flows into the second system. However, it does not flow into the first series closed by the check valve 6.
Then, the high-temperature refrigerant that has flowed in the second series is reduced in pressure by the low-load capillary 12 (becomes a low-temperature refrigerant) and flows out toward the outdoor heat exchanger 3. Here, as the operating state of the refrigeration cycle becomes a high load condition and the high pressure of the refrigeration cycle increases, the pressure difference across the low load capillary 12 increases, so this pressure difference is relative to the pressure responsive valve 11. When a certain set value is exceeded, the pressure responsive valve 11 opens. Therefore, during heating operation under a high load condition, the high-temperature refrigerant flows into both the low load capillary 12 and the high load capillary 10, and the circulation flow rate of the refrigerant in the refrigeration cycle 100 increases.

以上のように、冷凍サイクル100は、運転状態が低負荷条件にあるときには、冷媒の循環流量を少なく抑え、運転状態が高負荷条件にあるときは、冷媒の循環流量を増加することができる。このため、高負荷条件における高圧圧力の過昇や、高負荷条件における冷媒の循環流量の不足による暖冷房能力低下を、防止すること、および低負荷条件における液圧縮による省エネ性の悪化を、防止することを両立することができる。
また、膨張弁機構4は、電磁機構を使用せずに機械部品のみで構成するようにしているため、製造コストを低価格に押さえることができる。
さらに、第1系列と第2系列とを互いに並列に配置して、それぞれ同様の構成にしながら、冷媒の双方向流れに対応可能にしているため、ヒートポンプ式空気調和機に好適である。
As described above, the refrigeration cycle 100 can suppress the circulation flow rate of the refrigerant when the operation state is in a low load condition, and can increase the circulation flow rate of the refrigerant when the operation state is in a high load condition. For this reason, it is possible to prevent excessive increase of high pressure under high load conditions, deterioration of heating / cooling capacity due to insufficient refrigerant circulation flow under high load conditions, and deterioration of energy saving due to liquid compression under low load conditions. You can do both.
Moreover, since the expansion valve mechanism 4 is comprised only with machine parts, without using an electromagnetic mechanism, it can hold down manufacturing cost at a low price.
Furthermore, since the first series and the second series are arranged in parallel with each other and have the same configuration, they can cope with the bidirectional flow of the refrigerant, which is suitable for the heat pump air conditioner.

なお、低負荷用毛細管7、12と高負荷用毛細管9、10とは便宜上の称呼であって、それぞれの減圧量や流量等は適宜選定することができるものである。特に、高負荷用毛細管9、10は、減圧することのない通常配管であってもよい。また、低負荷条件あるい高負荷条件とは便宜上の称呼であって、圧力応動弁の開弁圧力等は暖冷房運転それぞれに独立して、適宜選定することができるものである。
さらに、以上は、減圧手段として毛細管(キャピラリチューブ)を示しているが、本発明はこれに限定するものではなく、オリフィス(堰)であってもよい。また、膨張弁機構4の上流側または下流側の一方または両方に、補助的に毛細管等の減圧手段を配置してもよい。
The low-load capillaries 7 and 12 and the high-load capillaries 9 and 10 are names for convenience, and the amount of reduced pressure, the flow rate, and the like can be appropriately selected. In particular, the high load capillaries 9 and 10 may be normal pipes that are not decompressed. The low load condition or the high load condition is a name for convenience, and the valve opening pressure of the pressure responsive valve can be appropriately selected independently for each heating / cooling operation.
Furthermore, although the above has shown the capillary (capillary tube) as a pressure reduction means, this invention is not limited to this, An orifice (weir) may be sufficient. In addition, a decompression means such as a capillary tube may be supplementarily disposed on one or both of the upstream side and the downstream side of the expansion valve mechanism 4.

[実施の形態2]
(流路切り替え装置)
図3および図4は本発明の実施形態2に係る流路切り替え装置を模式的に説明するものであって、図3の(a)は正面図、図3の(b)は背面図、図4の(a)および(b)はそれぞれ図3のA−AおよびB−Bにおける側面視の断面図である。
図3および図4において、流路切り替え装置200は、円筒状で両端に底を具備する筐体70の内部に形成された第1系列100a(図3においてA−Aに配置されている)と、第2系列100b(図3においてB−Bに配置されている)とを有している。
[Embodiment 2]
(Flow path switching device)
3 and 4 schematically illustrate the flow path switching device according to the second embodiment of the present invention. FIG. 3A is a front view, FIG. 3B is a rear view, and FIG. 4 (a) and 4 (b) are cross-sectional views taken along the lines AA and BB in FIG. 3, respectively.
3 and 4, the flow path switching device 200 includes a first series 100a (arranged at AA in FIG. 3) formed inside a casing 70 that is cylindrical and has bottoms at both ends. And the second series 100b (arranged at BB in FIG. 3).

第1系列200aは、流体が流入する流体入口41aと、流体入口41aから流入した流体が流出自在な低圧流体出口42aおよび連通出口43aと、を具備する低圧流体流路40と、
連通出口43aに連通した高圧流体入口51aと、高圧流体入口51aから流入した流体が流出する高圧流体出口52aと、を具備する高圧流体流路50aと、
低圧流体流路40aに配置され、低圧流体出口42aまたは連通出口43aの一方または両方を開通または閉塞するスライダ44aと、
低圧流体流路40aに配置され、スライダ44aを流体入口41aの方向に押圧するバネ(付勢手段に同じ)45aと、を有している。
そして、低圧流体流路40aには、スライダ44aを流体入口41aの方向に移動するための流体が流入する移動流体入口46aが設けられている。
The first series 200a includes a low-pressure fluid flow path 40 including a fluid inlet 41a into which a fluid flows, and a low-pressure fluid outlet 42a and a communication outlet 43a through which the fluid flowing in from the fluid inlet 41a can freely flow out,
A high-pressure fluid flow path 50a comprising a high-pressure fluid inlet 51a communicating with the communication outlet 43a, and a high-pressure fluid outlet 52a through which the fluid flowing in from the high-pressure fluid inlet 51a flows out;
A slider 44a disposed in the low pressure fluid flow path 40a and opening or closing one or both of the low pressure fluid outlet 42a and the communication outlet 43a;
And a spring (same as the urging means) 45a that is disposed in the low-pressure fluid flow path 40a and presses the slider 44a toward the fluid inlet 41a.
The low-pressure fluid channel 40a is provided with a moving fluid inlet 46a into which a fluid for moving the slider 44a in the direction of the fluid inlet 41a flows.

第2系列200bは、第1系列200aに同じ構成であるため、第2系列200bを構成する各部材については、符号の数字を同じにし、符号の添え字「a」を「b」と読み替え、説明を省略する。
すなわち、第2系列200aは、流体入口41bと低圧流体出口42bと連通出口43bと移動流体入口46bとを具備する低圧流体流路40bと、高圧流体入口51bと高圧流体出口52bとを具備する高圧流体流路50bと、低圧流体流路40bに配置されたスライダ44bおよびバネ45bと、
を有している。
Since the second series 200b has the same configuration as the first series 200a, for each member constituting the second series 200b, the reference numeral is the same, and the subscript “a” is read as “b”. Description is omitted.
That is, the second series 200a includes a low pressure fluid flow path 40b having a fluid inlet 41b, a low pressure fluid outlet 42b, a communication outlet 43b, and a moving fluid inlet 46b, and a high pressure having a high pressure fluid inlet 51b and a high pressure fluid outlet 52b. A fluid channel 50b, a slider 44b and a spring 45b disposed in the low-pressure fluid channel 40b,
have.

そして、筐体70の一方の端面71には、第1系列200aの流体入口41aと、第2系列200bの高圧流体出口52bおよび移動流体入口46bとが形成されている。また、筐体70の他方の端面73には、第1系列200aの高圧流体出口52aおよび移動流体入口46aと、第2系列200bの流体入口41bとが形成されている。さらに、筐体70の側面72には、第1系列200aの低圧流体出口42aと、第2系列200bの低圧流体出口42bとが形成されている。   The first end surface 71 of the housing 70 is formed with a fluid inlet 41a of the first series 200a, a high-pressure fluid outlet 52b and a moving fluid inlet 46b of the second series 200b. The other end face 73 of the housing 70 is formed with a high-pressure fluid outlet 52a and a moving fluid inlet 46a of the first series 200a and a fluid inlet 41b of the second series 200b. Further, a low pressure fluid outlet 42a of the first series 200a and a low pressure fluid outlet 42b of the second series 200b are formed on the side surface 72 of the housing 70.

[実施の形態3]
(冷凍サイクル)
図5は本発明の実施形態3に係る流路切り替え装置を具備する膨張弁機構が設置された冷凍サイクルの一部を模式的に説明する構成図である。なお、冷凍サイクル400は、実施の形態1における冷凍サイクル100を構成する膨張弁機構4と、流路切り替え装置200を具備する膨張弁機構300に置きかえたものであるから、実施の形態1と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
[Embodiment 3]
(Refrigeration cycle)
FIG. 5 is a configuration diagram schematically illustrating a part of a refrigeration cycle in which an expansion valve mechanism including a flow path switching device according to Embodiment 3 of the present invention is installed. The refrigeration cycle 400 is the same as the first embodiment because the expansion valve mechanism 4 constituting the refrigeration cycle 100 in the first embodiment and the expansion valve mechanism 300 including the flow path switching device 200 are replaced. Parts are denoted by the same reference numerals, and a part of the description is omitted.

(膨張弁機構)
膨張弁機構300は、流路切り替え装置200の第1系列200aの低圧流体出口42aに低負荷用毛細管7が、高圧流体出口52aに高負荷用毛細管9が、それぞれ連通し、同様に、第2系列200bの低圧流体出口42bに低負荷用毛細管12が、高圧流体出口52bに高負荷用毛細管10が、それぞれ連通している。
そして、室外側熱交換器3に連通する配管80は、分岐点Aにおいて室外側配管81、82、83、84に分岐され、室内側熱交換器5に連通する配管90は、分岐点Dにおいて室内側配管91、92、93、94に分岐されている。
(Expansion valve mechanism)
In the expansion valve mechanism 300, the low-load capillary 7 communicates with the low-pressure fluid outlet 42a of the first series 200a of the flow path switching device 200, and the high-load capillary 9 communicates with the high-pressure fluid outlet 52a. The low-load capillary 12 communicates with the low-pressure fluid outlet 42b of the series 200b, and the high-load capillary 10 communicates with the high-pressure fluid outlet 52b.
The pipe 80 communicating with the outdoor heat exchanger 3 is branched into the outdoor pipes 81, 82, 83, 84 at the branch point A, and the pipe 90 communicating with the indoor heat exchanger 5 is branched at the branch point D. The indoor branch pipes 91, 92, 93 and 94 are branched.

そして、室外側配管81は第1系列200aの流体入口41aに、室外側配管82は低負荷用毛細管12を経由して第2系列200bの低圧流体出口42bに、室外側配管83は第2系列200bの移動流体入口46bに、室外側配管84は高負荷用毛細管10を経由して第2系列200bの高圧流体出口52bに、それぞれ接続されている。
同様に、室内側配管91は第2系列200bの流体入口41bに、室内側配管92は低負荷用毛細管7を経由して第1系列200aの低圧流体出口42aに、室内側配管93は第1系列200aの移動流体入口46aに、室内側配管94は高負荷用毛細管9を経由して第1系列200aの高圧流体出口52aに、それぞれ接続されている。
The outdoor pipe 81 is connected to the fluid inlet 41a of the first series 200a, the outdoor pipe 82 is connected to the low pressure fluid outlet 42b of the second series 200b via the low load capillary 12, and the outdoor pipe 83 is connected to the second series. The outdoor piping 84 is connected to the moving fluid inlet 46b of the 200b via the high load capillary 10 and to the high pressure fluid outlet 52b of the second series 200b.
Similarly, the indoor side pipe 91 is connected to the fluid inlet 41b of the second series 200b, the indoor side pipe 92 is passed through the low load capillary 7 to the low pressure fluid outlet 42a of the first series 200a, and the indoor side pipe 93 is connected to the first line 200b. The indoor side pipe 94 is connected to the moving fluid inlet 46a of the series 200a via the high load capillary 9 and to the high pressure fluid outlet 52a of the first series 200a.

(膨張弁機構の動作)
図6〜図9は本発明の実施形態3に係る膨張弁機構の動作を模式的に説明する構成図であって、図6は冷凍サイクルの運転状態が暖房運転時の低負荷条件のとき、図7は冷凍サイクルの運転状態が暖房運転時の高負荷条件のとき、図8は冷凍サイクルの運転状態が冷房運転時の低負荷条件のとき、図9は冷凍サイクルの運転状態が冷房運転時の高負荷条件のときである。以下、それぞれのときについて説明する。
(Operation of expansion valve mechanism)
6-9 is a block diagram which illustrates typically operation | movement of the expansion valve mechanism which concerns on Embodiment 3 of this invention, Comprising: When the driving | running state of a refrigerating cycle is a low load condition at the time of heating operation, FIG. FIG. 7 shows a case where the operation state of the refrigeration cycle is a high load condition during heating operation, FIG. 8 shows a case where the operation state of the refrigeration cycle is a low load condition during cooling operation, and FIG. This is a high load condition. Hereinafter, each case will be described.

(暖房運転時の低負荷条件)
図6において、冷凍サイクル400の運転状態が暖房運転時の低負荷条件にあるとき、室内側熱交換器5で凝縮された冷媒(高温冷媒)は、分岐点Dにおいて分岐され、その一部は室内側配管93を経由して、第1系列200aの移動流体入口46aから低圧流体流路40に流入し、スライダ44aを流体入口41a側に移動させる。そうすると、低圧流体出口42aおよび連通出口43aはスライダ44aによって閉塞されるから、高温冷媒は、第1系列200a(室内側配管92および室内側配管94に同じ)に流入しないで、第2系列200b(室内側配管91に同じ)に流入する。
(Low load condition during heating operation)
In FIG. 6, when the operation state of the refrigeration cycle 400 is in a low load condition during heating operation, the refrigerant (high-temperature refrigerant) condensed in the indoor heat exchanger 5 is branched at a branch point D, and a part thereof It flows into the low-pressure fluid flow path 40 from the moving fluid inlet 46a of the first series 200a via the indoor side pipe 93, and moves the slider 44a to the fluid inlet 41a side. Then, since the low-pressure fluid outlet 42a and the communication outlet 43a are closed by the slider 44a, the high-temperature refrigerant does not flow into the first series 200a (same as the indoor side pipe 92 and the indoor side pipe 94), but the second series 200b ( The same flows into the indoor pipe 91).

そして、室内側配管91に流入した高温冷媒は、第2系列200bの流体入口41bから低圧流体流路40bに流入する。このとき、高温冷媒はバネ45bを押し戻すだけの十分な圧力を有しないから、スライダ44bは連通出口43aを閉塞したままにしている。このため、高圧冷媒は低圧流体出口42bから流出し、低負荷用毛細管12を通過して減圧され(低温冷媒になる)、室外側配管84を経由して室外側熱交換器3へ流入する経路をとる。   And the high temperature refrigerant | coolant which flowed into the indoor side piping 91 flows in into the low voltage | pressure fluid flow path 40b from the fluid inlet 41b of the 2nd series 200b. At this time, since the high-temperature refrigerant does not have sufficient pressure to push back the spring 45b, the slider 44b keeps the communication outlet 43a closed. Therefore, the high-pressure refrigerant flows out from the low-pressure fluid outlet 42 b, passes through the low-load capillary 12, is depressurized (becomes a low-temperature refrigerant), and flows into the outdoor heat exchanger 3 through the outdoor pipe 84. Take.

なお、低温冷媒は、室外側配管83を経由して移動流体入口46bから低圧流体流路40bに流入したとしても、その圧力は高温冷媒よりも低いため、スライダ44bが移動することはなく、低圧流体出口42bは開通したままである。
また、低温冷媒が、室外側配管81を経由して第1系列200aの低圧流体流路40aに流入したとしても、その圧力は高温冷媒よりも低いため、高圧流体に押されているスライダ44bが移動することはなく、低圧流体出口42aが開通することはない。
Even if the low-temperature refrigerant flows into the low-pressure fluid flow path 40b from the moving fluid inlet 46b via the outdoor pipe 83, the pressure is lower than that of the high-temperature refrigerant, so the slider 44b does not move, The fluid outlet 42b remains open.
Even if the low-temperature refrigerant flows into the low-pressure fluid flow path 40a of the first series 200a via the outdoor pipe 81, the pressure is lower than that of the high-temperature refrigerant, so that the slider 44b pushed by the high-pressure fluid It does not move and the low pressure fluid outlet 42a is not opened.

(暖房運転時の高負荷条件)
図7において、冷凍サイクル400の運転状態が暖房運転時の高負荷条件にあるとき、室内側熱交換器5で凝縮された冷媒(高温冷媒)は、第1系列200a(室内側配管92および室内側配管94に同じ)に流入しないで、第2系列200b(a室内側配管91に同じ)に流入する。
そして、第2系列200bの低圧流体流路40に流入した高圧冷媒は、バネ45bを押し戻すだけの十分な圧力を有すから、スライダ44bを押し戻し、連通出口43bを開放する。このため、高温冷媒は低圧流体出口42bおよび連通出口43bの両方から流出し、その一部は低負荷用毛細管12を通過して減圧され(低温冷媒になる)、その一部は、高圧流体流路50bを経由して高負荷用毛細管10を通過して減圧され(低温冷媒になる)、それぞれ室外側配管84または室外側配管82を経由して室外側熱交換器3へ流入する経路をとる。
(High load conditions during heating operation)
In FIG. 7, when the operation state of the refrigeration cycle 400 is in a high load condition during heating operation, the refrigerant (high-temperature refrigerant) condensed in the indoor heat exchanger 5 is the first series 200a (the indoor pipe 92 and the room). It does not flow into the inner piping 94), but flows into the second series 200b (same as the indoor side piping 91).
Since the high-pressure refrigerant that has flowed into the low-pressure fluid flow path 40 of the second series 200b has sufficient pressure to push back the spring 45b, the slider 44b is pushed back to open the communication outlet 43b. Therefore, the high-temperature refrigerant flows out from both the low-pressure fluid outlet 42b and the communication outlet 43b, a part of which passes through the low-load capillary 12 and is depressurized (becomes a low-temperature refrigerant). The passage 50b passes through the high load capillary 10 and is depressurized (becomes a low-temperature refrigerant), and flows into the outdoor heat exchanger 3 via the outdoor pipe 84 or the outdoor pipe 82, respectively. .

(冷房運転時の低負荷条件)
図8において、冷凍サイクル400の運転状態が冷房運転時の低負荷条件にあるとき、室外側熱交換器3で凝縮された冷媒(高温冷媒)は、第2系列200b(室外側配管82および室外側配管84に同じ)に流入しないで、第1系列200a(室外側配管81に同じ)に流入する。
そして、室外側配管81に流入した高温冷媒は、第1系列200aの流体入口41aから低圧流体流路40aに流入する。このとき、高温冷媒はバネ45aを押し戻すだけの十分な圧力を有しないから、スライダ44aは連通出口43aを閉塞したままにしている。このため、高圧冷媒は低圧流体出口42aから流出し、低負荷用毛細管7を通過して減圧され(低温冷媒になる)、室内側配管94を経由して室内側熱交換器5へ流入する経路をとる。
(Low load condition during cooling operation)
In FIG. 8, when the operation state of the refrigeration cycle 400 is in a low load condition during the cooling operation, the refrigerant (high-temperature refrigerant) condensed in the outdoor heat exchanger 3 is the second series 200b (the outdoor pipe 82 and the room). It does not flow into the outer piping 84), but flows into the first series 200a (same as the outdoor piping 81).
And the high temperature refrigerant | coolant which flowed into the outdoor side piping 81 flows in into the low pressure fluid flow path 40a from the fluid inlet 41a of the 1st series 200a. At this time, since the high-temperature refrigerant does not have sufficient pressure to push back the spring 45a, the slider 44a keeps the communication outlet 43a closed. Therefore, the high-pressure refrigerant flows out from the low-pressure fluid outlet 42 a, passes through the low-load capillary 7, is depressurized (becomes a low-temperature refrigerant), and flows into the indoor heat exchanger 5 through the indoor pipe 94. Take.

(冷房運転時の高負荷条件)
図9において、冷凍サイクル400の運転状態が冷房運転時の高負荷条件にあるとき、室外側熱交換器3で凝縮された冷媒(高温冷媒)は、第2系列200b(室外側配管82および室外側配管84に同じ)に流入しないで、第1系列200a(室外側配管81に同じ)に流入する。
そして、室外側配管81に流入した高温冷媒は、バネ45aを押し戻すだけの十分な圧力を有すから、スライダ44aを押し戻し、連通出口43aを開放する。このため、高温冷媒は低圧流体出口42aおよび連通出口43aの両方から流出し、その一部は低負荷用毛細管7を通過して減圧され(低温冷媒になる)、その一部は、高圧流体流路50aを経由して高負荷用毛細管9を通過して減圧され(低温冷媒になる)、それぞれ室内側配管94または室内側配管92を経由して室内側熱交換器5へ流入する経路をとる。
(High load conditions during cooling operation)
In FIG. 9, when the operation state of the refrigeration cycle 400 is in a high load condition during cooling operation, the refrigerant (high-temperature refrigerant) condensed in the outdoor heat exchanger 3 is the second series 200b (the outdoor pipe 82 and the room). It does not flow into the outer piping 84), but flows into the first series 200a (same as the outdoor piping 81).
Since the high-temperature refrigerant that has flowed into the outdoor pipe 81 has sufficient pressure to push back the spring 45a, the slider 44a is pushed back to open the communication outlet 43a. For this reason, the high-temperature refrigerant flows out from both the low-pressure fluid outlet 42a and the communication outlet 43a, a part of which passes through the low-load capillary 7 and is depressurized (becomes a low-temperature refrigerant). A path is taken through the high-load capillary 9 via the path 50a and decompressed (becomes a low-temperature refrigerant), and flows into the indoor heat exchanger 5 via the indoor pipe 94 or the indoor pipe 92, respectively. .

以上のように、膨張弁機構300は、逆止弁と圧力応動弁の機能をひとつの筐体内に収めるようにしているので、製造コストが安価、かつ省スペース性に優れていると共に、冷凍サイクルの運転状態に応じて絞り部の冷媒流量を調節することができる。
また、圧力応動弁の機能を、スライダとバネとによって構成しているため、流路を切り替える条件(トリガー)、すなわち差圧の閾値を、バネのバネ定数とスライダの動くストロークによって設定することができるから、構造が簡素になるだけでなく、動作の信頼性が担保される。
加えて、絞りを行う部分と、流路切り替えを行う部分を分離した構成としたので、冷媒の循環量を毛細管の仕様のみで決定することができるという特徴があり、設計を容易に行うことができる。
As described above, the expansion valve mechanism 300 is configured such that the functions of the check valve and the pressure responsive valve are accommodated in a single housing, so that the manufacturing cost is low and the space saving is excellent, and the refrigeration cycle is performed. The refrigerant flow rate of the throttle portion can be adjusted according to the operating state.
Further, since the function of the pressure responsive valve is constituted by the slider and the spring, the condition for switching the flow path (trigger), that is, the threshold of the differential pressure can be set by the spring constant of the spring and the stroke of the slider. Therefore, not only the structure is simplified, but also the reliability of operation is ensured.
In addition, since the portion for performing the restriction and the portion for performing the flow path switching are separated, there is a feature that the circulation amount of the refrigerant can be determined only by the specifications of the capillary tube, and the design can be easily performed. it can.

なお、以上は、減圧手段として毛細管(キャピラリチューブ)を示しているが、本発明はこれに限定するものではなく、オリフィス(堰)であってもよい。
また、流路切り替え装置200を構成する第1系列100aと第2系列100bとを、それぞれ別個の筐体内に形成してもよい。さらに、低圧流体流路40aと高圧流体流路50aとを離隔して配置し、低圧流体流路40aの連通出口43aと高圧流体流路50aの高圧流体入口51aとを所定の連通配管によって連通してもよい(低圧流体流路40bと高圧流体流路50bにおいて同じ)。
In the above, a capillary tube (capillary tube) is shown as the pressure reducing means, but the present invention is not limited to this, and an orifice (weir) may be used.
Moreover, you may form the 1st series 100a and the 2nd series 100b which comprise the flow-path switching apparatus 200 in a respectively separate housing | casing. Furthermore, the low-pressure fluid flow path 40a and the high-pressure fluid flow path 50a are arranged separately from each other, and the communication outlet 43a of the low-pressure fluid flow path 40a and the high-pressure fluid inlet 51a of the high-pressure fluid flow path 50a are communicated by a predetermined communication pipe. (The same applies to the low-pressure fluid channel 40b and the high-pressure fluid channel 50b).

以上より、本発明の膨張弁機構は、簡素な構成によって製造コストを安価に押さえながら、冷房運転と暖房運転とを適宜切り替えながら実行することができるから各種冷房暖房機械や冷凍加熱機械に設置される膨張弁として広く利用することができる。
また、本発明の流路切り替え装置は、流れ込む冷媒の圧力に応じて流量調整が可能になるから、各種流体機械に設置される流路切り替え装置として広く利用することができる。
As described above, the expansion valve mechanism of the present invention can be executed while appropriately switching between the cooling operation and the heating operation while keeping the manufacturing cost low with a simple configuration, and thus is installed in various cooling heating machines and refrigeration heating machines. It can be widely used as an expansion valve.
Moreover, since the flow rate switching device of the present invention can adjust the flow rate according to the pressure of the flowing refrigerant, it can be widely used as a flow channel switching device installed in various fluid machines.

本発明の実施形態1に係る膨張弁機構が設置された冷凍サイクルの構成図。The block diagram of the refrigerating cycle in which the expansion valve mechanism which concerns on Embodiment 1 of this invention was installed. 本発明の実施形態1に係る膨張弁機構を模式的に説明する構成図。The block diagram which illustrates typically the expansion valve mechanism which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る流路切り替え装置を模式的に説明する正面図等。The front view etc. which explain typically the channel change device concerning Embodiment 2 of the present invention. 図3に示す流路切り替え装置を模式的に説明する側面視の断面図。Sectional drawing of the side view explaining the flow-path switching apparatus shown in FIG. 3 typically. 本発明の実施形態1に係る膨張弁機構が設置された冷凍サイクルの構成図。The block diagram of the refrigerating cycle in which the expansion valve mechanism which concerns on Embodiment 1 of this invention was installed. 図5に示す膨張弁機構の動作を説明する構成図(低負荷暖房)。The block diagram explaining operation | movement of the expansion valve mechanism shown in FIG. 5 (low load heating). 図5に示す膨張弁機構の動作を説明する構成図(高負荷暖房)。The block diagram explaining operation | movement of the expansion valve mechanism shown in FIG. 5 (high load heating). 図5に示す膨張弁機構の動作を説明する構成図(低負荷冷房)。The block diagram explaining operation | movement of the expansion valve mechanism shown in FIG. 5 (low load cooling). 図5に示す膨張弁機構の動作を説明する構成図(高負荷冷房)。The block diagram explaining operation | movement of the expansion valve mechanism shown in FIG. 5 (high load cooling).

符号の説明Explanation of symbols

1:圧縮機、2:四方切替弁、3:室外側熱交換器、4:膨張弁機構、5:室内側熱交換器、6:逆止弁(第1系列)、7:低負荷用毛細管(第1系列)、8:圧力応動弁(第1系列)、9:高負荷用毛細管(第1系列)、10:高負荷用毛細管(第2系列)、11:圧力応動弁(第2系列)、12:低負荷用毛細管(第2系列)、13:逆止弁(第2系列)、40a:低圧流体流路、41a:流体入口、42a:低圧流体出口、43a:連通出口、44a:スライダ、45a:バネ、46a:移動流体入口、50a:高圧流体流路、51a:高圧流体入口、52a:高圧流体出口、70:筐体、71:端面、72:側面、73:端面、80:配管、81:室外側配管、82:室外側配管、83:室外側配管、84:室外側配管、90:配管、91:室内側配管、92:室内側配管、93:室内側配管、94:室内側配管、100:冷凍サイクル、100a:冷凍サイクルの第1系列、100b:冷凍サイクルの第2系列、200:流路切り替え装置、200a:流路切り替え装置の第1系列、200b:流路切り替え装置の第2系列、300:膨張弁機構、400:冷凍サイクル、A:分岐点、B1:分岐点、B2:分岐点、C1:分岐点、C2:分岐点、D:分岐点。   1: compressor, 2: four-way switching valve, 3: outdoor heat exchanger, 4: expansion valve mechanism, 5: indoor heat exchanger, 6: check valve (first series), 7: low load capillary (First series), 8: pressure responsive valve (first series), 9: capillary tube for high load (first series), 10: capillary tube for high load (second series), 11: pressure responsive valve (second series) ), 12: capillary tube for low load (second series), 13: check valve (second series), 40a: low pressure fluid flow path, 41a: fluid inlet, 42a: low pressure fluid outlet, 43a: communication outlet, 44a: Slider, 45a: Spring, 46a: Moving fluid inlet, 50a: High pressure fluid flow path, 51a: High pressure fluid inlet, 52a: High pressure fluid outlet, 70: Housing, 71: End face, 72: Side face, 73: End face, 80: Piping, 81: outdoor piping, 82: outdoor piping, 83: outdoor piping, 84: outdoor piping, 90: piping 91: indoor piping, 92: indoor piping, 93: indoor piping, 94: indoor piping, 100: refrigeration cycle, 100a: first series of refrigeration cycle, 100b: second series of refrigeration cycle, 200: flow Road switching device, 200a: first series of flow switching devices, 200b: second series of flow switching devices, 300: expansion valve mechanism, 400: refrigeration cycle, A: branch point, B1: branch point, B2: branch Point, C1: branch point, C2: branch point, D: branch point.

Claims (3)

流体が流入する流体入口と、該流体入口から流入した流体が流出自在な低圧流体出口および連通出口と、を具備する供給流体流路と、
前記連通出口に連通した高圧流体入口と、該高圧流体入口から流入した流体が流出する高圧流体出口と、を具備する高圧流体流路と、
前記供給流体流路に配置され、前記連通出口を開通または閉塞するスライダと、
前記供給流体流路に配置され、前記スライダを前記流体入口方向に押圧する付勢手段と、を有し、
前記流体入口から流入する流体の圧力が所定の圧力以下である場合、前記スライダにより前記連通出口が閉塞されて当該流体が前記低圧流体出口から流出し、一方、前記流体入口から流入する流体の圧力が所定の圧力を超えた場合、前記連通出口が開通されて当該流体が前記低圧流体出口および前記連通出口から流出し、
前記供給流体流路に、前記スライダを前記流体入口方向に移動するための流体が流入する移動流体入口が設けられ、
該移動流体入口から前記供給流体流路に流体が流入された場合、前記低圧流体出口および前記連通出口が閉塞されることを特徴とする流路切り替え装置。
A supply fluid flow path comprising: a fluid inlet through which fluid flows; and a low-pressure fluid outlet and a communication outlet through which fluid flowing from the fluid inlet can freely flow out;
A high-pressure fluid flow path comprising: a high-pressure fluid inlet communicating with the communication outlet; and a high-pressure fluid outlet through which fluid flowing in from the high-pressure fluid inlet flows out;
A slider disposed in the supply fluid flow path to open or close the communication outlet;
An urging means disposed in the supply fluid flow path and pressing the slider in the fluid inlet direction;
When the pressure of the fluid flowing in from the fluid inlet is equal to or lower than a predetermined pressure, the communication outlet is closed by the slider and the fluid flows out of the low-pressure fluid outlet, while the pressure of the fluid flowing in from the fluid inlet When the pressure exceeds a predetermined pressure, the communication outlet is opened and the fluid flows out of the low pressure fluid outlet and the communication outlet ,
The supply fluid flow path is provided with a moving fluid inlet into which a fluid for moving the slider in the fluid inlet direction flows,
The flow path switching device , wherein when a fluid flows into the supply fluid flow path from the moving fluid inlet, the low pressure fluid outlet and the communication outlet are closed .
前記供給流体流路と前記高圧流体流路とが、共通の筐体内に形成されていることを特徴とする請求項1記載の流路切り替え装置。 The flow path switching device according to claim 1, wherein the supply fluid flow path and the high-pressure fluid flow path are formed in a common housing. 高温冷媒を一方にのみ流す請求項1または2記載の流路切り替え装置が設置された第1系列と、前記高温冷媒を前記第1系列とは反対の方向に流す請求項3または4記載の流路切り替え装置が設置された第2系列と、を有し、前記高温冷媒を減圧する膨張弁機構であって、
前記第1系列が、前記流路切り替え装置の供給流体入口に連通する第1供給配管と、前記流路切り替え装置の低圧流体出口に連通して第1低負荷用減圧手段が配置された第1低圧配管と、前記流路切り替え装置の高圧流体出口に連通して第1高圧負荷用減圧手段が配置された第1高圧配管と、前記流路切り替え装置の移動流体入口に連通した第1移動配管と、を具備し、
前記第2系列が、前記流路切り替え装置の供給流体入口に連通する第2供給配管と、前記流路切り替え装置の低圧流体出口に連通して第2低負荷用減圧手段が配置された第2低圧配管と、前記流路切り替え装置の高圧流体出口に連通して第2高圧負荷用減圧手段が配置された第2高圧配管と、前記流路切り替え装置の移動流体入口に連通した第2移動配管と、を具備し、
前記第1供給配管と、前記第2低圧配管と、前記第2高圧配管と、前記第2移動配管と、が相互に連通され、
前記第2供給配管と、前記第1低圧配管と、前記第1高圧配管と、前記第1移動配管と、が相互に連通される、ことを特徴とする膨張弁機構。
The flow according to claim 3 or 4, wherein the first series in which the flow path switching device according to claim 1 or 2 is flowed only in one direction and the high-temperature refrigerant is caused to flow in a direction opposite to the first series. A second system in which a path switching device is installed, and an expansion valve mechanism for decompressing the high-temperature refrigerant,
A first supply pipe in which the first series communicates with a supply fluid inlet of the flow path switching device and a low pressure fluid outlet of the flow path switching device and a first low load decompression means is disposed. A first high-pressure pipe in communication with a low-pressure pipe, a high-pressure fluid outlet of the flow path switching device and a first high-pressure load decompression means, and a first moving pipe in communication with the mobile fluid inlet of the flow path switching device And comprising
A second supply line in which the second system communicates with a supply fluid inlet of the flow path switching device, and a second low load decompression means is disposed in communication with the low pressure fluid outlet of the flow path switching device. A low-pressure pipe, a second high-pressure pipe in communication with the high-pressure fluid outlet of the flow path switching device and a second high-pressure load decompression means, and a second moving pipe in communication with the mobile fluid inlet of the flow path switching device And comprising
The first supply pipe, the second low-pressure pipe, the second high-pressure pipe, and the second moving pipe communicate with each other;
The second supply pipe, the first low-pressure pipe, the first high-pressure pipe, and the first moving pipe are in communication with each other.
JP2007035325A 2007-02-15 2007-02-15 Expansion valve mechanism and flow path switching device Expired - Fee Related JP4818154B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007035325A JP4818154B2 (en) 2007-02-15 2007-02-15 Expansion valve mechanism and flow path switching device
EP08002486A EP1959214B1 (en) 2007-02-15 2008-02-11 Expansion valve mechanism
ES08002486T ES2381387T3 (en) 2007-02-15 2008-02-11 Expansion valve mechanism
CN200810005650XA CN101245960B (en) 2007-02-15 2008-02-14 Expansion valve mechanism and passage switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007035325A JP4818154B2 (en) 2007-02-15 2007-02-15 Expansion valve mechanism and flow path switching device

Publications (3)

Publication Number Publication Date
JP2008196832A JP2008196832A (en) 2008-08-28
JP2008196832A5 JP2008196832A5 (en) 2009-08-06
JP4818154B2 true JP4818154B2 (en) 2011-11-16

Family

ID=39446080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007035325A Expired - Fee Related JP4818154B2 (en) 2007-02-15 2007-02-15 Expansion valve mechanism and flow path switching device

Country Status (4)

Country Link
EP (1) EP1959214B1 (en)
JP (1) JP4818154B2 (en)
CN (1) CN101245960B (en)
ES (1) ES2381387T3 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901851B2 (en) * 2008-12-15 2012-03-21 三菱電機株式会社 Expansion valve mechanism and air conditioner equipped with the same
CN101893356B (en) * 2010-06-30 2012-08-22 广东美的电器股份有限公司 Air-conditioner and control method thereof
CN105157284B (en) * 2015-08-21 2017-10-03 广东美的制冷设备有限公司 Air-conditioning system
JP6478958B2 (en) * 2016-09-02 2019-03-06 株式会社不二工機 Control valve
CN106440464A (en) * 2016-12-14 2017-02-22 山东超越地源热泵科技有限公司 Transcritical CO2 water and ground source heat pump refrigerating and heating system and heating method
CN106705467B (en) * 2016-12-14 2022-11-25 山东超越地源热泵科技有限公司 Transcritical CO2 heat pump heat supply system and heat supply method
JP6890021B2 (en) * 2017-02-28 2021-06-18 三菱重工サーマルシステムズ株式会社 How to operate a turbo chiller and a turbo chiller
CN111094876A (en) * 2017-08-29 2020-05-01 东芝开利株式会社 Multi-connected air conditioning system and indoor unit
CN108224846B (en) * 2017-12-30 2020-10-13 广东芬尼克兹节能设备有限公司 Control method and system of double-valve heat pump system
CN108592465B (en) * 2018-05-16 2023-09-22 广东美的制冷设备有限公司 Overpressure stop valve, throttling device and air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159975A (en) * 1984-01-30 1985-08-21 Hitachi Ltd Graphic edition controlling device
JPS60182659A (en) * 1984-02-29 1985-09-18 Shin Kobe Electric Mach Co Ltd Automatically plate pasting equipment
KR950003045Y1 (en) * 1992-11-19 1995-04-19 이헌조 Capillary tube
JP2001311571A (en) * 2000-04-27 2001-11-09 Ranco Japan Ltd Expansion valve mechanism
JP3984779B2 (en) 2000-10-03 2007-10-03 株式会社テージーケー Refrigeration cycle
JP4221922B2 (en) * 2001-09-07 2009-02-12 三菱電機株式会社 Flow control device, throttle device, and air conditioner
JP2005083690A (en) * 2003-09-10 2005-03-31 Fujitsu General Ltd Dehumidifying orifice device and air conditioner having the orifice device

Also Published As

Publication number Publication date
CN101245960B (en) 2011-11-09
JP2008196832A (en) 2008-08-28
EP1959214B1 (en) 2012-01-25
EP1959214A3 (en) 2010-10-27
ES2381387T3 (en) 2012-05-25
EP1959214A2 (en) 2008-08-20
CN101245960A (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP4818154B2 (en) Expansion valve mechanism and flow path switching device
US9612042B2 (en) Method of operating a refrigeration system in a null cycle
JP4309207B2 (en) Multi-air conditioner with simultaneous heating and heating
KR101319778B1 (en) Air conditioner
JP2008513725A (en) Heat pump with reheat and economizer functions
JP5698160B2 (en) Air conditioner
US20080209930A1 (en) Heat Pump with Pulse Width Modulation Control
JP2010507770A (en) Refrigeration system with expander bypass
US7000423B2 (en) Dual economizer heat exchangers for heat pump
KR101359088B1 (en) Air conditioner
US6817205B1 (en) Dual reversing valves for economized heat pump
JP5235925B2 (en) Refrigeration equipment
US20210231317A1 (en) Air conditioning apparatus
US20210231352A1 (en) Air conditioning apparatus
JP3984250B2 (en) Multi-room air conditioner
CN209800783U (en) Hot water air conditioner with six-way reversing valve
CN110806036A (en) Oil return control and compressor variable capacity control system of heat pump and air conditioner
JP2005076983A (en) Air conditioning system
KR101146783B1 (en) Refrigerant system
CN111536257A (en) Hot water air conditioner with six-way reversing valve
JP4901851B2 (en) Expansion valve mechanism and air conditioner equipped with the same
KR101328761B1 (en) Air conditioner
EP1420218B1 (en) Heat-save cooler
JP5305860B2 (en) Expansion valve mechanism and air conditioner equipped with the same
JPS61235644A (en) Heat pump device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4818154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees