JPS61235644A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS61235644A
JPS61235644A JP7347885A JP7347885A JPS61235644A JP S61235644 A JPS61235644 A JP S61235644A JP 7347885 A JP7347885 A JP 7347885A JP 7347885 A JP7347885 A JP 7347885A JP S61235644 A JPS61235644 A JP S61235644A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
compressor
economizer
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7347885A
Other languages
Japanese (ja)
Inventor
眞田 誠司
正和 藤本
田村 陸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP7347885A priority Critical patent/JPS61235644A/en
Publication of JPS61235644A publication Critical patent/JPS61235644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は室内側熱交換器と室外側熱交換器とを備えたヒ
ートポンプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat pump device equipped with an indoor heat exchanger and an outdoor heat exchanger.

〔従来技術〕[Prior art]

従来この種の装置は、例えば第4図の如く、圧縮機1、
室内側熱交換器2、複数個(本図では3個)の室外側熱
交換器3.4.5、四方弁6、レジ−ハーフ、膨張弁8
,9.10、逆+)1弁11゜12.13、連通路14
,15.16、弁17゜18.19.20.21.22
、膨張弁23、逆止弁24を備え、これらの機器を管路
25,26゜27.28.29が接続している。
Conventionally, this type of device has a compressor 1, as shown in FIG.
Indoor heat exchanger 2, multiple (three in this figure) outdoor heat exchangers 3.4.5, four-way valve 6, cash register half, expansion valve 8
, 9.10, reverse +) 1 valve 11° 12.13, communication path 14
, 15.16, valve 17° 18.19.20.21.22
, an expansion valve 23, and a check valve 24, and these devices are connected by pipes 25, 26, 27, 28, and 29.

四方弁6を図示の如き位置に置き、暖房サイクルが運転
されている場合、室外側熱交換器3,4゜5に着霜が見
られたときに、圧縮機lから吐出される高温高圧ガス(
以下ホットガスと称す)の一部を順次室外側熱交換器3
.4.5に導いて除霜を行う。即ち、先ず、図示の如く
弁17を閉じ弁18を開きホットガスを室外側熱交換器
3に導き除霜を行う。この際生成されるホットガスの凝
縮冷媒液は下降して連通路14.16により膨張弁9.
10の二次側に導かれ、レシーバ−7から送られて膨張
弁9.10を通過した冷媒ガス、冷媒液とノ(に室夕1
側熱交換器4,5に入り茅発しブH(+。
When the four-way valve 6 is placed in the position shown and the heating cycle is in operation, the high-temperature, high-pressure gas discharged from the compressor 1 when frost is observed on the outdoor heat exchangers 3 and 4. (
A part of the hot gas (hereinafter referred to as hot gas) is sequentially transferred to the outdoor heat exchanger 3.
.. 4. Defrost according to step 5. That is, first, as shown in the figure, the valve 17 is closed and the valve 18 is opened to introduce hot gas to the outdoor heat exchanger 3 for defrosting. The condensed refrigerant liquid of the hot gas generated at this time descends and passes through the communication passage 14.16 to the expansion valve 9.
The refrigerant gas, the refrigerant liquid, and the refrigerant gas, which have been guided to the secondary side of the refrigerant 10 and sent from the receiver 7 and passed through the expansion valve 9.
It enters the side heat exchangers 4 and 5 and generates thatch H (+).

21、管路28を経’l−縮機1の吸込11に専かねる
21, the pipe line 28 is dedicated to the suction 11 of the compressor 1.

次に弁18.19を閉し、弁17.20を開き、ホ71
ガスを室外側熱交換器4に導き除霜を行い、同様にして
次に室外側熱交換器5の除霜を行う。
Then close valve 18.19, open valve 17.20, and
The gas is guided to the outdoor heat exchanger 4 and defrosted, and then the outdoor heat exchanger 5 is defrosted in the same manner.

第5図は別の従来例で、除霜により生成される凝縮冷媒
液を弁30.31又は32及び管路33を経て高圧側で
あるレジ−ハーフに戻す、Lうにしたものである。
FIG. 5 shows another conventional example in which the condensed refrigerant liquid produced by defrosting is returned to the high-pressure side of the register half via valves 30, 31 or 32 and a pipe 33.

このほか、凝縮冷媒液を冷媒液供給ヘッダー(高圧側)
等に戻すよう構成されたものもある。
In addition, the condensed refrigerant liquid is transferred to the refrigerant liquid supply header (high pressure side).
Some are configured to revert to etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような従来のものにおいては凝縮し
た冷媒液を安定した運転状態で戻すことが難しく、次に
示すような欠点を有していた。
However, in such conventional systems, it is difficult to return the condensed refrigerant liquid under stable operating conditions, and the system has the following drawbacks.

凝縮冷媒液を低圧側へ戻す場合、 (1)冷媒サイクル中綴も高い圧力から低圧側へ液冷媒
を戻すため、特別な減圧装置が各コイルに必要となる。
When returning condensed refrigerant liquid to the low pressure side: (1) A special pressure reducing device is required for each coil because the refrigerant cycle centerpiece also returns liquid refrigerant from high pressure to the low pressure side.

(2)着霜により冷媒蒸発量が減少したコイルへ、液冷
媒が供給されるため除霜初期には液冷媒がそのままコイ
ル出口側に送り出される。このため、冷媒液の戻って来
たコイルの膨張弁は閉方向に作動し、当該コイルへ供給
される戻り液冷媒量の比が増す。この戻り液冷媒量を制
御して液滴として圧縮機に吸入させないようにすること
が困難である。
(2) Since the liquid refrigerant is supplied to the coil where the amount of refrigerant evaporation has decreased due to frost formation, the liquid refrigerant is directly sent to the coil outlet side in the early stage of defrosting. Therefore, the expansion valve of the coil to which the refrigerant liquid has returned operates in the closing direction, and the ratio of the amount of return liquid refrigerant supplied to the coil increases. It is difficult to control the amount of this return liquid refrigerant so that it is not sucked into the compressor as droplets.

(3)そのため、潤滑油に溶は込む冷媒液の量が大とな
り、潤滑系の故障が起こり易くなる。
(3) Therefore, the amount of refrigerant liquid that dissolves into the lubricating oil increases, making it more likely that the lubricating system will malfunction.

また、凝縮冷媒液を高圧側へ戻す場合、(1)凝縮液冷
媒を戻すために、ホットガスラインとレシーバ−又は冷
媒液供給ヘッダーとの間に、除霜時のみに限って十分な
圧力差を生じせしめる特別な装置が必要になる。
In addition, when returning the condensed refrigerant to the high pressure side, (1) In order to return the condensed refrigerant, there should be a sufficient pressure difference between the hot gas line and the receiver or refrigerant supply header only during defrosting. Special equipment is required to generate this.

(2)この差圧発生のための装置は、通常運転時におい
ては配管抵抗となり、圧縮機の動力が増大する。
(2) This device for generating a pressure difference causes pipe resistance during normal operation, increasing the power of the compressor.

(3)除霜時に、ホットガスの圧力を高めて差圧をつけ
た場合は、圧縮機の動力が増し、レシーバ−又は液冷媒
供給ヘッダーの圧力を下げた場合は、コイル減少分より
もさらに冷凍容量又は暖房容量が低下する。
(3) During defrosting, if the pressure of the hot gas is increased to create a differential pressure, the power of the compressor will increase, and if the pressure of the receiver or liquid refrigerant supply header is decreased, the power will be greater than the decrease in the coil. Refrigeration capacity or heating capacity decreases.

本発明は、圧縮機の中間圧力段に接続する油冷却器を設
け、凝縮冷媒を中間圧力に導くようにしたことに3Lす
、従来のものの−1−記の欠点を除き、特別な減圧装置
又は差圧発生器を必要とせず、また高圧側、低圧側の圧
力は除霜中でも変わらないヒートポンプ装置を提供する
ことを目的とするものである。
The present invention provides a special pressure reducing device, which eliminates the disadvantages of the conventional one by providing an oil cooler connected to the intermediate pressure stage of the compressor and guiding the condensed refrigerant to an intermediate pressure. Alternatively, it is an object of the present invention to provide a heat pump device that does not require a differential pressure generator and in which the pressures on the high pressure side and the low pressure side do not change even during defrosting.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、圧縮機、油冷却器、室内側熱交換器及び室外
側熱交換器を備えたヒートポンプ装置において、前記室
外側熱交換器に着霜が生じた場合に、前記圧縮機より吐
出される高温高圧ガスの一部を、前記室外側熱交換器に
流入せしめて除霜し、除霜に伴い生成される凝縮冷媒を
前記油冷却器の入口膨張弁二次側に導き、前記油冷却器
をi11過した冷媒を前記圧縮機の中間圧力段に導くよ
う構成したことを特徴とするヒートポンプ装置である。
The present invention provides a heat pump device including a compressor, an oil cooler, an indoor heat exchanger, and an outdoor heat exchanger, in which when frost forms on the outdoor heat exchanger, the heat pump discharged from the compressor A part of the high-temperature, high-pressure gas flowing into the outdoor heat exchanger is defrosted, and the condensed refrigerant generated during defrosting is guided to the secondary side of the inlet expansion valve of the oil cooler to cool the oil. The heat pump device is characterized in that the refrigerant passed through the heat pump is guided to an intermediate pressure stage of the compressor.

〔実施例〕〔Example〕

本発明を実施例につき、図面を用いて説明する。 The present invention will be described by way of example with reference to the drawings.

第1図は実施例として暖房サイクルのフローが示されて
いるが、第4図における四方弁6、逆止弁11.+2.
13、膨張弁23、逆止弁24などを備えて冷房サイク
ルとの切り換えを行うようにしてもよい。
Although FIG. 1 shows the flow of a heating cycle as an example, the four-way valve 6, check valve 11. +2.
13, an expansion valve 23, a check valve 24, etc. may be provided to switch between the air conditioning cycle and the cooling cycle.

第1図において、室内側熱交換器2の出口と、室外側熱
交換器3.4.5の入口との間にエコノマイザ34が設
けられている。本図に示されたエコノマイザ34は密閉
式である。レジ−ハーフからの管路27は、管路35と
バイパス36に分かれている。管路27は熱交換器37
、管路38を経て膨張弁8,9.10を経て室外側熱交
換器3゜4.5に接続している。バイパス36は膨張弁
39、熱交換器37、バイパス40を経て圧縮機1の中
間圧段に接続している。
In FIG. 1, an economizer 34 is provided between the outlet of the indoor heat exchanger 2 and the inlet of the outdoor heat exchanger 3.4.5. The economizer 34 shown in this figure is of a closed type. The conduit 27 from the cash register half is divided into a conduit 35 and a bypass 36. Pipe line 27 is heat exchanger 37
, and are connected to the outdoor heat exchanger 3°4.5 via the expansion valves 8, 9, and 10 via the conduit 38. The bypass 36 is connected to the intermediate pressure stage of the compressor 1 via an expansion valve 39, a heat exchanger 37, and a bypass 40.

圧縮機吐出管路に設置された油分離器50で油が分剤さ
れ管路51を介し、油冷却器45により冷却されて、管
路52、油ポンプ53を経て圧縮機lへ給油されている
。油冷却器45の冷却媒体はレジ−ハーフからの管路2
7のバイパス46を介し、膨張弁49、熱交換器47、
バイパス48゜40を経て圧縮機1の中間圧力段に接続
している。
The oil is separated in an oil separator 50 installed in the compressor discharge pipe, passed through a pipe 51, cooled by an oil cooler 45, and supplied to the compressor l via a pipe 52 and an oil pump 53. There is. The cooling medium of the oil cooler 45 is supplied to the pipe line 2 from the cash register half.
7 via a bypass 46, an expansion valve 49, a heat exchanger 47,
It is connected to the intermediate pressure stage of the compressor 1 via a bypass 48.40.

膨張弁8.9.10の二次側は、それぞれ弁41゜42
.43を介し、さらに共通の管路44を経て、油冷却器
45の入口の膨張弁49の二次側に接続している。
The secondary sides of the expansion valves 8, 9 and 10 are valves 41° and 42, respectively.
.. 43 and further through a common pipe line 44 to the secondary side of the expansion valve 49 at the inlet of the oil cooler 45.

除霜時の作用につき説明すれば、室外側熱交換器3,4
.5が着霜した場合、先ず、弁17を閉じ、弁18を開
き、ホットガスを室外側熱交換器3に導き除霜を行う。
To explain the action during defrosting, the outdoor heat exchangers 3 and 4
.. 5 is frosted, first close the valve 17, open the valve 18, and guide the hot gas to the outdoor heat exchanger 3 to defrost it.

弁41が開かれ、除霜時に生成された凝縮冷媒液は弁4
1を通り管路44を経て膨張弁49の二次側の中間圧部
に導かれる。
The valve 41 is opened, and the condensed refrigerant liquid generated during defrosting flows through the valve 4.
1 and is led to an intermediate pressure section on the secondary side of the expansion valve 49 via a conduit 44.

このとき、他の室外側熱交換器4.5には、管路35か
らの冷媒が勇−かれており、管路44からの戻り冷媒液
とは無関係に作動が続行しているので高圧側、低圧側の
圧力に変化を生ずるおそれもなく、又変化を生ぜしめる
必要もない。
At this time, the other outdoor heat exchanger 4.5 is supplied with refrigerant from the pipe line 35 and continues to operate regardless of the return refrigerant liquid from the pipe line 44, so the high pressure side , there is no risk of causing a change in the pressure on the low pressure side, and there is no need to cause a change.

次に、弁18,19.41を閉じ、弁+7.20゜42
を開き室外側熱交換器4の除霜を行い、さらに同様にし
て室外側熱交換器5の除霜を行う。
Next, close the valves 18 and 19.41, and the valve +7.20°42
The outdoor heat exchanger 4 is defrosted by opening, and the outdoor heat exchanger 5 is further defrosted in the same manner.

室外側の熱交換器の数は3個に限らず任意の複数個が用
いられ、除霜の切り換え順序も個数も任意に選ぶことが
できる。
The number of outdoor heat exchangers is not limited to three, but any number of heat exchangers may be used, and the defrosting switching order and number can be arbitrarily selected.

エコノマイザ34として密閉エコノマイザのほか、フラ
ッシュエコノマイザを用いることができる。
As the economizer 34, a flash economizer can be used in addition to a closed economizer.

第2図は密閉エコノマイザを用いた場合のヒートポンプ
サイクル線図、第3図はフラッシュエコノマイザを用い
た場合のヒートポンプサイクル線図を示す。
FIG. 2 shows a heat pump cycle diagram when a closed economizer is used, and FIG. 3 shows a heat pump cycle diagram when a flash economizer is used.

圧縮機1としては、スクリュ一式、ターボ式或いはレシ
プロ式の何れの形式のものでも用いることができる。
As the compressor 1, any type of screw type, turbo type, or reciprocating type can be used.

〔発明の効果〕〔Effect of the invention〕

本発明により、凝縮液冷媒の戻し先が、冷媒サイクル」
二中間圧となっている油冷却器であり、特別な減圧装置
又は差圧発生装置が不要となり、他の除霜していないコ
イルの運転状態は除霜前と変わらず、除霜時のみ圧縮機
へ吸い込まれる液冷媒の量が増すという欠点はなく、従
って潤滑油への冷媒溶は込みも通常運転に比べて増加せ
ず、除霜中の高圧側及び低圧側の圧力は除霜前と変わら
ず、圧縮機動力の増加や、冷凍能力がコイル減少分より
も更に低下するという欠点を生ずることのないヒートポ
ンプ装置を提供することができ、実用」〕極めて大なる
効果を有するものである。
According to the present invention, the condensate refrigerant is returned to the refrigerant cycle.
This is an oil cooler with two intermediate pressures, eliminating the need for a special pressure reducing device or differential pressure generating device, and the operating status of other coils that are not defrosted remains the same as before defrosting, compressing only during defrosting. There is no disadvantage that the amount of liquid refrigerant sucked into the machine increases, and therefore the amount of refrigerant mixed into the lubricating oil does not increase compared to normal operation, and the pressure on the high pressure side and low pressure side during defrosting is the same as before defrosting. It is possible to provide a heat pump device that does not have the drawbacks of increasing the compressor power and reducing the refrigerating capacity further than the decrease in the coil, and has an extremely large effect in practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のフロー図、第2図はそのヒー
トポンプサイクル線図、第3図は別の実施例のヒートポ
ンプサイクル線図、第4図及び第5図は従来例のフロー
図である。 1・・・圧縮機、2・・・室内側熱交換器、3. 4.
 5・・・室外側熱交換器、6・・・四方弁、7・・・
レシーバ−18,9,IO・・・膨張弁、11.12.
13・・・逆止弁、14,15.16・・・連1111
路、] 7.  ] 8.19゜20.21.22・・
・弁、23・・・膨張弁、24・・・逆止弁、25.2
6,27.28.29・・・管路、30.31.32・
・・弁、33・・・管路、34・・・エコノマイザ、3
5・・・管路、36・・・バイパス、37・・・熱交換
器、38・・・管路、39・・・膨張弁、40・・・バ
イパス、41,42.43・・・弁、44・・・管路、
45・・・油冷却器、46・・・バイパス、47・・・
熱交換器、48・・・バイパス、49・・・膨張弁、5
0・・・油分離器、51.52・・・管路、53・・・
油ポンプ、54・・・管路。
Fig. 1 is a flow diagram of an embodiment of the present invention, Fig. 2 is a heat pump cycle diagram thereof, Fig. 3 is a heat pump cycle diagram of another embodiment, and Figs. 4 and 5 are flow diagrams of a conventional example. It is. 1... Compressor, 2... Indoor heat exchanger, 3. 4.
5... Outdoor heat exchanger, 6... Four-way valve, 7...
Receiver-18, 9, IO...expansion valve, 11.12.
13...Check valve, 14,15.16...Ream 1111
Road, ] 7. ] 8.19゜20.21.22...
・Valve, 23... Expansion valve, 24... Check valve, 25.2
6, 27.28.29...pipeline, 30.31.32.
...Valve, 33...Pipeline, 34...Economizer, 3
5... Pipe line, 36... Bypass, 37... Heat exchanger, 38... Pipe line, 39... Expansion valve, 40... Bypass, 41, 42. 43... Valve , 44... conduit,
45...Oil cooler, 46...Bypass, 47...
Heat exchanger, 48... bypass, 49... expansion valve, 5
0...Oil separator, 51.52...Pipeline, 53...
Oil pump, 54...pipe line.

Claims (1)

【特許請求の範囲】 1、圧縮機、油冷却器、室内側熱交換器及び室外側熱交
換器を備えたヒートポンプ装置において、前記室外側熱
交換器に着霜が生じた場合に、前記圧縮機より吐出され
る高温高圧ガスの一部を、前記室外側熱交換器に流入せ
しめて除霜し、除霜に伴い生成される凝縮冷媒を前記油
冷却器の入口膨張弁二次側に導き、前記油冷却器を通過
した冷媒を前記圧縮機の中間圧力段に導くよう構成した
ことを特徴とするヒートポンプ装置。 2、前記室外側熱交換器が複数個備えられ、該複数の室
外側熱交換器のうち、2個以上に着霜が生じた場合に、
前記圧縮機より吐出される高温高圧ガスの一部を、前記
着霜の生じた室外側熱交換器に順次流入するようにした
特許請求の範囲第1項記載の装置。 3、圧縮機、油冷却器、室内側熱交換器及び室外側熱交
換器を備えたヒートポンプ装置において、前記室内側熱
交換器の出口から前記室外側熱交換器の入口までの冷媒
経路の途中にエコノマイザを設け、該エコノマイザの気
相部を前記圧縮機の中間圧力段に接続し、前記室外側熱
交換器に着霜が生じた場合に、前記圧縮機より吐出され
る高温高圧ガスの一部を、前記室外側熱交換器に流入せ
しめて除霜し、除霜に伴い生成される凝縮冷媒を前記油
冷却器の入口膨張弁二次側に導くよう構成したことを特
徴とするヒートポンプ装置。 4、前記エコノマイザが密閉エコノマイザである特許請
求の範囲第3項記載の装置。 5、前記エコノマイザがフラッシュエコノマイザである
、特許請求の範囲第3項記載の装置。
[Claims] 1. In a heat pump device equipped with a compressor, an oil cooler, an indoor heat exchanger, and an outdoor heat exchanger, when frost occurs on the outdoor heat exchanger, the compression A part of the high-temperature, high-pressure gas discharged from the machine is defrosted by flowing into the outdoor heat exchanger, and the condensed refrigerant generated during defrosting is guided to the secondary side of the inlet expansion valve of the oil cooler. . A heat pump device, characterized in that the refrigerant that has passed through the oil cooler is guided to an intermediate pressure stage of the compressor. 2. When a plurality of the outdoor heat exchangers are provided and frost occurs on two or more of the plurality of outdoor heat exchangers,
2. The apparatus according to claim 1, wherein a portion of the high-temperature, high-pressure gas discharged from the compressor sequentially flows into the outdoor heat exchanger where frost has formed. 3. In a heat pump device equipped with a compressor, an oil cooler, an indoor heat exchanger, and an outdoor heat exchanger, the refrigerant path from the outlet of the indoor heat exchanger to the inlet of the outdoor heat exchanger is provided with an economizer, and the gas phase part of the economizer is connected to the intermediate pressure stage of the compressor, so that when frost forms on the outdoor heat exchanger, part of the high-temperature, high-pressure gas discharged from the compressor is The heat pump device is characterized in that the heat pump device is configured to cause the refrigerant to flow into the outdoor heat exchanger for defrosting, and to guide the condensed refrigerant generated during the defrosting to the secondary side of the inlet expansion valve of the oil cooler. . 4. The apparatus according to claim 3, wherein the economizer is a closed economizer. 5. The apparatus of claim 3, wherein the economizer is a flash economizer.
JP7347885A 1985-04-09 1985-04-09 Heat pump device Pending JPS61235644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7347885A JPS61235644A (en) 1985-04-09 1985-04-09 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7347885A JPS61235644A (en) 1985-04-09 1985-04-09 Heat pump device

Publications (1)

Publication Number Publication Date
JPS61235644A true JPS61235644A (en) 1986-10-20

Family

ID=13519424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7347885A Pending JPS61235644A (en) 1985-04-09 1985-04-09 Heat pump device

Country Status (1)

Country Link
JP (1) JPS61235644A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014345A1 (en) * 2010-07-29 2012-02-02 三菱電機株式会社 Heat pump
WO2013111177A1 (en) * 2012-01-24 2013-08-01 三菱電機株式会社 Air-conditioning unit
CN105247302A (en) * 2013-05-31 2016-01-13 三菱电机株式会社 Air conditioner
JP2016106211A (en) * 2016-01-20 2016-06-16 三菱電機株式会社 Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014345A1 (en) * 2010-07-29 2012-02-02 三菱電機株式会社 Heat pump
JP5611353B2 (en) * 2010-07-29 2014-10-22 三菱電機株式会社 heat pump
US9279608B2 (en) 2010-07-29 2016-03-08 Mitsubishi Electric Corporation Heat pump
EP2600082B1 (en) * 2010-07-29 2018-09-26 Mitsubishi Electric Corporation Heat pump
WO2013111177A1 (en) * 2012-01-24 2013-08-01 三菱電機株式会社 Air-conditioning unit
JPWO2013111177A1 (en) * 2012-01-24 2015-05-11 三菱電機株式会社 Air conditioner
US9518754B2 (en) 2012-01-24 2016-12-13 Mitsubishi Electric Corporation Air-conditioning apparatus
CN105247302A (en) * 2013-05-31 2016-01-13 三菱电机株式会社 Air conditioner
JP2016106211A (en) * 2016-01-20 2016-06-16 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
EP2341299A2 (en) Multi-type air conditioner with defrosting device
CN107178833B (en) Heat recovery external machine system and air conditioning system
CN101506595A (en) Tandem compressors with pulse width modulation suction valve
US7000423B2 (en) Dual economizer heat exchangers for heat pump
US4240269A (en) Heat pump system
KR101706865B1 (en) Air conditioning system
CN102301189A (en) Air Conditioner And Method Of Returning Refrigerating Machine Oil
JP4818154B2 (en) Expansion valve mechanism and flow path switching device
US6817205B1 (en) Dual reversing valves for economized heat pump
US4057977A (en) Reverse cycle heat pump circuit
KR100225636B1 (en) Airconditioner for both cooling and warming
KR20210096522A (en) Air conditioning apparatus
CN106949657B (en) Air conditioning system with supercooling device and control method thereof
JP2007032857A (en) Refrigerating device
JPS61235644A (en) Heat pump device
KR20210096521A (en) Air conditioning apparatus
CN217686006U (en) Throttling heat exchanger and air conditioner
CN213208028U (en) Air conditioner
JPS6152909B2 (en)
CN107975959B (en) Multi-split air conditioning system and control method
CN108007010B (en) Heat pump system
CN207662007U (en) A kind of multi-online air-conditioning system
USRE30745E (en) Reverse cycle heat pump circuit
KR20060098051A (en) Distribution unit for multi type air conditioner of which indoor units are driven as a cooler or as a heater respectively at a same time
CN215723789U (en) Air conditioner