JP2000346493A5 - - Google Patents

Download PDF

Info

Publication number
JP2000346493A5
JP2000346493A5 JP1999153446A JP15344699A JP2000346493A5 JP 2000346493 A5 JP2000346493 A5 JP 2000346493A5 JP 1999153446 A JP1999153446 A JP 1999153446A JP 15344699 A JP15344699 A JP 15344699A JP 2000346493 A5 JP2000346493 A5 JP 2000346493A5
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
control valve
flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1999153446A
Other languages
Japanese (ja)
Other versions
JP2000346493A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP11153446A priority Critical patent/JP2000346493A/en
Priority claimed from JP11153446A external-priority patent/JP2000346493A/en
Priority to JP23133199A priority patent/JP3428516B2/en
Publication of JP2000346493A publication Critical patent/JP2000346493A/en
Publication of JP2000346493A5 publication Critical patent/JP2000346493A5/ja
Pending legal-status Critical Current

Links

Description

【書類名】 明細書
【発明の名称】 凍サイクル装置および空気調和装置
【特許請求の範囲】
【請求項1】 絞り部を冷媒流れ方向に連通する多孔質透過材で構成し、前記多孔質透過材の透過面積を調節する調節手段を供えた絞り装置を備え、前記多孔質透過材に気液二相冷媒を通過させるようにしたことを特徴とする冷凍サイクル装置。
【請求項2】 電磁開閉弁が設けられた第1の流路と、この第1の流路と並列に設けられた第2の流路と、この第2の流路中に設けられ冷媒流れ方向に連通する多孔質透過材で構成した絞り部と、前記多孔質透過材の透過面積を調節する調節手段と、で構成された絞り装置を備え、前記多孔質透過材に気液二相冷媒を通過させるようにしたことを特徴とする冷凍サイクル装置。
【請求項3】 前記多孔質透過材で冷媒流路を覆うことを特徴とする請求項1又は請求項2に記載の冷凍サイクル装置
【請求項】 多孔質透過材の通気孔を200から0.5マイクロメートルの範囲としたことを特徴とする請求項1乃至請求項の何れか1項に記載の冷凍サイクル装置
【請求項】 前記多孔質透過材を焼結金属としたことを特徴とする請求項1乃至請求項の何れか1項に記載の冷凍サイクル装置
【請求項】 弁室側壁に第1流路が開口する弁本体と、弁室底面に第2流路が開口する主弁座と、弁室内に前記主弁座を閉止できると共に周面が主弁座の側面と当接し、前記周面と側面との当接面積を開閉方向への移動によって可変する主弁体とを備えた絞り装置と、
前記主弁体の開閉方向への移動を制御する制御手段と、を備え、
前記主弁座又は主弁体に多孔質透過材を用いて流量制御弁を構成すると共に、前記主弁体、主弁座および制御手段で多孔質透過材の透過面積を調節する調節手段を構成したことを特徴とする冷凍サイクル装置。
【請求項】 前記調節手段は前記絞り装置の圧力差に応じて前記透過面積を調節することを特徴とする請求項記載の冷凍サイクル装置。
【請求項】 前記調節手段は所定の圧力差となるよう前記透過面積を調節することを特徴とする請求項記載の冷凍サイクル装置。
【請求項】 圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御弁の絞り部を冷媒流れ方向に連通する多孔質透過材で構成したことを特徴とする空気調和装置。
【請求項10】 前記多孔質透過材の透過面積を調節する調節手段を備えたことを特徴とする請求項に記載の空気調和装置。
【請求項11】 弁室側壁に第1流路が開口する弁本体と、弁室底面に第2流路が開口する主弁座と、弁室内に前記主弁座を閉止できる主弁体を有し、前記主弁体に多孔質透過材を用いて第2流量制御弁を構成したことを特徴とする請求項に記載の空気調和装置。
【請求項12】 弁室側壁に第1流路が開口する弁本体と、弁室底面に第2流路が開口する主弁座と、弁室内に前記主弁座を閉止できる主弁体を有し、前記主弁座に多孔質透過材を用いて第2流量制御弁を構成したことを特徴とする請求項に記載の空気調和装置。
【請求項13】 周面が主弁座の側面と当接し、前記周面と側面との当接面積を開閉方向への移動によって可変する主弁体と、前記主弁体の開閉方向への移動を制御する制御手段とを備え、前記主弁体、主弁座および制御手段で多孔質透過材の透過面積を調節する調節手段を構成したことを特徴とする請求項11又は請求項12記載の空気調和装置。
【請求項14】 前記調節手段は前記第2流量制御弁の圧力差に応じて前記透過面積を調節することを特徴とする請求項13記載の空気調和装置。
【請求項15】 前記調節手段は潜熱比を低下させる運転時に所定の圧力差となるよう前記透過面積を調節することを特徴とする請求項14記載の空気調和装置。
【請求項16】 多孔質透過材の通気孔を200から0.5マイクロメートルの範囲としたことを特徴とする請求項乃至請求項12の何れか1項に記載の空気調和装置。
【請求項17】 潜熱比を低下させる運転時に前記第2流量制御弁を閉止するよう制御する制御部を備えたことを特徴とする請求項記載の空気調和装置。
【請求項18】 前記制御部は冷房又は除湿並びに暖房運転時に前記第2流量制御弁を閉止するよう制御することを特徴とする請求項17記載の空気調和装置。
【請求項19】 暖房運転起動時に前記第2流量制御弁を閉止するよう制御する制御部を備えたことを特徴とする請求項記載の空気調和装置。
【請求項20】 暖房運転時で設定温度と室内温度との差が所定値以上の場合に前記第2流量制御弁を閉止するよう制御する制御部を備えたことを特徴とする請求項記載の空気調和装置。
【請求項21】 圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御弁を内径1mm以上の毛細管で構成したことを特徴とする空気調和装置。
【請求項22】 圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御弁を毛細管で構成し、冷房除湿運転時の前記毛細管入口配管と前記第2室内熱交換器と前記圧縮機の間の配管とを熱交換させる熱交換器を設けたことを特徴とする空気調和装置。
【請求項23】 圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御弁を毛細管で構成し、前記第2室内熱交換器と前記圧縮機の間の配管と熱交換させる熱交換器を設けたことを特徴とする空気調和装置。
【請求項24】 第2室内熱交換器及び第2の流量制御弁をバイパスするバイパス流路と、このバイパス流路を開閉する開閉手段とを備えたことを特徴とする請求項乃至請求項23の何れか1項に記載の空気調和装置。
【請求項25】 圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、第2室内熱交換器及び第2流量制御弁をバイパスするバイパス流路と、このバイパス流路を開閉する開閉手段とを備えたことを特徴とする空気調和機。
【請求項26】 前記第2流量弁及び開閉手段を制御する制御手段を備え、前記制御手段は潜熱比を低下させる運転時に顕熱能力に応じて、前記第2流量制御弁を絞り前記開閉手段を開く熱交換器分割運転と、前記第2流量制御弁を絞り前記開閉手段を閉じる冷媒再熱運転とを行なうよう制御することを特徴とする請求項24又は請求項25に記載の空気調和装置。
【請求項27】 前記第2流量制御弁及び開閉手段を制御する制御手段を備え、前記制御手段は顕熱比が低下した場合に、前記第2流量制御弁を閉じ、前記開閉手段を閉じるよう制御することを特徴とする請求項24又は請求項25に記載の空気調和装置。
【請求項28】 前記第2流量制御弁及び開閉手段を制御する制御手段を備え、暖房運転起動時に前記第2流量制御弁を閉じ、前記開閉手段を開くよう制御することを特徴とする請求項24又は請求項25に記載の空気調和装置。
【請求項29】 第1流量制御弁と前記第1室内熱交換器の間の配管に暖房運転時に液冷媒を貯留するレシーバを設けたことを特徴とする請求項乃至請求項28の何れか1項に記載の空気調和装置。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、冷房あるいは暖房運転時の温度および湿度の制御性を向上させるとともに、冷媒流動音を低減し、室内の温湿度および騒音に対する快適性を向上させた空気調和装置に関するものである。
【0002】
【従来の技術】
従来の空気調和装置では、空調負荷の変動に対応するためにインバータなどの容量可変型圧縮機が用いられ、空調負荷の大小に応じて圧縮機の回転周波数が制御されている。ところが冷房運転時に圧縮機回転が小さくなると蒸発温度も上昇し、蒸発器での除湿能力が低下したり、あるいは蒸発温度が部屋内の露点温度以上に上昇し、除湿できなくなったりする問題点があった。
【0003】
この冷房低容量運転時の除湿能力を向上させる手段としては次のような空気調和装置が考案されている。図21は例えば特公昭61‐43631号公報に示された従来の空気調和装置の冷媒回路構成を示す。図において1は圧縮機、3は室外熱交換器、4は第1流量制御弁、5は第1室内熱交換器、6は第2流量制御弁、7は第2室内熱交換器であり、これらは配管で順次接続され、冷凍サイクルを構成している。
次に従来の空気調和装置の動作について説明する。まず通常の冷房運転では、圧縮機1を出た冷媒は室外熱交換器3で凝縮液化し、第1流量制御弁4で減圧され、第2室内熱交換器5、第2流量制御弁6および第2室内熱交換器7を通って圧縮機1に戻る。この時の第2流量制御弁は全開状態であり、第1室内熱交換器5と第2室内熱交換器7は蒸発器として動作して冷房運転が行なわれる。
【0004】
一方、除湿運転時には、第1流量制御弁4を全開状態とし、第2流量制御弁6で冷媒流量を制御することにより、第1室内熱交換器5が凝縮器すなわち再熱器、第2室内熱交換器7が蒸発器として動作し、室内空気は第1室内熱交換器5で加熱されるため、室温の低下が小さい除湿運転が可能となる。
【0005】
【発明が解決しようとする課題】
上記のような従来の空気調和装置では、室内ユニット内に設置する第2流量制御弁として、通常、オリフィスを有する流量制御弁を用いているため、このオリフィスを冷媒が通過する時に発生する冷媒流動音が大きく、室内環境を悪化させる要因となっていた。特に除湿運転時には第2流量制御弁の入口冷媒が気液二相状態になり、冷媒流動音が大きくなるという問題があった。
【0006】
この除湿運転時の第2流量制御弁の冷媒流動音低減対策としては、特開平7−91778号に示された流量制御弁内の主弁体に小孔を設けたものや、特開平10−89803号に示された流量制御弁の下流に螺旋状流路部分を設けたものなどがある。ところがこれらの冷媒流動音低減対策はいずれも絞り部が小孔やオリフィスで構成されているため、螺旋状流路を追加しても効果的ではなく、特に流量制御弁入口冷媒が気液二相状態の場合には、冷媒流動音が大きくなるという問題点があった。またこの冷媒流動音を低減するために、流量制御弁本体に、遮音材や制振材を設けるなどの追加の対策を必要としていたが、この追加対策によりコストが増加したり、設置スペースが大きくなるため室内ユニットが大型化したり、製品回収時のリサイクル性が悪化するという問題があった。
【0007】
さらに、除湿運転時の圧縮機の運転容量を小さく制御し、冷媒流量を小さくして、この冷媒流動音を低減させることも可能であるが、結果として除湿運転時の冷媒流量が制約されてしまうため、除湿能力を自由に制御することができず、部屋の温度、湿度を一定に保つことができないという問題があった。
【0008】
この発明は、上記のような問題を解決されるためになされたもので、冷媒流動音を大幅に低減できる絞り装置および冷凍サイクル装置を得ることを目的とし、また、冷房運転時および暖房運転時の温度および湿度制御性を向上させられ、部屋内の快適性を一層向上させる空気調和装置を得ることを目的とする。
【0009】
【課題を解決するための手段】
この発明に係る冷凍サイクル装置は、絞り部を冷媒流れ方向に連通する多孔質透過材で構成し、前記多孔質透過材の透過面積を調節する調節手段を供えた絞り装置を備え、前記多孔質透過材に気液二相冷媒を通過させるようにしたものである。
【0010】
また、電磁開閉弁が設けられた第1の流路と、この第1の流路と並列に設けられた第2の流路と、この第2の流路中に設けられ冷媒流れ方向に連通する多孔質透過材で構成した絞り部と、前記多孔質透過材の透過面積を調節する調節手段と、で構成された絞り装置を備え、前記多孔質透過材に気液二相冷媒を通過させるようにしたものである。
【0011】
また、多孔質透過材の通気孔を200から0.5マイクロメートルの範囲としたものである。
【0012】
また、前記多孔質透過材を焼結金属としたものである。
【0013】
また、弁室側壁に第1流路が開口する弁本体と、弁室底面に第2流路が開口する主弁座と、弁室内に前記主弁座を閉止できると共に周面が主弁座の側面と当接し、前記周面と側面との当接面積を開閉方向への移動によって可変する主弁体とを備えた絞り装置と、前記主弁体の開閉方向への移動を制御する制御手段と、を備え、前記主弁座又は主弁体に多孔質透過材を用いて流量制御弁を構成すると共に、前記主弁体、主弁座および制御手段で多孔質透過材の透過面積を調節する調節手段を構成したものである。
【0014】
また、前記調節手段は前記絞り装置の圧力差に応じて前記透過面積を調節するものである。
【0015】
また、前記調節手段は所定の圧力差となるよう前記透過面積を調節するものである。
【0016】
また、この発明に係る空気調和装置は、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御弁の絞り部を冷媒流れ方向に連通する多孔質透過材で構成したものである。
【0017】
また、前記多孔質透過材の透過面積を調節する調節手段を備えたものである。
また、弁室側壁に第1流路が開口する弁本体と、弁室底面に第2流路が開口する主弁座と、弁室内に前記主弁座を閉止できる主弁体を有し、前記主弁体に多孔質透過材を用いて第2流量制御弁を構成したものである。
【0018】
また、弁室側壁に第1流路が開口する弁本体と、弁室底面に第2流路が開口する主弁座と、弁室内に前記主弁座を閉止できる主弁体を有し、前記主弁座に多孔質透過材を用いて第2流量制御弁を構成したものである。
【0019】
また、周面が主弁座の側面と当接し、前記周面と側面との当接面積を開閉方向への移動によって可変する主弁体と、前記主弁体の開閉方向への移動を制御する制御手段とを備え、前記主弁体、主弁座および制御手段で多孔質透過材の透過面積を調節する調節手段を構成したものである。
【0020】
また、前記調節手段は前記第2流量制御弁の圧力差に応じて前記透過面積を調節するものである。
【0021】
また、前記調節手段は潜熱比を低下させる運転時に所定の圧力差となるよう前記透過面積を調節するものである。
【0022】
また、多孔質透過材の通気孔を200から0.5マイクロメートルの範囲としたものである。
【0023】
また、潜熱比を低下させる運転時に前記第2流量制御弁を閉止するよう制御する制御部を備えたものである。
【0024】
また、前記制御部は冷房又は除湿並びに暖房運転時に前記第2流量制御弁を閉止するよう制御するものである。
【0025】
また、暖房運転起動時に前記第2流量制御弁を閉止するよう制御する制御部を備えたものである。
【0026】
また、暖房運転時で設定温度と室内温度との差が所定値以上の場合に前記第2流量制御弁を閉止するよう制御する制御部を備えたものである。
【0027】
また、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御弁を内径1mm以上の毛細管で構成したものである。
【0028】
また、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御弁を毛細管で構成し、冷房除湿運転時の前記毛細管入口配管と前記第2室内熱交換器と前記圧縮機の間の配管とを熱交換させる熱交換器を設けたものである。
【0029】
また、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御弁を毛細管で構成し、前記第2室内熱交換器と前記圧縮機の間の配管と熱交換させる熱交換器を設けたものである。
【0030】
また、第2室内熱交換器及び第2流量制御弁をバイパスするバイパス流路と、このバイパス流路を開閉する開閉手段とを備えたものである。
【0031】
また、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、第2室内熱交換器及び第2流量制御弁をバイパスするバイパス流路と、このバイパス流路を開閉する開閉手段とを備えたものである。
【0032】
また、前記第2流量制御弁及び開閉手段を制御する制御手段を備え、前記制御手段は潜熱比を低下させる運転時に顕熱能力に応じて、前記第2流量制御弁を絞り前記開閉手段を開く熱交換器分割運転と、前記第2流量制御弁を絞り前記開閉手段を閉じる冷媒再熱運転とを行なうよう制御するものである。
【0033】
また、前記第2流量制御弁及び開閉手段を制御する制御手段を備え、前記制御手段は顕熱比が低下した場合に、前記第2流量制御弁を閉じ、前記開閉手段を閉じるよう制御するものである。
【0034】
また、前記第2流量制御弁及び開閉手段を制御する制御手段を備え、暖房運転起動時に前記第2流量制御弁を閉じ、前記開閉手段を開くよう制御するものである。
【0035】
また、第1流量制御弁と前記第1室内熱交換器の間の配管に暖房運転時に液冷媒を貯留するレシーバを設けたものである。
【0036】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態の一例を示す空気調和装置の冷媒回路図で、従来装置と同様の部分は同一符号で示している。図において、1は圧縮機、2は冷房運転および暖房運転の冷媒の流れを切換える流路切換手段で例えば四方弁、3は室外熱交換器、4は第1流量制御弁である電気式膨張弁、5は第1室内熱交換器、7は第2室内熱交換器であり、この第1室内熱交換器5と第2室内熱交換器7の間には、第2流量制御弁6が設けられており、これらは配管によって順次接続され、冷凍サイクルを構成している。また圧縮機1、四方弁2、室外熱交換器3および第1流量制御弁4で室外ユニット11を構成し、第1室内熱交換器5、第2室内熱交換器7および第2流量制御弁6で室内ユニット12を構成している。この冷凍サイクルの冷媒には、R32とR125の混合冷媒であるR410Aが用いられている。
【0037】
図2は図1に示した空気調和機の第2流量制御弁6の構造を示す図であり、21が第1流路であり、第1室内熱交換器5が接続され、22が第2流路であり、第2室内熱交換器7が接続されている。23は第2流路が開口する主弁座であり、この図では弁本体と一体に形成されている。24は第2流路制御弁6本体の内面に沿って上下に摺動する主弁体で、これら主弁座23と主弁体24とで絞り部を構成している。25は主弁体24を駆動する電磁コイルで、図示しない制御部からの指令に基づいて電磁コイル25を通断電し、主弁体24を開閉する。主弁体24は多孔質透過材により成形され、具体的には通気孔(流体が透過することのできる多孔質体内部の気孔)が10マイクロメートルの焼結金属(金属粉末あるいは合金粉末を型に入れて加圧成形し、次いで溶融点以下の温度で焼結を行なって製造されたもの)で構成されている。さらにこの第2流量制御弁6は、電磁コイル25に非通電することにより、主弁体24を上部に引き上げ、主弁体24を主弁座23から引き離すことによって、第1流路21と第2流路22がほとんど圧力損失なしにつながる(図2(a))。また電磁コイル25に通電することにより、主弁体24が下部に下がり、主弁体24を主弁座23に密着させることによって、弁本体の通気孔を介して第1流路21と第2流路22がつながる(図2(b))。
【0038】
次に本実施の形態による空気調和装置の冷房時の動作について説明する。図1では冷房時の冷媒の流れを実線矢印で示している。冷房運転は、起動時や夏季時など部屋の空調顕熱負荷と潜熱負荷がともに大きい場合に対応する通常冷房運転と、中間期や梅雨時期のように空調潜熱負荷は小さいが、顕熱負荷が大きな場合に対応する除湿運転に分けられる。通常冷房運転は、第2流量制御弁6の電磁コイル25を非通電状態とする。このとき圧縮機1を出た高温高圧の冷媒蒸気は、四方弁2を通って室外熱交換器3に流入し、外気と熱交換して凝縮、液化する。この高圧の液冷媒は、第1流量制御弁4で低圧に減圧され、気液二相冷媒となって第1室内熱交換器5および第2室内熱交換器7で室内空気の顕熱および潜熱を奪って蒸発する。第2流量制御弁6では、図2(a)に示すように第1流路21と第2流路が大きな開口面積で接続されているので、この弁を通過する際の冷媒圧力損失はほとんどなく、圧力損失による冷房能力や効率面での低下もない。第2室内熱交換器7を出た低圧の蒸気冷媒は、四方弁2を通って再び圧縮機1に戻る。この通常冷房運転時の第1流量制御弁4の開度は、例えば第2室内熱交換器の出口冷媒の過熱度が5℃となるように制御されている。
【0039】
次に除湿運転時の動作について、図3に示す圧力―エンタルピー線図を用いて説明する。なお、図3に示した英文字は、図1に示した英文字と対応している。この除湿運転時は、第2流量制御弁の電磁コイル25に通電し、図2(b)に示すように主弁体24を主弁座23に密着させ、主弁体24の通気孔を介して第1流路21である第1室内熱交換器5の出口と第2流路22である第2室内熱交換器7の入口を接続する。この時、圧縮機1を出た高温高圧の冷媒蒸気(A点)は、四方弁2を通って室外熱交換器3に流入し、外気と熱交換して凝縮する(B点)。この高圧の液冷媒あるいは気液二相冷媒は、第1流量制御弁4で若干減圧され(C点)、中間圧の気液二相冷媒となって第1室内熱交換器5に流入する。この第1室内熱交換器5に流入した冷媒は、室内空気と熱交換してさらに凝縮する(D点)。第1室内熱交換器5を出た中間圧の液冷媒あるいは気液二相冷媒は、第2流量制御弁6に流入する。第2流量制御弁6では、図2(b)に示すように主弁体24が主弁座23に密着しているため、この弁に流入した冷媒は、焼結金属で構成されている主弁体24内の通気孔を通って第2室内熱交換器7に流入する。この主弁体24の通気孔は10マイクロメートル程度であり、この通気孔を通る冷媒は減圧されて、低圧の気液二相冷媒となって、第2室内熱交換器7に流入する(E点)。この第2室内熱交換器7に流入した冷媒は、室内空気の顕熱および潜熱を奪って蒸発する。第2室内熱交換器7を出た低圧の蒸気冷媒は、四方弁2を通って再び圧縮機1に戻る。室内空気は、第1室内熱交換器5で加熱され、第2室内熱交換器7で冷却除湿されるため、部屋の室温低下を防ぎながら除湿を行うことができる。
【0040】
なお、この除湿運転では、圧縮機1の回転周波数や室外熱交換器3のファン回転数を調整して、室外熱交換器3の熱交換量を制御し、第1室内熱交換器5による室内空気の加熱量を制御して吹出し温度を広範囲に制御できる。また第1流量制御弁7の開度や室内ファン回転数を調整して、第1室内熱交換器5の凝縮温度を制御し、第1室内熱交換器5による室内空気の加熱量を制御することもできる。また第2流量制御弁4の開度は、例えば第2室内熱交換器の出口冷媒の過熱度が5℃となるように制御されている。
【0041】
この実施の形態では、焼結金属を主弁体24に用いた第2流量制御弁6を第1室内熱交換器5と第2室内熱交換器7の間に配置し、冷房除湿運転時の絞り装置として用いているので、第2流量制御弁6を液冷媒あるいは気液二相冷媒が通過する際の冷媒流動音を大幅に低減することができる。通常のオリフィスタイプの絞り装置に気液二相冷媒が通過する際には、大きな冷媒流動音が発生する。特に気液二相冷媒の流動様式がスラグ流となる場合に、大きな冷媒流動音が発生することが知られている。この冷媒流動音の発生要因としては、絞り装置内のオリフィス部など小孔をスラグ流が通過する際に、小孔よりも大きな冷媒蒸気スラグあるいは冷媒気泡が破壊し、この冷媒蒸気スラグあるいは冷媒気泡の崩壊により振動が発生することや、小孔を蒸気冷媒と液冷媒が交互に通過するため、この小孔を冷媒が通過する際に発生する圧力損失が大きく変動することが考えられる。図2に示した第2流量制御弁では、冷房除湿運転時に第1室内熱交換器5を出た気液二相冷媒あるいは液冷媒は、焼結金属で構成されている主弁体24内の微細な通気孔を通り、この際に減圧されて第2室内熱交換器7に流入するため、冷媒蒸気スラグや冷媒気泡の崩壊が発生せず、また蒸気冷媒と液冷媒は同時に主弁体24の通気孔内を通過するため、圧力損失の大きな変動も生じない。このため従来装置で必要であった遮音材や制振材を弁の外周に巻きつけるなどの低騒音化手段が不要となり、コストの低減ができ、さらに空気調和機器のリサイクル性も向上する。尚、上述した気液二相冷媒に起因する冷媒流動音の課題に関しては、空気調和装置に限定されることなく、冷蔵庫等の冷凍サイクル一般についての課題であり、本実施の形態の絞り装置はこのような冷凍サイクル一般に広く適用することで、同様の作用効果が得られる。
【0042】
冷房除湿運転時の第2流量制御弁6の流量特性(冷媒流量と圧力損失の関係)は、主弁体24に用いる焼結金属の通気孔の径や冷媒が通過する流路長さを調整することによって調整することができる。すなわちある冷媒流量を小さな圧力損失で流す場合には、焼結金属の通気孔を大きくしたり、弁本体の径を小さくすれば良い。また図4に示すように、弁本体の内部に空洞部26を設け、焼結金属を通過する流路長さを小さくしても良い。また逆に、ある冷媒流量を大きな圧力損失で流す場合には、焼結金属の通気孔を小さくしたり、弁本体の径を大きくすれば良い。このような主弁体24に用いる焼結金属の通気孔の径や弁本体の形状は、機器設計時に最適に設計される。尚、主弁体24先端が開放した空洞部26に代えて、周囲が焼結金属で囲まれた中空部としてもよい。さらに主弁体24閉止時に柱状の主弁体24の周面側と底面側とが流路入口側と出口側とに分断される構造であれば、周面側と底面側とで圧力損失等の調整が独立して行なえる。この焼結金属の通気孔の径としては、200から0.5マイクロメートルであれば充分な冷媒流動音低原稿化低減効果が得られることを実験により確認した。好適な例としては、冷媒がR410Aで、焼結金属前後の圧力差が1MPa(メガパスカル)程度の場合に上記通気孔径が10マイクロメートル程度とすると良い。圧力差が大きい場合には通気孔径をより小さく、圧力差が小さい場合には通気孔径をより大きく設計することで対応させられる。この焼結金属の通気孔は、径が小さいほど焼結金属が小形となり、結果として第2流量制御弁6もコンパクトになる。なお通気孔の小さな焼結金属を弁本体に用いた際に、冷凍サイクル内の異物やスラッジによる通気孔の詰まりを防止するために、第2流量制御弁6の上流側に、金属メッシュなどのフィルターを設置しても良い。
【0043】
また本実施の形態では、第2流量制御弁は、電磁コイル25への通電あるいは非通電により開閉動作を行なうものについて説明したが、主弁体24をステッピングモータによって連続的に駆動し、第2流量制御弁の流量特性を連続的に変化させるようにしても良い。このように流量特性を連続的に制御することにより、冷房除湿運転時の温度および湿度制御性はより一層向上し、快適な室内空間を実現できる。
【0044】
次に、この実施の形態の空気調和装置の運転制御法について説明する。空気調和装置には、部屋内に居る居住者の好の温湿度環境を設定するために、例えば設定温度と設定湿度が空調装置運転時に設定される。なおこの設定温度と設定湿度は、居住者がそれぞれの設定値を室内ユニットのリモコンから直接入力してもよく、また暑がりの人用、寒がりの人用や子供用、老人用など室内ユニットのリモコンに対象とする居住者別に定めた温度および湿度の最適値テーブルを記憶させ、対象居住者のみを直接入力するようにしてもよい。また室内ユニット12には、室内の温度および湿度を検知するために、室内ユニットの吸い込み空気の温度および湿度を検出するセンサーがそれぞれ設けられている。
【0045】
空気調和装置が起動されると、設定温度と現在の室内吸込み空気温度との差を温度偏差、設定湿度と現在の室内吸込み空気湿度との差を湿度偏差として演算し、最終的にこれらの偏差がゼロあるいは所定の値以内となるように空気調和装置の圧縮機1の回転周波数、室外ファン回転数、室内ファン回転数、第1流量制御弁4の絞り開度、および第2流量制御弁6の開閉を制御する。この時、温度および湿度偏差をゼロあるいは所定の値以内に制御する際には、温度偏差を湿度偏差よりも優先して空気調和装置の制御を行なう。すなわち、空気調和装置起動時に、温度偏差および湿度偏差がともに大きい場合は、第2流量制御弁7を開状態とし、まず通常冷房運転で、室内の温度偏差を優先的にゼロまたは所定の値以内となるように運転する。空気調和装置の冷房能力が部屋の熱負荷と一致し、温度偏差がゼロまたは所定の値以内となった場合に、湿度偏差を検出し、この時、湿度偏差がゼロまたは所定の値以内となっている場合は、現在の運転を続行する。
【0046】
温度偏差がゼロまたは所定の値以内となり、この時の湿度偏差がまだ大きな値となっている場合は、第2流量制御弁6を絞り、冷房除湿運転に切換える。この冷房除湿運転では、室内の温度偏差がゼロまたは所定の値以内を維持できるように、第2室内熱交換器7の加熱量を制御するとともに、湿度偏差がゼロまたは所定の値以内に入るように、第1室内熱交換器5の冷却除湿量を制御する。第2室内熱交換器7の加熱量の制御には、室外熱交換器3のファン回転数や第1流量制御弁4の開度などによって調整する。また第1室内熱交換器5の冷却除湿量の制御には、圧縮機1の回転周波数や室内ユニット12のファン回転数などによって制御する。
【0047】
このようにこの実施の形態では、冷房運転時の部屋の負荷に応じて、冷媒回路を通常冷房運転と冷房除湿運転に切換えることにより、部屋内の温湿度環境を、居住者の好みに応じて最適な状態に制御することができる。
【0048】
実施の形態2.
図5はこの発明の実施の形態の他の例を示す空気調和装置の第2流量制御弁の構成図であり、図2に示したものと同一または同様の構成部品には同一符合を付して、その重複する説明を省略する。この実施の形態では、主弁体24には通常の金属製弁を用い、主弁座23に焼結金属を用いている。図2と同様に、電磁コイル25に非通電することにより、主弁体24が主弁座23から引き離れ、第1流路21と第2流路22がほとんど圧力損失なしにつながる(図5(a))。また電磁コイル25に通電することにより、主弁体24を主弁座23に密着させ、主弁座23の通気孔を介して第1流路21と第2流路22がつながる(図2(b))。冷房除湿運転時には、図5(b)のように電磁コイルに通電することにより、第1室内熱交換器5を出た冷媒は、第2流量制御弁6内の主弁座23の通気孔を通って減圧され、第2室内熱交換器7に流入するため、冷媒流動音の発生がなく、快適な室内空間を実現できる。また通常冷房時には、電磁コイルを非通電とすることにより、図5(a)に示すように主弁体24を主弁座23から引き離れ、第1流路21と第2流路22がほとんど圧力損失なしにつながるため、第1室内熱交換器5と第2室内熱交換器7の間で圧力損失はなく、冷房能力や効率面で低下することもない。
【0049】
図2に示した実施の形態のように主弁体24を焼結金属で成形するよりも、本実施の形態で示したように主弁座23を焼結金属で形成する方が形状が単純なため、比較的容易であり、結果として安価で、しかも冷媒流動音の発生しない流量制御弁を得ることができる。またこの流量制御弁の流量特性を設計するのも形状が簡単なため、設計しやすい。この流量制御弁の流量特性は、図2の実施の形態と同様に、主弁座23に用いる焼結金属の通気孔の径や冷媒が通過する流路長さを調整することによって調整することができる。すなわちある冷媒流量を小さな圧力損失で流す場合には、焼結金属の通気孔を大きくしたり、主弁座の冷媒が通過する流路長さをを小さくすれば良い。また逆に、ある冷媒流量を大きな圧力損失で流す場合には、焼結金属の通気孔を小さくしたり、図6に示すように主弁座の冷媒が通過する流路長さを大きくしても良い。
【0050】
なお、本実施の形態1および形態2では、弁本体を焼結金属で成形した開閉弁や主弁座を焼結金属で成形した開閉弁を第2流量制御弁として用いる例について説明したが、これに限ることはなく、焼結金属は、弁内で減圧作用が生じる部位であれはどこでもよく、弁本体および主弁座をともに焼結金属で成形してもよい。また焼結金属の材質としては、鉄を主成分とし炭素、銅、ニッケルなどを加えた低合金鋼や、ステンレス鋼、あるいは青銅などであっても良い。
【0051】
また本実施の形態1および形態2では、弁本体あるいは主弁座に焼結金属を用いた例について説明したが、これに限ることはなく、気液二相冷媒が液体と気体に分離することなく、減圧されるもでのあれば良く、例えば樹脂の発砲材などの多孔質体であっても同様の効果を発揮する。
【0052】
また本実施の形態1および形態2では、第1室内熱交換器5と第2室内熱交換器7の間に、焼結金属を用いた第2流量制御弁を用いた例について説明したが、これに限ることはなく、第1流量制御弁4に焼結金属を用いた弁を用いることにより、第1流量制御弁での冷媒流動音の発生を防止することができる。さらに焼結金属の利用は、流量制御弁に限らず、冷凍サイクル内で冷媒流動音が発生する全ての個所に適用し、その冷媒流動音の発生を抑制することができる。例えば複数流路に分割された熱交換器に用いる冷媒分配器の内部に焼結金属を用い、冷媒分配器からの冷媒流動音発生を防止することができる。また家庭用冷蔵庫など従来の絞り装置として毛細管などを用いた装置では、毛細管の変りに焼結金属を絞り装置として用いることにより、冷媒流動音の発生を防止することができる。
【0053】
実施の形態3.
図7はこの発明の実施の形態の他の例を示す空気調和装置の第2流量制御弁の構成図であり、図2に示したものと同一または同様の構成部品には同一符合を付して、その重複する説明を省略する。この実施の形態では、主弁体24が銅や真鍮などの金属製弁,主弁座23が多孔質透過材、例えば通気孔10マイクロミリメートルの焼結金属で構成されている。また25は主弁体24を連続的に駆動する駆動部で、例えばステッピングモータで構成され、図示しない制御手段によって主弁体24を開閉方向へ移動するよう制御している。
【0054】
この実施の形態による第2流量制御弁6では、図1の回路構成において、通常冷房運転など第1室内熱交換器5と第2室内熱交換器7を圧力損失なしにつなげる時には、図7(a)に示すようにステッピングモータ25によって主弁体24を引き上げ、主弁体24と主弁座23の間隙を冷媒が流れるようにする。一方、冷房除湿運転時など第1室内熱交換器5と第2室内熱交換器7で圧力差を生じさせる時には、図7(b)に示すようにステッピングモータ25によって主弁体24を引き下げ、主弁体24と主弁座23の間隙を無くし、冷媒が焼結金属である主弁座23内の通気孔を通って流れるようにする。この時、主弁体24の引き下げ量をステッピングモータ25で調整することにより、冷媒が通過する焼結金属の通過面積を変えることができ、この焼結金属を通過する際の冷媒の圧力損失を制御することができる。すなわちステッピングモータ25による主弁体24の移動量を制御することによって、この第2流量制御弁6を通過する冷媒の圧力損失を自由に変えることができ、第1室内熱交換器5と第2室内熱交換器7の圧力差を制御することができる。
【0055】
冷房除湿運転時には、第1室内熱交換器5のほぼ中間の冷媒温度と第2室内熱交換器7のほぼ中間の冷媒温度の差温によって、この第2流量制御弁前後6の圧力差を間接的に検知し、この圧力差を所定の値となるように第2流量制御弁6の主弁体24の移動量を制御することにより、室内の温湿度環境をより快適に制御することができる。
【0056】
また図8に示すように、主弁体24の一部を金属製弁24a、他の部分を焼結金属24bで構成し、また主弁座23を金属で構成し、この主弁座24の移動量をステッピングモータ25によって連続的に制御し、第2流量制御弁6前後の圧力差を自由に調整できるように構成してもよい。また主弁体が上下に連続的に移動する場合だけではなく、回転運動などによって冷媒が通過する焼結金属の通過面積を可変にする機構を設け、焼結金属を通過する冷媒の圧力損失を自由に制御できるようにしても良い。
【0057】
実施の形態4.
以下、本発明の実施の形態3による空気調和装置について説明する。本実施の形態は、暖房運転に関するもので、空気調和機を構成する冷媒回路は、例えば実施の形態1での図1と同様であり、第2流量制御弁6の構造は図2と同様である。本実施の形態による空気調和装置の暖房時の動作について説明する。図1では暖房時の冷媒の流れを破線矢印で示している。通常の暖房運転は、第2流量制御弁6の電磁コイル25を非通電状態とする。このとき圧縮機1を出た高温高圧の冷媒蒸気は、四方弁2を通って第2室内熱交換器7および第1室内熱交換器5に流入し、室内空気と熱交換して凝縮、液化する。なお第2流量制御弁6は、図2(a)に示すように第1流路21と第2流路が大きな開口面積で接続されているので、この弁を通過する際の冷媒圧力損失はほとんどなく、圧力損失による暖房能力や効率面での低下もない。第1室内熱交換器5を出た高圧の液冷媒は、第1流量制御弁4で低圧に減圧され、気液二相冷媒となって室外熱交換器3で室外空気と熱交換して蒸発する。室外熱交換器3を出た低圧の蒸気冷媒は、四方弁2を通って再び圧縮機1に戻る。この通常冷房運転時の第1流量制御弁4の開度は、例えば室外熱交換器3の出口冷媒の過熱度が5℃となるように制御されている。
【0058】
次に暖房除湿運転時の動作について、図9に示す圧力―エンタルピー線図を用いて説明する。なお、図9に示した英文字は、図1に示した英文字と対応している。この暖房除湿運転時は、第2流量制御弁の電磁コイル25に通電し、図2(b)に示すように主弁体24を主弁座23に密着させ、弁本体の通気孔を介して第2流路22である第2室内熱交換器7の出口と第1流路21である第1室内熱交換器5の入口とを接続する。この時、圧縮機1を出た高温高圧の冷媒蒸気(F点)は、四方弁2を通って第2室内熱交換器7流入し、室内空気と熱交換して凝縮する(E点)。この高圧の液冷媒あるいは気液二相冷媒は、第2流量制御弁6に流入する。第2流量制御弁6では、図2(b)に示すように主弁体24が主弁座23に密着しているため、この弁に流入した冷媒は、焼結金属で構成されている主弁体24内の通気孔を通って第1室内熱交換器5に流入する。この主弁体24の通気孔は10マイクロメートル程度であり、この通気孔を通る冷媒は減圧されて、中間圧の気液二相冷媒となって、第1室内熱交換器5に流入する(D点)。この第1室内熱交換器5に流入した冷媒の飽和温度は室内空気の露点温度以下であり、室内空気の顕熱および潜熱を奪って蒸発する(C点)。第1室内熱交換器5を出た中間圧の気液二相冷媒は、第1流量制御弁4に流入し、低圧まで減圧され、さらに室外熱交換器3に流入し、室外空気と熱交換して蒸発する。室内外熱交換器4を出た低圧の蒸気冷媒は、四方弁2を通って再び圧縮機1に戻る。
【0059】
この暖房除湿運転では、室内空気は、第2室内熱交換器7で加熱されるとともに、第1室内熱交換器5で冷却除湿されるため、部屋を暖房しながら除湿を行うことができる。また暖房除湿運転では、圧縮機1の回転周波数や室外熱交換器3のファン回転数を調整して、室外熱交換器3の熱交換量を制御し、第1室内熱交換器5による室内空気の加熱量を制御して吹出し温度を広範囲に制御できる。また第1流量制御弁7の開度や室内ファン回転数を調整して、第1室内熱交換器5の蒸発温度を制御し、第1室内熱交換器5による室内空気の除湿量を制御することもできる。また第2流量制御弁4の開度は、例えば第2室内熱交換器7の出口冷媒の過冷却度が10℃となるように制御されている。
【0060】
このように本実施の形態では、焼結金属を弁本体として用いた第2流量制御弁を用いているため、暖房時の除湿運転が可能となるとともに、この暖房除湿運転時の冷媒流動音の発生を防止でき、温湿度環境および騒音面でも快適な空間が実現できる。
【0061】
また暖房起動時など第2流量制御弁の電磁コイル25に通電することにより、暖房吹出し温度を高温化することも可能となる。すなわち、暖房起動時に上記暖房除湿サイクルを形成し、第1室内熱交換器5の蒸発温度を室内の吸込み空気温度とほぼ等しくなるように第2流量制御弁で制御する。第1室内熱交換器5の蒸発温度が室内の吸込み空気温度とほぼ等しいため、第1室内熱交換器5ではほとんど冷却および除湿は行なわれず、結果として暖房時の凝縮器の伝熱面積が通常の暖房運転の約半分になり、このため凝縮温度は通常の暖房運転よりも上昇し、吹出し温度の高温化が可能となる。さらにこの暖房高温吹出し運転時でも、第2流量制御弁6での冷媒流動音発生はなく、騒音面でも問題となることはない。
【0062】
次に、この実施の形態の空気調和装置の具体的な暖房運転制御法の一例について説明する。この空気調和装置には、実施の形態1で説明したように、設定温度と設定湿度および吸込み空気温度と湿度が入力されている。この空気調和装置は、暖房起動時に高温吹出し運転運転を所定の時間、たとえば5分間行ない、その後通常暖房運転に移行する。この後、部屋の温度偏差および湿度偏差に応じて、通常暖房運転と暖房除湿運転を切換制御される。
【0063】
暖房運転起動時は、第2流量制御弁6を閉状態とし、圧縮機1を起動する。この時、第1室内熱交換器5での冷却除湿能力がゼロとなるように、室外熱交換器3のファン回転数や第1流量制御弁4の弁開度などを調整して、第1室内熱交換器5の蒸発温度が、吸込み空気温度と等しくなるように制御する。圧縮機起動から所定の時間である5分間が経過すると、第2流量制御弁6を開状態とし、通常暖房運転に移行する。この時、温度偏差がゼロまたは所定の値以内となるように、圧縮機1の回転周波数や、室内ファンの回転数、室外ファンの回転数を調整する。この暖房通常運転により温度偏差がゼロまたは所定の値以内となった場合は、湿度偏差を検出し、この湿度偏差がゼロまたは所定の値以内の場合、および湿度偏差が所定の値以上であっても、加湿を必要とする場合には、通常暖房運転を継続する。一方、湿度偏差がゼロまたは所定の値以上であり、除湿を必要とする場合には、第2流量制御弁6を閉状態とし、暖房除湿運転を行なう。この暖房除湿運転では、室内の温度偏差がゼロまたは所定の値以内を維持できるように、第2室内熱交換器7の加熱量を制御するとともに、湿度偏差がゼロまたは所定の値以内に入るように、第1室内熱交換器5の冷却除湿量を制御する。第2室内熱交換器7の加熱量の制御には、圧縮機1の回転周波数や室内ユニット12のファン回転数などによって制御する。また第1室内熱交換器5の冷却除湿量の制御には、室外熱交換器3のファン回転数や第1流量制御弁4の開度などによって調整する。
【0064】
このようにこの実施の形態では、暖房運転時の運転時間や部屋の負荷に応じて、冷媒回路を暖房高温吹出し運転や通常暖房運転、暖房除湿運転に切換えることにより、部屋内の温湿度環境を、居住者の好みに応じて最適な状態に制御することができる。
【0065】
実施の形態5.
図10はこの発明の実施の形態の他の例を示す空気調和装置の冷媒回路図で、図1に示したものと同一または同様の構成部品には同一符合を付して、その重複する説明を省略する。この実施の形態では、多段に折り曲げた2列の室内熱交換器の上部を第1室内熱交換器5に、下部を第2室内熱交換器7とし、冷房除湿運転時は、上部の第1室内熱交換器5で室内ユニットの吸込み空気を加熱し、下部の第2室内熱交換器7で吸い込み空気を冷却、除湿し、これらの吸込み空気を室内ファン(図示せず)によって混合して、室内に吹出している。また暖房除湿運転時は、下部の第2室内熱交換器7で室内ユニットの吸込み空気を加熱し、上部の第1室内熱交換器5で吸い込み空気を冷却、除湿し、これらの吸込み空気を室内ファン(図示せず)によって混合して、室内に吹出している。さらにこの実施の形態でも、第2流量制御弁6は、図2に示した焼結金属で成形された主弁体24を用いているので、冷房除湿および暖房除湿運転時に、冷媒流動音の発生がなく、低騒音な室内ユニットを実現できる。
【0066】
また室内熱交換器の冷房時の冷媒流路は、入口が1流路とし、途中で3方管8aにより2流路に分岐し、第1室内熱交換器5を構成し、この2流路を3方管8bで1流路に合流させ、第2流量制御弁6に接続している。さらに第2流量制御弁6の出口配管は、3方管8cで再度2流路に分岐され、第2室内熱交換器7を構成し、第2室内熱交換器7の出口で3方管8dにより、この2流路を1流路に合流させている。このように室内熱交換器の冷房時の入口冷媒流路を1流路とし、途中で2流路に分岐することにより、冷房時の冷媒圧力損失が低減でき、通常冷房運転や冷房除湿運転時の性能が向上する。また暖房時は、入口冷媒流路が2流路、出口流路が1流路となるため、冷媒熱伝達率の小さい凝縮器出口付近の冷媒流速が早くなり、熱交換器性能が向上する。さらに第1室内熱交換器5と第2室内熱交換器7の間の流路は3方管により1流路としているので、第2流量制御弁6は1つで済み、室内ユニットが安価となる。
【0067】
なお、この実施の形態では、2列の熱交換器の上部を第1室内熱交換器5、下部を第2室内熱交換器とした構成について説明したが、これに限ることはなく、2列熱交換器の1列目を第2室内熱交換器7、2列目を第1室内熱交換器5として、前後に直列に並べて構成してもよい。また3列熱交換器や、2列および3列熱交換器の混在型であってもよい。
【0068】
またこの実施の形態では、第1流量制御弁4と第1室内熱交換器5の間の配管に液冷媒を貯留するレシーバ30を室外ユニット11内に設けている。このレシーバは、通常暖房運転あるいは暖房除湿運転時に発生する余剰冷媒を貯留し、これらの運転時の冷媒過多による性能低下を防いでいる。すなわち、冷房除湿運転では、室外熱交換器3と第1室内熱交換器5が凝縮器として動作し、凝縮器内容積が最も大きくなるため、必要な冷媒量が最も多くなる。したがって空気調和機の冷媒充填量は、この冷房除湿運転時に必要な冷媒量から決定される。暖房運転時は、室外熱交換器3よりも内容積の小さな第1室内熱交換器5と第2室内熱交換器7が凝縮器となり、また暖房除湿運転時は、第2室内熱交換器7のみが凝縮器となるため、これらの運転時の必要冷媒量は、冷房除湿運転時よりも少なくなる。レシーバ30を設けずに、暖房運転あるいは暖房除湿運転を行なうと、冷媒量が過多の状態で運転することになり、圧縮機1への液バック量が増加して、圧縮機の信頼性低下や、サイクルの性能低下が生じる。そこでこの実施の形態では、暖房運転あるいは暖房除湿運転時の余剰な液冷媒をレシーバ30内に貯留し、全ての運転時の冷媒量を最適に制御し、圧縮機の信頼性向上、および性能向上を実現している。なお、レシーバ30の内容積は、あらかじめ各運転時の最適冷媒量を試験などによって求め、その最大冷媒量と最小冷媒量の差が貯留できる内容積として決定できる。またこのレシーバ30は室外ユニット11内に設置しているため、室内ユニット12が大きくなったりすることがない。
【0069】
実施の形態6.
図11はこの発明の実施の形態の他の例を示す空気調和装置の冷媒回路図で、図1に示したものと同一または同様の構成部品には同一符合を付して、その重複する説明を省略する。この実施の形態では、第1室内熱交換器5と第2室内熱交換器7の間の配管に、焼結金属を用いた絞り装置31と電磁開閉弁37を並列に接続し、第2流量制御弁を構成している。この焼結金属を用いた絞り装置31は、図12に示すように容器内部の一端が閉じられ、他端が開放した円筒状を成し、周面および底面を介して円筒状の内外を連通する焼結金属32が挿入されて絞り部を構成しており、この焼結金属32の両端は、固定板33、34、およびバネ35、36で容器内に固定されている。固定板34は円周部が部分的に切りかかれた円盤状に形成されている。
【0070】
この実施の形態の、通常冷房運転、冷房除湿運転、通常暖房運転、暖房除湿運転、および暖房高温吹出し運転時の動作は、図1の実施の形態と同様であり、その詳細な説明は省略し、以下では各運転時の焼結金属を用いた絞り装置31と電磁開閉弁37の動作について説明する。通常冷房運転および通常暖房運転時には、電磁開閉弁37を開状態とし、冷凍サイクルを構成する。このとき焼結金属を用いた絞り装置31は開状態の電磁開閉弁37に比べて流動抵抗が大きいため、ほとんどの冷媒は絞り装置31を流れず、電磁開閉弁37を流れる。一方、冷房除湿運転、暖房除湿運転、暖房高温吹出し運転時は、電磁開閉弁37を閉状態とし、焼結金属を用いた絞り装置31に冷媒を流して、減圧作用を行なう。絞り装置31に流入した気液二相冷媒あるいは液冷媒は、円筒状の焼結金属32内の通気孔を通過する。この焼結金属32の通気孔は200から0.5マイクロメートル程度であり、この微細な通気孔を通る冷媒は減圧されため、冷媒蒸気スラグや冷媒気泡の崩壊が発生せず、また蒸気冷媒と液冷媒はともに焼結金属32の通気孔内を通過するため、圧力損失の大きな変動も生じず。冷媒流動音の発生が防止できる。このため、冷房除湿運転、暖房除湿運転および暖房高温吹出し運転時に低騒音な室内環境を実現できるとともに、従来装置で必要であった遮音材や制振材を弁の外周に巻きつけるなどの低騒音化手段が不要となり、コストの低減ができ、さらに空気調和機器のリサイクル性も向上する。また図2に示した主弁体24に焼結金属を用いた第2流量制御弁に比べて、焼結金属の複雑な加工が必要でなく、また電磁開閉弁は通常の電磁弁の使用が可能であるため、第2流量制御弁を安価に得ることができる。
【0071】
なお、この実施の形態では、絞り装置31内に設けられた焼結金属32を一端が閉じられた円筒状で構成した例について説明したいが、これに限ることはなく、円盤状や円柱状あるいは直方体など、その形状はどのようなものでもよく、冷媒がこの焼結金属部を流れる際に、所定の減圧作用が得られるものであればよい。
【0072】
実施の形態7.
図13はこの発明の実施の形態の他の例を示す空気調和装置の冷媒回路図で、図1に示したものと同一または同様の構成部品には同一符合を付して、その重複する説明を省略する。この実施の形態では、第1室内熱交換器5と第2室内熱交換器7の間の配管に、毛細管38と電磁開閉弁37を並列に接続し、第2流量制御弁を構成している。この毛細管38は内径が1mm以上、例えば内径2mmの銅配管を用いている。
【0073】
この実施の形態の、通常冷房運転、冷房除湿運転、通常暖房運転、暖房除湿運転、および暖房高温吹出し運転時の動作は、図1の実施の形態と同様であり、その詳細な説明は省略し、以下では各運転時の毛細管38と電磁開閉弁37の動作について説明する。通常冷房運転および通常暖房運転時には、電磁開閉弁37を開状態とし、冷凍サイクルを構成する。このとき毛細管38は開状態の電磁開閉弁37に比べて流動抵抗が大きいため、ほとんどの冷媒は毛細管38を流れず、電磁開閉弁37を流れる。一方、冷房除湿運転、暖房除湿運転、暖房高温吹出し運転時は、電磁開閉弁37を閉状態とし、毛細管38に冷媒を流して、減圧作用を行なう。
【0074】
毛細管内を気液二相冷媒が流れる時の冷媒流動音は、毛細管内の冷媒流速に大きく依存している。図14は、冷媒流量が30kg/h一定のもとで、毛細管内径を変えた時の冷媒流動音の測定結果であり、図の横軸が毛細管内径、縦軸が毛細管の冷媒流動音である。毛細管内を気液二相冷媒が流れる時の冷媒流動音は、毛細管内径が小さくなるほど、すなわち毛細管内の冷媒流速が早くなるほど、大きくなる。これは毛細管内部の冷媒流速が早くなるほど、毛細管内部の圧力変動も大きくなることや、毛細管出口部での冷媒流出速度も速くなり、この毛細管出口部の冷媒エネルギーが増加することなどが要因と考えられる。図14に示した冷媒流動音測定結果によると、毛細管内径を1mm以上とすることにより、毛細管から発生する冷媒流動音は許容値以下となり、冷房除湿運転、暖房除湿運転および暖房高温吹出し運転時に低騒音な室内環境を実現できるとともに、従来装置で必要であった遮音材や制振材を弁の外周に巻きつけるなどの低騒音化手段が不要となり、コストの低減ができ、さらに空気調和機器のリサイクル性も向上する。また図2に示した弁本体に焼結金属を用いた第2流量制御弁に比べて、安価な絞り装置を得ることができる。なお、図14に示した毛細管内径を変えた時の冷媒流動音の測定結果は、冷媒流量が30kg/h一定のもとでの結果であり、冷媒流量が30kg/hより大きい場合は、冷媒流動音は全体的に大きくなり、また逆に冷媒流量が30kg/hより小さい場合は、冷媒流動音は全体的に小さくなるが、1mm以上の内径の毛細管を用いることにより、冷媒流動音はほぼ許容値以下に低減することができる。
【0075】
実施の形態8.
図15はこの発明の実施の形態の他の例を示す空気調和装置の冷媒回路図で、図1に示したものと同一または同様の構成部品には同一符合を付して、その重複する説明を省略する。この実施の形態では、第1室内熱交換器5と第2室内熱交換器7の間の配管に、毛細管38と電磁開閉弁37を並列に接続し、さらに冷房除湿運転時の毛細管38入口配管と第2室内熱交換器の出口の低圧配管とを熱交換する熱交換器40を設けている。この熱交換器は二重管式熱交換器や接触式熱交換器あるいはプレート式熱交換器などで構成されている。
【0076】
この実施の形態の、通常冷房運転、冷房除湿運転の動作は、図1の実施の形態と同様であり、その詳細な説明は省略し、以下では各運転時の毛細管38と電磁開閉弁37および熱交換器40の動作について、図16に示した冷房除湿運転時の圧力−エンタルピー線図を用いて説明する。なお、図16に示した英文字は、図15に示した英文字と対応している。通常冷房運転には、電磁開閉弁37を開状態とし、冷凍サイクルを構成する。このとき毛細管38は開状態の電磁開閉弁37に比べて流動抵抗が大きいため、ほとんどの冷媒は毛細管38を流れず、電磁開閉弁37を流れ、熱交換器40も動作しない。一方、冷房除湿運転は、電磁開閉弁37を閉状態とし、毛細管38に冷媒を流して、減圧作用を行なう。第1室内熱交換器5を出た中間圧の気液二相冷媒は(D点)、熱交換器40に流入し、ここで第2室内熱交換器7を出た低温低圧の冷媒によって冷却され、中間圧の液冷媒となって毛細管38に流入する(E点)。この液冷媒は、毛細管によって中間圧から低圧まで減圧され、低圧の気液二相冷媒となって第2室内熱交換器7に流入する(F点)。
【0077】
毛細管内を流れる冷媒流動音は、毛細管入口冷媒が気液二相状態よりも液状態の方が小さくなる。これは毛細管入口冷媒が気液二相状態よりも液状態の方が、毛細管内で減圧により発生する蒸気冷媒量が少なく、このため毛細管内の冷媒の平均流速が小さくなるためである。この実施の形態では、冷房除湿運転時の第2流量制御弁である毛細管38の入口冷媒を、熱交換器40内で第2室内熱交換器7の出口冷媒により冷却、液化しているので、毛細管入口冷媒が液状態となり、冷媒流動音の発生を低減することができる。なお、毛細管38の冷媒状態は、必ずしも液状態まで冷却する必要はなく、気液二相冷媒の蒸気冷媒の割合(乾き度)を小さくするだけでも、冷媒流動音の低減効果は得られる。また熱交換器40によって、第2室内熱交換器7の出口冷媒は加熱されるため、第2室内熱交換器7の出口冷媒は湿り冷媒となり、図1に示した実施の形態に比べて、第2室内熱交換器内の冷媒伝熱性能が向上し、冷房除湿運転時の効率も向上する。
【0078】
なおこの実施の形態では、毛細管38の入口冷媒を第2室内熱交換器7の出口冷媒によって冷却する例について説明したが、これに限ることはなく、毛細管38の入口冷媒を室内空気によって冷却するように構成しても、同様の効果を発揮する。
【0079】
実施の形態9.
図17はこの発明の実施の形態の他の例を示す空気調和装置の冷媒回路図で、図1に示したものと同一または同様の構成部品には同一符合を付して、その重複する説明を省略する。この実施の形態では、第1室内熱交換器5と第2室内熱交換器7の間の配管に、毛細管38と電磁開閉弁37を並列に接続し、さらに冷房除湿運転時に毛細管38と第2室内熱交換器の出口の低圧配管とを熱交換する熱交換器40を設けている。この熱交換器は二重管式熱交換器や接触式熱交換器などで構成されている。
【0080】
この実施の形態の、通常冷房運転、冷房除湿運転の動作は、図1の実施の形態と同様であり、その詳細な説明は省略し、以下では各運転時の毛細管38と電磁開閉弁37および熱交換器40の動作について、図18に示した冷房除湿運転時の圧力−エンタルピー線図を用いて説明する。なお、図18に示した英文字は、図17に示した英文字と対応している。通常冷房運転には、電磁開閉弁37を開状態とし、冷凍サイクルを構成する。このとき毛細管38は開状態の電磁開閉弁37に比べて流動抵抗が大きいため、ほとんどの冷媒は毛細管38を流れず、電磁開閉弁37を流れ、熱交換器40も動作しない。一方、冷房除湿運転は、電磁開閉弁37を閉状態とし、毛細管38に冷媒を流して、減圧作用を行なう。第1室内熱交換器5を出た中間圧の気液二相冷媒は(D点)、毛細管38に流入し、さらに熱交換器40で第2室内熱交換器7を出た低温低圧の冷媒によって冷却されながら、中間圧から低圧まで減圧され、低圧の気液二相冷媒となって第2室内熱交換器7に流入する(F点)。
【0081】
一般に、毛細管内を流れる気液二相冷媒は、流れとともに減圧されるため、液冷媒から冷媒蒸気が発生し、流れ方向に乾き度が大きくなる。毛細管内を流れる気液二相冷媒の冷媒流動音は、毛細管内で発生する冷媒蒸気によって冷媒の速度が増加し、毛細管内での圧力損失の変動が大きくなることや、毛細管出口部の冷媒速度が増加することが要因である。この実施の形態では、冷房除湿運転時の第2流量制御弁である毛細管38を、熱交換器40内で第2室内熱交換器7の出口冷媒により冷却しているので、毛細管内では蒸気冷媒の発生がほとんどなく、このため毛細管内部の圧力損失の変動も小さく、また毛細管出口の冷媒速度の増加を抑制することができる。このため、毛細管で発生する冷媒流動音は低減でき、室内の騒音環境を向上することができる。また熱交換器40によって、第2室内熱交換器7の出口冷媒は加熱されるため、第2室内熱交換器7の出口冷媒は湿り冷媒となり、図1に示した実施の形態に比べて、第2室内熱交換器内の冷媒伝熱性能が向上し、冷房除湿運転時の効率も向上する。
【0082】
なおこの実施の形態では、毛細管38を第2室内熱交換器7の出口冷媒によって冷却する例について説明したが、これに限ることはなく、毛細管38を室内空気によって冷却するように構成しても、同様の効果を発揮する。
【0083】
実施の形態10.
図19はこの発明の実施の形態の他の例を示す空気調和装置の冷媒回路図で、図1に示したものと同一または同様の構成部品には同一符合を付して、その重複する説明を省略する。この実施の形態は、図1に示した実施の形態の、冷房除湿運転および暖房高温吹出し運転の改良に関するものであり、第1流量制御弁4と第1室内熱交換器5の間の配管と第2流量制御弁6と第2室内熱交換器7の間の配管との間をバイパスするバイパス流路を接続し、このバイパス流路には開閉手段である電磁弁41が設けられている。第1流量制御弁4、第2流量制御弁および電磁弁41は、図示しない制御手段からの指示によって互いに関連しあいながら開閉する。
【0084】
まずこの実施の形態の、冷房除湿運転時の動作について説明する。通常冷房運転時は、電磁弁41を閉じ、第2流量制御弁6を開として、図1の実施の形態と同様の動作を行なう。冷房顕熱負荷が小さくなった場合には、電磁弁41を開き、第2流量制御弁6を閉じた熱交換器分割による除湿運転を行なう。この熱交換器分割による除湿運転では、圧縮機1を出た高温高圧の冷媒蒸気は、四方弁2を通って室外熱交換器3に流入し、外気と熱交換して凝縮、液化する。この高圧の液冷媒は、第1流量制御弁4で低圧に減圧され、気液二相冷媒となって電磁弁41を通って、第2室内熱交換器7に流入し、室内空気の顕熱および潜熱を奪って蒸発する。この時の第1流量制御弁4の開度は、例えば第2室内熱交換器の出口冷媒の過熱度が5℃となるように制御されている。この熱交換器分割による除湿運転では、通常冷房運転が第1室内熱交換器5と第2室内熱交換器7とを蒸発器としているのに対して、第2室内熱交換器7のみを蒸発器としているので、冷房能力が小さく、圧縮機1の回転周波数を小さくして状態でも、通常冷房運転に比べて、蒸発温度を低くすることができ、十分な除湿量を確保することができる。
【0085】
さらに部屋の冷房顕熱能力が低下し、熱交換器分割による除湿運転で圧縮機1の回転周波数を下げると蒸発温度が上昇し、除湿量が充分に確保できなくなった場合や、部屋の冷房顕熱がゼロ、すなわち部屋の室温を低下させずに除湿運転を行なう場合には、冷媒再熱による除湿運転を行なう。この冷媒再熱による除湿運転では、電磁弁41を開、第2流量制御弁6を閉とし、実施の形態1で示したように、第1室内熱交換器を凝縮器、第2室内熱交換器7を蒸発器とした除湿運転を行なう。この際、第2流量制御弁6には、絞り部に焼結金属を使用したものや、毛細管を使用しているので、冷媒流動音の発生を防止することができる。
【0086】
次に、この実施の形態の空気調和装置の冷房時の具体的な運転制御法について説明する。空気調和装置には、部屋内に居る居住者の好の温湿度環境を設定するために、例えば設定温度と設定湿度が空調装置運転時に設定される。なおこの設定温度と設定湿度は、居住者がそれぞれの設定値を室内ユニットのリモコンから直接入力してもよく、また暑がりの人用、寒がりの人用や子供用、老人用など室内ユニットのリモコンに対象とする居住者別に定めた温度および湿度の最適値テーブルを記憶させ、対象居住者のみを直接選択するようにしてもよい。また室内ユニット12には、室内の温度および湿度を検知するために、室内ユニットの吸い込み空気の温度および湿度を検出するセンサーがそれぞれ設けられている。
【0087】
空気調和装置が起動されると、設定温度と現在の室内吸込み空気温度との差を温度偏差、設定湿度と現在の室内吸込み空気湿度との差を湿度偏差として演算し、最終的にこれらの偏差がゼロあるいは所定の値以内となるように空気調和装置の圧縮機1の回転周波数、室外ファン回転数、室内ファン回転数、第1流量制御弁4の絞り開度、および第2流量制御弁7の開閉、電磁弁41を制御する。この時、温度および湿度偏差をゼロあるいは所定の値以内に制御する際には、温度偏差を湿度偏差よりも優先して空気調和装置の制御を行なう。すなわち、空気調和装置起動時に、温度偏差および湿度偏差がともに大きい場合は、第2流量制御弁7を開状態とし、また電磁弁41を閉状態として、まず通常冷房運転で、室内の温度偏差を優先的にゼロまたは所定の値以内となるように運転する。圧縮機1の回転周波数や室内ファンの回転数の調整により空気調和装置の冷房能力が部屋の熱負荷と一致し、温度偏差がゼロまたは所定の値以内となった場合に、湿度偏差を検出し、この時、湿度偏差がゼロまたは所定の値以内となっている場合は、現在の運転を続行する。
【0088】
温度偏差がゼロまたは所定の値以内となり、この時の湿度偏差がまだ大きな値となっている場合は、その時の圧縮機1の回転周波数に応じて、熱交換器分割による冷房除湿運転と冷媒再熱による冷房除湿運転を選択し、冷媒回路を切換える。すなわち冷房顕熱能力は、熱交換器分割による冷房除湿運転の方が、冷媒再熱による冷房除湿運転よりも大きいため、温度偏差をゼロまたは所定の値以内に維持するために必要な冷房顕熱能力を、通常冷房運転時の圧縮機1の回転周波数で間接的に検知し、冷媒回路を選択する。すなわち、温度偏差をゼロまたは所定の値以内となった圧縮機1の回転周波数が、所定の値、例えば30Hz以上であれば、第2流量制御弁6を絞り、電磁弁41を開状態として、熱交換器分割による冷房除湿運転に切換える。この熱交換器分割による冷房除湿運転では、圧縮機1の回転周波数や室内ファンの回転数などを調整して、温度偏差および湿度偏差がともにゼロあるいは所定の値以内となるように制御される。
【0089】
一方、通常冷房運転で温度偏差がゼロまたは所定の値以内となり、この時の湿度偏差がまだ大きな値となり、かつ圧縮機1の回転周波数が所定の値、例えば30Hz以下であった場合や、上記説明のように通常冷房運転から熱交換器分割による冷房除湿運転に移行した後、部屋の空調負荷が小さくなり、温度偏差をゼロまたは所定の値以内に維持するために部屋の空気を加熱する必要があると判断された場合は、第2流量制御弁6を絞り、電磁弁41を閉状態として、冷媒再熱による冷房除湿運転に切換える。この冷媒再熱による冷房除湿運転では、室内の温度偏差がゼロまたは所定の値以内を維持できるように、第2室内熱交換器7の加熱量を制御するとともに、湿度偏差がゼロまたは所定の値以内に入るように、第1室内熱交換器5の冷却除湿量を制御する。第2室内熱交換器7の加熱量の制御には、室外熱交換器3のファン回転数や第1流量制御弁4の開度などによって調整する。また第1室内熱交換器5の冷却除湿量の制御には、圧縮機1の回転周波数や室内ユニット12のファン回転数などによって制御する。
【0090】
このようにこの実施の形態では、冷房時、室内の顕熱および潜熱負荷に応じて、通常冷房運転、熱交換器分割による除湿運転、冷媒再熱による除湿運転の3つの運転モードが切換可能であるので、幅広い範囲で部屋内の温度、湿度環境を最適に制御することが可能となる。また第2流量制御弁6には、絞り部に焼結金属を使用したものや、毛細管を使用しているので、冷媒流動音の発生を防止し、静かな室内環境を実現できる。
【0091】
次にこの実施の形態の暖房高温吹出し運転の動作について説明する。通常暖房運転時は、電磁弁41を閉じ、第2流量制御弁6を開として、図1の実施の形態3と同様の動作を行なう。起動時など高温の吹出し温度が要求された場合には、電磁弁41を開き、第2流量制御弁6を閉じた熱交換器分割による暖房運転を行なう。この熱交換器分割による暖房運転では、圧縮機1を出た高温高圧の冷媒蒸気は、四方弁2を通って第2室内熱交換器7に流入し、室内空気と熱交換して凝縮、液化する。この高圧の液冷媒は、電磁弁41を通って。第1流量制御弁4に流入し、低圧まで減圧され、室外熱交換器3に流入し、室外の空気と熱交換して蒸発し、四方弁2を通って再び圧縮機1に戻る。この時の第1流量制御弁4の開度は、例えば室外熱交換器3の出口冷媒の過熱度が5℃となるように制御されている。この熱交換器分割による暖房運転では、通常暖房運転が第1室内熱交換器5と第2室内熱交換器7と凝縮器としているのに対して、第2室内熱交換器7のみを凝縮器としているので、通常冷房運転に比べて、凝縮温度を高くすることができ、この凝縮器で加熱され、室内に吹出される空気温度を高くすることがでる。さらに暖房運転時に、室内の除湿運転を行なう場合には、電磁弁41を閉、第2流量制御弁6を閉とすることにより、実施の形態3で説明した暖房除湿運転が可能となる。また第2流量制御弁6には、絞り部に焼結金属を使用したものや、毛細管を使用しているので、冷媒流動音の発生を防止することができる。
【0092】
このようにこの実施の形態では、暖房時、通常暖房運転、熱交換器分割による暖房高温吹出し運転、暖房除湿運転の3つの運転モードが切換可能であるので、使用者の好みに応じて部屋内の温度、湿度環境を最適に制御することができる。また第2流量制御弁6には、絞り部に焼結金属を使用したものや、毛細管を使用しているので、冷媒流動音の発生を防止し、静かな室内環境を実現できる。
【0093】
なお本実施の形態では、第1室内熱交換器5と第2流量制御弁6と並列に電磁弁41を設置する例について説明したが、これに限るものではなく、図20に示すように、電磁弁41と第2流量制御弁6を一体化した3方弁42を用いても良い。このように電磁弁41と第2流量制御弁6を一体化した3方弁42を用いることにより、室内機の小形化が可能となる。
【0094】
また実施の形態1から形態9では、空気調和装置の冷媒としてR410Aを用いた場合について説明した。R410Aは、HFC系冷媒であり、オゾン層を破壊しない地球環境保全に適した冷媒であるとともに、従来冷媒として用いられてきたR22に比べて、冷媒圧力損失が小さいため、第2流量制御弁6の絞り部に用いる焼結金属の通気孔の径を小さくでき、より一層冷媒流動音低減効果を得ることができる冷媒である。
【0095】
さらにこの空気調和装置の冷媒としては、R410Aに限ることはなく、HFC系冷媒であるR407CやR404A、R507Aであっても良い。また地球温暖化防止の観点から、地球温暖化係数の小さなHFC系冷媒であるR32単独R152a単独あるいはR32/R134aなどの混合冷媒であっても良い。またプロパンやブタンなどの炭化水素冷媒やアンモニア、二酸化炭素、エーテルなどの自然系冷媒およびそれらの混合冷媒であってもよい。
【0096】
また本実施の形態1から形態9では、特に圧縮機の潤滑油については言及していないが、潤滑油としては鉱油やアルキルベンゼンなどの合成油であっても良く、また近年、HFC系冷媒用として開発されたエステル油やエーテル油であっても良い。
【0097】
【発明の効果】
以上説明したとおりこの発明の絞り装置によれば、絞り部を冷媒流れ方向に連通する多孔質透過材で構成したので、冷媒流動音の発生を防止して騒音を低減できる効果が得られる。
【0098】
また、電磁開閉弁が設けられた第1の流路と、この第1の流路と並列に設けられた第2の流路と、この第2の流路中に設けられ冷媒流れ方向に連通する多孔質透過材で構成した絞り部とを備えたので、多孔質透過材の複雑な加工を要求することなく、冷媒流動音の発生を防止して騒音を低減できる効果が得られる。
【0099】
また、前記多孔質透過材で冷媒流路を覆うので、圧力損失の変動を抑制できると共に、冷媒流動音の発生を防止して騒音を低減できる効果が得られる。
【0100】
また、前記多孔質透過材は空洞部を有する又は中空体の構造としたので、多孔質透過材の通過孔の大きさと圧力損失とを適切に選択できる効果が得られる。
【0101】
また、前記絞り部は、一端が開放した筒状を成し、この筒状の周面および底面を介して前記筒状の内外を連通する流路を多孔質透過材で構成したので、多孔質透過部材の通過面積を大きく確保できる効果が得られる。
【0102】
また、前記多孔質透過材の透過面積を調節する調節手段を備えたので、多孔質透過材を通過することによる圧力差を適度に調節できる効果が得られる。
【0103】
また、弁室側壁に第1流路が開口する弁本体と、弁室底面に第2流路が開口する主弁座と、弁室内に前記主弁座を閉止できる主弁体を有し、前記主弁体に多孔質透過材を用いて絞り部を構成したので、冷媒流動音の発生を防止でき、また通常の弁開時における圧力損失による性能低下も防止できる効果が得られる。
【0104】
また、前記多孔質透過材は一端が開放した柱状を成し、前記主弁座閉止時に前記柱状の周面側と底面側とが流路入口側と出口側とに分離されるので、周面側と底面側とのそれぞれで多孔質透過材の通過孔の大きさと圧力損失とを適切に選択できる効果が得られる。
【0105】
また、弁室側壁に第1流路が開口する弁本体と、弁室底面に第2流路が開口する主弁座と、弁室内に前記主弁座を閉止できる主弁体を有し、前記主弁座に多孔質透過材を用いて流量制御弁を構成したので、絞り部の設計が容易となり、安価で低騒音なものとできる効果が得られる。
【0106】
また、周面が主弁座の側面と当接し、前記周面と側面との当接面積を開閉方向への移動によって可変する主弁体と、前記主弁体の開閉方向への移動を制御する制御手段とを備え、前記主弁体、主弁座および制御手段で多孔質透過材の透過面積を調節する調節手段を構成したので、主弁体の開閉動作と同方向の動作で多孔質透過材を利用した圧力差を適度に調節できる効果が得られる。
【0107】
また、多孔質透過材の通気孔を200から0.5マイクロメートルの範囲としたので、液冷媒や気液二相冷媒が通過する際の冷媒流動音の発生を防止できる効果が得られる。
【0108】
また、前記多孔質透過材を焼結金属としたので、耐久性に優れた絞り装置とすることができる効果が得られる。
【0109】
また、この発明の冷凍サイクルによれば、上記絞り装置を備えたものにおいて、前記多孔質透過材に気液二相冷媒を通過させるので、冷媒蒸気スラグや冷媒気泡の崩壊の発生がなく、冷媒流動音の発生を防止できる効果が得られる。
【0110】
また、弁室側壁に第1流路が開口する弁本体と、弁室底面に第2流路が開口する主弁座と、弁室内に前記主弁座を閉止できると共に周面が主弁座の側面と当接し、前記周面と側面との当接面積を開閉方向への移動によって可変する主弁体とを備えた絞り装置と、前記主弁体の開閉方向への移動を制御する制御手段と、を備え、前記主弁座又は主弁体に多孔質透過材を用いて流量制御弁を構成すると共に、前記主弁体、主弁座および制御手段で多孔質透過材の透過面積を調節する調節手段を構成したので、冷媒流動音の発生を防止しつつ、流量を調節できる効果が得られる。
【0111】
また、前記調節手段は前記絞り装置の圧力差に応じて前記透過面積を調節するので、圧力差の調節が図れる効果が得られる。
【0112】 前記調節手段は所定の圧力差となるよう前記透過面積を調節するので、圧力変動の影響を抑制できる効果が得られる。
【0113】
また、この発明の空気調和装置によれば、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えたものにおいて、前記第2流量制御弁の絞り部を冷媒流れ方向に連通する多孔質透過材で構成したので、冷房および暖房時の室内の温湿度環境を幅広く制御できるとともに、冷媒流動音の発生を防止でき、快適な室内環境を提供できる効果が得られる。
【0114】
また、前記多孔質透過材の透過面積を調節する調節手段を備えたので、冷媒流動音の発生を防止しつつ、流量を調節できるから、快適できめこまかい空調運転ができる効果が得られる。
【0115】
また、弁室側壁に第1流路が開口する弁本体と、弁室底面に第2流路が開口する主弁座と、弁室内に前記主弁座を閉止できる主弁体を有し、前記主弁体に多孔質透過材を用いて第2流量制御弁を構成したので、冷媒流動音の発生を防止でき、また通常冷房運転時や通常暖房運転時の圧力損失による性能低下も生じない。さらに防振材などを弁の外周に巻きつけるなどの従来の冷媒流動音低減対策が不要になり、装置が安価となるとともに、装置廃棄時のリサイクル性が向上する効果が得られる。
【0116】
また、弁室側壁に第1流路が開口する弁本体と、弁室底面に第2流路が開口する主弁座と、弁室内に前記主弁座を閉止できる主弁体を有し、前記主弁座に多孔質透過材を用いて第2流量制御弁を構成したので、絞り部の形状変更が容易であり、設計が容易となり、また安価で低騒音な流量制御弁を提供できる効果が得られる。
【0117】
また、周面が主弁座の側面と当接し、前記周面と側面との当接面積を開閉方向への移動によって可変する主弁体と、前記主弁体の開閉方向への移動を制御する制御手段とを備え、前記主弁体、主弁座および制御手段で多孔質透過材の透過面積を調節する調節手段を構成したので、小型で冷媒流動音の発生を防止しつつ、流量を調節できるから、快適できめこまかい空調運転ができる効果が得られる。
【0118】
また、前記調節手段は前記第2流量制御弁の圧力差に応じて前記透過面積を調節するので、快適かつ効率的な空気調和が行なえる効果が得られる。。
【0119】
また、前記調節手段は潜熱比を低下させる運転時に所定の圧力差となるよう前記透過面積を調節するので、室内の温湿度環境をより快適に導ける効果が得られる。
【0120】
また、焼結金属の通気孔を200から0.5マイクロメートルの範囲としたので、液冷媒あるいは気液二相冷媒が通過する際の冷媒流動音の発生を防止することができる効果が得られる。
【0121】
また、潜熱比を低下させる運転時に前記第2流量制御弁を閉止するよう制御する制御部を備えたので、冷媒流動音を低減しながら広範囲に温度制御が行なえ、快適な除湿ができる効果が得られる。
【0122】
また、前記制御部は冷房又は除湿並びに暖房運転時に前記第2流量制御弁を閉止するよう制御するので、運転モードの違いによる冷媒の相状態の変化に対しても冷媒流動音を効果的に低減しながら快適な除湿ができる効果が得られる。
【0123】
また、暖房運転起動時に前記第2流量制御弁を閉止するよう制御する制御部を備えたので、吹出温度を高温にして速暖感を高めた快適な暖房ができる効果が得られる。
【0124】
また、暖房運転時で設定温度と室内温度との差が所定値以上の場合に前記第2流量制御弁を閉止するよう制御する制御部を備えたので、室内温度が設定温度に対して充分低い場合に高温の吹出風を吹き出すことができるから、冷風感を与えることなく快適な暖房ができる効果が得られる。
【0125】
また、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御弁を内径1mm以上の毛細管で構成したので、液冷媒あるいは気液二相冷媒が通過する際の冷媒流動音を許容値以下に発生を確実に低減することができ、しかも安価で、リサイクル性を向上させた室内ユニットを提供することができる効果が得られる。
【0126】
また、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御弁を毛細管で構成し、冷房除湿運転時の前記毛細管入口配管と前記第2室内熱交換器と前記圧縮機の間の配管とを熱交換させる熱交換器を設けたので、毛細管入口部の冷媒の蒸気成分を少なくでき、毛細管より発生する冷媒流動音を大幅に低減することができる。また冷房除湿運転時の室内熱交換器の伝熱性能が向上し、装置の性能が向上できる効果が得られる。
【0127】
また、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御弁を毛細管で構成し、前記第2室内熱交換器と前記圧縮機の間の配管と熱交換させる熱交換器を設けたので、毛細管内での冷媒蒸気の発生を抑制でき、毛細管より発生する冷媒流動音を大幅に低減することができる。また冷房除湿運転時の室内熱交換器の伝熱性能が向上し、装置の性能が向上できる効果が得られる。
【0128】
また、第2室内熱交換器及び第2流量制御弁をバイパスするバイパス流路と、このバイパス流路を開閉する開閉手段とを備えたので、幅広い範囲で室内の温度、湿度環境を制御できるとともに、温度条件を快適に保ちながら潜熱比を低下させるためのきめこまかい運転が可能になり、しかも冷媒流動音の発生を低減して、低騒音な室内環境を実現できる効果が得られる。
【0129】
また、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、第2室内熱交換器及び第2流量制御弁をバイパスするバイパス流路と、このバイパス流路を開閉する開閉手段とを備えたので、幅広い範囲で室内の温度、湿度環境を制御できるとともに、温度条件を快適に保ちながら潜熱比を低下させるためのきめこまかい運転が可能になる効果が得られる。
【0130】
また、前記第2流量制御弁及び開閉手段を制御する制御手段を備え、前記制御手段は潜熱比を低下させる運転時に顕熱能力に応じて、前記第2流量制御弁を絞り前記開閉手段を開く熱交換器分割運転と、前記第2流量制御弁を絞り前記開閉手段を閉じる冷媒再熱運転とを行なうよう制御するので、温度条件を快適に保ちながら潜熱比を低下させるためのきめこまかい運転が顕熱能力に応じて可能になる効果が得られる。
【0131】
また、前記第2流量制御弁及び開閉手段を制御する制御手段を備え、前記制御手段は顕熱比が低下した場合に、前記第2流量制御弁を閉じ、前記開閉手段を閉じるよう制御するので、空調負荷が小さいときに冷媒再熱方式によるきめこまかい空調制御が可能になる効果が得られる。
【0132】
また、前記第2流量制御弁及び開閉手段を制御する制御手段を備え、暖房運転起動時に前記第2流量制御弁を閉じ、前記開閉手段を開くよう制御するので、吹出温度を高温にして速暖感を高めた快適な暖房ができる効果が得られる。
【0133】
また、第1流量制御弁と前記第1室内熱交換器の間の配管に暖房運転時に液冷媒を貯留するレシーバを設けたので、冷媒量を運転モードに応じて制御でき、装置の性能向上と信頼性向上が図れる効果が得られる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1による空気調和装置の冷媒回路図である。
【図2】 実施の形態1に係わり、第2流量制御弁の構成を示す図である。
【図3】 実施の形態1に係わる空気調和装置の冷房除湿運転時の動作状態を表す特性図である。
【図4】 実施の形態1に係わり、第2流量制御弁の他の構成例を示す図である。
【図5】 本発明の実施の形態2に係わり、第2流量制御弁の構成を示す図である。
【図6】 実施の形態2に係わり、第2流量制御弁の他の構成例を示す図である。
【図7】 本発明の実施の形態3に係わり、第2流量制御弁の構成を示す図である。
【図8】 実施の形態3に係わり、第2流量制御弁の他の構成例を示す図である。
【図9】 本発明の実施の形態4に係わり、暖房除湿運転時の動作状態を表す特性図である。
【図10】 本発明の実施の形態5による空気調和装置の冷媒回路図である。
【図11】 本発明の実施の形態6による空気調和装置の冷媒回路図である。
【図12】 実施の形態6に係わり、第2流量制御弁の構成を示す図である。
【図13】 本発明の実施の形態7による空気調和装置の冷媒回路図である。
【図14】 実施の形態7に係わり、毛細管の冷媒流動音の測定結果を示す図である。
【図15】 本発明の実施の形態8による空気調和装置の冷媒回路図である。
【図16】 実施の形態8に係わる空気調和装置の冷房除湿運転時の動作状態を表す特性図である。
【図17】 本発明の実施の形態9による空気調和装置の冷媒回路図である。
【図18】 実施の形態9に係わる空気調和装置の冷房除湿運転時の動作状態を表す特性図である。
【図19】 本発明の実施の形態10による空気調和装置の冷媒回路図である。
【図20】 実施の形態10に係わる空気調和装置の他の例を示す冷媒回路図である。
【図21】 従来の空気調和装置を示す冷媒回路図である。
【符号の説明】 1 圧縮機、 3 室外熱交換器、 4 第1流量制御弁、 5 第1室内熱交換器、 6 第2流量制御弁、 7 第2室内熱交換器、 21 第1流路、 22 第2流路、 23 主弁座、 24 弁本体、 30 レシーバ、 31 焼結金属、 38 毛細管、 40 熱交換器

[Document name] Statement
[Title of Invention] coldFreezing cycle device and air conditioner
[Claims]
1. The throttle portion is made of a porous permeable material that communicates with the refrigerant in the flow direction.A refrigeration cycle apparatus comprising a drawing device provided with an adjusting means for adjusting the permeation area of the porous permeation material, and allowing a gas-liquid two-phase refrigerant to pass through the porous permeation material.
2. A first flow path provided with an electromagnetic on-off valve, a second flow path provided in parallel with the first flow path, and a refrigerant flow provided in the second flow path. With a throttle part made of a porous permeable material that communicates in the directionA refrigeration cycle apparatus comprising a drawing device composed of an adjusting means for adjusting the permeation area of the porous permeation material, and allowing a gas-liquid two-phase refrigerant to pass through the porous permeation material. ..
3. The third aspect of the present invention, wherein the refrigerant flow path is covered with the porous permeable material.Refrigeration cycle equipment..
Claim41 to claims, wherein the vents of the porous permeation material are in the range of 200 to 0.5 micrometers.3Described in any one ofRefrigeration cycle equipment..
Claim51. Claims 1 to claim, wherein the porous permeation material is made of a sintered metal.4Described in any one ofRefrigeration cycle equipment..
Claim6The valve body has a first flow path on the side wall of the valve chamber, the main valve seat has a second flow path on the bottom surface of the valve chamber, and the main valve seat can be closed in the valve chamber and the peripheral surface is the main valve seat. A diaphragm device including a main valve body that comes into contact with the side surface and changes the contact area between the peripheral surface and the side surface by moving in the opening / closing direction.
A control means for controlling the movement of the main valve body in the opening / closing direction is provided.
A flow control valve is configured by using a porous permeation material for the main valve seat or the main valve body, and an adjusting means for adjusting the permeation area of the porous permeation material is configured by the main valve body, the main valve seat and the control means. A refrigeration cycle device characterized by the fact that it has been used.
Claim7The claim means that the adjusting means adjusts the transmission area according to the pressure difference of the drawing device.6The refrigeration cycle device described.
Claim8The claim is characterized in that the adjusting means adjusts the permeation area so as to have a predetermined pressure difference.7The refrigeration cycle device described.
Claim9In an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected, the first 2 An air conditioner characterized in that the throttle portion of a flow control valve is made of a porous permeable material that communicates in the direction of refrigerant flow.
Claim10The claim is characterized by comprising an adjusting means for adjusting the permeation area of the porous permeation material.9The air conditioner described in.
Claim11The valve body has a valve body in which the first flow path opens in the side wall of the valve chamber, a main valve seat in which the second flow path opens in the bottom surface of the valve chamber, and a main valve body in the valve chamber that can close the main valve seat. A claim characterized in that a second flow rate control valve is configured by using a porous permeation material for the main valve body.9The air conditioner described in.
Claim12The valve body has a valve body in which the first flow path opens in the side wall of the valve chamber, a main valve seat in which the second flow path opens in the bottom surface of the valve chamber, and a main valve body in the valve chamber that can close the main valve seat. A claim characterized in that a second flow rate control valve is configured by using a porous permeation material for the main valve seat.9The air conditioner described in.
Claim13The peripheral surface abuts on the side surface of the main valve seat, and the main valve body whose contact area between the peripheral surface and the side surface is changed by the movement in the opening / closing direction and the movement of the main valve body in the opening / closing direction are controlled. The claim is characterized in that the control means is provided, and the main valve body, the main valve seat, and the control means are used to form a control means for adjusting the permeation area of the porous permeation material.11Or claim12The described air conditioner.
Claim14The claim means that the adjusting means adjusts the permeation area according to the pressure difference of the second flow rate control valve.13The described air conditioner.
Claim15The present invention is characterized in that the adjusting means adjusts the permeation area so as to have a predetermined pressure difference during operation of lowering the latent heat ratio.14The described air conditioner.
Claim16The claim is characterized in that the ventilation holes of the porous permeation material are in the range of 200 to 0.5 micrometers.9To claims12The air conditioner according to any one of the above items.
Claim17The claim is characterized in that the control unit for controlling the second flow rate control valve to be closed during the operation of lowering the latent heat ratio is provided.9The described air conditioner.
Claim18The claim is characterized in that the control unit controls to close the second flow rate control valve during cooling or dehumidifying and heating operation.17The described air conditioner.
Claim19The claim is characterized in that the control unit for controlling the second flow rate control valve to be closed when the heating operation is started is provided.9The described air conditioner.
Claim20The claim is characterized in that it is provided with a control unit that controls to close the second flow rate control valve when the difference between the set temperature and the room temperature is equal to or greater than a predetermined value during heating operation.9The described air conditioner.
Claim21In an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow rate control valve, a first indoor heat exchanger, a second flow rate control valve, and a second indoor heat exchanger are sequentially connected, the first 2 An air conditioner characterized in that the flow control valve is composed of a capillary tube having an inner diameter of 1 mm or more.
Claim22In an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected, the first The two flow control valves are composed of capillary tubes, and are characterized by providing a heat exchanger that exchanges heat between the capillary tube inlet pipe and the pipe between the second chamber heat exchanger and the compressor during cooling and dehumidifying operation. Air conditioner.
Claim23In an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected, the first 2 An air conditioner comprising a flow control valve made of a capillary tube and provided with a heat exchanger for exchanging heat with a pipe between the second chamber heat exchanger and the compressor.
Claim24The claim is characterized by comprising a bypass flow path that bypasses the second chamber heat exchanger and the second flow rate control valve, and an opening / closing means for opening / closing the bypass flow path.9To claims23The air conditioner according to any one of the above items.
Claim25In an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected, a second An air conditioner including a bypass flow path that bypasses the indoor heat exchanger and the second flow control valve, and an opening / closing means for opening / closing the bypass flow path.
Claim26A control means for controlling the second flow valve and the opening / closing means is provided, and the control means heat exchange that throttles the second flow control valve and opens the opening / closing means according to the sensible heat capacity during operation for lowering the latent heat ratio. The claim is characterized in that the device division operation and the refrigerant reheating operation in which the second flow control valve is throttled and the opening / closing means is closed are controlled.24Or claim25The air conditioner described in.
Claim27A control means for controlling the second flow rate control valve and the opening / closing means is provided, and the control means controls to close the second flow rate control valve and close the opening / closing means when the sensible heat ratio decreases. Characteristic claims24Or claim25The air conditioner described in.
Claim28The second flow rate control valve and the control means for controlling the opening / closing means are provided, and the second flow rate control valve is closed and the opening / closing means is controlled to be opened when the heating operation is started.24Or claim25The air conditioner described in.
Claim29The claim is characterized in that a receiver for storing a liquid refrigerant during a heating operation is provided in a pipe between the first flow rate control valve and the first indoor heat exchanger.9To claims28The air conditioner according to any one of the above items.
Description: TECHNICAL FIELD [Detailed description of the invention]
[0001]
[Technical field to which the invention belongs]
The present invention relates to an air conditioner that improves controllability of temperature and humidity during cooling or heating operation, reduces refrigerant flow noise, and improves comfort with respect to indoor temperature and humidity and noise.
0002.
[Conventional technology]
In the conventional air conditioner, a variable capacity compressor such as an inverter is used to cope with fluctuations in the air conditioning load, and the rotation frequency of the compressor is controlled according to the magnitude of the air conditioning load. However, if the compressor rotation becomes small during cooling operation, the evaporation temperature also rises, and there is a problem that the dehumidifying capacity of the evaporator decreases, or the evaporation temperature rises above the dew point temperature in the room and dehumidification becomes impossible. It was.
0003
The following air conditioners have been devised as means for improving the dehumidifying capacity during this cooling low-capacity operation. FIG. 21 shows, for example, the refrigerant circuit configuration of a conventional air conditioner shown in Japanese Patent Publication No. 61-43631. In the figure, 1 is a compressor, 3 is an outdoor heat exchanger, 4 is a first flow control valve, 5 is a first indoor heat exchanger, 6 is a second flow control valve, and 7 is a second indoor heat exchanger. These are connected sequentially by piping to form a refrigeration cycle.
Next, the operation of the conventional air conditioner will be described. First, in normal cooling operation, the refrigerant discharged from the compressor 1 is condensed and liquefied by the outdoor heat exchanger 3, depressurized by the first flow control valve 4, the second indoor heat exchanger 5, the second flow control valve 6 and the like. It returns to the compressor 1 through the second chamber heat exchanger 7. At this time, the second flow rate control valve is in the fully open state, and the first chamber heat exchanger 5 and the second chamber heat exchanger 7 operate as evaporators to perform cooling operation.
0004
On the other hand, during the dehumidifying operation, the first flow control valve 4 is fully opened and the second flow control valve 6 controls the flow rate of the refrigerant, so that the first chamber heat exchanger 5 is a condenser, that is, a reheater, a second chamber. Since the heat exchanger 7 operates as an evaporator and the indoor air is heated by the first indoor heat exchanger 5, dehumidification operation with a small decrease in room temperature becomes possible.
0005
[Problems to be Solved by the Invention]
In the conventional air conditioner as described above, since a flow control valve having an orifice is usually used as the second flow control valve installed in the indoor unit, the refrigerant flow generated when the refrigerant passes through this orifice. The noise was loud and was a factor that deteriorated the indoor environment. In particular, during the dehumidifying operation, the inlet refrigerant of the second flow control valve is in a gas-liquid two-phase state, and there is a problem that the refrigerant flow noise becomes loud.
0006
As measures for reducing the refrigerant flow noise of the second flow control valve during this dehumidifying operation, a small hole is provided in the main valve body in the flow control valve shown in JP-A-7-91778, or JP-A-10- There is one in which a spiral flow path portion is provided downstream of the flow control valve shown in No. 89803. However, all of these measures to reduce the flow noise of the refrigerant are not effective even if a spiral flow path is added because the throttle part is composed of small holes and orifices. In particular, the flow control valve inlet refrigerant is a gas-liquid two-phase. In the case of the state, there is a problem that the refrigerant flow noise becomes loud. In addition, in order to reduce the flow noise of the refrigerant, it was necessary to take additional measures such as installing a sound insulating material and a damping material in the flow control valve body, but these additional measures increase the cost and increase the installation space. Therefore, there is a problem that the indoor unit becomes large and the recyclability at the time of product collection deteriorates.
0007
Further, it is possible to control the operating capacity of the compressor during the dehumidifying operation to be small and reduce the refrigerant flow rate to reduce the refrigerant flow noise, but as a result, the refrigerant flow rate during the dehumidifying operation is restricted. Therefore, there is a problem that the dehumidifying capacity cannot be freely controlled and the room temperature and humidity cannot be kept constant.
0008
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a squeezing device and a refrigerating cycle device capable of significantly reducing the refrigerant flow noise, and during cooling operation and heating operation. The purpose is to obtain an air conditioner that can improve the temperature and humidity controllability of the room and further improve the comfort in the room.
0009
[Means for solving problems]
The present inventionRefrigeration cycle equipmentIs composed of a porous permeable material that communicates the throttle part in the direction of refrigerant flow.A drawing device provided with an adjusting means for adjusting the permeation area of the porous permeation material was provided, and a gas-liquid two-phase refrigerant was allowed to pass through the porous permeation material.It is a thing.
0010
Further, a first flow path provided with an electromagnetic on-off valve, a second flow path provided in parallel with the first flow path, and a second flow path provided in the second flow path and communicating with each other in the refrigerant flow direction. With a throttle part made of a porous permeable materialA drawing device composed of an adjusting means for adjusting the permeation area of the porous permeation material, and a gas-liquid two-phase refrigerant are allowed to pass through the porous permeation material.It is a thing.
0011
Further, the ventilation holes of the porous permeation material are set in the range of 200 to 0.5 micrometers.
0012
Further, the porous permeation material is made of a sintered metal.
0013
Further, the valve body in which the first flow path opens in the side wall of the valve chamber, the main valve seat in which the second flow path opens in the bottom surface of the valve chamber, and the main valve seat that can be closed in the valve chamber and the peripheral surface is the main valve seat. A throttle device including a main valve body that comes into contact with the side surface of the main valve body and changes the contact area between the peripheral surface and the side surface in the opening / closing direction, and a control that controls the movement of the main valve body in the opening / closing direction. A flow control valve is formed by using a porous permeation material for the main valve seat or the main valve body, and the permeation area of the porous permeation material is determined by the main valve body, the main valve seat and the control means. It constitutes an adjusting means for adjusting.
0014.
Further, the adjusting means adjusts the transmission area according to the pressure difference of the drawing device.
0015.
Further, the adjusting means adjusts the permeation area so as to have a predetermined pressure difference.
0016.
Further, the air conditioner according to the present invention is a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. In the air conditioner provided with the above, the throttle portion of the second flow control valve is made of a porous permeable material that communicates in the direction of the refrigerant flow.
[0017]
Further, it is provided with an adjusting means for adjusting the permeation area of the porous permeation material.
Further, it has a valve body in which the first flow path opens in the side wall of the valve chamber, a main valve seat in which the second flow path opens in the bottom surface of the valve chamber, and a main valve body in the valve chamber capable of closing the main valve seat. A second flow rate control valve is configured by using a porous permeation material for the main valve body.
0018
Further, it has a valve body in which the first flow path opens in the side wall of the valve chamber, a main valve seat in which the second flow path opens in the bottom surface of the valve chamber, and a main valve body in the valve chamber capable of closing the main valve seat. A second flow rate control valve is configured by using a porous permeation material for the main valve seat.
0019
Further, the peripheral surface abuts on the side surface of the main valve seat, and the main valve body in which the contact area between the peripheral surface and the side surface is changed by the movement in the opening / closing direction and the movement of the main valve body in the opening / closing direction are controlled. The main valve body, the main valve seat, and the control means constitute a control means for adjusting the permeation area of the porous permeation material.
0020
Further, the adjusting means adjusts the permeation area according to the pressure difference of the second flow rate control valve.
0021.
Further, the adjusting means adjusts the permeation area so as to have a predetermined pressure difference during operation for lowering the latent heat ratio.
0022.
Further, the ventilation holes of the porous permeation material are set in the range of 200 to 0.5 micrometers.
[0023]
Further, it is provided with a control unit that controls the second flow rate control valve to be closed during the operation of lowering the latent heat ratio.
0024
Further, the control unit controls to close the second flow rate control valve during cooling or dehumidifying and heating operations.
0025
Further, it is provided with a control unit that controls the second flow rate control valve to be closed when the heating operation is started.
0026
Further, it is provided with a control unit that controls to close the second flow rate control valve when the difference between the set temperature and the room temperature is equal to or greater than a predetermined value during the heating operation.
[0027]
Further, in an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow rate control valve, a first indoor heat exchanger, a second flow rate control valve, and a second indoor heat exchanger are sequentially connected, the above-mentioned The second flow control valve is composed of a capillary tube having an inner diameter of 1 mm or more.
[0028]
Further, in an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected, the above-mentioned The second flow control valve is composed of a capillary tube, and is provided with a heat exchanger for heat exchange between the capillary tube inlet pipe and the pipe between the second chamber heat exchanger and the compressor during cooling and dehumidifying operation. ..
[0029]
Further, in an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected, the above-mentioned The second flow control valve is composed of a capillary tube, and is provided with a heat exchanger that exchanges heat with a pipe between the second chamber heat exchanger and the compressor.
[0030]
Further, it is provided with a bypass flow path that bypasses the second chamber heat exchanger and the second flow rate control valve, and an opening / closing means for opening / closing the bypass flow path.
0031
Further, in an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected, the first 2 It is provided with a bypass flow path that bypasses the indoor heat exchanger and the second flow control valve, and an opening / closing means for opening / closing the bypass flow path.
[0032]
Further, the second flow control valve and the control means for controlling the opening / closing means are provided, and the control means throttles the second flow control valve and opens the opening / closing means according to the sensible heat capacity during operation for lowering the latent heat ratio. The heat exchanger division operation and the refrigerant reheat operation of closing the second flow control valve and closing the opening / closing means are controlled.
0033
Further, the control means for controlling the second flow rate control valve and the opening / closing means is provided, and the control means controls to close the second flow rate control valve and close the opening / closing means when the sensible heat ratio decreases. Is.
0034
Further, the second flow rate control valve and the control means for controlling the opening / closing means are provided, and the second flow rate control valve is closed and the opening / closing means is controlled to be opened when the heating operation is started.
0035.
Further, a receiver for storing the liquid refrigerant during the heating operation is provided in the pipe between the first flow rate control valve and the first indoor heat exchanger.
0036
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1.
FIG. 1 is a refrigerant circuit diagram of an air conditioner showing an example of an embodiment of the present invention, and the same parts as those of the conventional device are indicated by the same reference numerals. In the figure, 1 is a compressor, 2 is a flow path switching means for switching the flow of refrigerant in cooling operation and heating operation, for example, a four-way valve, 3 is an outdoor heat exchanger, and 4 is an electric expansion valve which is a first flow control valve. Reference numeral 5 is a first chamber heat exchanger and 7 is a second chamber heat exchanger. A second flow control valve 6 is provided between the first chamber heat exchanger 5 and the second chamber heat exchanger 7. These are connected in sequence by piping to form a refrigeration cycle. Further, the outdoor unit 11 is composed of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3 and the first flow rate control valve 4, and the first indoor heat exchanger 5, the second indoor heat exchanger 7, and the second flow rate control valve are formed. The indoor unit 12 is composed of 6. As the refrigerant for this refrigeration cycle, R410A, which is a mixed refrigerant of R32 and R125, is used.
0037
FIG. 2 is a diagram showing the structure of the second flow rate control valve 6 of the air conditioner shown in FIG. 1, where 21 is the first flow path, the first chamber heat exchanger 5 is connected, and 22 is the second. It is a flow path to which the second chamber heat exchanger 7 is connected. Reference numeral 23 denotes a main valve seat through which the second flow path opens, which is integrally formed with the valve body in this figure. Reference numeral 24 denotes a main valve body that slides up and down along the inner surface of the second flow path control valve 6 main body, and the main valve seat 23 and the main valve body 24 form a throttle portion. Reference numeral 25 denotes an electromagnetic coil that drives the main valve body 24. The electromagnetic coil 25 is cut off based on a command from a control unit (not shown) to open and close the main valve body 24. The main valve body 24 is formed of a porous permeable material, and specifically, a sintered metal (metal powder or alloy powder) having ventilation holes (pores inside the porous body through which fluid can permeate) of 10 micrometer is molded. It is manufactured by putting it in a metallurgy, pressure-molding it, and then sintering it at a temperature below the melting point). Further, the second flow rate control valve 6 pulls the main valve body 24 upward by de-energizing the electromagnetic coil 25, and pulls the main valve body 24 away from the main valve seat 23, thereby causing the first flow path 21 and the second flow rate control valve 6. The two flow paths 22 are connected with almost no pressure loss (FIG. 2A). Further, by energizing the electromagnetic coil 25, the main valve body 24 is lowered to the lower part, and by bringing the main valve body 24 into close contact with the main valve seat 23, the first flow path 21 and the second flow path 21 and the second through the ventilation holes of the valve body are brought into close contact with each other. The flow paths 22 are connected (FIG. 2 (b)).
[0038]
Next, the operation of the air conditioner according to the present embodiment during cooling will be described. In FIG. 1, the flow of the refrigerant during cooling is indicated by a solid arrow. The cooling operation is the normal cooling operation, which corresponds to the case where both the sensible heat load and latent heat load of the room are large, such as during startup and summer, and the sensible heat load is small, such as during the intermediate period and rainy season. It can be divided into dehumidifying operations for large cases. In the normal cooling operation, the electromagnetic coil 25 of the second flow rate control valve 6 is de-energized. At this time, the high-temperature and high-pressure refrigerant vapor that has exited the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2 and exchanges heat with the outside air to condense and liquefy. This high-pressure liquid refrigerant is depressurized to a low pressure by the first flow control valve 4, becomes a gas-liquid two-phase refrigerant, and becomes sensible heat and latent heat of the room air in the first chamber heat exchanger 5 and the second chamber heat exchanger 7. Steals and evaporates. In the second flow rate control valve 6, as shown in FIG. 2A, the first flow path 21 and the second flow path are connected with a large opening area, so that the refrigerant pressure loss when passing through this valve is almost the same. There is no decrease in cooling capacity or efficiency due to pressure loss. The low-pressure steam refrigerant leaving the second chamber heat exchanger 7 returns to the compressor 1 again through the four-way valve 2. The opening degree of the first flow rate control valve 4 during the normal cooling operation is controlled so that, for example, the degree of superheat of the outlet refrigerant of the second chamber heat exchanger is 5 ° C.
[0039]
Next, the operation during the dehumidifying operation will be described with reference to the pressure-enthalpy diagram shown in FIG. The English characters shown in FIG. 3 correspond to the English characters shown in FIG. During this dehumidifying operation, the electromagnetic coil 25 of the second flow control valve is energized, the main valve body 24 is brought into close contact with the main valve seat 23 as shown in FIG. The outlet of the first chamber heat exchanger 5 which is the first flow path 21 and the inlet of the second chamber heat exchanger 7 which is the second flow path 22 are connected. At this time, the high-temperature and high-pressure refrigerant vapor (point A) that has exited the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2 and exchanges heat with the outside air to condense (point B). The high-pressure liquid refrigerant or gas-liquid two-phase refrigerant is slightly depressurized by the first flow control valve 4 (point C), becomes an intermediate-pressure gas-liquid two-phase refrigerant, and flows into the first chamber heat exchanger 5. The refrigerant flowing into the first indoor heat exchanger 5 exchanges heat with the indoor air and further condenses (point D). The intermediate pressure liquid refrigerant or gas-liquid two-phase refrigerant exiting the first chamber heat exchanger 5 flows into the second flow rate control valve 6. In the second flow rate control valve 6, as shown in FIG. 2B, the main valve body 24 is in close contact with the main valve seat 23, so that the refrigerant flowing into this valve is mainly composed of sintered metal. It flows into the second chamber heat exchanger 7 through the ventilation holes in the valve body 24. The vent of the main valve body 24 is about 10 micrometers, and the refrigerant passing through the vent is depressurized to become a low-pressure gas-liquid two-phase refrigerant, which flows into the second chamber heat exchanger 7 (E). point). The refrigerant flowing into the second indoor heat exchanger 7 takes away the sensible heat and latent heat of the indoor air and evaporates. The low-pressure steam refrigerant leaving the second chamber heat exchanger 7 returns to the compressor 1 again through the four-way valve 2. Since the indoor air is heated by the first indoor heat exchanger 5 and cooled and dehumidified by the second indoor heat exchanger 7, dehumidification can be performed while preventing the room temperature from dropping.
0040
In this dehumidifying operation, the rotation frequency of the compressor 1 and the fan rotation speed of the outdoor heat exchanger 3 are adjusted to control the heat exchange amount of the outdoor heat exchanger 3, and the indoor heat exchanger 5 is used for the indoor heat exchange. The blowout temperature can be controlled over a wide range by controlling the amount of air heated. Further, the opening degree of the first flow control valve 7 and the rotation speed of the indoor fan are adjusted to control the condensation temperature of the first indoor heat exchanger 5, and the amount of heating of the indoor air by the first indoor heat exchanger 5 is controlled. You can also do it. Further, the opening degree of the second flow rate control valve 4 is controlled so that, for example, the degree of superheat of the outlet refrigerant of the second chamber heat exchanger is 5 ° C.
[0041]
In this embodiment, the second flow control valve 6 using the sintered metal for the main valve body 24 is arranged between the first chamber heat exchanger 5 and the second chamber heat exchanger 7, and is used during the cooling and dehumidifying operation. Since it is used as a throttle device, it is possible to significantly reduce the refrigerant flow noise when the liquid refrigerant or the gas-liquid two-phase refrigerant passes through the second flow control valve 6. When a gas-liquid two-phase refrigerant passes through a normal orifice type throttle device, a loud refrigerant flow noise is generated. In particular, it is known that a loud refrigerant flow noise is generated when the flow mode of the gas-liquid two-phase refrigerant is a slag flow. The cause of this refrigerant flow noise is that when the slag flow passes through a small hole such as an orifice in the throttle device, the refrigerant vapor slag or refrigerant bubble larger than the small hole is destroyed, and the refrigerant vapor slag or refrigerant bubble is destroyed. It is conceivable that vibration is generated due to the collapse of the small holes, and that the vapor refrigerant and the liquid refrigerant alternately pass through the small holes, so that the pressure loss generated when the refrigerant passes through the small holes fluctuates greatly. In the second flow control valve shown in FIG. 2, the gas-liquid two-phase refrigerant or the liquid refrigerant that has exited the first chamber heat exchanger 5 during the cooling / dehumidifying operation is in the main valve body 24 made of sintered metal. Since the refrigerant passes through the fine ventilation holes and is decompressed and flows into the second chamber heat exchanger 7, the refrigerant steam slag and the refrigerant bubbles do not collapse, and the steam refrigerant and the liquid refrigerant simultaneously flow into the main valve body 24. Since it passes through the ventilation holes of the above, there is no large fluctuation in pressure loss. For this reason, noise reduction means such as wrapping a sound insulating material or a vibration damping material around the outer circumference of the valve, which is required in the conventional device, becomes unnecessary, the cost can be reduced, and the recyclability of the air conditioning equipment is also improved. The problem of the refrigerant flow noise caused by the gas-liquid two-phase refrigerant described above is not limited to the air conditioner, but is a problem for the refrigerating cycle in general such as a refrigerator. By widely applying such a refrigerating cycle in general, the same effect can be obtained.
[0042]
The flow rate characteristic (relationship between the refrigerant flow rate and the pressure loss) of the second flow rate control valve 6 during the cooling and dehumidifying operation adjusts the diameter of the vent hole of the sintered metal used for the main valve body 24 and the length of the flow path through which the refrigerant passes. It can be adjusted by doing. That is, when a certain refrigerant flow rate is allowed to flow with a small pressure loss, the vent holes of the sintered metal may be increased or the diameter of the valve body may be reduced. Further, as shown in FIG. 4, a cavity 26 may be provided inside the valve body to reduce the length of the flow path through which the sintered metal passes. On the contrary, when a certain refrigerant flow rate is allowed to flow with a large pressure loss, the vent holes of the sintered metal may be reduced or the diameter of the valve body may be increased. The diameter of the vent holes of the sintered metal used for the main valve body 24 and the shape of the valve body are optimally designed at the time of equipment design. Instead of the hollow portion 26 in which the tip of the main valve body 24 is open, a hollow portion surrounded by sintered metal may be used. Further, if the structure is such that the peripheral surface side and the bottom surface side of the columnar main valve body 24 are divided into the flow path inlet side and the outlet side when the main valve body 24 is closed, pressure loss or the like occurs between the peripheral surface side and the bottom surface side. Can be adjusted independently. It was experimentally confirmed that if the diameter of the vent hole of the sintered metal is 200 to 0.5 μm, a sufficient effect of reducing the refrigerant flow noise can be obtained. As a preferable example, when the refrigerant is R410A and the pressure difference before and after the sintered metal is about 1 MPa (megapascal), the vent hole diameter is preferably about 10 micrometers. When the pressure difference is large, the ventilation hole diameter is made smaller, and when the pressure difference is small, the ventilation hole diameter is designed to be larger. The smaller the diameter of the vent hole of the sintered metal, the smaller the sintered metal, and as a result, the second flow rate control valve 6 becomes compact. When a sintered metal with a small vent is used for the valve body, a metal mesh or the like is placed on the upstream side of the second flow control valve 6 in order to prevent clogging of the vent due to foreign matter or sludge in the refrigeration cycle. A filter may be installed.
[0043]
Further, in the present embodiment, the second flow rate control valve that opens and closes by energizing or not energizing the electromagnetic coil 25 has been described, but the main valve body 24 is continuously driven by a stepping motor, and the second flow control valve is second. The flow rate characteristics of the flow rate control valve may be continuously changed. By continuously controlling the flow rate characteristics in this way, the temperature and humidity controllability during the cooling and dehumidifying operation can be further improved, and a comfortable indoor space can be realized.
[0044]
Next, the operation control method of the air conditioner of this embodiment will be described. In the air conditioner, for example, a set temperature and a set humidity are set when the air conditioner is operated in order to set a favorable temperature / humidity environment for the occupants in the room. The set temperature and humidity may be set by the resident directly from the remote control of the indoor unit, or for hot people, cold people, children, elderly people, etc. The remote controller may store the optimum temperature and humidity table determined for each target resident, and only the target resident may be directly input. Further, the indoor unit 12 is provided with a sensor for detecting the temperature and humidity of the suction air of the indoor unit in order to detect the temperature and humidity in the room.
0045
When the air conditioner is activated, the difference between the set temperature and the current indoor suction air temperature is calculated as the temperature deviation, and the difference between the set humidity and the current indoor suction air humidity is calculated as the humidity deviation, and finally these deviations. The rotation frequency of the compressor 1 of the air conditioner, the outdoor fan rotation speed, the indoor fan rotation speed, the throttle opening of the first flow control valve 4, and the second flow control valve 6 so that Control the opening and closing of. At this time, when the temperature and humidity deviations are controlled to zero or within a predetermined value, the temperature deviation is prioritized over the humidity deviation to control the air conditioner. That is, when both the temperature deviation and the humidity deviation are large when the air conditioner is started, the second flow control valve 7 is opened, and first, in the normal cooling operation, the temperature deviation in the room is preferentially set to zero or within a predetermined value. Drive so that Humidity deviation is detected when the cooling capacity of the air conditioner matches the heat load of the room and the temperature deviation is zero or within the specified value. At this time, the humidity deviation is zero or within the specified value. If so, continue the current operation.
[0046]
If the temperature deviation is zero or within a predetermined value and the humidity deviation at this time is still a large value, the second flow rate control valve 6 is throttled and switched to the cooling / dehumidifying operation. In this cooling / dehumidifying operation, the heating amount of the second indoor heat exchanger 7 is controlled so that the temperature deviation in the room can be maintained at zero or within a predetermined value, and the humidity deviation is within zero or a predetermined value. In addition, the amount of cooling and dehumidifying of the first indoor heat exchanger 5 is controlled. The amount of heat of the second indoor heat exchanger 7 is controlled by adjusting the fan speed of the outdoor heat exchanger 3 and the opening degree of the first flow rate control valve 4. Further, the cooling and dehumidifying amount of the first indoor heat exchanger 5 is controlled by the rotation frequency of the compressor 1 and the fan rotation speed of the indoor unit 12.
[0047]
As described above, in this embodiment, the temperature and humidity environment in the room can be changed according to the preference of the resident by switching the refrigerant circuit between the normal cooling operation and the cooling dehumidifying operation according to the load of the room during the cooling operation. It can be controlled to the optimum state.
0048
Embodiment 2.
FIG. 5 is a block diagram of a second flow control valve of an air conditioner showing another example of the embodiment of the present invention, and the same or similar components as those shown in FIG. 2 are designated by the same sign. The duplicate description will be omitted. In this embodiment, a normal metal valve is used for the main valve body 24, and a sintered metal is used for the main valve seat 23. Similar to FIG. 2, by de-energizing the electromagnetic coil 25, the main valve body 24 is pulled away from the main valve seat 23, and the first flow path 21 and the second flow path 22 are connected with almost no pressure loss (FIG. 5). (A)). Further, by energizing the electromagnetic coil 25, the main valve body 24 is brought into close contact with the main valve seat 23, and the first flow path 21 and the second flow path 22 are connected through the ventilation holes of the main valve seat 23 (FIG. 2 (FIG. 2). b)). During the cooling and dehumidifying operation, the refrigerant exiting the first chamber heat exchanger 5 by energizing the electromagnetic coil as shown in FIG. 5 (b) passes through the ventilation hole of the main valve seat 23 in the second flow control valve 6. Since the pressure is reduced through the heat exchanger 7 and flows into the second indoor heat exchanger 7, no refrigerant flow noise is generated, and a comfortable indoor space can be realized. Further, during normal cooling, by de-energizing the electromagnetic coil, the main valve body 24 is pulled away from the main valve seat 23 as shown in FIG. 5 (a), and the first flow path 21 and the second flow path 22 are almost the same. Since there is no pressure loss, there is no pressure loss between the first chamber heat exchanger 5 and the second chamber heat exchanger 7, and there is no decrease in cooling capacity or efficiency.
[0049]
The shape is simpler when the main valve seat 23 is formed of sintered metal as shown in the present embodiment than when the main valve body 24 is formed of sintered metal as in the embodiment shown in FIG. Therefore, it is relatively easy, and as a result, it is possible to obtain a flow rate control valve which is inexpensive and does not generate a refrigerant flow noise. It is also easy to design the flow rate characteristics of this flow control valve because the shape is simple. The flow rate characteristic of this flow control valve is adjusted by adjusting the diameter of the vent hole of the sintered metal used for the main valve seat 23 and the length of the flow path through which the refrigerant passes, as in the embodiment of FIG. Can be done. That is, when a certain refrigerant flow rate is to flow with a small pressure loss, the ventilation holes of the sintered metal may be increased, or the length of the flow path through which the refrigerant of the main valve seat passes may be reduced. On the contrary, when a certain refrigerant flow rate is to flow with a large pressure loss, the ventilation holes of the sintered metal are made smaller, or the length of the flow path through which the refrigerant in the main valve seat passes is increased as shown in FIG. Is also good.
0050
In the first and second embodiments of the present embodiment, an example in which an on-off valve in which the valve body is formed of sintered metal and an on-off valve in which the main valve seat is formed of sintered metal is used as the second flow control valve has been described. The sintered metal is not limited to this, and the sintered metal may be anywhere in the valve where a depressurizing action occurs, and both the valve body and the main valve seat may be molded from the sintered metal. The material of the sintered metal may be low alloy steel containing iron as a main component and carbon, copper, nickel or the like added, stainless steel, bronze or the like.
0051
Further, in the first and second embodiments of the present embodiment, an example in which a sintered metal is used for the valve body or the main valve seat has been described, but the present invention is not limited to this, and the gas-liquid two-phase refrigerant is separated into a liquid and a gas. It suffices if the pressure is reduced, and the same effect can be obtained even with a porous material such as a resin foaming material.
[0052]
Further, in the first and second embodiments of the present embodiment, an example in which a second flow control valve using a sintered metal is used between the first chamber heat exchanger 5 and the second chamber heat exchanger 7 has been described. Not limited to this, by using a valve using sintered metal for the first flow control valve 4, it is possible to prevent the generation of refrigerant flow noise in the first flow control valve. Further, the use of the sintered metal is not limited to the flow rate control valve, and can be applied to all places where the refrigerant flow noise is generated in the refrigeration cycle, and the generation of the refrigerant flow noise can be suppressed. For example, a sintered metal can be used inside the refrigerant distributor used for the heat exchanger divided into a plurality of flow paths to prevent the generation of refrigerant flow noise from the refrigerant distributor. Further, in a device using a capillary tube or the like as a conventional drawing device such as a household refrigerator, it is possible to prevent the generation of refrigerant flow noise by using a sintered metal as the drawing device instead of the capillary tube.
[0053]
Embodiment 3.
FIG. 7 is a configuration diagram of a second flow control valve of an air conditioner showing another example of the embodiment of the present invention, and the same or similar components as those shown in FIG. 2 are marked with the same code. The duplicate description will be omitted. In this embodiment, the main valve body 24 is made of a metal valve such as copper or brass, and the main valve seat 23 is made of a porous permeable material, for example, a sintered metal having a vent hole of 10 micromillimeters. Reference numeral 25 denotes a driving unit that continuously drives the main valve body 24. For example, the main valve body 24 is composed of a stepping motor, and the main valve body 24 is controlled to move in the opening / closing direction by a control means (not shown).
0054
In the second flow rate control valve 6 according to this embodiment, in the circuit configuration of FIG. 1, when the first chamber heat exchanger 5 and the second chamber heat exchanger 7 are connected without pressure loss during normal cooling operation or the like, FIG. 7 ( As shown in a), the main valve body 24 is pulled up by the stepping motor 25 so that the refrigerant flows through the gap between the main valve body 24 and the main valve seat 23. On the other hand, when a pressure difference is generated between the first chamber heat exchanger 5 and the second chamber heat exchanger 7 such as during cooling and dehumidifying operation, the main valve body 24 is pulled down by the stepping motor 25 as shown in FIG. 7 (b). The gap between the main valve body 24 and the main valve seat 23 is eliminated so that the refrigerant flows through the ventilation holes in the main valve seat 23 which is a sintered metal. At this time, by adjusting the amount of pulling down of the main valve body 24 with the stepping motor 25, the passing area of the sintered metal through which the refrigerant passes can be changed, and the pressure loss of the refrigerant when passing through the sintered metal can be reduced. Can be controlled. That is, by controlling the amount of movement of the main valve body 24 by the stepping motor 25, the pressure loss of the refrigerant passing through the second flow rate control valve 6 can be freely changed, and the first chamber heat exchanger 5 and the second chamber heat exchanger 5 and the second. The pressure difference of the indoor heat exchanger 7 can be controlled.
0055
During the cooling and dehumidifying operation, the pressure difference between the front and rear 6 of the second flow control valve is indirectly affected by the difference in temperature between the refrigerant temperature in the middle of the first chamber heat exchanger 5 and the refrigerant temperature in the middle of the second chamber heat exchanger 7. By controlling the amount of movement of the main valve body 24 of the second flow control valve 6 so that the pressure difference becomes a predetermined value, the temperature and humidity environment in the room can be controlled more comfortably. ..
0056
Further, as shown in FIG. 8, a part of the main valve body 24 is made of a metal valve 24a, the other part is made of a sintered metal 24b, and the main valve seat 23 is made of metal. The movement amount may be continuously controlled by the stepping motor 25 so that the pressure difference before and after the second flow rate control valve 6 can be freely adjusted. In addition to the case where the main valve body moves continuously up and down, a mechanism is provided to change the passage area of the sintered metal through which the refrigerant passes due to rotational movement, etc., to reduce the pressure loss of the refrigerant passing through the sintered metal. It may be freely controlled.
[0057]
Embodiment 4.
Hereinafter, the air conditioner according to the third embodiment of the present invention will be described. The present embodiment relates to a heating operation, and the refrigerant circuit constituting the air conditioner is, for example, the same as that of FIG. 1 in the first embodiment, and the structure of the second flow rate control valve 6 is the same as that of FIG. is there. The operation of the air conditioner during heating according to the present embodiment will be described. In FIG. 1, the flow of the refrigerant during heating is indicated by a broken line arrow. In the normal heating operation, the electromagnetic coil 25 of the second flow rate control valve 6 is de-energized. At this time, the high-temperature and high-pressure refrigerant vapor leaving the compressor 1 flows into the second chamber heat exchanger 7 and the first chamber heat exchanger 5 through the four-way valve 2, exchanges heat with the room air, and condenses and liquefies. To do. In the second flow rate control valve 6, as shown in FIG. 2A, the first flow path 21 and the second flow path are connected with a large opening area, so that the refrigerant pressure loss when passing through this valve is There is almost no decrease in heating capacity or efficiency due to pressure loss. The high-pressure liquid refrigerant that has exited the first indoor heat exchanger 5 is depressurized to a low pressure by the first flow control valve 4, becomes a gas-liquid two-phase refrigerant, exchanges heat with the outdoor air in the outdoor heat exchanger 3, and evaporates. To do. The low-pressure steam refrigerant leaving the outdoor heat exchanger 3 returns to the compressor 1 through the four-way valve 2. The opening degree of the first flow rate control valve 4 during the normal cooling operation is controlled so that, for example, the degree of superheat of the outlet refrigerant of the outdoor heat exchanger 3 is 5 ° C.
0058.
Next, the operation during the heating / dehumidifying operation will be described with reference to the pressure-enthalpy diagram shown in FIG. The English characters shown in FIG. 9 correspond to the English characters shown in FIG. During this heating / dehumidifying operation, the electromagnetic coil 25 of the second flow control valve is energized, the main valve body 24 is brought into close contact with the main valve seat 23 as shown in FIG. 2 (b), and the main valve body 24 is brought into close contact with the main valve seat 23 through the ventilation holes of the valve body. The outlet of the second chamber heat exchanger 7 which is the second flow path 22 and the inlet of the first chamber heat exchanger 5 which is the first flow path 21 are connected. At this time, the high-temperature and high-pressure refrigerant vapor (point F) that has exited the compressor 1 flows into the second indoor heat exchanger 7 through the four-way valve 2 and exchanges heat with the indoor air to condense (point E). The high-pressure liquid refrigerant or gas-liquid two-phase refrigerant flows into the second flow rate control valve 6. In the second flow rate control valve 6, as shown in FIG. 2B, the main valve body 24 is in close contact with the main valve seat 23, so that the refrigerant flowing into this valve is mainly composed of sintered metal. It flows into the first chamber heat exchanger 5 through the ventilation holes in the valve body 24. The vent hole of the main valve body 24 is about 10 micrometers, and the refrigerant passing through the vent is depressurized to become a gas-liquid two-phase refrigerant having an intermediate pressure and flow into the first chamber heat exchanger 5 ( Point D). The saturation temperature of the refrigerant flowing into the first indoor heat exchanger 5 is equal to or lower than the dew point temperature of the indoor air, and the sensible heat and latent heat of the indoor air are taken away and evaporated (point C). The intermediate-pressure gas-liquid two-phase refrigerant leaving the first indoor heat exchanger 5 flows into the first flow control valve 4, is depressurized to a low pressure, and further flows into the outdoor heat exchanger 3 to exchange heat with the outdoor air. And evaporate. The low-pressure steam refrigerant leaving the indoor / outdoor heat exchanger 4 returns to the compressor 1 through the four-way valve 2.
[0059]
In this heating / dehumidifying operation, the room air is heated by the second room heat exchanger 7 and cooled and dehumidified by the first room heat exchanger 5, so that the room can be dehumidified while being heated. Further, in the heating / dehumidifying operation, the rotation frequency of the compressor 1 and the fan rotation speed of the outdoor heat exchanger 3 are adjusted to control the heat exchange amount of the outdoor heat exchanger 3, and the indoor air by the first indoor heat exchanger 5 is used. The blowing temperature can be controlled over a wide range by controlling the amount of heating. Further, the opening degree of the first flow control valve 7 and the rotation speed of the indoor fan are adjusted to control the evaporation temperature of the first indoor heat exchanger 5, and the amount of dehumidified indoor air by the first indoor heat exchanger 5 is controlled. You can also do it. Further, the opening degree of the second flow rate control valve 4 is controlled so that, for example, the degree of supercooling of the outlet refrigerant of the second chamber heat exchanger 7 is 10 ° C.
[0060]
As described above, in the present embodiment, since the second flow control valve using the sintered metal as the valve body is used, the dehumidifying operation during heating is possible, and the refrigerant flow noise during this heating and dehumidifying operation is heard. Occurrence can be prevented, and a comfortable space can be realized in terms of temperature and humidity environment and noise.
[0061]
Further, by energizing the electromagnetic coil 25 of the second flow rate control valve at the time of starting heating, it is possible to raise the heating outlet temperature. That is, the heating / dehumidifying cycle is formed at the start of heating, and the evaporation temperature of the first indoor heat exchanger 5 is controlled by the second flow control valve so as to be substantially equal to the temperature of the suction air in the room. Since the evaporation temperature of the first room heat exchanger 5 is almost equal to the temperature of the suction air in the room, the first room heat exchanger 5 is hardly cooled and dehumidified, and as a result, the heat transfer area of the condenser during heating is usually large. It is about half of the heating operation of the above, so the condensation temperature rises compared to the normal heating operation, and the blowing temperature can be raised. Further, even during this high-temperature heating blowing operation, the second flow rate control valve 6 does not generate a refrigerant flow noise, and there is no problem in terms of noise.
[0062]
Next, an example of a specific heating operation control method of the air conditioner of this embodiment will be described. As described in the first embodiment, the set temperature, the set humidity, and the suction air temperature and the humidity are input to the air conditioner. This air conditioner performs a high-temperature blow-out operation for a predetermined time, for example, 5 minutes at the start of heating, and then shifts to a normal heating operation. After that, the normal heating operation and the heating / dehumidifying operation are switched and controlled according to the temperature deviation and the humidity deviation of the room.
[0063]
When the heating operation is started, the second flow rate control valve 6 is closed and the compressor 1 is started. At this time, the fan rotation speed of the outdoor heat exchanger 3 and the valve opening degree of the first flow control valve 4 are adjusted so that the cooling and dehumidifying capacity of the first indoor heat exchanger 5 becomes zero. The evaporation temperature of the indoor heat exchanger 5 is controlled to be equal to the suction air temperature. When 5 minutes, which is a predetermined time, has elapsed from the start of the compressor, the second flow rate control valve 6 is opened and the normal heating operation is started. At this time, the rotation frequency of the compressor 1, the rotation speed of the indoor fan, and the rotation speed of the outdoor fan are adjusted so that the temperature deviation is zero or within a predetermined value. If the temperature deviation is zero or within a predetermined value due to this normal heating operation, the humidity deviation is detected, and if this humidity deviation is zero or within a predetermined value, and the humidity deviation is greater than or equal to the predetermined value. However, if humidification is required, normal heating operation is continued. On the other hand, when the humidity deviation is zero or equal to or higher than a predetermined value and dehumidification is required, the second flow rate control valve 6 is closed and the heating / dehumidification operation is performed. In this heating / dehumidifying operation, the heating amount of the second indoor heat exchanger 7 is controlled so that the temperature deviation in the room can be maintained at zero or within a predetermined value, and the humidity deviation is within zero or a predetermined value. In addition, the amount of cooling and dehumidifying of the first indoor heat exchanger 5 is controlled. The heating amount of the second indoor heat exchanger 7 is controlled by the rotation frequency of the compressor 1 and the fan rotation speed of the indoor unit 12. Further, the cooling and dehumidifying amount of the first indoor heat exchanger 5 is controlled by adjusting the fan rotation speed of the outdoor heat exchanger 3 and the opening degree of the first flow rate control valve 4.
[0064]
As described above, in this embodiment, the temperature and humidity environment in the room is changed by switching the refrigerant circuit to the heating high temperature blowing operation, the normal heating operation, and the heating dehumidifying operation according to the operating time during the heating operation and the load in the room. , It can be controlled to the optimum state according to the preference of the resident.
[0065]
Embodiment 5.
FIG. 10 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention, wherein the same or similar components as those shown in FIG. Is omitted. In this embodiment, the upper part of the two rows of indoor heat exchangers bent in multiple stages is the first indoor heat exchanger 5, the lower part is the second indoor heat exchanger 7, and the first upper part is used during the cooling and dehumidifying operation. The indoor heat exchanger 5 heats the suction air of the indoor unit, the second indoor heat exchanger 7 at the bottom cools and dehumidifies the suction air, and these suction airs are mixed by an indoor fan (not shown). It blows out into the room. During the heating and dehumidifying operation, the lower second indoor heat exchanger 7 heats the suction air of the indoor unit, and the upper first indoor heat exchanger 5 cools and dehumidifies the suction air, and these sucked air is used indoors. It is mixed by a fan (not shown) and blown into the room. Further, also in this embodiment, since the second flow control valve 6 uses the main valve body 24 formed of the sintered metal shown in FIG. 2, the refrigerant flow noise is generated during the cooling dehumidification and heating dehumidification operations. It is possible to realize a low-noise indoor unit.
[0066]
Further, the refrigerant flow path during cooling of the indoor heat exchanger has one inlet, and is branched into two flow paths by a three-way pipe 8a in the middle to form the first indoor heat exchanger 5, and these two flow paths are formed. Is merged into one flow path by a three-way pipe 8b and connected to the second flow control valve 6. Further, the outlet pipe of the second flow control valve 6 is again branched into two flow paths by the three-way pipe 8c to form the second chamber heat exchanger 7, and the three-way pipe 8d is formed at the outlet of the second chamber heat exchanger 7. As a result, these two flow paths are merged into one flow path. In this way, by setting the inlet refrigerant flow path during cooling of the indoor heat exchanger as one flow path and branching into two flow paths in the middle, the refrigerant pressure loss during cooling can be reduced, and during normal cooling operation or cooling dehumidification operation. Performance is improved. Further, during heating, since the inlet refrigerant flow path has two flow paths and the outlet flow path has one flow path, the refrigerant flow velocity in the vicinity of the condenser outlet having a small refrigerant heat transfer coefficient becomes faster, and the heat exchanger performance is improved. Further, since the flow path between the first chamber heat exchanger 5 and the second chamber heat exchanger 7 is made into one flow path by a three-way pipe, only one second flow rate control valve 6 is required, and the indoor unit is inexpensive. Become.
[0067]
In this embodiment, the configuration in which the upper part of the two rows of heat exchangers is the first chamber heat exchanger 5 and the lower part is the second chamber heat exchanger has been described, but the present invention is not limited to this, and the two rows are not limited to this. The first row of heat exchangers may be the second chamber heat exchanger 7, and the second row may be the first chamber heat exchanger 5, which may be arranged in series in the front-rear direction. Further, a three-row heat exchanger or a mixed type of two-row and three-row heat exchangers may be used.
[0068]
Further, in this embodiment, a receiver 30 for storing the liquid refrigerant is provided in the outdoor unit 11 in the pipe between the first flow rate control valve 4 and the first indoor heat exchanger 5. This receiver stores excess refrigerant generated during normal heating operation or heating dehumidification operation, and prevents performance deterioration due to excessive refrigerant during these operations. That is, in the cooling / dehumidifying operation, the outdoor heat exchanger 3 and the first indoor heat exchanger 5 operate as condensers, and the internal volume of the condenser is the largest, so that the amount of refrigerant required is the largest. Therefore, the amount of refrigerant charged in the air conditioner is determined from the amount of refrigerant required during this cooling / dehumidifying operation. During the heating operation, the first indoor heat exchanger 5 and the second indoor heat exchanger 7, which have a smaller internal volume than the outdoor heat exchanger 3, serve as a condenser, and during the heating and dehumidifying operation, the second indoor heat exchanger 7 Since only the condenser is used, the amount of refrigerant required during these operations is smaller than that during the cooling and dehumidifying operation. If the heating operation or the heating / dehumidifying operation is performed without providing the receiver 30, the operation will be performed in a state where the amount of refrigerant is excessive, the amount of liquid back to the compressor 1 will increase, and the reliability of the compressor will decrease. , Cycle performance degradation occurs. Therefore, in this embodiment, excess liquid refrigerant during heating operation or heating dehumidification operation is stored in the receiver 30, and the amount of refrigerant during all operations is optimally controlled to improve the reliability and performance of the compressor. Has been realized. The internal volume of the receiver 30 can be determined as an internal volume in which the optimum amount of refrigerant during each operation can be determined in advance by a test or the like, and the difference between the maximum amount of refrigerant and the minimum amount of refrigerant can be stored. Further, since the receiver 30 is installed in the outdoor unit 11, the indoor unit 12 does not become large.
[0069]
Embodiment 6.
FIG. 11 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention, wherein the same or similar components as those shown in FIG. Is omitted. In this embodiment, the drawing device 31 using sintered metal and the electromagnetic on-off valve 37 are connected in parallel to the piping between the first chamber heat exchanger 5 and the second chamber heat exchanger 7, and the second flow rate is increased. It constitutes a control valve. As shown in FIG. 12, the drawing device 31 using the sintered metal has a cylindrical shape in which one end inside the container is closed and the other end is open, and the inside and outside of the cylinder are communicated via the peripheral surface and the bottom surface. The sintered metal 32 to be used is inserted to form a drawing portion, and both ends of the sintered metal 32 are fixed in the container by fixing plates 33 and 34 and springs 35 and 36. The fixing plate 34 is formed in a disk shape in which the circumference is partially cut off.
[0070]
The operations of this embodiment during the normal cooling operation, the cooling dehumidifying operation, the normal heating operation, the heating dehumidifying operation, and the heating high temperature blowing operation are the same as those of the embodiment of FIG. 1, and detailed description thereof will be omitted. In the following, the operation of the drawing device 31 and the electromagnetic on-off valve 37 using the sintered metal during each operation will be described. During the normal cooling operation and the normal heating operation, the electromagnetic on-off valve 37 is opened to form a refrigeration cycle. At this time, since the throttle device 31 using the sintered metal has a larger flow resistance than the electromagnetic on-off valve 37 in the open state, most of the refrigerant does not flow through the throttle device 31 but flows through the electromagnetic on-off valve 37. On the other hand, during the cooling dehumidifying operation, the heating dehumidifying operation, and the heating high temperature blowing operation, the electromagnetic on-off valve 37 is closed and the refrigerant is passed through the drawing device 31 using the sintered metal to perform the depressurizing action. The gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the drawing device 31 passes through the ventilation holes in the cylindrical sintered metal 32. The vent holes of the sintered metal 32 are about 200 to 0.5 micrometer, and the refrigerant passing through the fine vents is depressurized, so that the refrigerant vapor slag and the decay of the refrigerant bubbles do not occur, and the refrigerant vapor and the refrigerant are used. Since both the liquid refrigerants pass through the ventilation holes of the sintered metal 32, the pressure loss does not fluctuate significantly. The generation of refrigerant flow noise can be prevented. For this reason, it is possible to realize a low noise indoor environment during cooling dehumidification operation, heating dehumidification operation, and heating high temperature blowing operation, and low noise such as wrapping a sound insulating material or a vibration damping material required in the conventional device around the outer circumference of the valve. It eliminates the need for conversion means, reduces costs, and improves the recyclability of air conditioning equipment. Further, as compared with the second flow rate control valve in which the main valve body 24 shown in FIG. 2 uses a sintered metal, complicated processing of the sintered metal is not required, and the solenoid on-off valve can use a normal solenoid valve. Since it is possible, the second flow rate control valve can be obtained at low cost.
[0071]
In this embodiment, an example in which the sintered metal 32 provided in the drawing device 31 is formed in a cylindrical shape with one end closed will be described, but the present invention is not limited to this, and the sintered metal 32 may be in a disk shape, a columnar shape, or a columnar shape. The shape may be any shape such as a rectangular parallelepiped, and any shape may be used as long as a predetermined depressurizing action can be obtained when the refrigerant flows through the sintered metal portion.
[0072]
Embodiment 7.
FIG. 13 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention, wherein the same or similar components as those shown in FIG. Is omitted. In this embodiment, the capillary tube 38 and the electromagnetic on-off valve 37 are connected in parallel to the pipe between the first chamber heat exchanger 5 and the second chamber heat exchanger 7 to form a second flow control valve. .. The capillary tube 38 uses a copper pipe having an inner diameter of 1 mm or more, for example, an inner diameter of 2 mm.
[0073]
The operations of this embodiment during the normal cooling operation, the cooling dehumidifying operation, the normal heating operation, the heating dehumidifying operation, and the heating high temperature blowing operation are the same as those of the embodiment of FIG. 1, and detailed description thereof will be omitted. , The operation of the capillary tube 38 and the electromagnetic on-off valve 37 during each operation will be described below. During the normal cooling operation and the normal heating operation, the electromagnetic on-off valve 37 is opened to form a refrigeration cycle. At this time, since the capillary tube 38 has a larger flow resistance than the electromagnetic on-off valve 37 in the open state, most of the refrigerant does not flow through the capillary tube 38 but flows through the electromagnetic on-off valve 37. On the other hand, during the cooling dehumidifying operation, the heating dehumidifying operation, and the heating high temperature blowing operation, the electromagnetic on-off valve 37 is closed and the refrigerant flows through the capillary tube 38 to perform a depressurizing action.
[0074]
The refrigerant flow noise when the gas-liquid two-phase refrigerant flows through the capillary greatly depends on the flow velocity of the refrigerant in the capillary. FIG. 14 shows the measurement results of the refrigerant flow sound when the inner diameter of the capillary is changed under a constant refrigerant flow rate of 30 kg / h. The horizontal axis of the figure is the inner diameter of the capillary, and the vertical axis is the refrigerant flow sound of the capillary. .. The refrigerant flow noise when the gas-liquid two-phase refrigerant flows through the capillary becomes louder as the inner diameter of the capillary becomes smaller, that is, as the flow velocity of the refrigerant in the capillary becomes faster. This is thought to be due to the fact that the higher the flow velocity of the refrigerant inside the capillary, the larger the pressure fluctuation inside the capillary, and the faster the outflow rate of the refrigerant at the outlet of the capillary, which increases the refrigerant energy at the outlet of the capillary. Be done. According to the refrigerant flow noise measurement result shown in FIG. 14, by setting the inner diameter of the capillary tube to 1 mm or more, the refrigerant flow noise generated from the capillary tube becomes less than the permissible value, and is low during the cooling dehumidification operation, the heating dehumidification operation, and the heating high temperature blowing operation. In addition to realizing a noisy indoor environment, noise reduction measures such as wrapping sound insulation and vibration damping materials around the outer circumference of the valve, which were required in conventional equipment, are no longer necessary, cost reduction can be achieved, and air conditioning equipment can be used. Recyclability is also improved. Further, as compared with the second flow rate control valve in which the valve body shown in FIG. 2 is made of sintered metal, an inexpensive drawing device can be obtained. The measurement result of the refrigerant flow noise when the inner diameter of the capillary tube is changed shown in FIG. 14 is the result when the refrigerant flow rate is constant at 30 kg / h, and when the refrigerant flow rate is larger than 30 kg / h, the refrigerant is used. The flow noise becomes louder overall, and conversely, when the refrigerant flow rate is smaller than 30 kg / h, the refrigerant flow noise becomes quieter overall, but by using a capillary tube having an inner diameter of 1 mm or more, the refrigerant flow noise becomes almost the same. It can be reduced below the permissible value.
[0075]
Embodiment 8.
FIG. 15 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention, wherein the same or similar components as those shown in FIG. Is omitted. In this embodiment, the capillary tube 38 and the electromagnetic on-off valve 37 are connected in parallel to the piping between the first chamber heat exchanger 5 and the second chamber heat exchanger 7, and further, the capillary tube 38 inlet piping during the cooling and dehumidifying operation. A heat exchanger 40 is provided to exchange heat between the heat exchanger and the low-pressure pipe at the outlet of the second chamber heat exchanger. This heat exchanger is composed of a double-tube heat exchanger, a contact heat exchanger, a plate heat exchanger, and the like.
[0076]
The operations of the normal cooling operation and the cooling dehumidifying operation of this embodiment are the same as those of the embodiment of FIG. 1, and detailed description thereof will be omitted. In the following, the capillary tube 38 and the electromagnetic on-off valve 37 and the electromagnetic on-off valve 37 at each operation will be omitted. The operation of the heat exchanger 40 will be described with reference to the pressure-enthalpy diagram during the cooling and dehumidifying operation shown in FIG. The English characters shown in FIG. 16 correspond to the English characters shown in FIG. In the normal cooling operation, the electromagnetic on-off valve 37 is opened to form a refrigeration cycle. At this time, since the capillary tube 38 has a larger flow resistance than the electromagnetic on-off valve 37 in the open state, most of the refrigerant does not flow through the capillary tube 38, flows through the electromagnetic on-off valve 37, and the heat exchanger 40 does not operate either. On the other hand, in the cooling / dehumidifying operation, the electromagnetic on-off valve 37 is closed and the refrigerant flows through the capillary tube 38 to perform a depressurizing action. The intermediate-pressure gas-liquid two-phase refrigerant exiting the first chamber heat exchanger 5 (point D) flows into the heat exchanger 40, where it is cooled by the low-temperature low-pressure refrigerant exiting the second chamber heat exchanger 7. Then, it becomes an intermediate pressure liquid refrigerant and flows into the capillary tube 38 (point E). This liquid refrigerant is depressurized from an intermediate pressure to a low pressure by a capillary tube, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the second chamber heat exchanger 7 (point F).
[0077]
The refrigerant flow noise flowing in the capillary is smaller in the liquid state than in the gas-liquid two-phase state when the refrigerant at the capillary inlet is in the gas-liquid two-phase state. This is because the amount of vapor refrigerant generated by decompression in the capillary tube is smaller when the refrigerant at the capillary inlet is in the liquid state than in the gas-liquid two-phase state, and therefore the average flow velocity of the refrigerant in the capillary tube becomes smaller. In this embodiment, the inlet refrigerant of the capillary tube 38, which is the second flow control valve during the cooling and dehumidifying operation, is cooled and liquefied in the heat exchanger 40 by the outlet refrigerant of the second chamber heat exchanger 7. The refrigerant at the inlet of the capillary tube is in a liquid state, and the generation of refrigerant flow noise can be reduced. The refrigerant state of the capillary tube 38 does not necessarily have to be cooled to the liquid state, and the effect of reducing the refrigerant flow noise can be obtained simply by reducing the ratio (dryness) of the vapor refrigerant of the gas-liquid two-phase refrigerant. Further, since the outlet refrigerant of the second chamber heat exchanger 7 is heated by the heat exchanger 40, the outlet refrigerant of the second chamber heat exchanger 7 becomes a wet refrigerant, as compared with the embodiment shown in FIG. The heat transfer performance of the refrigerant in the second indoor heat exchanger is improved, and the efficiency during the cooling and dehumidifying operation is also improved.
[0078]
In this embodiment, an example in which the inlet refrigerant of the capillary tube 38 is cooled by the outlet refrigerant of the second chamber heat exchanger 7 has been described, but the present invention is not limited to this, and the inlet refrigerant of the capillary tube 38 is cooled by the room air. Even if it is configured as such, the same effect is exhibited.
[0079]
Embodiment 9.
FIG. 17 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention, wherein the same or similar components as those shown in FIG. Is omitted. In this embodiment, the capillary tube 38 and the electromagnetic on-off valve 37 are connected in parallel to the pipe between the first chamber heat exchanger 5 and the second chamber heat exchanger 7, and further, the capillary tube 38 and the second chamber heat exchanger 38 and the second chamber heat exchanger 37 are connected in parallel during the cooling and dehumidifying operation. A heat exchanger 40 is provided to exchange heat with the low-pressure pipe at the outlet of the indoor heat exchanger. This heat exchanger is composed of a double-tube heat exchanger, a contact heat exchanger, and the like.
[0080]
The operations of the normal cooling operation and the cooling dehumidifying operation of this embodiment are the same as those of the embodiment of FIG. 1, and detailed description thereof will be omitted. In the following, the capillary tube 38 and the electromagnetic on-off valve 37 and the electromagnetic on-off valve 37 at each operation will be omitted. The operation of the heat exchanger 40 will be described with reference to the pressure-enthalpy diagram during the cooling and dehumidifying operation shown in FIG. The English characters shown in FIG. 18 correspond to the English characters shown in FIG. In the normal cooling operation, the electromagnetic on-off valve 37 is opened to form a refrigeration cycle. At this time, since the capillary tube 38 has a larger flow resistance than the electromagnetic on-off valve 37 in the open state, most of the refrigerant does not flow through the capillary tube 38, flows through the electromagnetic on-off valve 37, and the heat exchanger 40 does not operate either. On the other hand, in the cooling / dehumidifying operation, the electromagnetic on-off valve 37 is closed and the refrigerant flows through the capillary tube 38 to perform a depressurizing action. The intermediate-pressure gas-liquid two-phase refrigerant exiting the first chamber heat exchanger 5 (point D) flows into the capillary tube 38, and further exits the second chamber heat exchanger 7 at the heat exchanger 40. While being cooled by, the pressure is reduced from the intermediate pressure to the low pressure, and the low-pressure gas-liquid two-phase refrigerant flows into the second chamber heat exchanger 7 (point F).
[0081]
In general, the gas-liquid two-phase refrigerant flowing in the capillary is depressurized with the flow, so that the refrigerant vapor is generated from the liquid refrigerant, and the degree of dryness increases in the flow direction. The refrigerant flow noise of the gas-liquid two-phase refrigerant flowing in the capillary increases the speed of the refrigerant due to the refrigerant vapor generated in the capillary, which increases the fluctuation of the pressure loss in the capillary and the refrigerant velocity at the outlet of the capillary. Is an increase. In this embodiment, since the capillary tube 38, which is the second flow control valve during the cooling / dehumidifying operation, is cooled in the heat exchanger 40 by the outlet refrigerant of the second indoor heat exchanger 7, the steam refrigerant is cooled in the capillary tube. Therefore, the fluctuation of the pressure loss inside the capillary tube is small, and the increase in the refrigerant speed at the outlet of the capillary tube can be suppressed. Therefore, the refrigerant flow noise generated in the capillaries can be reduced, and the indoor noise environment can be improved. Further, since the outlet refrigerant of the second chamber heat exchanger 7 is heated by the heat exchanger 40, the outlet refrigerant of the second chamber heat exchanger 7 becomes a wet refrigerant, as compared with the embodiment shown in FIG. The heat transfer performance of the refrigerant in the second indoor heat exchanger is improved, and the efficiency during the cooling and dehumidifying operation is also improved.
[882]
In this embodiment, an example in which the capillary tube 38 is cooled by the outlet refrigerant of the second indoor heat exchanger 7 has been described, but the present invention is not limited to this, and the capillary tube 38 may be configured to be cooled by the indoor air. , Has the same effect.
[0083].
Embodiment 10.
FIG. 19 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention, wherein the same or similar components as those shown in FIG. Is omitted. This embodiment relates to the improvement of the cooling / dehumidifying operation and the heating / high temperature blowing operation of the embodiment shown in FIG. 1, and includes the piping between the first flow control valve 4 and the first indoor heat exchanger 5. A bypass flow path that bypasses between the second flow control valve 6 and the pipe between the second indoor heat exchanger 7 is connected, and the bypass flow path is provided with an electromagnetic valve 41 that is an opening / closing means. The first flow rate control valve 4, the second flow rate control valve, and the solenoid valve 41 open and close in relation to each other according to an instruction from a control means (not shown).
[0084]
First, the operation of this embodiment during the cooling / dehumidifying operation will be described. During the normal cooling operation, the solenoid valve 41 is closed, the second flow rate control valve 6 is opened, and the same operation as that of the embodiment of FIG. 1 is performed. When the cooling sensible heat load becomes small, the solenoid valve 41 is opened and the second flow rate control valve 6 is closed to perform dehumidification operation by dividing the heat exchanger. In the dehumidifying operation by dividing the heat exchanger, the high-temperature and high-pressure refrigerant vapor emitted from the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2 and exchanges heat with the outside air to condense and liquefy. This high-pressure liquid refrigerant is depressurized to a low pressure by the first flow control valve 4, becomes a gas-liquid two-phase refrigerant, passes through the electromagnetic valve 41, flows into the second indoor heat exchanger 7, and sensible heat of the indoor air. And it takes away latent heat and evaporates. The opening degree of the first flow rate control valve 4 at this time is controlled so that, for example, the degree of superheat of the outlet refrigerant of the second chamber heat exchanger is 5 ° C. In the dehumidifying operation by dividing the heat exchanger, in the normal cooling operation, the first chamber heat exchanger 5 and the second chamber heat exchanger 7 are used as evaporators, whereas only the second chamber heat exchanger 7 is evaporated. Since it is a container, the cooling capacity is small, and even in a state where the rotation frequency of the compressor 1 is reduced, the evaporation temperature can be lowered as compared with the normal cooling operation, and a sufficient dehumidifying amount can be secured.
[0085]
Furthermore, the cooling sensible heat capacity of the room decreases, and if the rotation frequency of the compressor 1 is lowered by the dehumidifying operation by dividing the heat exchanger, the evaporation temperature rises and the dehumidifying amount cannot be sufficiently secured, or the cooling sensible heat of the room becomes insufficient. When the heat is zero, that is, when the dehumidifying operation is performed without lowering the room temperature, the dehumidifying operation is performed by reheating the refrigerant. In this dehumidifying operation by reheating the refrigerant, the solenoid valve 41 is opened, the second flow control valve 6 is closed, and as shown in the first embodiment, the first chamber heat exchanger is used as a condenser and the second chamber heat exchange is performed. Dehumidification operation is performed using the vessel 7 as an evaporator. At this time, since the second flow rate control valve 6 uses a sintered metal for the throttle portion or a capillary tube, it is possible to prevent the generation of refrigerant flow noise.
0083.
Next, a specific operation control method during cooling of the air conditioner of this embodiment will be described. In the air conditioner, for example, a set temperature and a set humidity are set when the air conditioner is operated in order to set a favorable temperature / humidity environment for the occupants in the room. The set temperature and humidity may be set by the resident directly from the remote control of the indoor unit, or for hot people, cold people, children, elderly people, etc. The remote controller may store the optimum temperature and humidity table determined for each target resident, and only the target resident may be directly selected. Further, the indoor unit 12 is provided with a sensor for detecting the temperature and humidity of the suction air of the indoor unit in order to detect the temperature and humidity in the room.
[0087]
When the air conditioner is activated, the difference between the set temperature and the current indoor suction air temperature is calculated as the temperature deviation, and the difference between the set humidity and the current indoor suction air humidity is calculated as the humidity deviation, and finally these deviations. The rotation frequency of the compressor 1 of the air conditioner, the outdoor fan rotation speed, the indoor fan rotation speed, the throttle opening of the first flow control valve 4, and the second flow control valve 7 so that Controls the opening and closing of the electromagnetic valve 41. At this time, when the temperature and humidity deviations are controlled to zero or within a predetermined value, the temperature deviation is prioritized over the humidity deviation to control the air conditioner. That is, when both the temperature deviation and the humidity deviation are large when the air conditioner is started, the second flow control valve 7 is opened and the solenoid valve 41 is closed. Priority is given to zero or within a predetermined value. Humidity deviation is detected when the cooling capacity of the air conditioner matches the heat load of the room by adjusting the rotation frequency of the compressor 1 and the rotation speed of the indoor fan, and the temperature deviation becomes zero or within a predetermined value. At this time, if the humidity deviation is zero or within a predetermined value, the current operation is continued.
[0088]
If the temperature deviation is zero or within a predetermined value and the humidity deviation at this time is still a large value, the cooling / dehumidifying operation by heat exchanger division and the refrigerant re-refrigerant are performed according to the rotation frequency of the compressor 1 at that time. Select the cooling and dehumidifying operation by heat and switch the refrigerant circuit. That is, the cooling sensible heat capacity is larger in the cooling dehumidifying operation by dividing the heat exchanger than in the cooling dehumidifying operation by reheating the refrigerant, so that the cooling sensible heat required to maintain the temperature deviation within zero or a predetermined value is required. The capacity is indirectly detected by the rotation frequency of the compressor 1 during normal cooling operation, and the refrigerant circuit is selected. That is, if the rotation frequency of the compressor 1 whose temperature deviation is zero or within a predetermined value is a predetermined value, for example, 30 Hz or more, the second flow rate control valve 6 is throttled and the solenoid valve 41 is opened. Switch to cooling and dehumidifying operation by dividing the heat exchanger. In the cooling / dehumidifying operation by dividing the heat exchanger, the rotation frequency of the compressor 1 and the rotation speed of the indoor fan are adjusted so that both the temperature deviation and the humidity deviation are controlled to be zero or within a predetermined value.
[089]
On the other hand, when the temperature deviation is zero or within a predetermined value in the normal cooling operation, the humidity deviation at this time is still a large value, and the rotation frequency of the compressor 1 is a predetermined value, for example, 30 Hz or less, or the above. After shifting from normal cooling operation to cooling and dehumidifying operation by heat exchanger division as described, the air conditioning load in the room becomes smaller, and it is necessary to heat the air in the room to keep the temperature deviation within zero or a predetermined value. If it is determined that there is, the second flow control valve 6 is throttled, the electromagnetic valve 41 is closed, and the operation is switched to the cooling / dehumidifying operation by reheating the refrigerant. In this cooling / dehumidifying operation by reheating the refrigerant, the heating amount of the second indoor heat exchanger 7 is controlled so that the indoor temperature deviation can be maintained at zero or within a predetermined value, and the humidity deviation is zero or a predetermined value. The amount of cooling and dehumidifying of the first chamber heat exchanger 5 is controlled so as to be within the range. The amount of heat of the second indoor heat exchanger 7 is controlled by adjusting the fan speed of the outdoor heat exchanger 3 and the opening degree of the first flow rate control valve 4. Further, the cooling and dehumidifying amount of the first indoor heat exchanger 5 is controlled by the rotation frequency of the compressor 1 and the fan rotation speed of the indoor unit 12.
[0090]
As described above, in this embodiment, three operation modes of normal cooling operation, dehumidification operation by heat exchanger division, and dehumidification operation by refrigerant reheat can be switched according to the sensible heat and latent heat load in the room during cooling. Therefore, it is possible to optimally control the temperature and humidity environment in the room in a wide range. Further, since the second flow rate control valve 6 uses a sintered metal for the throttle portion or a capillary tube, it is possible to prevent the generation of refrigerant flow noise and realize a quiet indoor environment.
[0091]
Next, the operation of the heating high-temperature blowing operation of this embodiment will be described. During the normal heating operation, the solenoid valve 41 is closed, the second flow rate control valve 6 is opened, and the same operation as in the third embodiment of FIG. 1 is performed. When a high blowout temperature is required such as at the time of start-up, the solenoid valve 41 is opened and the second flow rate control valve 6 is closed to perform the heating operation by dividing the heat exchanger. In the heating operation by dividing the heat exchanger, the high-temperature and high-pressure refrigerant vapor emitted from the compressor 1 flows into the second indoor heat exchanger 7 through the four-way valve 2 and exchanges heat with the indoor air to condense and liquefy. To do. This high-pressure liquid refrigerant passes through the solenoid valve 41. It flows into the first flow control valve 4, is depressurized to a low pressure, flows into the outdoor heat exchanger 3, exchanges heat with the outdoor air, evaporates, and returns to the compressor 1 again through the four-way valve 2. The opening degree of the first flow rate control valve 4 at this time is controlled so that, for example, the degree of superheat of the outlet refrigerant of the outdoor heat exchanger 3 is 5 ° C. In the heating operation by dividing the heat exchanger, the normal heating operation uses the first chamber heat exchanger 5, the second chamber heat exchanger 7, and the condenser, whereas only the second chamber heat exchanger 7 is the condenser. Therefore, the condensation temperature can be raised as compared with the normal cooling operation, and the temperature of the air heated by this condenser and blown into the room can be raised. Further, when the indoor dehumidifying operation is performed during the heating operation, the heating / dehumidifying operation described in the third embodiment can be performed by closing the solenoid valve 41 and the second flow rate control valve 6. Further, since the second flow rate control valve 6 uses a sintered metal for the throttle portion or a capillary tube, it is possible to prevent the generation of refrigerant flow noise.
[0092]
As described above, in this embodiment, three operation modes of heating, normal heating operation, heating high temperature blowing operation by heat exchanger division, and heating dehumidification operation can be switched, so that the inside of the room can be switched according to the preference of the user. The temperature and humidity environment can be optimally controlled. Further, since the second flow rate control valve 6 uses a sintered metal for the throttle portion or a capillary tube, it is possible to prevent the generation of refrigerant flow noise and realize a quiet indoor environment.
[093]
In the present embodiment, an example in which the solenoid valve 41 is installed in parallel with the first chamber heat exchanger 5 and the second flow rate control valve 6 has been described, but the present invention is not limited to this, and as shown in FIG. A three-way valve 42 in which the solenoid valve 41 and the second flow rate control valve 6 are integrated may be used. By using the three-way valve 42 in which the solenoid valve 41 and the second flow rate control valve 6 are integrated in this way, the indoor unit can be miniaturized.
[0094]
Further, in the first to ninth embodiments, the case where R410A is used as the refrigerant of the air conditioner has been described. R410A is an HFC-based refrigerant, which is suitable for global environment conservation without destroying the ozone layer, and has a smaller refrigerant pressure loss than R22, which has been conventionally used as a refrigerant. Therefore, the second flow control valve 6 It is a refrigerant that can reduce the diameter of the vent holes of the sintered metal used for the throttle portion of the refrigerant, and can further obtain the effect of reducing the flow noise of the refrigerant.
[0995]
Further, the refrigerant of this air conditioner is not limited to R410A, and may be HFC-based refrigerants R407C, R404A, and R507A. Further, from the viewpoint of preventing global warming, a mixed refrigerant such as R32 alone R152a alone or R32 / R134a, which is an HFC-based refrigerant having a small global warming potential, may be used. Further, it may be a hydrocarbon refrigerant such as propane or butane, a natural refrigerant such as ammonia, carbon dioxide or ether, or a mixed refrigerant thereof.
[0906]
Further, in the first to ninth embodiments, the lubricating oil for the compressor is not particularly mentioned, but the lubricating oil may be a synthetic oil such as mineral oil or alkylbenzene, and in recent years, for HFC-based refrigerants. It may be a developed ester oil or ether oil.
[097]
【Effect of the invention】
As described above, according to the throttle device of the present invention, since the throttle portion is made of a porous permeable material that communicates in the refrigerant flow direction, it is possible to obtain an effect of preventing the generation of refrigerant flow noise and reducing noise.
[0998]
Further, a first flow path provided with an electromagnetic on-off valve, a second flow path provided in parallel with the first flow path, and a second flow path provided in the second flow path and communicate with each other in the refrigerant flow direction. Since the squeezed portion made of the porous permeable material is provided, the effect of preventing the generation of the refrigerant flow noise and reducing the noise can be obtained without requiring complicated processing of the porous permeable material.
[00099]
Further, since the refrigerant flow path is covered with the porous permeating material, it is possible to suppress fluctuations in pressure loss, prevent the generation of refrigerant flow noise, and reduce noise.
[0100]
Further, since the porous permeation material has a hollow portion or has a hollow body structure, an effect that the size of the passage hole and the pressure loss of the porous permeation material can be appropriately selected can be obtained.
[0101]
Further, the throttle portion has a tubular shape with one end open, and the flow path communicating the inside and outside of the tubular shape through the peripheral surface and the bottom surface of the tubular shape is made of a porous permeable material. The effect of ensuring a large passage area of the transparent member can be obtained.
[0102]
Further, since the adjusting means for adjusting the permeation area of the porous permeation material is provided, the effect of appropriately adjusting the pressure difference due to passing through the porous permeation material can be obtained.
[0103]
Further, it has a valve body in which the first flow path opens in the side wall of the valve chamber, a main valve seat in which the second flow path opens in the bottom surface of the valve chamber, and a main valve body in the valve chamber capable of closing the main valve seat. Since the throttle portion is formed by using a porous permeable material for the main valve body, it is possible to prevent the generation of refrigerant flow noise and also to prevent the performance deterioration due to the pressure loss at the time of normal valve opening.
[0104]
Further, the porous permeate has a columnar shape with one end open, and when the main valve seat is closed, the peripheral surface side and the bottom surface side of the columnar surface are separated into a flow path inlet side and an outlet side. The effect of being able to appropriately select the size of the passage hole and the pressure loss of the porous permeation material can be obtained on each of the side and the bottom surface side.
[0105]
Further, it has a valve body in which the first flow path opens in the side wall of the valve chamber, a main valve seat in which the second flow path opens in the bottom surface of the valve chamber, and a main valve body in the valve chamber capable of closing the main valve seat. Since the flow control valve is configured by using a porous permeation material for the main valve seat, the design of the throttle portion becomes easy, and the effect of being inexpensive and low noise can be obtained.
[0106]
Further, the peripheral surface abuts on the side surface of the main valve seat, and the main valve body in which the contact area between the peripheral surface and the side surface is changed by the movement in the opening / closing direction and the movement of the main valve body in the opening / closing direction are controlled. Since the control means for adjusting the permeation area of the porous permeation material is configured by the main valve body, the main valve seat, and the control means, the porosity can be operated in the same direction as the opening / closing operation of the main valve body. The effect of appropriately adjusting the pressure difference using the transparent material can be obtained.
[0107]
Further, since the ventilation holes of the porous permeation material are set in the range of 200 to 0.5 μm, it is possible to obtain an effect of preventing the generation of refrigerant flow noise when the liquid refrigerant or the gas-liquid two-phase refrigerant passes through.
[0108]
Further, since the porous permeation material is made of sintered metal, the effect of being able to obtain a drawing device having excellent durability can be obtained.
[0109]
Further, according to the refrigeration cycle of the present invention, in the one provided with the above-mentioned drawing device, since the gas-liquid two-phase refrigerant is passed through the porous permeable material, the refrigerant vapor slag and the decay of the refrigerant bubbles do not occur, and the refrigerant The effect of preventing the generation of flowing noise can be obtained.
[0110]
Further, the valve body in which the first flow path opens in the side wall of the valve chamber, the main valve seat in which the second flow path opens in the bottom surface of the valve chamber, and the main valve seat that can be closed in the valve chamber and the peripheral surface is the main valve seat. A throttle device including a main valve body that comes into contact with the side surface of the main valve body and changes the contact area between the peripheral surface and the side surface in the opening / closing direction, and a control that controls the movement of the main valve body in the opening / closing direction. A flow control valve is formed by using a porous permeation material for the main valve seat or the main valve body, and the permeation area of the porous permeation material is determined by the main valve body, the main valve seat and the control means. Since the adjusting means for adjusting is configured, the effect of adjusting the flow rate can be obtained while preventing the generation of the refrigerant flow noise.
[0111]
Further, since the adjusting means adjusts the permeation area according to the pressure difference of the drawing device, the effect of adjusting the pressure difference can be obtained.
[0112] Since the adjusting means adjusts the permeation area so as to have a predetermined pressure difference, the effect of suppressing the influence of the pressure fluctuation can be obtained.
[0113]
Further, according to the air conditioner of the present invention, refrigeration in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. In the one equipped with a cycle, since the throttle portion of the second flow control valve is made of a porous permeable material that communicates in the refrigerant flow direction, it is possible to widely control the indoor temperature and humidity environment during cooling and heating, and the refrigerant flow. The effect of preventing the generation of sound and providing a comfortable indoor environment can be obtained.
[0114]
Further, since the adjusting means for adjusting the permeation area of the porous permeation material is provided, the flow rate can be adjusted while preventing the generation of the refrigerant flow noise, so that a comfortable and detailed air conditioning operation can be obtained.
[0115]
Further, it has a valve body in which the first flow path opens in the side wall of the valve chamber, a main valve seat in which the second flow path opens in the bottom surface of the valve chamber, and a main valve body in the valve chamber capable of closing the main valve seat. Since the second flow rate control valve is configured by using a porous permeable material for the main valve body, it is possible to prevent the generation of refrigerant flow noise, and there is no deterioration in performance due to pressure loss during normal cooling operation or normal heating operation. .. Further, the conventional measures for reducing the flow noise of the refrigerant such as wrapping a vibration isolator or the like around the outer circumference of the valve become unnecessary, the device becomes inexpensive, and the recyclability at the time of disposing of the device can be improved.
[0116]
Further, it has a valve body in which the first flow path opens in the side wall of the valve chamber, a main valve seat in which the second flow path opens in the bottom surface of the valve chamber, and a main valve body in the valve chamber capable of closing the main valve seat. Since the second flow rate control valve is configured by using a porous permeation material for the main valve seat, the shape of the throttle portion can be easily changed, the design is easy, and an inexpensive and low noise flow rate control valve can be provided. Is obtained.
[0117]
Further, the peripheral surface abuts on the side surface of the main valve seat, and the main valve body in which the contact area between the peripheral surface and the side surface is changed by the movement in the opening / closing direction and the movement of the main valve body in the opening / closing direction are controlled. Since the main valve body, the main valve seat, and the control means are provided with the control means for adjusting the permeation area of the porous permeation material, the flow rate can be increased while preventing the generation of refrigerant flow noise in a small size. Since it can be adjusted, the effect of comfortable and detailed air-conditioning operation can be obtained.
[0118]
Further, since the adjusting means adjusts the permeation area according to the pressure difference of the second flow rate control valve, the effect of performing comfortable and efficient air conditioning can be obtained. ..
[0119]
Further, since the adjusting means adjusts the permeation area so as to have a predetermined pressure difference during the operation of lowering the latent heat ratio, the effect of more comfortably guiding the indoor temperature and humidity environment can be obtained.
[0120]
Further, since the vent holes of the sintered metal are set in the range of 200 to 0.5 micrometers, the effect of preventing the generation of refrigerant flow noise when the liquid refrigerant or the gas-liquid two-phase refrigerant passes can be obtained. ..
[0121]
Further, since the control unit for controlling the second flow rate control valve to be closed during the operation of lowering the latent heat ratio is provided, the temperature can be controlled over a wide range while reducing the refrigerant flow noise, and the effect of comfortable dehumidification can be obtained. Be done.
[0122]
Further, since the control unit controls to close the second flow control valve during cooling, dehumidifying, and heating operations, the refrigerant flow noise is effectively reduced even when the phase state of the refrigerant changes due to a difference in the operation mode. However, the effect of comfortable dehumidification can be obtained.
[0123]
Further, since the control unit for controlling the second flow rate control valve to be closed when the heating operation is started is provided, the effect of raising the blowing temperature to a high temperature and enhancing the feeling of quick warming can be obtained.
[0124]
Further, since the control unit for controlling the second flow rate control valve to be closed when the difference between the set temperature and the room temperature is equal to or more than a predetermined value during the heating operation is provided, the room temperature is sufficiently lower than the set temperature. In some cases, a high-temperature blown air can be blown out, so that an effect of comfortable heating can be obtained without giving a feeling of cold air.
[0125]
Further, in an air conditioner provided with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected, the above-mentioned Since the second flow control valve is composed of a capillary tube with an inner diameter of 1 mm or more, it is possible to reliably reduce the generation of refrigerant flow noise when the liquid refrigerant or the gas-liquid two-phase refrigerant passes below the permissible value, and it is inexpensive. , The effect of being able to provide an indoor unit with improved recyclability can be obtained.
[0126]
Further, in an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected, the above-mentioned Since the second flow control valve is composed of a capillary tube and a heat exchanger for heat exchange between the capillary tube inlet pipe and the pipe between the second chamber heat exchanger and the compressor during the cooling and dehumidifying operation is provided, the capillary pipe is provided. The steam component of the refrigerant at the inlet can be reduced, and the refrigerant flow noise generated from the capillary can be significantly reduced. In addition, the heat transfer performance of the indoor heat exchanger during the cooling and dehumidifying operation is improved, and the effect of improving the performance of the device can be obtained.
[0127]
Further, in an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected, the above-mentioned Since the second flow control valve is composed of a capillary tube and a heat exchanger for exchanging heat with the pipe between the second chamber heat exchanger and the compressor is provided, it is possible to suppress the generation of refrigerant vapor in the capillary tube. The refrigerant flow noise generated from the capillary can be significantly reduced. In addition, the heat transfer performance of the indoor heat exchanger during the cooling and dehumidifying operation is improved, and the effect of improving the performance of the device can be obtained.
[0128]
Further, since it is provided with a bypass flow path that bypasses the second indoor heat exchanger and the second flow control valve and an opening / closing means for opening / closing the bypass flow path, it is possible to control the indoor temperature and humidity environment in a wide range. It is possible to perform detailed operation to reduce the latent heat ratio while maintaining comfortable temperature conditions, and it is possible to reduce the generation of refrigerant flow noise and realize a low-noise indoor environment.
[0129]
Further, in an air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected, the first Since it is equipped with a bypass flow path that bypasses the two-chamber heat exchanger and the second flow control valve, and an opening / closing means for opening and closing this bypass flow path, it is possible to control the indoor temperature and humidity environment in a wide range, and the temperature conditions. It is possible to obtain the effect of enabling fine-tuned operation to reduce the latent heat ratio while maintaining comfort.
[0130]
Further, the second flow control valve and the control means for controlling the opening / closing means are provided, and the control means throttles the second flow control valve and opens the opening / closing means according to the sensible heat capacity during the operation of lowering the latent heat ratio. Since the heat exchanger split operation and the refrigerant reheat operation in which the second flow control valve is throttled and the opening / closing means is closed are controlled, a sensible operation for lowering the latent heat ratio while maintaining comfortable temperature conditions is apparent. The effect that becomes possible depending on the thermal capacity can be obtained.
[0131]
Further, the second flow rate control valve and the control means for controlling the opening / closing means are provided, and the control means controls to close the second flow rate control valve and close the opening / closing means when the sensible heat ratio decreases. When the air conditioning load is small, the effect of enabling fine-tuned air conditioning control by the refrigerant reheating method can be obtained.
[0132]
Further, the second flow rate control valve and the control means for controlling the opening / closing means are provided, and the second flow rate control valve is closed and the opening / closing means is controlled to be opened when the heating operation is started. The effect of comfortable heating with enhanced feeling can be obtained.
[0133]
Further, since a receiver for storing the liquid refrigerant during the heating operation is provided in the pipe between the first flow rate control valve and the first indoor heat exchanger, the amount of the refrigerant can be controlled according to the operation mode, and the performance of the device can be improved. The effect of improving reliability can be obtained.
[Simple explanation of drawings]
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a second flow rate control valve according to the first embodiment.
FIG. 3 is a characteristic diagram showing an operating state of the air conditioner according to the first embodiment during cooling and dehumidifying operation.
FIG. 4 is a diagram showing another configuration example of the second flow rate control valve according to the first embodiment.
FIG. 5 is a diagram showing a configuration of a second flow rate control valve according to a second embodiment of the present invention.
FIG. 6 is a diagram showing another configuration example of the second flow rate control valve according to the second embodiment.
FIG. 7 is a diagram showing a configuration of a second flow rate control valve according to a third embodiment of the present invention.
FIG. 8 is a diagram showing another configuration example of the second flow rate control valve according to the third embodiment.
FIG. 9 is a characteristic diagram showing an operating state during a heating / dehumidifying operation according to a fourth embodiment of the present invention.
FIG. 10 is a refrigerant circuit diagram of an air conditioner according to a fifth embodiment of the present invention.
FIG. 11 is a refrigerant circuit diagram of an air conditioner according to a sixth embodiment of the present invention.
FIG. 12 is a diagram showing a configuration of a second flow rate control valve according to a sixth embodiment.
FIG. 13 is a refrigerant circuit diagram of an air conditioner according to a seventh embodiment of the present invention.
FIG. 14 is a diagram showing a measurement result of a refrigerant flow sound in a capillary tube according to a seventh embodiment.
FIG. 15 is a refrigerant circuit diagram of an air conditioner according to the eighth embodiment of the present invention.
FIG. 16 is a characteristic diagram showing an operating state of the air conditioner according to the eighth embodiment during cooling and dehumidifying operation.
FIG. 17 is a refrigerant circuit diagram of an air conditioner according to a ninth embodiment of the present invention.
FIG. 18 is a characteristic diagram showing an operating state of the air conditioner according to the ninth embodiment during cooling and dehumidifying operation.
FIG. 19 is a refrigerant circuit diagram of an air conditioner according to a tenth embodiment of the present invention.
FIG. 20 is a refrigerant circuit diagram showing another example of the air conditioner according to the tenth embodiment.
FIG. 21 is a refrigerant circuit diagram showing a conventional air conditioner.
[Explanation of symbols] 1 Compressor, 3 Outdoor heat exchanger, 4 1st flow control valve, 5 1st indoor heat exchanger, 6 2nd flow control valve, 7 2nd indoor heat exchanger, 21 1st flow path , 22 2nd flow path, 23 main valve seat, 24 valve body, 30 receiver, 31 sintered metal, 38 capillary tube, 40 heat exchanger

JP11153446A 1999-06-01 1999-06-01 Throttle device, refrigerating cycle apparatus and air conditioner Pending JP2000346493A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11153446A JP2000346493A (en) 1999-06-01 1999-06-01 Throttle device, refrigerating cycle apparatus and air conditioner
JP23133199A JP3428516B2 (en) 1999-06-01 1999-08-18 Aperture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11153446A JP2000346493A (en) 1999-06-01 1999-06-01 Throttle device, refrigerating cycle apparatus and air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23133199A Division JP3428516B2 (en) 1999-06-01 1999-08-18 Aperture device

Publications (2)

Publication Number Publication Date
JP2000346493A JP2000346493A (en) 2000-12-15
JP2000346493A5 true JP2000346493A5 (en) 2006-05-18

Family

ID=15562737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11153446A Pending JP2000346493A (en) 1999-06-01 1999-06-01 Throttle device, refrigerating cycle apparatus and air conditioner

Country Status (1)

Country Link
JP (1) JP2000346493A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000757B1 (en) * 2001-01-31 2012-09-19 Mitsubishi Denki K.K. Refrigerating cycle apparatus
CN100436972C (en) * 2001-01-31 2008-11-26 三菱电机株式会社 Flow control device and air conditioner
JP2002235970A (en) * 2001-02-07 2002-08-23 Matsushita Electric Ind Co Ltd Air conditioner
JP2003065632A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
JP2003097865A (en) * 2001-09-25 2003-04-03 Daikin Ind Ltd Air conditioner
JP4992655B2 (en) * 2007-10-12 2012-08-08 富士ゼロックス株式会社 Reactor
CN103968619B (en) * 2013-01-31 2016-08-10 广东美的制冷设备有限公司 There is the air-conditioner of rapid moisture removal
JP6332537B2 (en) * 2016-09-30 2018-05-30 ダイキン工業株式会社 Air conditioner
JP6661683B2 (en) * 2018-03-05 2020-03-11 株式会社不二工機 Motorized valve
DE112018007975T5 (en) * 2018-09-11 2021-05-20 Mitsubishi Electric Corporation Indoor unit of an air conditioner

Similar Documents

Publication Publication Date Title
JP3428516B2 (en) Aperture device
JP3918421B2 (en) Air conditioner, operation method of air conditioner
JP2007085730A (en) Air conditioner and method of operating air conditioner
CN100498139C (en) Refrigerating circulation device
JP5665981B2 (en) Air conditioner
JP2005524040A (en) Variable capacity cooling system with single frequency compressor
JPWO2009087733A1 (en) Refrigeration cycle equipment and four-way valve
JP2003202162A (en) Refrigerating device
JP2000346493A5 (en)
JP2001082761A (en) Air conditioner
JP4103363B2 (en) Flow control device, refrigeration cycle device, and air conditioner
JP2000346493A (en) Throttle device, refrigerating cycle apparatus and air conditioner
JP2001065953A (en) Air conditioner and control method of the same
JP2002221353A (en) Air conditioner
JP3817981B2 (en) Refrigeration cycle apparatus and air conditioner
JP2007232265A (en) Refrigeration unit
JP3901103B2 (en) Air conditioner
JP3900976B2 (en) Air conditioner and method of operating air conditioner
JP4221922B2 (en) Flow control device, throttle device, and air conditioner
JP2003050061A (en) Air conditioner
JP2008261626A (en) Flow control device, restricting device and air conditioner
JP2009180493A (en) Heating auxiliary unit and air conditioner
JP3417351B2 (en) Aperture device
JP4151236B2 (en) Flow control device and air conditioner
WO2013061365A1 (en) Air conditioning device