JP4103363B2 - Flow control device, refrigeration cycle device, and air conditioner - Google Patents

Flow control device, refrigeration cycle device, and air conditioner Download PDF

Info

Publication number
JP4103363B2
JP4103363B2 JP2001283257A JP2001283257A JP4103363B2 JP 4103363 B2 JP4103363 B2 JP 4103363B2 JP 2001283257 A JP2001283257 A JP 2001283257A JP 2001283257 A JP2001283257 A JP 2001283257A JP 4103363 B2 JP4103363 B2 JP 4103363B2
Authority
JP
Japan
Prior art keywords
refrigerant
valve body
valve
heat exchanger
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001283257A
Other languages
Japanese (ja)
Other versions
JP2003090650A (en
Inventor
悟 平國
嘉裕 隅田
直 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001283257A priority Critical patent/JP4103363B2/en
Publication of JP2003090650A publication Critical patent/JP2003090650A/en
Application granted granted Critical
Publication of JP4103363B2 publication Critical patent/JP4103363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Flow Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒の流動制御に好適な絞り装置を備え、二相冷媒の流動制御に好適な冷凍サイクル装置、さらには冷房あるいは暖房運転時の温度および湿度の制御性を向上させるとともに、冷媒流動音を低減し、室内温湿度および騒音に対する快適性を向上させた空気調和装置に関するものである。
【0002】
【従来の技術】
従来の空気調和装置では、空調負荷の変動に対応するためにインバーターなどの容量可変型圧縮機が用いられ、空調負荷の大小に応じて圧縮機の回転周波数が制御されている。ところが冷房運転時に空調負荷が低下して圧縮機回転が小さくなると蒸発温度も上昇し、蒸発器での除湿能力が低下したり、あるいは蒸発温度が室内の露点温度以上に上昇し、除湿できなくなったりする問題点があった。
【0003】
この冷房低容量運転時の除湿能力を向上させる手段としては次のような空気調和装置が考案されている。図12は例えば特開平11-51514号公報に示された従来の空気調和装置の冷媒回路図を、図13は図12に備えられた一般的な絞り弁の断面図を示す。図において1は圧縮機、2は四方弁、3は室外熱交換器、4は第1流量制御装置、5は第1室内熱交換器、6は第2流量制御装置、7は第2室内熱交換器であり、これらは配管で順次接続され冷凍サイクルを構成している。また、第1流量制御装置4は二方弁19と絞り装置20が並列に配管接続された構成となっている。そして、24は室外ユニット、25は室内ユニットである。
【0004】
次に従来の空気調和装置の動作について説明する。冷房運転では、圧縮機1を出た冷媒は四方弁2を通過して、室外熱交換器3で凝縮液化し、第1流量制御装置4の二方弁19は閉じられているため、絞り装置20で減圧され室内熱交換器5および7において蒸発気化し再び四方弁2を介して圧縮機1に戻る。また、暖房運転では圧縮機1を出た冷媒は冷房運転とは逆に四方弁2を通過して、室内熱交換器5および7で凝縮液化し、第1流量制御装置4の二方弁19は閉じられているため主絞り装置20で減圧され室外熱交換器3において蒸発気化し再び四方弁2を介して圧縮機1に戻る。
【0005】
一方、除湿運転時には、第1流量制御装置4の主絞り装置20は閉じられ、二方弁19を開け第2流量制御弁6で冷媒流量を制御することにより、第1室内熱交換器5が凝縮器すなわち再熱器、第2室内熱交換器7が蒸発器として動作し、室内空気は第1室内熱交換器5で加熱されるため、室温の低下が小さい除湿運転が可能となる。
【0006】
【発明が解決しようとする課題】
上記のような従来の空気調和装置では、室内ユニット内に設置する第2流量制御弁として、通常、オリフィスを有する流量制御弁を用いているため、このオリフィスを冷媒が通過する時に発生する冷媒流動音が大きく、室内環境を悪化させる要因となっていた。特に除湿運転時には第2流量制御弁の入口側が気液二相冷媒となり、冷媒流動音が大きくなるという問題があった。
【0007】
この除湿運転時の第2流量制御弁の冷媒流動音低減策としては、特開平11−51514号公報や特開2001−12825号公報に示された流量制御弁内に複数の切り込み溝と弁体からなるオリフィス状の絞り流路を設けたものがある。ところがこの冷媒流動音低減策では絞り部が複数のオリフィス形状の流路で気液二相冷媒を連続的に流すように工夫したものであるが、加工上配置し得る流路数が有限であるため効果的ではなく冷媒流動音が大きくなるといった問題があった。その結果、第2流量制御装置の周囲に遮音材や制振材を設けるなどの追加の対策を必要とし、この流量制御弁のコスト増加や設置性の悪化およびリサイクル性の悪化などの問題もあった。
【0008】
これに対し、特開平7−146032号公報に示された空気調和装置で用いられている流量制御装置では、図14の断面図に示すように冷媒流動音を低減するために絞りの上流および下流側にフィルタとして多孔体23を設けてある。しかしながら、多孔体23と絞り部の距離が離れているため、気液二相冷媒を均質化して連続的に絞り部に効果的に供給することはできず、冷媒流動音が大きくなるといった問題があった。
【0009】
本発明は上記のような課題を解決するためになされたもので、冷媒流動音を大幅に低減でき、サイクル内の異物により閉塞することが無い絞り装置を用いた冷凍サイクル装置および空気調和装置を得ることを目的とする。
【0010】
【課題を解決するための手段】
本発明の請求項1に係る流量制御装置は、弁室に固定された弁座を介して連通する第1の接続配管および第2の接続配管と、前記弁座に当接しながら回転可能な弁体と、前記弁体に内設したオリフィスの上流および下流の少なくとも一方に空間を設けて流れ方向に連通する多孔質透過材を配置し、前記多孔質透過材の複数の通気孔を通過して整流された蒸気冷媒と液冷媒が同時に通過する径を有する前記オリフィスを用いて構成される絞り部と、前記弁体の回転駆動により、前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、流出側となる前記第2の接続配管に前記弁体の絞り部が流れ方向に重なる第2の切換位置と、を備え、前記弁体が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御するものである。
【0012】
本発明の請求項に係る流量制御装置は、弁室に連通する第1の接続配管および第2の接続配管と、前記弁室の内部を移動可能な弁座と前記弁座に離接する弁体とからなる絞り部と、前記弁座にオリフィスの上流および下流の少なくとも一方に空間を介して一体に配設されて構成する流れ方向に連通した多孔質透過材と、前記弁体の上方移動につれて前記弁体に設けた係止部が前記弁座を支持する保持部に係止することにより前記弁座が前記弁体と同時に連動して前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、前記弁体の下方移動につれて前記係止部が前記保持部から離れることにより前記弁座が流入側となる前記第1の接続配管より下方に移動して、前記第1の接続配管から前記多孔質透過材を通過して整流された蒸気冷媒と液冷媒が混合均質化されて通過する前記オリフィスと前記弁体で構成される前記絞り部を介して前記第2の接続配管に流通する第2の切換位置と、を備え、前記弁座が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御するものである。
【0013】
本発明の請求項に係る流量制御装置は、前記多孔質透過材に前記弁体より大きな穴を設けたものである。
【0014】
本発明の請求項に係る流量制御装置は、前記弁体の先端部を円錐状としたものである。
【0017】
本発明の請求項に係る流量制御装置は、前記多孔質透過材の平均気孔径を100μm以上としたものである。
【0018】
本発明の請求項に係る流量制御装置は、前記多孔質透過材の流れ方向の厚さを1mm以上としたものである。
【0019】
本発明の請求項に係る流量制御装置は、前記多孔質透過材の平均気孔径以上の貫通した穴を少なくとも一つ設けたものである。
【0020】
本発明の請求項に係る冷凍サイクル装置は、請求項1乃至請求項のいずれかに記載の流量制御装置を備え、前記絞り部に気液二相冷媒を通過させるものである。
【0021】
本発明の請求項に係る冷凍サイクル装置は、冷媒に溶け易い冷凍機油を用いたものである。
【0022】
本発明の請求項10に係る冷凍サイクル装置は、冷媒に溶け難い冷凍機油を用いたものである。
【0023】
本発明の請求項11に係る空気調和装置は、圧縮機、室外熱交換器、第1流量制御装置、第1室内熱交換器、第2流量制御装置および第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御装置は、弁室に固定された弁座を介して連通する第1の接続配管および第2の接続配管と、前記弁座に当接しながら回転可能な弁体と、前記弁体に内設したオリフィスの上流および下流の少なくとも一方に空間を設けて流れ方向に連通する多孔質透過材を配置し、前記多孔質透過材の複数の通気孔を通過して整流された蒸気冷媒と液冷媒が同時に通過する径を有する前記オリフィスを用いて構成される絞り部と、前記弁体の回転駆動により、前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、流出側となる前記第2の接続配管に前記弁体の絞り部が流れ方向に重なる第2の切換位置と、を備え、前記弁体が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御するものである。
【0025】
本発明の請求項12に係る空気調和装置は、圧縮機、室外熱交換器、第1流量制御装置、第1室内熱交換器、第2流量制御装置および第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御装置は、弁室に連通する第1の接続配管および第2の接続配管と、前記弁室の内部を移動可能な弁座と前記弁座に離接する弁体とからなる絞り部と、前記弁座にオリフィスの上流および下流の少なくとも一方に空間を介して一体に配設されて構成する流れ方向に連通した多孔質透過材と、前記弁体の上方移動につれて前記弁体に設けた係止部が前記弁座を支持する保持部に係止することにより前記弁座が前記弁体と同時に連動して前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、前記弁体の下方移動につれて前記係止部が前記保持部から離れることにより前記弁座が流入側となる前記第1の接続配管より下方に移動して、前記第1の接続配管から前記多孔質透過材を通過して整流された蒸気冷媒と液冷媒が混合均質化されて通過する前記オリフィスと前記弁体で構成される前記絞り部を介して前記第2の接続配管に流通する第2の切換位置と、を備え、前記弁座が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御するものである。
【0026】
本発明の請求項13に係る空気調和装置は、前記多孔質透過材に前記弁体より大きな穴を設けたものである。
【0027】
本発明の請求項14に係る空気調和装置は、前記弁体の先端部を円錐状としたものである。
【0029】
本発明の請求項15に係る空気調和装置は、潜熱比を低下させる運転時に前記絞り部を冷媒流路とするよう制御する制御部を備えたものである。
【0030】
本発明の請求項16に係る空気調和装置は、前記第2室内熱交換器と並列に配管接続された第3室内熱交換器と、前記第3室内熱交換器から前記弁座を介して弁室へ連通する第3の接続配管と、前記弁体に内設する2つ以上の絞り部とを備え、潜熱比を低下させる運転時に、前記第2室内熱交換器に接続する第2の接続配管が絞り部を流通する冷媒流路とするとともに、前記第3の接続配管を閉止するよう制御したものである。
【0031】
本発明の請求項17に係る空気調和装置は、冷房または除湿並びに暖房運転時に前記絞り部を冷媒回路とするよう制御する制御部を備えたものである。
【0032】
本発明の請求項18に係る空気調和装置は、暖房運転起動時に前記絞り部を冷媒流路とするよう制御する制御部を備えたものである。
【0033】
本発明の請求項19に係る空気調和装置は、暖房運転時で設定温度と室内温度との差が所定値以上の場合に前記絞り部を冷媒流路とするよう制御する制御部を備えたものである。
【0034】
本発明の請求項20に係る空気調和装置は、冷媒を非共沸混合冷媒としたものである。
【0035】
本発明の請求項21に係る空気調和装置は、R22冷媒より蒸気密度の大きな冷媒としたものである。
【0036】
本発明の請求項22に係る空気調和装置は、冷媒をハイドロカーボン系冷媒としたものである。
【0037】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態の一例を示す空気調和装置の冷媒回路図で、従来装置と同様の部分は同一符号で表している。図において、1は圧縮機、2は冷房運転および暖房運転の冷媒の流れを切換える流路切換え手段で例えば四方弁、3は室外熱交換器、4は第1流量制御装置、5は第1室内熱交換器、6は第2流量制御装置、7は第2室内熱交換器であり、これらは配管によって順次接続され冷凍サイクルを構成している。この冷凍サイクルの冷媒には、R32とR125の混合冷媒であるR410Aが用いられ、冷凍機油としてはアルキルベンゼン系油が用いられている。
【0038】
図2は図1に示した空気調和装置の第2流量制御装置の構成を示す図であり、図において、9は第1室内熱交換器5と第2流量制御装置6を接続する第1の接続配管、10は第2流量制御装置6と第2室内熱交換器を接続する第2の接続配管、11は弁体、12は弁体11を回転駆動させるステッピングモータ、13はステッツピングモータ12の回転を弁体11に伝達する駆動軸、14は制御流体が弁体11へ流入するための弁室、16は弁体11に内設したオリフィス、15はオリフィス16の上流及び下流側の弁体11内流路に配置した発泡金属、17は発泡金属15とオリフィス16の間に設けた空間であり、18は弁室14の低部に固定され、弁体11が密接する弁座である。
【0039】
前記発泡金属15は全体が多孔質透過材であり、通気孔(流体が透過できる多孔質体表面及び内部の気孔)の気孔径が100マイクロメートル以上であれば流動音の低減効果が得られ、本実施例では目詰まりの影響を考慮してその平均気孔径が500マイクロメートルで、空隙率が92±6%としてある。また、発泡金属の冷媒流れ方向の厚さは、流動音の低減効果とその加工容易性から1ミリメートル以上有れば良く、本実施例では3ミリメートル程度としている。この発泡金属は、ウレタンフォームに金属粉末あるいは合金粉末を塗布後、熱処理してウレタンフォームを焼失させ金属を3次元の格子状に成形したものであり、材料はNi(ニッケル)である。強度を上げるために、Cr(クロム)をメッキ処理したものでも構わない。
【0040】
次に図2に示す第2流量制御装置における流体の動作について説明する。まず、第1室内熱交換器(図示せず)から流出した冷媒は、弁座18に接続された第1の接続配管9を介して弁室14内部へ流入する。図2においては、弁体11内部に配設したオリフィス16が、第2室内熱交換器へ連接した第2の接続配管10の中央部に位置するようにステッピングモータ12の回転駆動により駆動軸13を介して所定の切換位置に設定されている。そして、弁室14を満たした冷媒は、弁体11を通過して第2の接続配管10から流出していくことになるが、この弁体11内にはオリフィス16の上流側および下流側に冷媒流れ方向に連通する多孔質透過材を形成する発泡金属15がそれぞれ設けてあるため、これらを通過しながら、絞り部のオリフィス16を流通する。
また、円盤状の弁座16は弁室14の低部に位置し、この弁座16の弁室側表面に密接して回転移動する弁体11の駆動軸13は弁座16と垂直方向に設けられる。したがって、駆動軸13を駆動するモータ部のステッピングモータ12は弁室14の上部に配置した構成となっている。上記弁体11はステッピングモータ12に連接した駆動軸13と嵌合して組立てられているので、ステッピングモータ12が弁室14の上部に固定されることにより、弁体11と弁座18を密着設置することができる。なお、駆動軸13が弁体11より突出した嵌合形状とし、その駆動軸の吐出部を弁座18側に設けた凹部に挿入する構成としてもよく、駆動軸および弁体の剛性を向上させることができる。
【0041】
また、図3は図2に示した第2流量制御装置6の構成断面図であり、(a)は冷房運転もしくは暖房運転時の第2流量制御装置6の動作状態を、(b)は冷気味再熱除湿運転時の第2流量制御装置6の動作状態を、(c)は暖気味再熱除湿運転時の第2流量制御装置6の動作状態をそれぞれ示す。
図3において、弁体11はその片側に貫通挿入された駆動軸13により弁座18に軸支されそれぞれの表面が密着するよう接している。また、弁体11の駆動軸13と逆側には発泡金属15とオリフィス16が装着されている。ここでは、発泡金属15は円盤状を示しているが、この形状に限ることなく、矩形または多角形状でも良く、弁座18を介して接続される接続配管9,10を十分包含できる流路面積を有していればよい。さらに、図3の(a)から(c)までに示すように、弁体11は駆動軸13を中心に回転するとともに接続配管9および10からの流通を全開にしたり、または片方の配管を弁体で塞ぐように位置設定されるので、弁体11の断面は接続配管9および10の両方同時には流路を塞がない形状とするものである。
【0042】
図3の(a)は、弁体11が第1および第2の接続配管9と10の位置の中間に設定されており(第1の切換位置)、これにより、第1熱交換器から第1の接続配管9を介して第2流量制御装置に流入し、そのまま状態変化せずに第2の接続配管10を介して第2熱交換器へ流通したり、また逆の流れで第2熱交換器からこの第2流量制御装置を状態変化せず通過して第1熱交換器へ流通するものである。
【0043】
図3の(b)は、弁体11が駆動軸13により第2の接続配管10を塞ぐように駆動配置され、弁体11に内設したオリフィス16と前記第2の接続配管10の中心が一致する位置で設定された状態である(第2の切換位置)。この場合は、第1熱交換器から第1の接続配管9を介して第2流量制御装置の弁室14に流入した冷媒が、弁体11に内設した発泡金属15およびオリフィス16を通過し、このオリフィス16で状態を変化させた後、第2の接続配管10を介して第2熱交換器へ流出していくことになる。
【0044】
図3の(c)は、さらに駆動軸13が回転し、オリフィス16が第1の接続配管9の中央部に位置するように設定された状態である。そしてこの場合は、第2熱交換器から第2の接続配管10を介して第2流量制御装置の弁室14に流入した冷媒が、上記オリフィス16で状態を変化させた後、第1の接続配管9を介して第1熱交換器へ流出していくことになる。
【0045】
次に本実施の形態1による空気調和装置の冷凍サイクルの動作について説明する。図1では冷房時の冷媒の流れを実線矢印で示している。冷房運転は起動時や夏季時など部屋の空調顕熱負荷と潜熱負荷がともに大きい場合に対応する通常冷房運転と中間期や梅雨時期のように空調顕熱負荷は小さいが、潜熱負荷が大きな場合に対応する除湿運転に分けられる。通常冷房運転では、室内ユニットの第2流量制御装置6は空気調和装置の制御部(図示せず)より指令を受け、図3の(a)の状態に設定されており、第1室内熱交換器5と第2室内熱交換器7を冷媒がほとんど圧力損失なしに流通接続する。
【0046】
この時、空調負荷に応じた回転数で運転されている圧縮機1を出た高温高圧の蒸気冷媒は四方弁2を通過して、室外熱交換器3で凝縮液化し、第1流量制御装置4で減圧され低圧二相冷媒となって第1室内熱交換器5に流入し蒸発気化し、第2流量制御装置6を大きな圧力損失なしに通過し再び第2室内熱交換器7で蒸発気化し、低圧蒸気冷媒となって再び四方弁2を介して圧縮機1に戻る。
【0047】
第1流量制御装置は、例えば圧縮機1の吸入部分での冷媒の過熱度が10℃となるように制御されている。このような冷凍サイクルでは室内熱交換器5と7で冷媒が蒸発することにより室内から熱を奪い、室外熱交換器3で冷媒が凝縮することによって室内で奪った熱を室外で放出することによって室内を冷房する。
【0048】
次に冷房気味除湿運転時の動作について、図4に示す圧力-エンタルピー線図を用いて説明する。図4において、縦軸に圧力、横軸にエンタルピーをとってあり、図中に示した英文字は、図1に示した英文字と対応している。この除湿運転時は、図示しない制御部の指令により室内ユニットの第2流量制御装置6は図3(b)の状態に設定される。
【0049】
この時、空調負荷に応じた回転数で運転されている圧縮機1を出た高温高圧の蒸気冷媒(A点)は四方弁2を通過して、室外熱交換器3で外気と熱交換して凝縮し気液二相冷媒となる(B点)。この高圧二相冷媒は第1流量制御装置4で若干減圧され、中間圧の気液二相冷媒となって第1室内熱交換器5に流入する(C点)。第1室内熱交換器に流入した中間圧の気液二相冷媒は、室内空気と熱交換を行いさらに凝縮する(D点)。そして、第1室内熱交換器を流出した気液二相冷媒は第2流量制御装置6に流入する。
【0050】
第2流量制御装置6では冷媒は第1の接続配管9を介し、弁室14から弁体11の絞り部に流れ込む。絞り部では、入口側発泡金属15a、そして入口側発泡金属15aとオリフィス16の間の空間17aを介し、オリフィス16で減圧され低圧気液二相冷媒となる。そして、オリフィス16と出口側発泡金属15bとの間の空間17b、出口側発泡金属15b、第2の接続配管10の順に通過して第2室内熱交換器7に流入する(E点)。このオリフィスの出入口部に設置された発泡金属の厚さは3ミリメートル程度である。また、オリフィスの内径は0.8ミリメートルで、厚さは3ミリメートル程度である。その後、第2室内熱交換器7に流入した冷媒は、室内空気の顕熱および潜熱を奪って蒸発する。第2室内熱交換器を出た低圧蒸気冷媒は再び四方弁2を介して圧縮機1に戻る。室内空気は、第1室内熱交換器5で加熱されるとともに、第2室内熱交換器7で冷却除湿されるため、部屋の室温低下を防ぎながら除湿を行うことができる。
【0051】
なお、この除湿運転では、圧縮機1の回転周波数や室外熱交換器3のファン回転数を調整して、室外熱交換器3の熱交換量を制御し、第1室内熱交換器5による室内空気の加熱量を調整して吹出し温度を広範囲に制御できる。また、第1流量制御装置4の開度や室内ファン回転数を制御して第1室内熱交換器の凝縮温度を制御し、第1室内熱交換器5による室内空気の加熱量を制御することもできる。また、第2流量制御装置6は例えば圧縮機吸入冷媒の過熱度が10℃となるように制御される。
【0052】
次に暖房運転について説明する。図1では暖房時の冷媒の流れを破線矢印で示している。通常の暖房運転は、第2流量制御弁6を図3(a)に示すように弁体11が開の位置となるよう制御部が指示する。
【0053】
このとき圧縮機1を出た高温高圧の冷媒蒸気は、四方弁2を通って第2室内熱交換器7および第1室内熱交換器5に流入し、室内空気と熱交換して凝縮、液化する。なお第2流量制御弁6は、図3(a)に示すように接続配管9と接続配管10とが大きな開口面積で接続されているので、この弁を通過する際の冷媒圧力損失はほとんどなく、圧力損失による暖房能力や効率面での低下もない。そして、第1室内熱交換器5を出た高圧の液冷媒は、第1流量制御弁4で低圧に減圧され、気液二相冷媒となって室外熱交換器3で室外空気と熱交換して蒸発する。室外熱交換器3を出た低圧の蒸気冷媒は、四方弁2を通って再び圧縮機1に戻る。この通常暖房運転時の第1流量制御弁4の開度は、例えば室外熱交換器3の出口冷媒の過熱度が5℃となるように制御されている。
【0054】
次に暖房気味除湿運転時の動作について、図5に示す圧力-エンタルピー線図を用いて説明する。図5において、縦軸に圧力、横軸にエンタルピーをとってあり、図中に示した英文字は、図1に示した英文字と対応している。この暖房気味除湿運転では、図示しない制御部の指令により第2流量制御装置6は図3(c)の状態に設定される。
【0055】
この時、空調負荷に応じた回転数で運転されている圧縮機1を出た高温高圧の蒸気冷媒(A点)は四方弁2を通過して、第2室内熱交換器7で室内空気と熱交換して凝縮し気液二相冷媒となる(E点)。この高圧冷媒は第2流量制御装置6で減圧され、低圧の気液二相冷媒となって第1室内熱交換器5に流入する(D点)。第1室内熱交換器5に流入した低圧の気液二相冷媒は、室内空気と熱交換を行い蒸発する(C点)。そして、第1室内熱交換器5を流出した気液二相冷媒は第1流量制御装置4に流入する。
【0056】
第1流量制御装置4では低圧気液二相冷媒はやや減圧され、室外熱交換器3に流入する(B点)。室外熱交換器3に流入した冷媒は、室外空気の熱を奪ってさらに蒸発する。室外熱交換器を出た低圧蒸気冷媒は再び四方弁2を介して圧縮機1に戻る。この暖房除湿運転では、室内空気は、第2室内熱交換器7で加熱されるとともに、第1室内熱交換器5で冷却除湿されるため、部屋を暖房しながら除湿を行うことができる。
【0057】
また暖房除湿運転では、圧縮機1の回転周波数や室外熱交換器3のファン回転数を調整して、室外熱交換器3の熱交換量を制御し、第2室内熱交換器7による室内空気の加熱量を制御して吹出し温度を広範囲に制御できる。また第1流量制御弁4の開度や室内ファン回転数を調整して、第1室内熱交換器5の蒸発温度を制御し、第1室内熱交換器5による室内空気の除湿量を制御することもできる。また第2流量制御弁6の開度は、例えば第2室内熱交換器7の出口冷媒の過冷却度が10℃となるように制御されている。
【0058】
この実施の形態1における除湿運転では弁体11の絞り部において、絞り過程をオリフィス16としている。オリフィス16の入口側と出口側に多孔質透過材である発泡金属を設置し、入口側発泡金属15aの上流に消音効果が得られる弁室14を設置したため気液二相冷媒が通過する際に発生する冷媒流動音を大幅に低減できる。
【0059】
通常のオリフィスタイプの流量制御装置に気液二相冷媒が通過する際には、大きな冷媒流動音が冷媒流れ方向の絞り部前後で発生する。特に気液二相冷媒の流動様式がスラグ流となる場合に大きな冷媒流動音が絞り部上流側で発生する。この原因は気液二相冷媒の流動様式がスラグ流の場合、図6に示すように流れ方向に対して蒸気冷媒が断続的に流れる状態となり、絞り部流路より大きな蒸気スラグもしくは蒸気気泡が絞り部流路を通過する際に絞り部流路上流の蒸気スラグもしくは蒸気気泡が崩壊することにより、それらが振動することや、あるいは絞り部を蒸気冷媒と液冷媒が交互に通過するため、冷媒の速度は蒸気冷媒が通過する際は速く、液冷媒が通過する際は遅くなるため、それに伴って絞り部上流の圧力も変動するためである。また、従来の第2流量制御装置6出口においては出口流路が1ヶ所〜4ヵ所であるため冷媒流速が速く、出口部分では高速気液二相流となり、壁面に冷媒が衝突するため、絞り部本体や出口流路が常に振動し騒音が発生する。また、出口部分の高速気液二相噴流による乱れや渦の発生により、噴流騒音も大きくなっている。
【0060】
図2または図3に示した第2流量制御装置6の弁体11の絞り部に、流れ込む気液二相冷媒や液冷媒は入口側発泡金属15aの微細で無数の通気孔を通過することにより流れが整流される。そのため、気液が断続して流れるスラグ流等の蒸気スラグ(大気泡)は小さな気泡に分解され冷媒の流動状態が均質気液二相流(蒸気冷媒と液冷媒がよく混合された状態)となり、蒸気冷媒と液冷媒が同時にオリフィス16を通過するため冷媒の速度変動が生じず、圧力も変動しない。また、さらに入口側発泡金属15aのような多孔質透過材は内部の流路が複雑に構成され、この内部では圧力変動が繰り返され一部熱エネルギに変換しながら圧力変動を一定にする効果もあるため、オリフィス16で圧力変動が発生してもこれを吸収する効果があり、それより上流側にその影響を伝えにくい。そして、オリフィス16の下流側の高速気液二相噴流は出口側発泡金属15bにより、その内部で冷媒の流速が十分に減速され、速度分布も一様化されるため、高速気液二相噴流が壁面に衝突することもなく、流れに大きな渦が発生することもないので噴流騒音も小さくなる。
【0061】
さらに、弁体11の絞り部入口側上流には弁室14が設けてあるので、入口側発泡金属15aで抑えることができない低い周波数の圧力変動を低減することが可能である。
なお、上述の第2流量制御装置では、オリフィスの上流側と下流側の両方に発泡金属を配設した構成で説明したが、上流側または下流側のどちらか一方に発泡金属を配設した構成でも冷媒流動音を低減する効果は得られる。
【0062】
これらにより、従来装置で必要であった、遮音材や制振材を絞り装置の外郭周囲に巻きつけるなどの対策も不要でコスト低減となり、さらに空気調和装置のリサイクル性も向上する。なお、上述した気液二相冷媒に起因する冷媒流動音の課題に関しては空気調和機に限定されることなく、冷蔵庫などの冷凍サイクル一般についての課題であり、本実施の形態の絞り装置はこのような冷凍サイクル一般に広く適用することで、同様の効果が得られる。
【0063】
除湿運転時の第2流量制御装置6の流動特性(冷媒流量と圧力損失の関係)はオリフィス16の内径や冷媒が通過する流路長さおよびオリフィスの数を調整することによって調整することができる。
すなわちある冷媒流量を小さな圧力損失で流す場合はオリフィスの内径を大きくしたり、流路長さを短くしたり、オリフィスを複数個用いれば良い。また、逆にある冷媒流量を大きな圧力損失で流す場合はオリフィス16の内径を小さくしたり、流路長さを長くしたり、オリフィスを1個にして用いれば良い。このような絞り部に用いられるオリフィスの内径や流路長さなどの形状は、機器設計時に最適に設計される。
【0064】
なお、絞り部入口側および出口側に用いる多孔質透過材の素子は、本実施の形態では発泡金属の場合について説明したが、セラミック、焼結金属、発泡樹脂および金網などを用いても同様の効果が得られる。また、材質についても、ニッケルやニッケルにクロム鍍金したもので説明したがこれに限るものではなく、その他の金属を用いても同様の効果が得られる。
また、オリフィスの入口側または出口側に設けた発泡金属に、気孔径の最小の100マイクロメートル以上の貫通穴を、上記オリフィスとは重ならない位置に1箇所または複数箇所設けることによりバイパスとしての作用が得られ、発泡金属の目詰まり発生を防止して信頼性の向上が図れる。
【0065】
次に、この実施の形態1における空気調和装置の運転制御方法について説明する。空気調和装置には、部屋内に居る居住者の好みの温湿度環境を設定するために、例えば設定温度と設定湿度が空調装置運転時に設定される。なおこの設定温度と設定湿度は、居住者がそれぞれの設定値を室内ユニットのリモコンから直接入力してもよく、また暑がりの人用、寒がりの人用や子供用、老人用など室内ユニットのリモコンに対象とする居住者別に定めた温度および湿度の最適値テーブルを記憶させ、対象居住者のみを直接入力するようにしてもよい。また室内ユニット25には、室内の温度および湿度を検知するために、室内ユニットの吸い込み空気の温度および湿度を検出するセンサーがそれぞれ設けられている。
【0066】
空気調和装置が運転起動されると、設定温度と現在の室内吸込み空気温度との差を温度偏差とし、また設定湿度と現在の室内吸込み空気湿度との差を湿度偏差として演算し、最終的にこれらの偏差がゼロあるいは所定の値以内となるように空気調和装置の四方弁2を冷房運転もしくは暖房運転の位置に設定する。次いで、圧縮機1の回転周波数、室外ファン回転数、室内ファン回転数、第1流量制御弁4の絞り開度、および第2流量制御弁6の流路設定を制御する。この時、温度および湿度偏差をゼロあるいは所定の値以内に制御する際には、温度偏差を湿度偏差よりも優先して空気調和装置の制御を行なう。
【0067】
すなわち、空気調和装置起動時に、温度偏差および湿度偏差がともに大きい場合は、第2流量制御弁6を図3(a)に示すように弁体11が全開の位置となるよう制御部が指示し設定する。この状態では第2流量制御弁6を通過する冷媒はほとんど圧力損失がないため冷房能力もしくは暖房能力の効率低下などは起こらない。このように第2流量制御弁6を開状態とし、まず通常冷房もしくは暖房運転で、室内の温度偏差を湿度偏差より優先的にゼロまたは所定の値以内となるように運転する。そして、空気調和装置の冷房能力もしくは暖房能力が部屋の熱負荷と一致し、温度偏差がゼロまたは所定の値以内となった場合に、湿度偏差を検出し、その湿度偏差がゼロまたは所定の値以内となっている場合は、現在の運転を続行する。
【0068】
一方、温度偏差がゼロまたは所定の値以内となり、この時の湿度偏差がまだ大きな値となっている場合は、第2流量制御弁6を図3(b)もしくは(c)に示すように弁体11を弁座18と密着する位置にする。このように第2流量制御弁6を絞り状態に設定して、冷房除湿運転もしくは暖房除湿運転に切換える。
【0069】
このように本実施の形態では、部屋の負荷に応じて、先ず冷媒回路を冷房運転もしくは暖房運転が可能な状態に、四方弁で切り替えることを行い、次いで通常冷房運転から冷房除湿運転もしくは通常暖房運転から暖房除湿運転に切換えることにより、部屋内の温湿度環境を、居住者の好みに応じて最適な状態に制御することができる。また、冷房、除湿、暖房などの運転モードの変化や空調負荷の変化により絞り装置を通過する冷媒の相状態や気液の混在比が変化しても弁体11の絞り部を冷媒が低騒音で安定的に流れることができる。
【0070】
また、暖房起動時などに第2流量制御装置を図3(c)に示す位置に切換えて、絞り部を通過させることにより、暖房吹出し温度を高温化することも可能となる。すなわち、暖房起動時に暖房除湿サイクルを形成し、第1室内熱交換器5の蒸発温度を室内の吸い込み空気温度とほぼ等しくなるように第2流量制御装置で制御する。第1室内熱交換器5の蒸発温度が室内の吸い込み空気温度とほぼ等しいため、第1室内熱交換器5ではほとんど冷却および除湿は行われず、結果として暖房時の凝縮器の伝熱面積が通常の暖房運転の約半分になり、このため凝縮温度は通常の暖房運転よりも上昇し、吹出し温度の高温化が可能となる。さらにこの暖房高温吹出し運転でも、第2流量制御装置6での冷媒流動音発生はなく、騒音面でも問題となることはない。そして、この空気調和装置は、暖房起動時に高温吹出し運転を所定の時間、たとえば5分間行い、その後通常暖房運転に移行して、部屋の温度偏差および湿度偏差に応じて、通常暖房運転と暖房除湿運転を切換制御される。
【0071】
本実施の形態では冷凍機油は冷媒に溶け難い、アルキルベンゼン系油を用いているが、冷凍サイクル内には冷媒に溶けない異物と冷凍機油に溶ける異物が存在しており、前記異物が多孔質透過材である発泡金属に付着した場合、冷媒に溶け難い冷凍機油が発泡金属を通過する際に、前記異物を洗浄する効果があるため、絞り部の詰まりに対する信頼性が向上する。
【0072】
また、冷媒に溶け易い冷凍機油を用いると、発泡金属に冷凍機油が付着したまま、圧縮機が停止ていたとしても次回に圧縮機が起動した際に、冷媒により付着した冷凍機油を洗浄することが可能であるため、信頼性を向上させることができる。
【0073】
また、本実施の形態では第2流量制御弁の接続配管を2本として説明したが、これにかぎることことはなく、図7および図8に示すように3本でも構わない。
図7は第2流量制御弁の他の構成を示す断面図、図8は図7に示した第2流量制御装置の要部断面図であり、(a)は冷房運転もしくは暖房運転時の第2流量制御装置の動作状態、(b)は冷気味再熱除湿運転における軽負荷時の動作状態、(c)は冷気味再熱除湿運転における高負荷時の動作状態をそれぞれ示す。
【0074】
図7において、16a,16bは弁体11に内設した独立した2個のオリフィス、15b1,15b2は上記2個のオリフィス16a,16bにそれぞれ対応した下流側の弁体11内流路に配設された発泡金属、17b1,17b2は上記オリフィス16a,16bとその下流側の発泡金属15b1,15b2の間にそれぞれ設けられた空間、そして10a,10bは第2流量制御装置6と2分割された第2および第3の室内熱交換器をそれぞれ接続する接続配管である。なお、図中、図2と同一または相当部分は同一符号を付け、その説明は省略する。
【0075】
次に図7に示す第2流量制御装置における流体の動作について説明する。
まず、第1室内熱交換器(図示せず)から流出した冷媒は、弁座18に接続された配管9を介して弁室14内へ流入する。ここで、図7に示す弁体11の位置は、弁体内部に配設したオリフィス16aおよび16bが2分割された第2室内熱交換器へ連接した接続配管10a,10bの中央部になるようステッピングモータ12の回転駆動により駆動軸13を介して位置設定される。弁室14を満たした冷媒はオリフィス16a,16bの上流側に配設された発泡金属15aを通過し空間17aを経て独立した2個のオリフィス16a,16bから別々に絞られ、その後それぞれに空間17b1,17b2を経て下流側の発泡金属15b1,15b2を通過して接続配管10a,10bより流出する。その際、オリフィスの下流側の発泡金属15b1,15b2は冷媒流れ方向に連通する多孔質透過材から成っているので、オリフィス16a,16bから下流側は流路を分離する隔壁が上記発泡金属15b1,15b2の間にも設けられている。
【0076】
次に、図8を用いて弁体11の動作について説明する。
図8に示すように、弁体11は扇形状の断面を成し、その扇形状の中心部に駆動軸13が嵌合され、弁座18に軸支されている。そして弁体11には内設された発泡金属およびオリフィス16a,16bが接続配管10a,10bとそれぞれ流れ方向に重なるような配置としている。
【0077】
図8(a)は、第2流量制御装置の弁体が全開状態を示しており、駆動軸13により上記扇形状の弁体11がどの接続配管9、10にも掛からず流路を塞がない位置に設定されている。これにより、配管9から流入した冷媒は状態変化もなく弁室を介して接続配管10aおよび10bから分かれて流出していく。
【0078】
図8(b)は、駆動軸13の回転により弁体11が一方の第3の接続配管10bへの流路を塞ぎ、もう一方の第2の接続配管10a側だけへ冷媒を流す位置に設定された状態を示しており、冷気味再熱除湿運転における軽負荷時の動作状態になる。配管9から弁室内に流入した冷媒は、第3の接続配管10bの流路が弁体により塞がれているため、発泡金属およびオリフィス16bだけを通過し状態変化(絞り)して第2の接続配管10aへ流出する。この第2の接続配管10aは2分割された第2室内熱交換器の一方へ接続されているので軽負荷に対応した熱交換量を得ることができる。
【0079】
図8(c)は、さらに弁体11が回転移動し、接続配管10aおよび10bの中央部にオリフィス16aおよび16bが位置して両配管に冷媒を流出される状態を示しており、冷気味再熱除湿運転における高負荷時の動作状態になる。第1の接続配管9から弁室内に流入した冷媒は、弁体11に内設した発泡金属およびオリフィス16aおよび16bを通過することにより絞られて状態変化をした後、接続配管10aおよび10bの2流路へ分かれてそれぞれに接続された2分割の第2および第3の室内熱交換器へ流出する。この場合は、分割された第2および第3の室内熱交換器の全てに冷媒を流通させることにより高負荷時に対応した熱交換量を得ることができる。
【0080】
上述のように、本発明の第2流量制御弁は冷媒の流れを分配もしくは統合する機能を併せ持つ。さらに、弁体により第2の接続配管10aの流路を閉止し、第3の接続配管10bのみに冷媒を絞り、流す機能も有し、空調負荷の変化に対応した木目細かな空調制御ができる。
【0081】
実施の形態2.
図9は実施の形態2に係わる空気調和装置の第2流量制御装置6の構成断面図であり、図において、11は弁体、12はステッピングモータ、18はオリフィス16と発泡金属15a,15bを一体として構成した弁座、31は弁体11に設けられた係止部、32は弁座18を支持する保持部、33はこれらを収納する弁外郭である。なお図中、図2に示したものと同一または同様の構成部品には同一符号を付して、その説明を省略する。また、この第2流量制御装置を用いた冷媒回路構成は実施の形態1と同様であり、本実施の形態2の冷媒回路の動作は実施の形態1で述べた冷房運転、冷気味除湿運転および暖房運転が可能であり動作も同様であるため説明を省略する。
【0082】
図9に示す第2流量制御装置は、オリフィス16を挟んで冷媒の流れ方向に空間を介して発泡金属15a,15bを配置した弁座18の構成と先端部が円錐状(ニードル形状)をした弁体11との組合せからなる絞り部がステッピングモータ12の回転駆動により流路を全開にするとともに、冷媒の絞り量を可変できるものである。弁座18は弁体11が貫通する保持部32に固定されている。また、ステッピングモータ12の回転により上下方向に駆動する弁体11とともに係止部31は上下方向へ移動し、この係止部31が上方へ所定距離だけ動くと、弁体11が貫通した保持部32に当接し、弁体11がそれ以上上方へ動くと係止部31を介して保持部32を上方へ持ち上げ移動させる。それに伴い保持部32に固定された弁座18も上方へ移動する構成となっている。従って、弁座18は弁体11の上下方向への稼動範囲の一部で同時に上下に稼動するように構成されている。
また、弁外郭32内の弁室14は弁座18の上流側および下流側の両側に設けられている。なお、オリフィス16の上流側に設けられた発泡金属15aは弁体11が通過できるように弁体の直径より1ミリメートル程度大きな貫通穴を有している。
【0083】
図10は図9の第2流量制御弁6における冷房運転時もしくは暖房運転時の動作状態を示している。図10に示すように、弁座が弁体と同時にステッピングモータ側上方に駆動するため、弁座18が第1室内熱交換器と連接する接続配管9の位置より上方に持ち上げられると、接続配管9から流入した冷媒は下流側の弁室14bを介して第2室内熱交換器との接続配管10へほとんど圧力損失がない状態で接続可能となる。
【0084】
図11は図9の第2流量制御弁6における冷房除湿運転時もしくは暖房除湿運転時の動作状態を示している。ステッピングモータ12の回転により弁体11が下方側へ駆動するに伴い保持部32を介して弁座18も下方へ移動する。そして弁座18が弁ケース32に設けた段差部に当接して密着する。接続配管9から流入した冷媒は弁室14aを経て弁体11のニードル部とオリフィス16で構成される絞り部を通過することにより、減圧される。その後、下流側の発泡金属15bを通過し弁室14bを経て接続配管10から流出する。その際、入口流入側に設置してある発泡金属15aと出口流出側に設置された発泡金属15bおよび入口空間17aと出口空間17bにより、低騒音に絞られる。入口側発泡金属15aと弁体11の間の隙間は約0.5ミリメートルであるため、液冷媒と蒸気冷媒の整流効果を十分保持している。従って、絞り部を通過する気液二相冷媒は十分に混合され、均質化される。また、弁体11をステッピングモータ12で連続的に上下方向に駆動させるため、オリフィス16と先端部が円錐状をした弁体11で構成される絞り部の絞り量(開口面積)を連続的に変化させることが可能となり、容量可変のインバータ圧縮機との組み合わせにより、冷媒回路をいかなる条件においても高効率で運転することが可能となる。さらに、圧縮機起動時の立上り性能を向上させることも可能となる。
【0085】
さらに、この空気調和装置の冷媒としては、R410Aに限ることはなく、HFC系冷媒であるR407CやR404A、R507Aであっても良い。また、地球温暖化防止の観点から、地球温暖化系数の小さなHFC系冷媒であるR32単独、R152a単独あるいはR32/R134aなどの混合冷媒であっても良い。
また、プロパンやブタン、イソブタンなどのHC系冷媒やアンモニア、二酸化炭素、エーテルなどの自然系冷媒およびそれらの混合冷媒であっても良い。特に、プロパンやブタン、イソブタンおよびそれらの混合冷媒はR410Aに比べ動作圧力が小さく、凝縮圧力と蒸発圧力の圧力差が小さいため、オリフィスの内径を大きくすることが可能であり、詰まりに対する信頼性がさらに向上させることができる。
【0086】
【発明の効果】
以上のように、本発明の請求項1に係る流量制御装置は、弁室に固定された弁座を介して連通する第1の接続配管および第2の接続配管と、前記弁座に当接しながら回転可能な弁体と、前記弁体に内設したオリフィスの上流および下流の少なくとも一方に空間を設けて流れ方向に連通する多孔質透過材を配置し、前記多孔質透過材の複数の通気孔を通過して整流された蒸気冷媒と液冷媒が同時に通過する径を有する前記オリフィスを用いて構成される絞り部と、前記弁体の回転駆動により、前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、流出側となる前記第2の接続配管に前記弁体の絞り部が流れ方向に重なる第2の切換位置と、を備え、前記弁体が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御するので、蒸気スラグや気泡の崩壊の発生を防止することで流体流動音の発生を防止し、騒音を低減できる効果が得られる。
【0088】
また、本発明の請求項に係る流量制御装置は、弁室に連通する第1の接続配管および第2の接続配管と、前記弁室の内部を移動可能な弁座と前記弁座に離接する弁体とからなる絞り部と、前記弁座にオリフィスの上流および下流の少なくとも一方に空間を介して一体に配設されて構成する流れ方向に連通した多孔質透過材と、前記弁体の上方移動につれて前記弁体に設けた係止部が前記弁座を支持する保持部に係止することにより前記弁座が前記弁体と同時に連動して前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、前記弁体の下方移動につれて前記係止部が前記保持部から離れることにより前記弁座が流入側となる前記第1の接続配管より下方に移動して、前記第1の接続配管から前記多孔質透過材を通過して整流された蒸気冷媒と液冷媒が混合均質化されて通過する前記オリフィスと前記弁体で構成される前記絞り部を介して前記第2の接続配管に流通する第2の切換位置と、を備え、前記弁座が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御するので、蒸気スラグや気泡の崩壊の発生を防止することで流体流動音の発生を防止し、騒音を低減できる効果が得られる。
【0089】
また、本発明の請求項に係る流量制御装置は、前記多孔質透過材に前記弁体より大きな穴を設けたので、除湿運転時の効率を高める効果が得られる。
【0090】
また、本発明の請求項に係る流量制御装置は、前記弁体の先端部を円錐状としたので、絞り量を一定の割合で変化させることができる効果が得られる。
【0093】
また、本発明の請求項に係る流量制御装置は、前記多孔質透過材の平均気孔径を100μm以上としたので、絞り部の目詰まりを防止できる効果が得られる。
【0094】
また、本発明の請求項に係る流量制御装置は、前記多孔質透過材の流れ方向の厚さを1mm以上としたので、冷媒流動音を低減し、目詰まりを防止するとともに加工を容易にする効果が得られる。
【0095】
また、本発明の請求項に係る流量制御装置は、前記多孔質透過材の平均気孔径以上の貫通した穴を少なくとも一つ設けたので、目詰まりを防止でき、信頼性を向上させる効果が得られる。
【0096】
また、本発明の請求項に係る冷凍サイクル装置は、請求項1乃至請求項のいずれかに記載の流量制御装置を備え、前記絞り部に気液二相冷媒を通過させるので、冷媒蒸気スラグや冷媒気泡の崩壊の発生を防止することで冷媒流動音の発生を防止し、騒音を低減し、さらにサイクル内異物の目詰まりを防止できる効果がある。
【0097】
本発明の請求項に係る冷凍サイクル装置は、冷媒に溶け易い冷凍機油を用いたので、冷媒に溶けず冷凍機油に溶けるサイクル内異物が多孔質透過材に付着しても冷凍機油により洗浄でき、目詰まりに対する信頼性を向上させる効果が得られる。
【0098】
本発明の請求項10に係る冷凍サイクル装置は、冷媒に溶け難い冷凍機油を用いたので、圧縮機停止中に冷凍機油が多孔質透過材に付着しても、圧縮機起動時に冷媒により付着した冷凍機油を洗浄することができため、信頼性を向上させる効果が得られる。
【0099】
本発明の請求項11に係る空気調和装置は、圧縮機、室外熱交換器、第1流量制御装置、第1室内熱交換器、第2流量制御装置および第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御装置は、弁室に固定された弁座を介して連通する第1の接続配管および第2の接続配管と、前記弁座に当接しながら回転可能な弁体と、前記弁体に内設したオリフィスの上流および下流の少なくとも一方に空間を設けて流れ方向に連通する多孔質透過材を配置し、前記多孔質透過材の複数の通気孔を通過して整流された蒸気冷媒と液冷媒が同時に通過する径を有する前記オリフィスを用いて構成される絞り部と、前記弁体の回転駆動により、前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、流出側となる前記第2の接続配管に前記弁体の絞り部が流れ方向に重なる第2の切換位置と、を備え、前記弁体が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御するので、絞り部に気液二相冷媒を通過させ、冷媒蒸気スラグや冷媒気泡の崩壊の発生を防止することで冷媒流動音の発生を防止し、騒音を低減し、さらにサイクル内異物の目詰まりを防止できる効果が得られる。
【0101】
本発明の請求項12に係る空気調和装置は、圧縮機、室外熱交換器、第1流量制御装置、第1室内熱交換器、第2流量制御装置および第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御装置は、弁室に連通する第1の接続配管および第2の接続配管と、前記弁室の内部を移動可能な弁座と前記弁座に離接する弁体とからなる絞り部と、前記弁座にオリフィスの上流および下流の少なくとも一方に空間を介して一体に配設されて構成する流れ方向に連通した多孔質透過材と、前記弁体の上方移動につれて前記弁体に設けた係止部が前記弁座を支持する保持部に係止することにより前記弁座が前記弁体と同時に連動して前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、前記弁体の下方移動につれて前記係止部が前記保持部から離れることにより前記弁座が流入側となる前記第1の接続配管より下方に移動して、前記第1の接続配管から前記多孔質透過材を通過して整流された蒸気冷媒と液冷媒が混合均質化されて通過する前記オリフィスと前記弁体で構成される前記絞り部を介して前記第2の接続配管に流通する第2の切換位置と、を備え、前記弁座が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御するので、絞り部に気液二相冷媒を通過させ、冷媒蒸気スラグや冷媒気泡の崩壊の発生を防止することで冷媒流動音の発生を防止し、騒音を低減し、さらにサイクル内異物の目詰まりを防止できる効果が得られる。また、冷房運転および暖房運転と除湿運転を性能低下無しに切換え可能とする効果が得られる。
【0102】
また、本発明の請求項13に係る空気調和装置は、前記多孔質透過材に前記弁体より大きな穴を設けたので、除湿運転時の効率を高める効果が得られる。
【0103】
また、本発明の請求項14に係る空気調和装置は、前記弁体の先端部を円錐状としたので、絞り量を一定の割合で変化させることができる効果が得られる。
【0105】
また、本発明の請求項15に係る空気調和装置は、潜熱比を低下させる運転時に前記絞り部を冷媒流路とするよう制御する制御部を備えたので、絞り部に気液二相冷媒を通過させても冷媒流動音を抑制することができ、快適な室内空間を提供できる効果が得られる。
【0106】
また、本発明の請求項16に係る空気調和装置は、前記第2室内熱交換器と並列に配管接続された第3室内熱交換器と、前記第3室内熱交換器から前記弁座を介して弁室へ連通する第3の接続配管と、前記弁体に内設する2つ以上の絞り部とを備え、潜熱比を低下させる運転時に、前記第2室内熱交換器に接続する第2の接続配管が絞り部を流通する冷媒流路とするとともに、前記第3の接続配管を閉止するよう制御したので、空調負荷の変化に対応した除湿運転が行え、効率の向上が図れる効果が得られる。
【0107】
本発明の請求項17に係る空気調和装置は、冷房または除湿並びに暖房運転時に前記絞り部を冷媒回路とするよう制御する制御部を備えたので、運転モードの違いによる冷媒の相状態の変化に対しても冷媒流動音を効果的に低減しながら快適な除湿ができる効果が得られる。
【0108】
また、本発明の請求項18に係る空気調和装置は、暖房運転起動時に前記絞り部を冷媒流路とするよう制御する制御部を備えたので、吹出温度を高温にして速暖感を高めた快適な暖房ができる効果が得られる。
【0109】
また、本発明の請求項19に係る空気調和装置は、暖房運転時で設定温度と室内温度との差が所定値以上の場合に前記絞り部を冷媒流路とするよう制御する制御部を備えたので、室内温度が設定温度に対して充分低い場合に高温の吹出風を吹き出すことができるから、冷風感を与えることなく快適な暖房ができる効果が得られる。
【0110】
また、本発明の請求項20に係る空気調和装置は、冷媒を非共沸混合冷媒としたので、冷媒の相状態が液、ガス、二相の様々な状態に変化しても低騒音で安定的に冷媒の流動抵抗を制御し、通過させることができ、低騒音で安定した空調制御ができる効果が得られる。
【0111】
また、本発明の請求項21に係る空気調和装置は、R22冷媒より蒸気密度の大きな冷媒としたので、流量制御装置を小型化でき、利用側の装置を小型化できる効果が得られる。
【0112】
また、本発明の請求項22に係る空気調和装置は、冷媒をハイドロカーボン系冷媒としたので、絞り部のオリフィスの内径を大きくすることが可能であり、詰まりに対する信頼性が向上する効果が得られる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1による空気調和装置の冷媒回路図である。
【図2】 本発明の実施の形態1に係わり絞り装置の構成断面図である。
【図3】 本発明の実施の形態1に係わり絞り装置の動作状態での弁体の位置を表す図である。
【図4】 本発明の実施の形態1に係わり冷房除湿運転時の動作状態を表す図である。
【図5】 本発明の実施の形態1に係わり暖房除湿運転時の動作状態を表す図である。
【図6】 本発明の実施の形態1に係わり絞り部入口の冷媒の流動様式図である。
【図7】 本発明の実施の形態1に係わりその他の形態を表す絞り装置の構成断面図である。
【図8】 本発明の実施の形態1に係わりその他の形態を表す絞り装置の動作状態での弁体の位置を表す図である。
【図9】 本発明の実施の形態2に係わり絞り装置の構成断面図である。
【図10】 本発明の実施の形態2に係わり冷房運転または暖房運転時の絞り装置の構成断面図である。
【図11】 本発明の実施の形態2に係わり冷房除湿運転時の絞り装置の構成断面図である。
【図12】 従来の空気調和装置を示す冷媒回路図である。
【図13】 従来の絞り装置の構成断面図である。
【図14】 従来のその他絞り装置の構成断面図である。
【符号の説明】
1 圧縮機、2 四方弁、3 室外熱交換器、4 第1流量制御装置、5 第1室内熱交換器、6 第2流量制御装置、7 第2室内熱交換器、9 第1室内熱交換器と第2流量制御弁の接続配管、10 第2室内熱交換器と第2流量制御弁の接続配管、11 弁体、12 ステッピングモータ、13 駆動軸、14 弁室、15 発泡金属、16 オリフィス、17 発泡金属とオリフィスの間の空間、18 弁座、19 二方弁、20 絞り装置、21 電磁コイル、22 切込み溝、23 多孔体、24 室外ユニット、25 室内ユニット、31 係止部、32 保持部、33 弁外郭。
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a throttle device suitable for refrigerant flow control, improves the controllability of temperature and humidity during cooling or heating operation, and further improves the control of the refrigerant flow. The present invention relates to an air conditioner that reduces noise and improves comfort for indoor temperature and humidity and noise.
[0002]
[Prior art]
In a conventional air conditioner, a variable capacity compressor such as an inverter is used to cope with fluctuations in the air conditioning load, and the rotational frequency of the compressor is controlled according to the size of the air conditioning load. However, if the air-conditioning load is reduced during cooling operation and the compressor rotation is reduced, the evaporation temperature also rises and the dehumidifying capacity of the evaporator decreases, or the evaporation temperature rises above the indoor dew point temperature, making it impossible to dehumidify. There was a problem to do.
[0003]
The following air conditioner has been devised as means for improving the dehumidifying capacity during the cooling and low capacity operation. FIG. 12 is a refrigerant circuit diagram of a conventional air conditioner disclosed in, for example, Japanese Patent Laid-Open No. 11-51514, and FIG. 13 is a cross-sectional view of a general throttle valve provided in FIG. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a first flow control device, 5 is a first indoor heat exchanger, 6 is a second flow control device, and 7 is a second indoor heat. These are exchangers, which are sequentially connected by piping to constitute a refrigeration cycle. The first flow rate control device 4 has a configuration in which a two-way valve 19 and a throttle device 20 are connected by piping in parallel. Reference numeral 24 is an outdoor unit, and 25 is an indoor unit.
[0004]
Next, the operation of the conventional air conditioner will be described. In the cooling operation, the refrigerant exiting the compressor 1 passes through the four-way valve 2, condenses and liquefies in the outdoor heat exchanger 3, and the two-way valve 19 of the first flow control device 4 is closed. The pressure is reduced at 20 and evaporated in the indoor heat exchangers 5 and 7, and returns to the compressor 1 through the four-way valve 2 again. Further, in the heating operation, the refrigerant that has exited the compressor 1 passes through the four-way valve 2, contrary to the cooling operation, and is condensed and liquefied in the indoor heat exchangers 5 and 7, and the two-way valve 19 of the first flow control device 4. Is closed, the pressure is reduced by the main throttle device 20 and evaporated in the outdoor heat exchanger 3 to return to the compressor 1 through the four-way valve 2 again.
[0005]
On the other hand, during the dehumidifying operation, the main throttle device 20 of the first flow control device 4 is closed, the two-way valve 19 is opened, and the refrigerant flow rate is controlled by the second flow control valve 6, whereby the first indoor heat exchanger 5 is Since the condenser, that is, the reheater, and the second indoor heat exchanger 7 operate as an evaporator and the indoor air is heated by the first indoor heat exchanger 5, a dehumidifying operation with a small decrease in room temperature becomes possible.
[0006]
[Problems to be solved by the invention]
In the conventional air conditioner as described above, since the flow rate control valve having an orifice is normally used as the second flow rate control valve installed in the indoor unit, the refrigerant flow generated when the refrigerant passes through the orifice. The sound was loud, which caused the indoor environment to deteriorate. In particular, during the dehumidifying operation, there is a problem that the inlet side of the second flow control valve becomes a gas-liquid two-phase refrigerant, and the refrigerant flow noise increases.
[0007]
As a measure for reducing the refrigerant flow noise of the second flow rate control valve during the dehumidifying operation, a plurality of cut grooves and valve bodies are provided in the flow rate control valve disclosed in Japanese Patent Laid-Open Nos. 11-51514 and 2001-12825. Some of them are provided with an orifice-like throttle channel. However, in this refrigerant flow noise reduction measure, the throttle portion is devised so that the gas-liquid two-phase refrigerant flows continuously through a plurality of orifice-shaped flow paths, but the number of flow paths that can be arranged for processing is limited. Therefore, it is not effective, and there is a problem that the refrigerant flow noise increases. As a result, additional measures such as providing a sound insulating material and a vibration damping material around the second flow control device are required, and there are problems such as an increase in the cost of the flow control valve, a deterioration in installability, and a deterioration in recyclability. It was.
[0008]
On the other hand, in the flow rate control device used in the air conditioner disclosed in Japanese Patent Application Laid-Open No. 7-146032, as shown in the sectional view of FIG. A porous body 23 is provided on the side as a filter. However, since the distance between the porous body 23 and the throttle portion is large, the gas-liquid two-phase refrigerant cannot be homogenized and continuously supplied to the throttle portion effectively, and there is a problem that the refrigerant flow noise increases. there were.
[0009]
The present invention has been made in order to solve the above-described problems. A refrigeration cycle apparatus and an air conditioner using a throttling device that can significantly reduce refrigerant flow noise and are not blocked by foreign matter in the cycle. The purpose is to obtain.
[0010]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a flow control device comprising: a first connection pipe and a second connection pipe communicating with each other via a valve seat fixed to a valve chamber; and a valve rotatable while contacting the valve seat. Body and the valve body A vapor permeable refrigerant and a liquid rectified through a plurality of ventilation holes of the porous permeable material are provided with a space in at least one of upstream and downstream of the orifice provided therein and communicating in the flow direction. Constructed using the orifice having a diameter through which refrigerant passes simultaneously The first switching position where the first connection pipe and the second connection pipe communicate directly with each other through the valve chamber by the rotation of the throttle portion and the valve body, and the second switching position which is the outflow side. A connecting pipe having a second switching position where a throttle portion of the valve body overlaps in a flow direction, and the flow rate is controlled by switching the valve body to the first switching position and the second switching position. It is.
[0012]
Claims of the invention 2 The flow control device according to the present invention includes a first connecting pipe and a second connecting pipe that communicate with the valve chamber, a valve seat that can move inside the valve chamber, and a valve body that is separated from and in contact with the valve seat. And an orifice in the valve seat Via space in at least one of upstream and downstream of A porous permeable material that is integrally disposed and communicated in the flow direction, and a locking portion provided on the valve body as the valve body moves upward is locked to a holding portion that supports the valve seat. The valve seat is interlocked with the valve body at the same time as the first connection pipe and the second connection pipe communicate directly with each other through the valve chamber, and the valve body moves downward. When the locking portion is separated from the holding portion, the valve seat moves downward from the first connection pipe on the inflow side, and from the first connection pipe. The said throttle part comprised by the said orifice and the said valve body through which the vapor refrigerant rectified and passed through the said porous permeable material and liquid refrigerant pass through mixing and homogenization And a second switching position that circulates through the second connection pipe, and the flow rate is controlled by switching the valve seat to the first switching position and the second switching position. .
[0013]
Claims of the invention 3 In the flow control device according to the present invention, a hole larger than the valve body is provided in the porous permeable material.
[0014]
Claims of the invention 4 In the flow control device according to the above, the tip of the valve body is conical.
[0017]
Claims of the invention 5 In the flow rate control device according to the present invention, an average pore diameter of the porous permeable material is 100 μm or more.
[0018]
Claims of the invention 6 In the flow control device according to the present invention, the thickness of the porous permeable material in the flow direction is 1 mm or more.
[0019]
Claims of the invention 7 The flow rate control device according to the present invention is provided with at least one through-hole that is equal to or larger than the average pore diameter of the porous permeable material.
[0020]
Claims of the invention 8 The refrigeration cycle apparatus according to claim 1 to claim 1. 7 And the gas-liquid two-phase refrigerant is passed through the throttle portion.
[0021]
Claims of the invention 9 The refrigeration cycle apparatus according to the above uses refrigeration oil that is easily dissolved in a refrigerant.
[0022]
Claims of the invention 10 The refrigeration cycle apparatus according to the above uses refrigeration oil that is difficult to dissolve in the refrigerant.
[0023]
Claims of the invention 11 The air conditioner according to the present invention includes an air having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control device, a first indoor heat exchanger, a second flow control device, and a second indoor heat exchanger are sequentially connected. In the harmony device, the second flow rate control device includes a first connection pipe and a second connection pipe communicating with each other via a valve seat fixed to the valve chamber, and a valve body that is rotatable while contacting the valve seat. And on the valve body A vapor permeable refrigerant and a liquid rectified through a plurality of ventilation holes of the porous permeable material are provided with a space in at least one of upstream and downstream of the orifice provided therein and communicating in the flow direction. Constructed using the orifice having a diameter through which refrigerant passes simultaneously The first switching position where the first connection pipe and the second connection pipe communicate directly with each other through the valve chamber by the rotation of the throttle portion and the valve body, and the second switching position which is the outflow side. A connecting pipe having a second switching position where a throttle portion of the valve body overlaps in a flow direction, and the flow rate is controlled by switching the valve body to the first switching position and the second switching position. It is.
[0025]
Claims of the invention 12 The air conditioner according to the present invention includes an air having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control device, a first indoor heat exchanger, a second flow control device, and a second indoor heat exchanger are sequentially connected. In the harmony device, the second flow rate control device includes a first connection pipe and a second connection pipe communicating with the valve chamber, a valve seat movable inside the valve chamber, and a valve body that is separated from and connected to the valve seat. A throttle part comprising: and an orifice in the valve seat Via space in at least one of upstream and downstream of A porous permeable material that is integrally disposed and communicated in the flow direction, and a locking portion provided on the valve body as the valve body moves upward is locked to a holding portion that supports the valve seat. The valve seat is interlocked with the valve body at the same time as the first connection pipe and the second connection pipe communicate directly with each other through the valve chamber, and the valve body moves downward. When the locking portion is separated from the holding portion, the valve seat moves downward from the first connection pipe on the inflow side, and from the first connection pipe. The said throttle part comprised by the said orifice and the said valve body through which the vapor refrigerant rectified and passed through the said porous permeable material and liquid refrigerant pass through mixing and homogenization And a second switching position that circulates through the second connection pipe, and the flow rate is controlled by switching the valve seat to the first switching position and the second switching position. .
[0026]
Claims of the invention 13 The air conditioner according to the present invention is such that a hole larger than the valve body is provided in the porous permeable material.
[0027]
Claims of the invention 14 In the air conditioner according to the above, the tip of the valve body is conical.
[0029]
Claims of the invention 15 The air conditioner according to the present invention includes a control unit that controls the throttle unit to be a refrigerant flow path during operation for reducing the latent heat ratio.
[0030]
Claims of the invention 16 The air conditioner according to the present invention includes a third indoor heat exchanger piped in parallel with the second indoor heat exchanger, and a third air communicating from the third indoor heat exchanger to the valve chamber via the valve seat. Connection pipe and two or more throttle parts installed in the valve body, and the second connection pipe connected to the second indoor heat exchanger circulates through the throttle part during operation for reducing the latent heat ratio. The refrigerant flow path is controlled so as to close the third connection pipe.
[0031]
Claims of the invention 17 The air conditioner according to the present invention includes a control unit that controls the throttle unit to be a refrigerant circuit during cooling or dehumidification and heating operation.
[0032]
Claims of the invention 18 The air conditioner according to the aspect includes a control unit that controls the throttle unit to be a refrigerant flow path when the heating operation is started.
[0033]
Claims of the invention 19 The air conditioner according to the aspect of the invention includes a control unit that controls the throttle unit as a refrigerant flow path when a difference between a set temperature and a room temperature is equal to or greater than a predetermined value during heating operation.
[0034]
Claims of the invention 20 The air conditioning apparatus according to the present invention uses a non-azeotropic mixed refrigerant as a refrigerant.
[0035]
Claims of the invention 21 The air conditioner according to the present invention is a refrigerant having a vapor density larger than that of the R22 refrigerant.
[0036]
Claims of the invention 22 The air conditioner according to the present invention uses a hydrocarbon refrigerant as the refrigerant.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus showing an example of an embodiment of the present invention, and the same parts as those in the conventional apparatus are denoted by the same reference numerals. In the figure, 1 is a compressor, 2 is a flow path switching means for switching the flow of refrigerant in cooling operation and heating operation, for example, a four-way valve, 3 is an outdoor heat exchanger, 4 is a first flow control device, and 5 is a first room. A heat exchanger, 6 is a second flow control device, and 7 is a second indoor heat exchanger, which are sequentially connected by piping to constitute a refrigeration cycle. R410A, which is a mixed refrigerant of R32 and R125, is used as the refrigerant of this refrigeration cycle, and alkylbenzene oil is used as the refrigerator oil.
[0038]
FIG. 2 is a diagram showing a configuration of the second flow rate control device of the air conditioner shown in FIG. 1. In FIG. 2, reference numeral 9 denotes a first connection between the first indoor heat exchanger 5 and the second flow rate control device 6. Connection piping, 10 is a second connection piping for connecting the second flow rate control device 6 and the second indoor heat exchanger, 11 is a valve body, 12 is a stepping motor that rotationally drives the valve body 11, and 13 is a stepping motor. 12 is a drive shaft that transmits the rotation of 12 to the valve body 11, 14 is a valve chamber for the control fluid to flow into the valve body 11, 16 is an orifice provided in the valve body 11, and 15 is upstream and downstream of the orifice 16. A foam metal disposed in the flow path in the valve body 11, 17 is a space provided between the foam metal 15 and the orifice 16, and 18 is a valve seat fixed to the lower portion of the valve chamber 14 and in close contact with the valve body 11. is there.
[0039]
The foam metal 15 as a whole is a porous permeation material, and if the pore diameter of the air holes (the porous body surface through which the fluid can permeate and the internal pores) is 100 micrometers or more, the effect of reducing the flow noise is obtained, In this embodiment, in consideration of the influence of clogging, the average pore diameter is 500 micrometers and the porosity is 92 ± 6%. Further, the thickness of the foam metal in the refrigerant flow direction may be 1 mm or more from the effect of reducing the flow noise and its processability, and is about 3 mm in this embodiment. This foam metal is obtained by applying metal powder or alloy powder to urethane foam and then heat-treating the urethane foam to form a metal in a three-dimensional lattice, and the material is Ni (nickel). In order to increase the strength, Cr (chrome) may be plated.
[0040]
Next, the operation of the fluid in the second flow rate control device shown in FIG. 2 will be described. First, the refrigerant flowing out from the first indoor heat exchanger (not shown) flows into the valve chamber 14 through the first connection pipe 9 connected to the valve seat 18. In FIG. 2, the drive shaft 13 is driven by the rotation of the stepping motor 12 so that the orifice 16 disposed in the valve body 11 is positioned at the center of the second connection pipe 10 connected to the second indoor heat exchanger. Is set to a predetermined switching position. Then, the refrigerant filling the valve chamber 14 passes through the valve body 11 and flows out from the second connection pipe 10, but in the valve body 11, upstream and downstream of the orifice 16. Since the foam metal 15 which forms the porous permeation | transmission material connected in the refrigerant | coolant flow direction is each provided, it circulates through the orifice 16 of a throttle part, passing through these.
The disc-shaped valve seat 16 is located in the lower part of the valve chamber 14, and the drive shaft 13 of the valve body 11 that rotates and moves in close contact with the valve chamber-side surface of the valve seat 16 is perpendicular to the valve seat 16. Provided. Therefore, the stepping motor 12 of the motor unit that drives the drive shaft 13 is arranged in the upper part of the valve chamber 14. Since the valve body 11 is assembled and assembled with the drive shaft 13 connected to the stepping motor 12, the valve body 11 and the valve seat 18 are brought into close contact with each other by fixing the stepping motor 12 to the upper portion of the valve chamber 14. Can be installed. The drive shaft 13 may have a fitting shape protruding from the valve body 11 and the discharge portion of the drive shaft may be inserted into a recess provided on the valve seat 18 side to improve the rigidity of the drive shaft and the valve body. be able to.
[0041]
3 is a sectional view of the second flow rate control device 6 shown in FIG. 2, wherein (a) shows the operating state of the second flow rate control device 6 during cooling operation or heating operation, and (b) shows the cooling state. (C) shows the operation state of the second flow rate control device 6 during the warm reheat dehumidification operation, and (c) shows the operation state of the second flow rate control device 6 during the warm reheat dehumidification operation.
In FIG. 3, the valve body 11 is pivotally supported by a valve seat 18 by a drive shaft 13 inserted through one side of the valve body 11 so that the respective surfaces are in close contact with each other. A foam metal 15 and an orifice 16 are mounted on the opposite side of the valve body 11 from the drive shaft 13. Here, although the foam metal 15 shows a disk shape, it is not limited to this shape, and may be a rectangular shape or a polygonal shape, and a flow passage area that can sufficiently include the connection pipes 9 and 10 connected via the valve seat 18. As long as it has. Further, as shown in FIGS. 3 (a) to 3 (c), the valve body 11 rotates about the drive shaft 13 and the flow from the connection pipes 9 and 10 is fully opened, or one of the pipes is connected to the valve. Since the position is set so as to be closed by the body, the cross-section of the valve body 11 has a shape that does not block the flow path of both the connection pipes 9 and 10 at the same time.
[0042]
In FIG. 3 (a), the valve body 11 is set in the middle of the positions of the first and second connection pipes 9 and 10 (first switching position). 1 flows into the second flow rate control device via the connection pipe 9 and flows to the second heat exchanger via the second connection pipe 10 without changing the state as it is, or the second heat flows in the reverse flow. The exchanger passes through the second flow rate control device without changing its state and flows to the first heat exchanger.
[0043]
3B, the valve body 11 is driven and arranged so as to block the second connection pipe 10 with the drive shaft 13, and the orifice 16 provided in the valve body 11 and the center of the second connection pipe 10 are located. This is the state set at the matching position (second switching position). In this case, the refrigerant flowing from the first heat exchanger into the valve chamber 14 of the second flow rate control device through the first connection pipe 9 passes through the foam metal 15 and the orifice 16 provided in the valve body 11. Then, after the state is changed by the orifice 16, it flows out to the second heat exchanger via the second connection pipe 10.
[0044]
FIG. 3C shows a state in which the drive shaft 13 is further rotated and the orifice 16 is set to be located at the center of the first connection pipe 9. In this case, after the refrigerant flowing into the valve chamber 14 of the second flow rate control device from the second heat exchanger via the second connection pipe 10 changes the state at the orifice 16, the first connection is made. It will flow out to the 1st heat exchanger via piping 9.
[0045]
Next, operation | movement of the refrigerating cycle of the air conditioning apparatus by this Embodiment 1 is demonstrated. In FIG. 1, the flow of the refrigerant during cooling is indicated by solid line arrows. Cooling operation corresponds to the case where both the air conditioning sensible heat load and the latent heat load of the room are large, such as at the start-up and summer, and the air conditioning sensible heat load is small as in the intermediate period and rainy season, but the latent heat load is large It is divided into dehumidifying operation corresponding to. In the normal cooling operation, the second flow control device 6 of the indoor unit receives a command from a control unit (not shown) of the air conditioner and is set to the state of FIG. The refrigerant is circulated and connected to the second indoor heat exchanger 7 with almost no pressure loss.
[0046]
At this time, the high-temperature and high-pressure vapor refrigerant that has exited the compressor 1 that is operated at the number of revolutions corresponding to the air conditioning load passes through the four-way valve 2 and is condensed and liquefied by the outdoor heat exchanger 3. 4 is reduced in pressure to become a low-pressure two-phase refrigerant, flows into the first indoor heat exchanger 5 and evaporates, passes through the second flow rate control device 6 without a large pressure loss, and again evaporates in the second indoor heat exchanger 7. And becomes low-pressure steam refrigerant and returns to the compressor 1 through the four-way valve 2 again.
[0047]
The first flow rate control device is controlled so that the degree of superheat of the refrigerant at the suction portion of the compressor 1 becomes 10 ° C., for example. In such a refrigeration cycle, the refrigerant evaporates in the indoor heat exchangers 5 and 7 to take heat from the room, and the outdoor heat exchanger 3 condenses the refrigerant to release the heat taken in the room outdoors. Cool the room.
[0048]
Next, the operation during the air-cooling dehumidifying operation will be described using the pressure-enthalpy diagram shown in FIG. In FIG. 4, the vertical axis represents pressure and the horizontal axis represents enthalpy, and the English letters shown in the figure correspond to the English letters shown in FIG. During this dehumidifying operation, the second flow rate control device 6 of the indoor unit is set to the state shown in FIG.
[0049]
At this time, the high-temperature and high-pressure vapor refrigerant (point A) exiting the compressor 1 operating at the number of revolutions corresponding to the air conditioning load passes through the four-way valve 2 and exchanges heat with the outside air in the outdoor heat exchanger 3. And condensed into a gas-liquid two-phase refrigerant (point B). The high-pressure two-phase refrigerant is slightly depressurized by the first flow control device 4 and becomes a gas-liquid two-phase refrigerant having an intermediate pressure and flows into the first indoor heat exchanger 5 (point C). The intermediate-pressure gas-liquid two-phase refrigerant flowing into the first indoor heat exchanger exchanges heat with room air and further condenses (point D). Then, the gas-liquid two-phase refrigerant that has flowed out of the first indoor heat exchanger flows into the second flow rate control device 6.
[0050]
In the second flow control device 6, the refrigerant flows from the valve chamber 14 into the throttle portion of the valve body 11 through the first connection pipe 9. In the throttle portion, the pressure is reduced by the orifice 16 via the inlet-side foam metal 15a and the space 17a between the inlet-side foam metal 15a and the orifice 16 to become a low-pressure gas-liquid two-phase refrigerant. And it passes in order of the space 17b between the orifice 16 and the exit side foam metal 15b, the exit side foam metal 15b, and the 2nd connection piping 10, and flows in into the 2nd indoor heat exchanger 7 (point E). The thickness of the foam metal installed at the entrance / exit of the orifice is about 3 millimeters. The orifice has an inner diameter of 0.8 millimeters and a thickness of about 3 millimeters. Thereafter, the refrigerant flowing into the second indoor heat exchanger 7 takes away sensible heat and latent heat of the indoor air and evaporates. The low-pressure vapor refrigerant that has exited the second indoor heat exchanger returns to the compressor 1 through the four-way valve 2 again. The room air is heated by the first indoor heat exchanger 5 and is cooled and dehumidified by the second indoor heat exchanger 7, so that the room air can be dehumidified while preventing the room temperature from lowering.
[0051]
In this dehumidifying operation, the amount of heat exchange of the outdoor heat exchanger 3 is controlled by adjusting the rotational frequency of the compressor 1 and the fan rotational speed of the outdoor heat exchanger 3, and the indoor heat by the first indoor heat exchanger 5 is controlled. The blowing temperature can be controlled over a wide range by adjusting the heating amount of air. In addition, the condensation temperature of the first indoor heat exchanger is controlled by controlling the opening degree of the first flow control device 4 and the rotational speed of the indoor fan, and the heating amount of the indoor air by the first indoor heat exchanger 5 is controlled. You can also. Further, the second flow rate control device 6 is controlled such that the degree of superheat of the refrigerant sucked from the compressor becomes 10 ° C., for example.
[0052]
Next, the heating operation will be described. In FIG. 1, the flow of the refrigerant at the time of heating is indicated by broken-line arrows. In the normal heating operation, the control unit instructs the second flow rate control valve 6 to be in the open position of the valve body 11 as shown in FIG.
[0053]
At this time, the high-temperature and high-pressure refrigerant vapor exiting the compressor 1 flows into the second indoor heat exchanger 7 and the first indoor heat exchanger 5 through the four-way valve 2, and is condensed and liquefied by exchanging heat with the indoor air. To do. In the second flow rate control valve 6, as shown in FIG. 3A, the connection pipe 9 and the connection pipe 10 are connected with a large opening area, so there is almost no refrigerant pressure loss when passing through this valve. There is no reduction in heating capacity or efficiency due to pressure loss. The high-pressure liquid refrigerant that has exited the first indoor heat exchanger 5 is decompressed to a low pressure by the first flow control valve 4, becomes a gas-liquid two-phase refrigerant, and exchanges heat with outdoor air in the outdoor heat exchanger 3. Evaporate. The low-pressure vapor refrigerant exiting the outdoor heat exchanger 3 returns to the compressor 1 again through the four-way valve 2. The opening degree of the first flow rate control valve 4 during the normal heating operation is controlled such that the degree of superheat of the outlet refrigerant of the outdoor heat exchanger 3 is 5 ° C., for example.
[0054]
Next, the operation | movement at the time of heating-like dehumidification operation is demonstrated using the pressure-enthalpy diagram shown in FIG. In FIG. 5, the vertical axis represents pressure and the horizontal axis represents enthalpy, and the English letters shown in the figure correspond to the English letters shown in FIG. In this heating-like dehumidifying operation, the second flow rate control device 6 is set to the state shown in FIG.
[0055]
At this time, the high-temperature and high-pressure vapor refrigerant (point A) exiting the compressor 1 operating at the number of revolutions corresponding to the air-conditioning load passes through the four-way valve 2, and the second indoor heat exchanger 7 It is condensed by heat exchange and becomes a gas-liquid two-phase refrigerant (point E). The high-pressure refrigerant is depressurized by the second flow control device 6 and becomes a low-pressure gas-liquid two-phase refrigerant and flows into the first indoor heat exchanger 5 (point D). The low-pressure gas-liquid two-phase refrigerant flowing into the first indoor heat exchanger 5 exchanges heat with room air and evaporates (C point). The gas-liquid two-phase refrigerant that has flowed out of the first indoor heat exchanger 5 flows into the first flow control device 4.
[0056]
In the first flow control device 4, the low-pressure gas-liquid two-phase refrigerant is slightly depressurized and flows into the outdoor heat exchanger 3 (point B). The refrigerant that has flowed into the outdoor heat exchanger 3 takes the heat of the outdoor air and further evaporates. The low-pressure vapor refrigerant exiting the outdoor heat exchanger returns to the compressor 1 through the four-way valve 2 again. In this heating and dehumidifying operation, the room air is heated by the second indoor heat exchanger 7 and cooled and dehumidified by the first indoor heat exchanger 5, so that the room can be dehumidified while heating the room.
[0057]
In the heating and dehumidifying operation, the rotational frequency of the compressor 1 and the fan rotational speed of the outdoor heat exchanger 3 are adjusted to control the heat exchange amount of the outdoor heat exchanger 3, and the indoor air by the second indoor heat exchanger 7 is controlled. The blowing temperature can be controlled over a wide range by controlling the heating amount. Further, the opening degree of the first flow control valve 4 and the indoor fan rotation speed are adjusted to control the evaporation temperature of the first indoor heat exchanger 5 and the amount of room air dehumidified by the first indoor heat exchanger 5 is controlled. You can also. The opening degree of the second flow control valve 6 is controlled such that the degree of supercooling of the outlet refrigerant of the second indoor heat exchanger 7 is 10 ° C., for example.
[0058]
In the dehumidifying operation in the first embodiment, the throttle process is the orifice 16 in the throttle portion of the valve body 11. When a foam metal, which is a porous permeable material, is installed on the inlet side and the outlet side of the orifice 16, and the valve chamber 14 is provided upstream of the inlet side foam metal 15a, a gas-liquid two-phase refrigerant passes. The generated refrigerant flow noise can be greatly reduced.
[0059]
When the gas-liquid two-phase refrigerant passes through a normal orifice type flow control device, a large refrigerant flow noise is generated before and after the throttle portion in the refrigerant flow direction. In particular, when the flow pattern of the gas-liquid two-phase refrigerant is a slag flow, a large refrigerant flow noise is generated on the upstream side of the throttle portion. This is because, when the flow mode of the gas-liquid two-phase refrigerant is a slag flow, the vapor refrigerant intermittently flows in the flow direction as shown in FIG. 6, and vapor slag or vapor bubbles larger than the throttle channel are generated. As the steam slag or vapor bubbles upstream of the throttle channel collapse when passing through the throttle channel, they vibrate or vapor refrigerant and liquid refrigerant alternately pass through the throttle. This is because the speed is high when the vapor refrigerant passes and is slow when the liquid refrigerant passes, and the pressure upstream of the throttle portion also fluctuates accordingly. Further, the outlet of the conventional second flow rate control device 6 has one to four outlet channels, so the refrigerant flow rate is fast, the outlet part is a high-speed gas-liquid two-phase flow, and the refrigerant collides with the wall surface. The main body and outlet channel always vibrate and generate noise. In addition, jet noise is also increased due to the turbulence and vortices generated by the high-speed gas-liquid two-phase jet at the outlet.
[0060]
The gas-liquid two-phase refrigerant or liquid refrigerant that flows into the throttle part of the valve body 11 of the second flow rate control device 6 shown in FIG. 2 or FIG. 3 passes through the fine and innumerable vent holes of the inlet-side foam metal 15a. The flow is rectified. For this reason, steam slag (large bubbles) such as slag flow in which gas-liquid flows intermittently is decomposed into small bubbles, and the flow state of the refrigerant becomes a homogeneous gas-liquid two-phase flow (a state in which the vapor refrigerant and the liquid refrigerant are well mixed). Since the vapor refrigerant and the liquid refrigerant pass through the orifice 16 at the same time, the speed of the refrigerant does not fluctuate and the pressure does not fluctuate. Further, the porous permeation material such as the inlet side metal foam 15a has a complicated internal flow path, in which the pressure fluctuation is repeated and the pressure fluctuation is made constant while being partially converted into thermal energy. For this reason, even if a pressure fluctuation occurs in the orifice 16, there is an effect of absorbing this, and it is difficult to convey the influence upstream. The high-speed gas-liquid two-phase jet on the downstream side of the orifice 16 is sufficiently slowed down by the outlet-side foam metal 15b, and the velocity distribution is uniformized. Does not collide with the wall surface, and no large vortex is generated in the flow, so that the jet noise is reduced.
[0061]
Furthermore, since the valve chamber 14 is provided upstream of the throttle body inlet side of the valve body 11, it is possible to reduce pressure fluctuations at a low frequency that cannot be suppressed by the inlet side foam metal 15a.
In the above-described second flow rate control device, the structure in which the foam metal is disposed on both the upstream side and the downstream side of the orifice has been described. However, the structure in which the foam metal is disposed on either the upstream side or the downstream side is described. However, the effect of reducing the refrigerant flow noise can be obtained.
[0062]
As a result, it is not necessary to take measures such as wrapping a sound insulating material or a vibration damping material around the outer periphery of the throttle device, which is necessary in the conventional device, and the cost is reduced, and the recyclability of the air conditioner is improved. Note that the problem of the refrigerant flow noise caused by the gas-liquid two-phase refrigerant described above is not limited to an air conditioner, but is a problem for a general refrigeration cycle such as a refrigerator. The same effect can be obtained by widely applying to such refrigeration cycles in general.
[0063]
The flow characteristics (relationship between the refrigerant flow rate and the pressure loss) of the second flow control device 6 during the dehumidifying operation can be adjusted by adjusting the inner diameter of the orifice 16, the length of the flow path through which the refrigerant passes, and the number of orifices. .
That is, when a certain flow rate of refrigerant is caused to flow with a small pressure loss, the inner diameter of the orifice may be increased, the flow path length may be shortened, or a plurality of orifices may be used. On the other hand, when a certain refrigerant flow is caused to flow with a large pressure loss, the inner diameter of the orifice 16 may be reduced, the flow path length may be increased, or one orifice may be used. Shapes such as the inner diameter and flow path length of the orifice used in such a throttle portion are optimally designed at the time of device design.
[0064]
In addition, although the element of the porous permeable material used on the inlet side and the outlet side of the throttle portion has been described in the case of the foam metal in the present embodiment, the same applies even if ceramic, sintered metal, foam resin, wire mesh, or the like is used. An effect is obtained. In addition, the material has been described with nickel or nickel plated with chromium, but the material is not limited to this, and the same effect can be obtained by using other metals.
In addition, the foam metal provided on the inlet side or the outlet side of the orifice is provided with a through hole having a minimum pore diameter of 100 micrometers or more at a position where it does not overlap with the orifice, thereby acting as a bypass. Therefore, the occurrence of clogging of the foam metal can be prevented and the reliability can be improved.
[0065]
Next, an operation control method for the air-conditioning apparatus according to Embodiment 1 will be described. In the air conditioner, for example, a set temperature and a set humidity are set during operation of the air conditioner in order to set a preferred temperature and humidity environment of a resident in the room. The set temperature and set humidity may be entered directly by the occupant directly from the indoor unit's remote control, or for indoor units such as those for hot people, those for cold people, children, and elderly people. It is also possible to store an optimal temperature and humidity value table determined for each target resident in the remote controller and directly input only the target resident. The indoor unit 25 is provided with sensors for detecting the temperature and humidity of the intake air of the indoor unit in order to detect the indoor temperature and humidity.
[0066]
When the air conditioner is activated, the difference between the set temperature and the current indoor intake air temperature is calculated as a temperature deviation, and the difference between the set humidity and the current indoor intake air humidity is calculated as a humidity deviation. The four-way valve 2 of the air conditioner is set to the cooling operation or heating operation position so that these deviations are zero or within a predetermined value. Subsequently, the rotation frequency of the compressor 1, the outdoor fan rotation speed, the indoor fan rotation speed, the throttle opening degree of the first flow control valve 4 and the flow path setting of the second flow control valve 6 are controlled. At this time, when the temperature and humidity deviation are controlled to zero or within a predetermined value, the air conditioner is controlled with priority given to the temperature deviation over the humidity deviation.
[0067]
That is, when both the temperature deviation and the humidity deviation are large at the time of starting the air conditioner, the control unit instructs the second flow rate control valve 6 to be in the fully open position as shown in FIG. Set. In this state, since the refrigerant passing through the second flow control valve 6 has almost no pressure loss, the cooling capacity or the efficiency of the heating capacity does not decrease. In this way, the second flow rate control valve 6 is opened, and first, normal cooling or heating operation is performed so that the temperature deviation in the room is preferentially zero or within a predetermined value over the humidity deviation. When the cooling capacity or heating capacity of the air conditioner matches the thermal load of the room and the temperature deviation is zero or within a predetermined value, the humidity deviation is detected and the humidity deviation is zero or a predetermined value. If it is within, continue the current operation.
[0068]
On the other hand, if the temperature deviation is zero or within a predetermined value and the humidity deviation at this time is still a large value, the second flow rate control valve 6 is set as shown in FIG. 3 (b) or (c). The body 11 is brought into a position in close contact with the valve seat 18. In this way, the second flow rate control valve 6 is set to the throttle state and switched to the cooling dehumidifying operation or the heating dehumidifying operation.
[0069]
As described above, according to the present embodiment, the refrigerant circuit is first switched to a state in which the cooling operation or the heating operation can be performed according to the load of the room by the four-way valve, and then the normal cooling operation to the cooling dehumidifying operation or the normal heating. By switching from the operation to the heating / dehumidifying operation, the temperature / humidity environment in the room can be controlled to an optimum state according to the preference of the resident. Further, even if the phase state of the refrigerant passing through the throttle device or the mixture ratio of the gas and liquid changes due to changes in operation modes such as cooling, dehumidification, and heating, or changes in the air conditioning load, the refrigerant in the throttle portion of the valve body 11 is low It can flow stably.
[0070]
In addition, when the heating is started, the second flow rate control device is switched to the position shown in FIG. That is, a heating / dehumidification cycle is formed when heating is started, and the second flow rate control device controls the evaporation temperature of the first indoor heat exchanger 5 to be substantially equal to the indoor intake air temperature. Since the evaporation temperature of the first indoor heat exchanger 5 is substantially equal to the intake air temperature in the room, the first indoor heat exchanger 5 is hardly cooled and dehumidified. As a result, the heat transfer area of the condenser during heating is usually normal. Therefore, the condensation temperature is higher than that in the normal heating operation, and the blow-out temperature can be increased. Further, even in this heating / high temperature blow-out operation, there is no generation of refrigerant flow noise in the second flow rate control device 6, and there is no problem in terms of noise. The air conditioner performs a high-temperature blow-out operation for a predetermined time, for example, 5 minutes when heating is started, and then shifts to a normal heating operation, in accordance with the temperature deviation and humidity deviation of the room, The operation is switched and controlled.
[0071]
In this embodiment, the refrigeration oil is difficult to dissolve in the refrigerant, and alkylbenzene oil is used. However, there are foreign matters insoluble in the refrigerant and foreign matters that are soluble in the refrigeration oil in the refrigeration cycle. When adhering to the foam metal, which is a material, when the refrigerating machine oil that is difficult to dissolve in the refrigerant passes through the foam metal, there is an effect of washing the foreign matter, so that the reliability of clogging of the throttle portion is improved.
[0072]
If refrigeration oil that is easily dissolved in the refrigerant is used, the refrigeration oil attached by the refrigerant will be washed the next time the compressor starts even if the compressor is stopped with the refrigeration oil adhering to the foam metal. Therefore, reliability can be improved.
[0073]
In the present embodiment, the connection pipe of the second flow rate control valve has been described as two, but this is not restrictive, and there may be three as shown in FIGS. 7 and 8.
FIG. 7 is a cross-sectional view showing another configuration of the second flow rate control valve, FIG. 8 is a cross-sectional view of the main part of the second flow rate control device shown in FIG. 7, and (a) shows the first flow rate during cooling operation or heating operation. 2 shows the operating state of the flow rate control device, (b) shows the operating state at a light load in the cold flavor reheat dehumidifying operation, and (c) shows the operating state at a high load in the cold flavor reheat dehumidifying operation.
[0074]
In FIG. 7, 16a and 16b are two independent orifices provided in the valve body 11, and 15b1 and 15b2 are arranged in the flow passages in the downstream valve body 11 corresponding to the two orifices 16a and 16b, respectively. The foam metals 17b1 and 17b2 are spaces provided between the orifices 16a and 16b and the foam metals 15b1 and 15b2 on the downstream side, and 10a and 10b are the second flow rate control device 6 divided into two parts. It is connection piping which connects 2 and the 3rd indoor heat exchanger, respectively. In the figure, the same or corresponding parts as those in FIG.
[0075]
Next, the operation of the fluid in the second flow rate control device shown in FIG. 7 will be described.
First, the refrigerant that has flowed out of the first indoor heat exchanger (not shown) flows into the valve chamber 14 through the pipe 9 connected to the valve seat 18. Here, the position of the valve body 11 shown in FIG. 7 is such that the orifices 16a and 16b disposed inside the valve body are in the center of the connection pipes 10a and 10b connected to the second indoor heat exchanger divided into two. The position is set via the drive shaft 13 by the rotational drive of the stepping motor 12. The refrigerant filling the valve chamber 14 passes through the foam metal 15a disposed on the upstream side of the orifices 16a and 16b, and is separately throttled from the two independent orifices 16a and 16b via the space 17a. , 17b2, passes through the downstream foam metal 15b1, 15b2, and flows out from the connection pipes 10a, 10b. At that time, the foam metal 15b1 and 15b2 on the downstream side of the orifice is made of a porous permeable material communicating in the refrigerant flow direction, so that the partition wall separating the flow path is provided on the downstream side of the orifices 16a and 16b. 15b2 is also provided.
[0076]
Next, operation | movement of the valve body 11 is demonstrated using FIG.
As shown in FIG. 8, the valve body 11 has a fan-shaped cross section, and the drive shaft 13 is fitted to the center of the fan shape and is pivotally supported by the valve seat 18. The valve body 11 is arranged such that the foam metal and the orifices 16a and 16b provided in the valve body 11 overlap the connecting pipes 10a and 10b in the flow direction.
[0077]
FIG. 8A shows a state in which the valve body of the second flow rate control device is fully open, and the fan-shaped valve body 11 is not engaged with any of the connecting pipes 9 and 10 by the drive shaft 13 and blocks the flow path. There is no position. As a result, the refrigerant flowing in from the pipe 9 is separated from the connecting pipes 10a and 10b through the valve chamber without any change in state and flows out.
[0078]
FIG. 8B shows a position where the valve body 11 closes the flow path to one third connection pipe 10b by the rotation of the drive shaft 13 and the refrigerant flows only to the other second connection pipe 10a side. In this state, an operation state at light load in the cold reheat dehumidification operation is obtained. The refrigerant flowing into the valve chamber from the pipe 9 passes through only the foam metal and the orifice 16b and changes its state (throttle) because the flow path of the third connection pipe 10b is blocked by the valve body. It flows out to the connection pipe 10a. Since this second connection pipe 10a is connected to one of the two divided second indoor heat exchangers, a heat exchange amount corresponding to a light load can be obtained.
[0079]
FIG. 8 (c) shows a state in which the valve body 11 further rotates and the orifices 16a and 16b are located in the center of the connection pipes 10a and 10b and the refrigerant flows out to both pipes. It becomes the operation state at the time of high load in thermal dehumidification operation. The refrigerant that has flowed into the valve chamber from the first connection pipe 9 is squeezed by passing through the foam metal and the orifices 16a and 16b provided in the valve body 11, and then the state of the refrigerant is changed to 2 of the connection pipes 10a and 10b. It divides | segments into a flow path, and flows out into the 2nd divided 2nd and 3rd indoor heat exchanger connected to each. In this case, a heat exchange amount corresponding to a high load can be obtained by circulating the refrigerant through all of the divided second and third indoor heat exchangers.
[0080]
As described above, the second flow rate control valve of the present invention also has a function of distributing or integrating the refrigerant flow. Further, the valve body closes the flow path of the second connection pipe 10a, and has a function of restricting and flowing the refrigerant only to the third connection pipe 10b, so that fine air conditioning control corresponding to changes in the air conditioning load can be performed. .
[0081]
Embodiment 2. FIG.
FIG. 9 is a cross-sectional view of the second flow control device 6 of the air conditioner according to the second embodiment. In the figure, 11 is a valve body, 12 is a stepping motor, 18 is an orifice 16 and metal foams 15a and 15b. An integral valve seat, 31 is a locking portion provided on the valve body 11, 32 is a holding portion for supporting the valve seat 18, and 33 is a valve shell for housing them. In the figure, the same or similar components as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. The refrigerant circuit configuration using the second flow rate control device is the same as that of the first embodiment, and the operation of the refrigerant circuit of the second embodiment is the cooling operation, the cold dehumidifying operation described in the first embodiment, and Since the heating operation is possible and the operation is the same, the description is omitted.
[0082]
In the second flow rate control device shown in FIG. 9, the configuration of the valve seat 18 in which the foamed metals 15a and 15b are arranged through the space in the refrigerant flow direction with the orifice 16 in between and the tip portion has a conical shape (needle shape). The throttle portion formed by the combination with the valve body 11 is capable of fully opening the flow path by the rotational drive of the stepping motor 12 and changing the throttle amount of the refrigerant. The valve seat 18 is fixed to a holding portion 32 through which the valve body 11 passes. Further, the locking portion 31 moves in the vertical direction together with the valve body 11 driven in the vertical direction by the rotation of the stepping motor 12, and when the locking portion 31 moves upward by a predetermined distance, the holding portion through which the valve body 11 penetrates. When the valve body 11 moves further upward, the holding portion 32 is lifted and moved upward via the locking portion 31. Accordingly, the valve seat 18 fixed to the holding portion 32 is also configured to move upward. Therefore, the valve seat 18 is configured to operate up and down simultaneously in a part of the operating range of the valve body 11 in the vertical direction.
Further, the valve chamber 14 in the valve shell 32 is provided on both the upstream side and the downstream side of the valve seat 18. The foam metal 15a provided on the upstream side of the orifice 16 has a through hole that is about 1 millimeter larger than the diameter of the valve body so that the valve body 11 can pass through.
[0083]
FIG. 10 shows the operating state of the second flow rate control valve 6 of FIG. 9 during cooling operation or heating operation. As shown in FIG. 10, since the valve seat is driven upward at the stepping motor side simultaneously with the valve body, when the valve seat 18 is lifted upward from the position of the connection pipe 9 connected to the first indoor heat exchanger, the connection pipe The refrigerant flowing from 9 can be connected to the connecting pipe 10 with the second indoor heat exchanger via the downstream valve chamber 14b with almost no pressure loss.
[0084]
FIG. 11 shows an operation state of the second flow rate control valve 6 of FIG. 9 during the cooling and dehumidifying operation or the heating and dehumidifying operation. As the valve element 11 is driven downward by the rotation of the stepping motor 12, the valve seat 18 also moves downward via the holding portion 32. The valve seat 18 comes into contact with and closely contacts with the stepped portion provided in the valve case 32. The refrigerant flowing in from the connection pipe 9 is reduced in pressure by passing through the valve chamber 14 a and the throttle portion constituted by the needle portion of the valve body 11 and the orifice 16. Thereafter, it passes through the downstream foam metal 15b and flows out from the connection pipe 10 through the valve chamber 14b. At that time, the foam metal 15a installed on the inlet inflow side, the metal foam 15b installed on the outlet outflow side, the inlet space 17a, and the outlet space 17b are reduced to low noise. Since the gap between the inlet-side foam metal 15a and the valve body 11 is about 0.5 millimeters, the rectifying effect of the liquid refrigerant and the vapor refrigerant is sufficiently maintained. Therefore, the gas-liquid two-phase refrigerant passing through the throttle portion is sufficiently mixed and homogenized. Further, since the valve body 11 is continuously driven in the vertical direction by the stepping motor 12, the throttle amount (opening area) of the throttle portion constituted by the orifice 16 and the valve body 11 having a conical tip is continuously set. It becomes possible to change the capacity, and by combining with a variable capacity inverter compressor, the refrigerant circuit can be operated with high efficiency under any conditions. Furthermore, it is possible to improve the start-up performance when the compressor is started.
[0085]
Furthermore, the refrigerant of the air conditioner is not limited to R410A, and may be R407C, R404A, and R507A that are HFC refrigerants. Further, from the viewpoint of preventing global warming, a mixed refrigerant such as R32 alone, R152a alone or R32 / R134a, which is an HFC refrigerant having a small global warming number, may be used.
Further, HC refrigerants such as propane, butane and isobutane, natural refrigerants such as ammonia, carbon dioxide and ether, and mixed refrigerants thereof may be used. In particular, propane, butane, isobutane, and mixed refrigerants thereof have a lower operating pressure than R410A, and the pressure difference between the condensation pressure and the evaporation pressure is small. Therefore, the inner diameter of the orifice can be increased, and the reliability against clogging is improved. Further improvement can be achieved.
[0086]
【The invention's effect】
As described above, the flow control device according to claim 1 of the present invention is in contact with the first and second connection pipes that communicate with each other via the valve seat fixed to the valve chamber, and the valve seat. A rotatable valve body and the valve body A vapor permeable refrigerant and a liquid rectified through a plurality of ventilation holes of the porous permeable material are provided with a space in at least one of upstream and downstream of the orifice provided therein and communicating in the flow direction. Constructed using the orifice having a diameter through which refrigerant passes simultaneously The first switching position where the first connection pipe and the second connection pipe communicate directly with each other through the valve chamber by the rotation of the throttle portion and the valve body, and the second switching position which is the outflow side. A connecting pipe having a second switching position where a throttle portion of the valve body overlaps in a flow direction, and the flow rate is controlled by switching the valve body to the first switching position and the second switching position. By preventing the occurrence of steam slag and bubble collapse, it is possible to prevent the occurrence of fluid flow noise and reduce noise.
[0088]
Further, the claims of the present invention 2 The flow control device according to the present invention includes a first connecting pipe and a second connecting pipe that communicate with the valve chamber, a valve seat that can move inside the valve chamber, and a valve body that is separated from and in contact with the valve seat. And an orifice in the valve seat Via space in at least one of upstream and downstream of A porous permeable material that is integrally disposed and communicated in the flow direction, and a locking portion provided on the valve body as the valve body moves upward is locked to a holding portion that supports the valve seat. The valve seat is interlocked with the valve body at the same time as the first connection pipe and the second connection pipe communicate directly with each other through the valve chamber, and the valve body moves downward. When the locking portion is separated from the holding portion, the valve seat moves downward from the first connection pipe on the inflow side, and from the first connection pipe. The said throttle part comprised by the said orifice and the said valve body through which the vapor refrigerant rectified and passed through the said porous permeable material and liquid refrigerant pass through mixing and homogenization And a second switching position that circulates through the second connection pipe via the valve, and the flow rate is controlled by switching the valve seat to the first switching position and the second switching position. By preventing the occurrence of slag and bubble collapse, it is possible to prevent the occurrence of fluid flow noise and reduce noise.
[0089]
Further, the claims of the present invention 3 In the flow control device according to the present invention, since the porous permeable material has a larger hole than the valve body, an effect of increasing the efficiency during the dehumidifying operation can be obtained.
[0090]
Further, the claims of the present invention 4 In the flow rate control device according to the present invention, the tip of the valve body has a conical shape, so that it is possible to change the throttle amount at a constant rate.
[0093]
Further, the claims of the present invention 5 In the flow control device according to the present invention, the average pore diameter of the porous permeable material is set to 100 μm or more, so that the effect of preventing clogging of the throttle portion is obtained.
[0094]
Further, the claims of the present invention 6 Since the thickness of the porous permeable material in the flow direction is set to 1 mm or more, the flow control device according to the present invention can reduce the refrigerant flow noise, prevent clogging, and facilitate processing.
[0095]
Further, the claims of the present invention 7 Since the flow rate control device according to the present invention is provided with at least one through-hole that is equal to or larger than the average pore diameter of the porous permeable material, it is possible to prevent clogging and to obtain an effect of improving reliability.
[0096]
Further, the claims of the present invention 8 The refrigeration cycle apparatus according to claim 1 to claim 1. 7 Including a flow control device according to any one of the above, and allowing the gas-liquid two-phase refrigerant to pass through the throttle portion, thereby preventing the occurrence of refrigerant flow noise by preventing the occurrence of refrigerant vapor slag and refrigerant bubble collapse, This has the effect of reducing noise and preventing clogging of foreign matter in the cycle.
[0097]
Claims of the invention 9 The refrigeration cycle apparatus according to the present invention uses refrigeration oil that is easily soluble in the refrigerant. The effect which improves is acquired.
[0098]
Claims of the invention 10 Since the refrigeration cycle apparatus according to the above uses refrigeration oil that is difficult to dissolve in the refrigerant, even if the refrigeration oil adheres to the porous permeable material while the compressor is stopped, the refrigeration oil adhering to the refrigerant at the start of the compressor is washed Therefore, the effect of improving the reliability can be obtained.
[0099]
Claims of the invention 11 The air conditioner according to the present invention includes an air having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control device, a first indoor heat exchanger, a second flow control device, and a second indoor heat exchanger are sequentially connected. In the harmony device, the second flow rate control device includes a first connection pipe and a second connection pipe communicating with each other via a valve seat fixed to the valve chamber, and a valve body that is rotatable while contacting the valve seat. And on the valve body A vapor permeable refrigerant and a liquid rectified through a plurality of ventilation holes of the porous permeable material are provided with a space in at least one of upstream and downstream of the orifice provided therein and communicating in the flow direction. Constructed using the orifice having a diameter through which refrigerant passes simultaneously The first switching position where the first connection pipe and the second connection pipe communicate directly with each other through the valve chamber by the rotation of the throttle portion and the valve body, and the second switching position which is the outflow side. A connecting pipe having a second switching position where a throttle portion of the valve body overlaps in a flow direction, and the flow rate is controlled by switching the valve body to the first switching position and the second switching position. The gas-liquid two-phase refrigerant is passed through the constriction part to prevent the refrigerant vapor slag and refrigerant bubbles from collapsing, thereby preventing refrigerant flow noise, reducing noise, and clogging of foreign substances in the cycle. The effect which can be prevented is acquired.
[0101]
Claims of the invention 12 The air conditioner according to the present invention includes an air having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control device, a first indoor heat exchanger, a second flow control device, and a second indoor heat exchanger are sequentially connected. In the harmony device, the second flow rate control device includes a first connection pipe and a second connection pipe communicating with the valve chamber, a valve seat movable inside the valve chamber, and a valve body that is separated from and connected to the valve seat. A throttle part comprising: and an orifice in the valve seat Via space in at least one of upstream and downstream of A porous permeable material that is integrally disposed and communicated in the flow direction, and a locking portion provided on the valve body as the valve body moves upward is locked to a holding portion that supports the valve seat. The valve seat is interlocked with the valve body at the same time as the first connection pipe and the second connection pipe communicate directly with each other through the valve chamber, and the valve body moves downward. When the locking portion is separated from the holding portion, the valve seat moves downward from the first connection pipe on the inflow side, and from the first connection pipe. The said throttle part comprised by the said orifice and the said valve body through which the vapor refrigerant rectified and passed through the said porous permeable material and liquid refrigerant pass through mixing and homogenization A second switching position that circulates through the second connection pipe via the valve seat, and the flow rate is controlled by switching the valve seat to the first switching position and the second switching position. By passing the gas-liquid two-phase refrigerant through the part and preventing the collapse of refrigerant vapor slag and refrigerant bubbles, the generation of refrigerant flow noise can be prevented, noise can be reduced, and clogging of foreign matter in the cycle can be prevented An effect is obtained. Further, it is possible to obtain an effect that the cooling operation, the heating operation, and the dehumidifying operation can be switched without deterioration in performance.
[0102]
Further, the claims of the present invention 13 Since the air conditioning apparatus which concerns on the said porous permeable material provided the hole larger than the said valve body, the effect which improves the efficiency at the time of a dehumidification driving | operation is acquired.
[0103]
Further, the claims of the present invention 14 In the air conditioner according to the present invention, since the tip of the valve body has a conical shape, it is possible to obtain an effect that the throttle amount can be changed at a constant rate.
[0105]
Further, the claims of the present invention 15 The air conditioner according to the present invention includes a control unit that controls the throttle unit as a refrigerant flow path during operation for reducing the latent heat ratio, so that the refrigerant flow noise is generated even when the gas-liquid two-phase refrigerant is passed through the throttle unit. The effect which can suppress and can provide comfortable indoor space is acquired.
[0106]
Further, the claims of the present invention 16 The air conditioner according to the present invention includes a third indoor heat exchanger piped in parallel with the second indoor heat exchanger, and a third air communicating from the third indoor heat exchanger to the valve chamber via the valve seat. Connection pipe and two or more throttle parts installed in the valve body, and the second connection pipe connected to the second indoor heat exchanger circulates through the throttle part during operation for reducing the latent heat ratio. In addition, since the third connecting pipe is controlled to be closed, the dehumidifying operation corresponding to the change in the air conditioning load can be performed, and an effect of improving efficiency can be obtained.
[0107]
Claims of the invention 17 Since the air conditioner according to the present invention includes a control unit that controls the throttle unit to be a refrigerant circuit during cooling or dehumidification and heating operation, the refrigerant flow sound can be detected even when the refrigerant phase state changes due to a difference in operation mode. The effect of comfortable dehumidification can be obtained while effectively reducing.
[0108]
Further, the claims of the present invention 18 The air conditioner according to the present invention includes a control unit that controls the throttle unit as a refrigerant flow path at the time of heating operation start-up. It is done.
[0109]
Further, the claims of the present invention 19 The air-conditioning apparatus according to the aspect of the invention includes the control unit that controls the throttle unit as the refrigerant flow path when the difference between the set temperature and the room temperature is equal to or greater than a predetermined value during heating operation. When the temperature is sufficiently low, a high-temperature blown air can be blown out, so that an effect of comfortable heating can be obtained without giving a cold wind feeling.
[0110]
Further, the claims of the present invention 20 Since the refrigerant is a non-azeotropic refrigerant mixture, the flow resistance of the refrigerant can be controlled stably with low noise even if the refrigerant phase changes to various states of liquid, gas, and two phases. Therefore, it is possible to pass through, and the effect of performing stable air conditioning control with low noise can be obtained.
[0111]
Further, the claims of the present invention 21 Since the air conditioner according to the present invention uses a refrigerant having a vapor density larger than that of the R22 refrigerant, the flow control device can be downsized, and an effect of downsizing the use side device can be obtained.
[0112]
Further, the claims of the present invention 22 In the air conditioner according to the present invention, since the refrigerant is a hydrocarbon-based refrigerant, the inner diameter of the orifice of the throttle portion can be increased, and the effect of improving the reliability against clogging can be obtained.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a structural cross-sectional view of a diaphragm device according to the first embodiment of the present invention.
FIG. 3 is a diagram illustrating the position of the valve body in the operating state of the throttle device according to the first embodiment of the present invention.
FIG. 4 is a diagram illustrating an operating state during the cooling and dehumidifying operation according to the first embodiment of the present invention.
FIG. 5 is a diagram illustrating an operation state during the heating and dehumidifying operation according to the first embodiment of the present invention.
FIG. 6 is a flow diagram of the refrigerant at the inlet of the throttle portion according to the first embodiment of the present invention.
FIG. 7 is a cross-sectional view of a configuration of a diaphragm device according to the first embodiment of the present invention and showing other embodiments.
FIG. 8 is a diagram illustrating the position of the valve body in the operating state of the expansion device according to the first embodiment of the present invention and representing another embodiment.
FIG. 9 is a sectional view of a configuration of a diaphragm device according to a second embodiment of the present invention.
FIG. 10 is a cross-sectional view of the configuration of the expansion device according to the second embodiment of the present invention during cooling operation or heating operation.
FIG. 11 is a structural cross-sectional view of the expansion device during the cooling and dehumidifying operation according to the second embodiment of the present invention.
FIG. 12 is a refrigerant circuit diagram showing a conventional air conditioner.
FIG. 13 is a structural cross-sectional view of a conventional diaphragm device.
FIG. 14 is a structural cross-sectional view of another conventional diaphragm device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Outdoor heat exchanger, 4 1st flow control device, 5 1st indoor heat exchanger, 6 2nd flow control device, 7 2nd indoor heat exchanger, 9 1st indoor heat exchange Connection pipe between the heat exchanger and the second flow control valve, 10 connection pipe between the second indoor heat exchanger and the second flow control valve, 11 valve body, 12 stepping motor, 13 drive shaft, 14 valve chamber, 15 foam metal, 16 orifice , 17 Space between foam metal and orifice, 18 Valve seat, 19 Two-way valve, 20 Throttle device, 21 Electromagnetic coil, 22 Cut groove, 23 Porous body, 24 Outdoor unit, 25 Indoor unit, 31 Locking part, 32 Holding part, 33 valve outer shell.

Claims (22)

弁室に固定された弁座を介して連通する第1の接続配管および第2の接続配管と、前記弁座に当接しながら回転可能な弁体と、前記弁体に内設したオリフィスの上流および下流の少なくとも一方に空間を設けて流れ方向に連通する多孔質透過材を配置し、前記多孔質透過材の複数の通気孔を通過して整流された蒸気冷媒と液冷媒が同時に通過する径を有する前記オリフィスを用いて構成される絞り部と、前記弁体の回転駆動により、前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、流出側となる前記第2の接続配管に前記弁体の絞り部が流れ方向に重なる第2の切換位置と、を備え、前記弁体が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御することを特徴とする流量制御装置。A first connection pipe and a second connection pipe communicating with each other via a valve seat fixed to the valve chamber; a valve body rotatable while being in contact with the valve seat; and an upstream of an orifice provided in the valve body A porous permeable material that is provided with a space in at least one of the downstream sides thereof and communicates in the flow direction, and has a diameter through which the rectified vapor refrigerant and liquid refrigerant simultaneously pass through the plurality of ventilation holes of the porous permeable material. A first switching position in which the first connecting pipe and the second connecting pipe communicate directly with each other through the valve chamber by the rotation drive of the valve body and the throttle portion configured using the orifice having And a second switching position in which the throttle portion of the valve body overlaps in the flow direction on the second connection pipe on the outflow side, and the valve body has the first switching position and the second switching position. Flow rate control characterized by controlling flow rate by switching to Apparatus. 弁室に連通する第1の接続配管および第2の接続配管と、前記弁室の内部を移動可能な弁座と前記弁座に離接する弁体とからなる絞り部と、前記弁座にオリフィスの上流および下流の少なくとも一方に空間を介して一体に配設されて構成する流れ方向に連通した多孔質透過材と、前記弁体の上方移動につれて前記弁体に設けた係止部が前記弁座を支持する保持部に係止することにより前記弁座が前記弁体と同時に連動して前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、前記弁体の下方移動につれて前記係止部が前記保持部から離れることにより前記弁座が流入側となる前記第1の接続配管より下方に移動して、前記第1の接続配管から前記多孔質透過材を通過して整流された蒸気冷媒と液冷媒が混合均質化されて通過する前記オリフィスと前記弁体で構成される前記絞り部を介して前記第2の接続配管に流通する第2の切換位置と、を備え、前記弁座が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御することを特徴とする流量制御装置。A first connecting pipe and a second connecting pipe communicating with the valve chamber; a throttle portion comprising a valve seat movable inside the valve chamber; and a valve body separated from and contacting the valve seat; and an orifice in the valve seat A porous permeable material that is integrally disposed in a space in at least one of the upstream and downstream sides of the valve and communicates in the flow direction, and a locking portion provided on the valve body as the valve body moves upward. The first connecting pipe and the second connecting pipe communicate directly with each other through the valve chamber by engaging the holding member supporting the seat with the valve body simultaneously with the valve body. The valve seat moves downward from the first connection pipe on the inflow side as the locking part moves away from the holding part as the valve body moves downward, and the first connection pipe moves. It said porous passes through the transparent material to rectified vapor refrigerant and liquid refrigerant from Mixing through the narrowed portion formed in the homogenized with the orifice passing the valve body and a second switching position that flows to the second connecting pipe, said valve seat the first A flow rate control device for controlling a flow rate by switching between a switching position and a second switching position. 前記多孔質透過材に前記弁体より大きな穴を設けたことを特徴とする請求項に記載の流量制御装置。The flow control device according to claim 2 , wherein a hole larger than the valve body is provided in the porous permeable material. 前記弁体の先端部を円錐状としたことを特徴とする請求項に記載の流量制御装置。The flow rate control device according to claim 2 , wherein a tip portion of the valve body has a conical shape. 前記多孔質透過材の平均気孔径を100μm以上としたことを特徴とする請求項1または2に記載の流量調整装置。The flow rate adjusting device according to claim 1 or 2 , wherein an average pore diameter of the porous permeable material is 100 µm or more. 前記多孔質透過材の流れ方向の厚さを1mm以上としたことを特徴とする請求項1または2に記載の流量調整装置。The flow rate adjusting device according to claim 1 or 2 , wherein a thickness of the porous permeable material in a flow direction is set to 1 mm or more. 前記多孔質透過材の平均気孔径以上の貫通した穴を少なくとも一つ設けたことを特徴とする請求項1または2に記載の流量制御装置。Flow control device according to claim 1 or 2, characterized in that the through-holes on the average pore diameter or more of the porous permeable member has at least one provided. 請求項1乃至請求項のいずれかに記載の流量制御装置を備え、前記絞り部に気液二相冷媒を通過させることを特徴とする冷凍サイクル装置。A refrigeration cycle apparatus comprising the flow control device according to any one of claims 1 to 7 , wherein a gas-liquid two-phase refrigerant is passed through the throttle portion. 冷媒に溶け易い冷凍機油を用いたことを特徴とする請求項に記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 8 , wherein the refrigeration oil that is easily dissolved in the refrigerant is used. 冷媒に溶け難い冷凍機油を用いたことを特徴とする請求項に記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 8 , wherein a refrigeration oil that hardly dissolves in the refrigerant is used. 圧縮機、室外熱交換器、第1流量制御装置、第1室内熱交換器、第2流量制御装置および第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御装置は、弁室に固定された弁座を介して連通する第1の接続配管および第2の接続配管と、前記弁座に当接しながら回転可能な弁体と、前記弁体に内設したオリフィスの上流および下流の少なくとも一方に空間を設けて流れ方向に連通する多孔質透過材を配置し、前記多孔質透過材の複数の通気孔を通過して整流された蒸気冷媒と液冷媒が同時に通過する径を有する前記オリフィスを用いて構成される絞り部と、前記弁体の回転駆動により、前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、流出側となる前記第2の接続配管に前記弁体の絞り部が流れ方向に重なる第2の切換位置と、を備え、前記弁体が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御することを特徴とする空気調和装置。In the air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control device, a first indoor heat exchanger, a second flow control device, and a second indoor heat exchanger are sequentially connected, the second The flow rate control device includes a first connection pipe and a second connection pipe communicating with each other via a valve seat fixed to the valve chamber, a valve body that can rotate while contacting the valve seat, and an internal valve body . Vapor refrigerant and liquid refrigerant rectified by providing a porous permeable material provided in at least one of the upstream and downstream of the provided orifice and communicating in the flow direction and passing through a plurality of vent holes of the porous permeable material The first connecting pipe and the second connecting pipe are directly communicated with each other through the valve chamber by the throttle portion configured using the orifice having a diameter through which the valve passes and the rotary drive of the valve body. The first switching position and the outlet side And a second switching position in which the throttle portion of the valve body overlaps in the flow direction on the two connection pipes, and the flow rate is controlled by switching the valve body to the first switching position and the second switching position. An air conditioner characterized by: 圧縮機、室外熱交換器、第1流量制御装置、第1室内熱交換器、第2流量制御装置および第2室内熱交換器を順次接続した冷凍サイクルを備えた空気調和装置において、前記第2流量制御装置は、弁室に連通する第1の接続配管および第2の接続配管と、前記弁室の内部を移動可能な弁座と前記弁座に離接する弁体とからなる絞り部と、前記弁座にオリフィスの上流および下流の少なくとも一方に空間を介して一体に配設されて構成する流れ方向に連通した多孔質透過材と、前記弁体の上方移動につれて前記弁体に設けた係止部が前記弁座を支持する保持部に係止することにより前記弁座が前記弁体と同時に連動して前記第1の接続配管と前記第2の接続配管が前記弁室を介して直接連通する第1の切換位置と、前記弁体の下方移動につれて前記係止部が前記保持部から離れることにより前記弁座が流入側となる前記第1の接続配管より下方に移動して、前記第1の接続配管から前記多孔質透過材を通過して整流された蒸気冷媒と液冷媒が混合均質化されて通過する前記オリフィスと前記弁体で構成される前記絞り部を介して前記第2の接続配管に流通する第2の切換位置と、を備え、前記弁座が前記第1の切換位置と第2の切換位置に切換わることにより流量を制御することを特徴とする空気調和装置。In the air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control device, a first indoor heat exchanger, a second flow control device, and a second indoor heat exchanger are sequentially connected, the second The flow rate control device includes a first connecting pipe and a second connecting pipe communicating with the valve chamber, a valve seat movable within the valve chamber, and a valve portion connected to and separated from the valve seat; A porous permeation member that is integrally disposed in the valve seat at least one of the upstream and downstream of the orifice with a space therebetween and that communicates in the flow direction, and a member that is provided in the valve body as the valve body moves upward. Since the stop portion is locked to the holding portion that supports the valve seat, the valve seat is interlocked with the valve body, and the first connection pipe and the second connection pipe are directly connected via the valve chamber. The first switching position that communicates with the downward movement of the valve body Move from below the first connecting pipe the valve seat becomes the inflow side by serial locking portion away from the holding portion, rectified through the porous permeable member from said first connection pipe A second switching position that circulates to the second connection pipe through the orifice configured by the orifice and the valve body through which the vapor refrigerant and the liquid refrigerant that have been mixed and homogenized pass , An air conditioner that controls a flow rate by switching the valve seat between the first switching position and the second switching position. 前記多孔質透過材に前記弁体より大きな穴を設けたことを特徴とする請求項12に記載の空気調和機。The air conditioner according to claim 12 , wherein a hole larger than the valve body is provided in the porous permeable material. 前記弁体の先端部を円錐状としたことを特徴とする請求項12に記載の空気調和機。The air conditioner according to claim 12 , wherein the valve body has a conical tip. 潜熱比を低下させる運転時に前記絞り部を冷媒流路とするよう制御する制御部を備えたことを特徴とする請求項11乃至請求項14のいずれかに記載の空気調和装置。Air conditioning apparatus according to any one of claims 11 to 14 wherein the diaphragm portion during operation for reducing the latent heat ratio is characterized in that a control unit which controls to the refrigerant passage. 前記第2室内熱交換器と並列に配管接続された第3室内熱交換器と、前記第3室内熱交換器から前記弁座を介して弁室へ連通する第3の接続配管と、前記弁体に内設する2つ以上の絞り部とを備え、潜熱比を低下させる運転時に、前記第2室内熱交換器に接続する第2の接続配管が絞り部を流通する冷媒流路とするとともに、前記第3の接続配管を閉止するよう制御したことを特徴とする請求項11に記載の空気調和装置。A third indoor heat exchanger piped in parallel with the second indoor heat exchanger, a third connecting pipe communicating from the third indoor heat exchanger to the valve chamber via the valve seat, and the valve And a second connecting pipe connected to the second indoor heat exchanger serves as a refrigerant flow path that circulates through the throttle part during operation for reducing the latent heat ratio. The air conditioner according to claim 11 , wherein the third connection pipe is controlled to be closed. 冷房または除湿並びに暖房運転時に前記絞り部を冷媒回路とするよう制御する制御部を備えたことを特徴とする請求項11乃至請求項14のいずれかに記載の空気調和装置。Air conditioning apparatus according to any one of claims 11 to 14 for cooling or dehumidifying as well as the diaphragm portion during the heating operation, comprising the control unit which controls to the refrigerant circuit. 暖房運転起動時に前記絞り部を冷媒流路とするよう制御する制御部を備えたことを特徴とする請求項11乃至請求項14のいずれかに記載の空気調和装置。Air conditioning apparatus according to any one of claims 11 to 14 wherein the diaphragm portion during the heating operation startup, characterized in that a control unit which controls to the refrigerant passage. 暖房運転時で設定温度と室内温度との差が所定値以上の場合に前記絞り部を冷媒流路とするよう制御する制御部を備えたことを特徴とする請求項11乃至請求項14のいずれかに記載の空気調和装置。Any of claims 11 to 14 the difference between the set temperature and the indoor temperature during the heating operation is characterized by comprising a control unit which controls to the refrigerant flow path the narrowed portion in the case of more than a predetermined value An air conditioner according to claim 1. 冷媒を非共沸混合冷媒としたことを特徴とする請求項11乃至請求項19のいずれかに記載の空気調和装置。Air conditioning apparatus according to any one of claims 11 to 19, characterized in that the refrigerant a non-azeotropic mixed refrigerant. R22冷媒より蒸気密度の大きな冷媒としたことを特徴とする請求項11乃至請求項19のいずれかに記載の空気調和装置。Air conditioning apparatus according to any one of claims 11 to 19, characterized in that it has a large refrigerant vapor density than R22 refrigerant. 冷媒をハイドロカーボン系冷媒としたことを特徴とする請求項11乃至請求項19のいずれかに記載の空気調和装置。Air conditioning apparatus according to any one of claims 11 to 19, characterized in that the refrigerant hydrocarbon-based refrigerant.
JP2001283257A 2001-09-18 2001-09-18 Flow control device, refrigeration cycle device, and air conditioner Expired - Lifetime JP4103363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283257A JP4103363B2 (en) 2001-09-18 2001-09-18 Flow control device, refrigeration cycle device, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283257A JP4103363B2 (en) 2001-09-18 2001-09-18 Flow control device, refrigeration cycle device, and air conditioner

Publications (2)

Publication Number Publication Date
JP2003090650A JP2003090650A (en) 2003-03-28
JP4103363B2 true JP4103363B2 (en) 2008-06-18

Family

ID=19106769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283257A Expired - Lifetime JP4103363B2 (en) 2001-09-18 2001-09-18 Flow control device, refrigeration cycle device, and air conditioner

Country Status (1)

Country Link
JP (1) JP4103363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798686A (en) * 2019-01-28 2019-05-24 中国计量大学 A kind of sterlin refrigerator of pneumatic sound source driving

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177105A (en) * 2002-09-30 2004-06-24 Fuji Koki Corp Motor-operated valve
JP2006022945A (en) * 2004-06-08 2006-01-26 Mym Corp Combination tap
JP2008292003A (en) * 2008-08-04 2008-12-04 Fuji Koki Corp Motor-operated selector valve
WO2011111602A1 (en) * 2010-03-09 2011-09-15 東芝キヤリア株式会社 Air conditioner
CN106855128A (en) * 2015-12-09 2017-06-16 浙江三花智能控制股份有限公司 Two-period form electric expansion valve
JP6768297B2 (en) * 2016-01-20 2020-10-14 株式会社不二工機 Flow control valve
JP6692215B2 (en) * 2016-05-26 2020-05-13 株式会社不二工機 Flow control valve
JP6745141B2 (en) * 2016-05-26 2020-08-26 株式会社不二工機 Flow control valve
CN108119698B (en) * 2016-11-30 2021-11-02 浙江三花智能控制股份有限公司 Electronic expansion valve and refrigeration system with same
US10527192B2 (en) * 2018-02-15 2020-01-07 Talis Biomedical Corporation Rotary valve
US11008627B2 (en) 2019-08-15 2021-05-18 Talis Biomedical Corporation Diagnostic system
CN110705043B (en) * 2019-09-12 2024-04-02 广东开利暖通空调股份有限公司 Optimal design method of noise reduction type heat exchanger
CN114791184A (en) * 2022-03-16 2022-07-26 青岛海尔空调器有限总公司 Throttling device, air conditioner and method for vacuumizing and filling refrigerant into air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798686A (en) * 2019-01-28 2019-05-24 中国计量大学 A kind of sterlin refrigerator of pneumatic sound source driving

Also Published As

Publication number Publication date
JP2003090650A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
US7225630B2 (en) Refrigerating cycle apparatus, air conditioning apparatus, throttle device and flow controller
JP5665981B2 (en) Air conditioner
JP4103363B2 (en) Flow control device, refrigeration cycle device, and air conditioner
JP3428516B2 (en) Aperture device
JP2007085730A (en) Air conditioner and method of operating air conditioner
JP2002089988A (en) Air conditioner, and operating method of air conditioner
JP3901103B2 (en) Air conditioner
JP3817981B2 (en) Refrigeration cycle apparatus and air conditioner
JP2000346493A (en) Throttle device, refrigerating cycle apparatus and air conditioner
JP4221922B2 (en) Flow control device, throttle device, and air conditioner
JP3870768B2 (en) Air conditioner and method of operating air conditioner
JP2003050061A (en) Air conditioner
JP2000346493A5 (en)
JP3417351B2 (en) Aperture device
JP3412602B2 (en) Refrigeration cycle device and air conditioner
JP4151236B2 (en) Flow control device and air conditioner
WO2013061365A1 (en) Air conditioning device
JP2008261626A (en) Flow control device, restricting device and air conditioner
JP4106867B2 (en) Flow control device, air conditioner
JP2003294339A (en) Orifice device
JP4201990B2 (en) Air conditioner
AU2004202567B2 (en) Refrigerating cycle apparatus
CN100436972C (en) Flow rate control device and air conditioning device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R151 Written notification of patent or utility model registration

Ref document number: 4103363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term